US7634482B2 - System and method for data integration using multi-dimensional, associative unique identifiers - Google Patents
System and method for data integration using multi-dimensional, associative unique identifiers Download PDFInfo
- Publication number
- US7634482B2 US7634482B2 US10/889,229 US88922904A US7634482B2 US 7634482 B2 US7634482 B2 US 7634482B2 US 88922904 A US88922904 A US 88922904A US 7634482 B2 US7634482 B2 US 7634482B2
- Authority
- US
- United States
- Prior art keywords
- data
- dimension
- data object
- dimensions
- recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/10—Office automation; Time management
Definitions
- the present application relates to computer software and data processing, and in particular, to a system and method for identifying data using multi-dimensional, associative unique identifiers.
- large scale enterprise computer systems can include a number of data objects that are stored in various databases, software applications, and/or other data stores.
- the data objects can correspond to encapsulations of data relating to one or more business applications, which are generally referred to as business objects.
- Business objects can be in the form of structured or unstructured data relating to physical objects, such as equipment, personnel, etc. Additionally, business objects can also relate to abstract objects, such as database entities, textual descriptions of concepts, meta data, etc.
- business objects can be identified in accordance with conventional data processing approaches with an independently assigned domain specific unique identifier, such as a database key constraint.
- domain specific unique identifiers are not dependent on the specific business object data they represent. Instead, domain specific unique identifiers are limited to representing specific business object data and the identifier cannot be recreated for each instance of data representing a business object. Accordingly, a particular instance of a business object, such as a representation of an individual, may be associated with a number of unique identifiers.
- data sources containing business object data increases, such as independent databases, traditional data processing approaches become deficient in associating all business object data from each independent source.
- a system and method for associating data objects utilizing unique identifiers is provided.
- Data objects are modeled utilizing a data object ontology.
- Unique identifiers for instances of each data object are calculated utilizing a selection of unique attributes of the data object ontology.
- Data objects from multiple data sources can be integrated utilizing the unique identifiers for each data object.
- a data integration application associates a data object with a data object ontology corresponding to a hierarchy of data object dimensions. Additionally, the data integration application calculates a unique identifier for each instance of data object based upon a selection of a subset of data object dimensions.
- a data integration application associates a data object with a data object ontology corresponding to a hierarchy of data object dimensions.
- the data object ontology includes a invariance strength identifier for a source and target dimension in the hierarchy of data object dimensions.
- the data integration application also calculates a unique identifier for each instance of data object based upon a selection of a subset of data object dimensions having a high affinity metric.
- a system for processing data includes a number of data sources including data object dimension data corresponding to instances of data objects.
- the system also includes a data integration application for obtaining the data object dimension data.
- the data integration application integrates the data object dimension data according to a unique identifier calculated from a hash of a selection of a subset of data object dimension data.
- FIG. 1 is a block diagram of a business object ontology for generating a unique identifier for business object data in accordance an aspect of the present invention
- FIG. 2 is a block diagram of a business object ontology for a customer business object illustrating of multi-level hierarchy of unique identifier attributes in accordance with the present invention
- FIG. 3 is a block diagram illustrative of the generation of a unique identifier from multiple object attributes in accordance with the present invention
- FIG. 4 is a block diagram illustrative of the integration of business object data from a plurality of data sources utilizing unique identifiers in accordance with the present invention
- FIGS. 5A-5C are block diagrams of a mapping table for integrating business object data from multiple data sources utilizing unique identifiers in accordance with the present invention.
- FIG. 6 is a flow diagram illustrative of a data processing routine for integrating business object data from multiple data sources utilizing unique identifiers in accordance with the present invention.
- the present invention relates to a system and method for representing data. More specifically, in one aspect, the present invention relates to a system and method for representing data objects based upon unique identifiers corresponding to specific data object attribute values. In another aspect, the present invention relates to a system and method for identifying and integrating data from multiple data sources utilizing unique identifiers.
- the data objects can correspond to physical objects in a defined domain, such as physical items associated with an enterprise. Additionally, the data objects can correspond to abstract objects, such as meta data, within the same domain.
- a defined domain such as physical items associated with an enterprise.
- the data objects can correspond to abstract objects, such as meta data, within the same domain.
- FIG. 1 is a block diagram of illustrative of a business object ontology 100 for generating a unique identifier for a business object.
- the business object ontology 100 corresponds to a hierarchy of dimensions can be representative of a particular business object concept. The values associated with each dimension for a particular instance of the ontology is then utilized to generate a unique identifier, as will be described in greater detail below.
- attribute data from any number of data sources should generate a similar unique identifier.
- the incoming data can be associated with the particular business object.
- the business object ontology 100 corresponds to a particular business object concept.
- the business object concept can be a representative of an aspect of physical items within an enterprise, such as a customer, a piece of equipment/machinery.
- a particular business object can be represented by a single business object ontology, such as a business ontology for representing each piece of machinery in a plant.
- business objects can be represented by multiple business object ontologies corresponding to different aspects of the business object.
- one business object ontology may correspond to a representation of a customer from a financial perspective while another business object may correspond to a representation of the customer from a physical presence perspective (e.g., geographic-based location).
- a business object ontology may consist of a collection of other defined business ontologies.
- a more global customer business ontology can incorporate the financial business ontology and the physical presence ontology.
- the business object ontology 100 corresponds to a multi-level hierarchy of dimensions that are representative, or otherwise associated with, the business object.
- the business object ontology 100 includes a root dimension 102 that is representative of the business object concept represented by the business object ontology.
- the business object ontology 100 also includes one or more dimensions 104 , 106 , 108 and 110 that are dependent on the root dimension 102 .
- the root dimension e.g., dimension 102
- the root dimension is considered to be a source dimension
- the dependent dimensions 104 , 106 , 108 and 110 are considered to be target dimensions.
- the business ontology 100 can also include another level of dimensions 112 , 114 , 116 and 118 that are dependent on the dimensions 104 and 108 respectively.
- dimensions 104 and 108 are source dimensions, while dimensions 112 - 118 are target dimensions.
- dimensions 104 and 108 are source dimensions, while dimensions 112 - 118 are target dimensions.
- business ontology 100 is shown with three levels, one skilled in the relevant art will appreciate that alternative business ontologies can have any number of levels. Further, one skilled in the relevant art will appreciate that a business ontology can have any number of dimensions at each level in the hierarchy.
- the business object ontology 100 can include an invariant strength identifier for each source to target dimension relationship.
- the invariant strength identifier corresponds to an estimated correlation between the source dimension and the target dimension.
- the invariant strength identifier can be specified as a value in a range from 0.00 to 1.00, where 1.00 indicates that the value of the source will be invariant if the value of the target is invariant.
- each link between a source dimension and a target dimension includes an invariant strength identifier.
- num A the maximum number of times a value of the dimension for an object appears in a snapshot of all records over a period of time
- each dimension in the business object ontology 100 can be associated with specific attribute data.
- the data can include a dimension type identifier, a dimension version identifier, a timestamp identifier for the unique id, and a value for the dimension.
- the dimension type identifier identifies which business object ontology and the particular dimension to which the value corresponds.
- the version information indicates a version for the business object ontology if more than one version of the ontology is present.
- the timestamp identifier can include one or more timestamps relating to when the business ontology was created, modified and/or when it will expire.
- the value for the dimension can be in the form of a textual string that represents a value for the dimension (e.g., textual string including the name of the information).
- the business ontology may include additional or alternative dimension data.
- the business object ontology 200 includes a root dimension 202 , which in the illustrative example, corresponds to the representation of a customer in the define domain.
- the root dimension 202 includes three target dimensions 204 , 206 and 208 , which corresponds to an identification dimension, a financial dimension, and a location dimension, respectively.
- dimension 204 name
- dimension 208 location
- target dimensions 214 - 216 such as postal address and geographic location.
- each of the source/target dimensions in the business object ontology 200 includes an invariant strength identifier.
- FIG. 3 is a block diagram illustrative of the generation of a unique identifier from multiple object dimensions in accordance with the present invention. As illustrated in FIG. 3 , a selection of values for three dimensions of a business ontology 100 ( FIG. 1 ) can be used to generate a unique identifier 120 for the particular business object.
- the dimensions selected to generate the unique identifier 120 are most likely to have a unique value for each instance of an object in a particular domain. Thus, no two instances of a business object will be associated with the same unique identifier.
- an affinity metric is calculated for each dimension in the business object ontology. The affinity metric consists of a uniqueness metric and the temporal invariance for each dimension, which will be described below.
- the uniqueness metric is a measure of the uniqueness of dimension values for all records to be identified in a given domain.
- N number of groups of K records having the same value for a dimension.
- affinity metric ⁇ * ⁇ + ⁇ *temporal invariance (4)
- ⁇ , ⁇ are weighting factors
- a unique identifier for an instance of a business object is composed of a hash of a number of dimension values having the highest affinity metric values.
- the md5 hashing algorithm may be used to generate a unique representation of data.
- D 1 ⁇ D K are dimension values having the highest K affinity metrics.
- FIG. 4 is a block diagram illustrative of the integration of business object data from a plurality of data sources utilizing unique identifiers in accordance with the present invention.
- a data integration application 402 collects data from a number of data sources 404 , 406 , 408 .
- the data integration application 402 may be remote from one or more data sources 404 , 406 , 408 .
- the data integration application 402 may be integrated as component within one or more the data sources 404 , 406 , 408 .
- Each data source includes some type of business object data that is accessible by the data integration application 402 .
- the business object data for each data source 404 , 406 , 408 may be of the same type of data or of different data types.
- the data integration application 402 calculates a unique identifier for the incoming data based upon a selected business ontology 100 ( FIG. 1 ) for the business object data and the selected affinity metrics, as described above. Because the unique identifier can typically be associated with only one instance of a business object (e.g., a specific piece of equipment), the data integration application 402 can then map all incoming data to a specific business object. Accordingly, the data integration application 402 can associate different types of business object data from a variety of data sources to the same instance of a business object.
- FIGS. 5A-5C are block diagrams of a table 500 utilized to associated incoming business object data from a variety of data sources in accordance with the present invention.
- the table 500 includes a number of rows corresponding to each unique identifier in the defined domain of data sources.
- the table 500 also includes a number of columns corresponding to each unique data source that will be integrated.
- a mapping of a unique id is correlated to the identification/location of the data in the data sources.
- identification/locations 504 , and 508 are correlated to ids 502 , 506 , respectively.
- next set of data to be integrated is obtained.
- the next set of data may be a sequential process from each data source.
- a prioritization may be utilized to select specific data to be integrated.
- decision block 604 a test is conducted to determine whether a unique id exists for the data to be integrated.
- the data integration application 402 FIG. 4 ) calculates a unique id based upon a selection of a subset of dimension data from a business object ontology.
- the data integration application 402 creates an entry for the new unique id at block 606 and adds it to the table 500 at block 608 .
- the data integration application adds the data to the table 500 .
- a test is conducted to determine whether additional data is to be integrated. If additional data is to be integrated, the routine 600 returns to block 602 . Alternatively, if no additional data is to be integrated, the routine 600 terminates at block 614 .
- data identification 510 has been added to table 500 to correspond data source 2 to unique id 502 .
- data identifications 512 and 514 have been added to table 500 to correspond data sources 2 and 3 to unique ids 502 , 504 .
- unique id 516 has been added to table 500 to account for a new unique id and data identification 518 has been added to the table 500 to corresponds data source 3 to unique id 516 .
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Strategic Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Operations Research (AREA)
- Economics (AREA)
- Marketing (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
temporal invariance of (
temporal invariance of (
μ (affinity metric)=Σ (max |S|/N) for K records (3)
affinity metric=α*μ+β*temporal invariance (4)
unique id=hash (values D1−DK) (5)
Claims (21)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/889,229 US7634482B2 (en) | 2003-07-11 | 2004-07-12 | System and method for data integration using multi-dimensional, associative unique identifiers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48678003P | 2003-07-11 | 2003-07-11 | |
US10/889,229 US7634482B2 (en) | 2003-07-11 | 2004-07-12 | System and method for data integration using multi-dimensional, associative unique identifiers |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050097111A1 US20050097111A1 (en) | 2005-05-05 |
US7634482B2 true US7634482B2 (en) | 2009-12-15 |
Family
ID=34555574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/889,229 Active 2025-07-13 US7634482B2 (en) | 2003-07-11 | 2004-07-12 | System and method for data integration using multi-dimensional, associative unique identifiers |
Country Status (1)
Country | Link |
---|---|
US (1) | US7634482B2 (en) |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090094020A1 (en) * | 2007-10-05 | 2009-04-09 | Fujitsu Limited | Recommending Terms To Specify Ontology Space |
US20110077999A1 (en) * | 2009-09-30 | 2011-03-31 | Sap Ag | Managing consistent interfaces for retail event business objects across heterogeneous systems |
US20120296932A1 (en) * | 2011-05-18 | 2012-11-22 | International Business Machines Corporation | Method and apparatus for identifier retrieval |
US8364715B2 (en) | 2008-03-31 | 2013-01-29 | Sap Ag | Managing consistent interfaces for automatic identification label business objects across heterogeneous systems |
US8364608B2 (en) | 2010-06-15 | 2013-01-29 | Sap Ag | Managing consistent interfaces for export declaration and export declaration request business objects across heterogeneous systems |
US8370272B2 (en) | 2010-06-15 | 2013-02-05 | Sap Ag | Managing consistent interfaces for business document message monitoring view, customs arrangement, and freight list business objects across heterogeneous systems |
US8370233B2 (en) | 2008-03-31 | 2013-02-05 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8374931B2 (en) | 2006-03-31 | 2013-02-12 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8392364B2 (en) | 2006-07-10 | 2013-03-05 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8396751B2 (en) | 2009-09-30 | 2013-03-12 | Sap Ag | Managing consistent interfaces for merchandising business objects across heterogeneous systems |
US8396768B1 (en) | 2006-09-28 | 2013-03-12 | Sap Ag | Managing consistent interfaces for human resources business objects across heterogeneous systems |
US8413165B2 (en) | 2008-03-31 | 2013-04-02 | Sap Ag | Managing consistent interfaces for maintenance order business objects across heterogeneous systems |
US8412603B2 (en) | 2010-06-15 | 2013-04-02 | Sap Ag | Managing consistent interfaces for currency conversion and date and time business objects across heterogeneous systems |
US8417593B2 (en) | 2008-02-28 | 2013-04-09 | Sap Ag | System and computer-readable medium for managing consistent interfaces for business objects across heterogeneous systems |
US8417588B2 (en) | 2010-06-15 | 2013-04-09 | Sap Ag | Managing consistent interfaces for goods tag, production bill of material hierarchy, and release order template business objects across heterogeneous systems |
US8423418B2 (en) | 2008-03-31 | 2013-04-16 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8433585B2 (en) * | 2008-03-31 | 2013-04-30 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8463666B2 (en) * | 2008-11-25 | 2013-06-11 | Sap Ag | Managing consistent interfaces for merchandise and assortment planning business objects across heterogeneous systems |
US8473317B2 (en) | 2008-03-31 | 2013-06-25 | Sap Ag | Managing consistent interfaces for service part business objects across heterogeneous systems |
US8515794B2 (en) | 2010-06-15 | 2013-08-20 | Sap Ag | Managing consistent interfaces for employee time event and human capital management view of payroll process business objects across heterogeneous systems |
US8521838B2 (en) | 2011-07-28 | 2013-08-27 | Sap Ag | Managing consistent interfaces for communication system and object identifier mapping business objects across heterogeneous systems |
US8521621B1 (en) | 2012-06-28 | 2013-08-27 | Sap Ag | Consistent interface for inbound delivery request |
US8554586B2 (en) | 2008-06-26 | 2013-10-08 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8560392B2 (en) | 2011-07-28 | 2013-10-15 | Sap Ag | Managing consistent interfaces for a point of sale transaction business object across heterogeneous systems |
US8566185B2 (en) | 2008-06-26 | 2013-10-22 | Sap Ag | Managing consistent interfaces for financial instrument business objects across heterogeneous systems |
US8566193B2 (en) | 2006-08-11 | 2013-10-22 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8577991B2 (en) | 2008-03-31 | 2013-11-05 | Sap Ag | Managing consistent interfaces for internal service request business objects across heterogeneous systems |
US8577760B2 (en) | 2008-11-25 | 2013-11-05 | Sap Ag | Managing consistent interfaces for tax authority business objects across heterogeneous systems |
US8589263B2 (en) | 2008-03-31 | 2013-11-19 | Sap Ag | Managing consistent interfaces for retail business objects across heterogeneous systems |
US8601490B2 (en) | 2011-07-28 | 2013-12-03 | Sap Ag | Managing consistent interfaces for business rule business object across heterogeneous systems |
US8606723B2 (en) | 2004-06-04 | 2013-12-10 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8615451B1 (en) | 2012-06-28 | 2013-12-24 | Sap Ag | Consistent interface for goods and activity confirmation |
US8645228B2 (en) | 2008-06-26 | 2014-02-04 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8655756B2 (en) | 2004-06-04 | 2014-02-18 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8666845B2 (en) | 2011-07-28 | 2014-03-04 | Sap Ag | Managing consistent interfaces for a customer requirement business object across heterogeneous systems |
US8671041B2 (en) | 2008-12-12 | 2014-03-11 | Sap Ag | Managing consistent interfaces for credit portfolio business objects across heterogeneous systems |
US8671064B2 (en) | 2008-06-26 | 2014-03-11 | Sap Ag | Managing consistent interfaces for supply chain management business objects across heterogeneous systems |
US8694397B2 (en) | 2004-06-18 | 2014-04-08 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8725654B2 (en) | 2011-07-28 | 2014-05-13 | Sap Ag | Managing consistent interfaces for employee data replication business objects across heterogeneous systems |
US8732083B2 (en) | 2010-06-15 | 2014-05-20 | Sap Ag | Managing consistent interfaces for number range, number range profile, payment card payment authorisation, and product template template business objects across heterogeneous systems |
US8744937B2 (en) | 2005-02-25 | 2014-06-03 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8756274B2 (en) | 2012-02-16 | 2014-06-17 | Sap Ag | Consistent interface for sales territory message type set 1 |
US8756135B2 (en) | 2012-06-28 | 2014-06-17 | Sap Ag | Consistent interface for product valuation data and product valuation level |
US8762453B2 (en) | 2012-02-16 | 2014-06-24 | Sap Ag | Consistent interface for feed collaboration group and feed event subscription |
US8762454B2 (en) | 2012-02-16 | 2014-06-24 | Sap Ag | Consistent interface for flag and tag |
US8775280B2 (en) | 2011-07-28 | 2014-07-08 | Sap Ag | Managing consistent interfaces for financial business objects across heterogeneous systems |
US20140325625A1 (en) * | 2011-08-11 | 2014-10-30 | Nanjie Liu | Cyber gene identification technology based on entity features in cyber space |
US8924269B2 (en) | 2006-05-13 | 2014-12-30 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8930248B2 (en) | 2008-03-31 | 2015-01-06 | Sap Se | Managing consistent interfaces for supply network business objects across heterogeneous systems |
US8949855B2 (en) | 2012-06-28 | 2015-02-03 | Sap Se | Consistent interface for address snapshot and approval process definition |
US8984050B2 (en) | 2012-02-16 | 2015-03-17 | Sap Se | Consistent interface for sales territory message type set 2 |
US9043236B2 (en) | 2012-08-22 | 2015-05-26 | Sap Se | Consistent interface for financial instrument impairment attribute values analytical result |
US9076112B2 (en) | 2012-08-22 | 2015-07-07 | Sap Se | Consistent interface for financial instrument impairment expected cash flow analytical result |
US9135585B2 (en) | 2010-06-15 | 2015-09-15 | Sap Se | Managing consistent interfaces for property library, property list template, quantity conversion virtual object, and supplier property specification business objects across heterogeneous systems |
US9191343B2 (en) | 2013-03-15 | 2015-11-17 | Sap Se | Consistent interface for appointment activity business object |
US9191357B2 (en) | 2013-03-15 | 2015-11-17 | Sap Se | Consistent interface for email activity business object |
US9232368B2 (en) | 2012-02-16 | 2016-01-05 | Sap Se | Consistent interface for user feed administrator, user feed event link and user feed settings |
US9237425B2 (en) | 2012-02-16 | 2016-01-12 | Sap Se | Consistent interface for feed event, feed event document and feed event type |
US9246869B2 (en) | 2012-06-28 | 2016-01-26 | Sap Se | Consistent interface for opportunity |
US9261950B2 (en) | 2012-06-28 | 2016-02-16 | Sap Se | Consistent interface for document output request |
US9367826B2 (en) | 2012-06-28 | 2016-06-14 | Sap Se | Consistent interface for entitlement product |
US9400998B2 (en) | 2012-06-28 | 2016-07-26 | Sap Se | Consistent interface for message-based communication arrangement, organisational centre replication request, and payment schedule |
US9547833B2 (en) | 2012-08-22 | 2017-01-17 | Sap Se | Consistent interface for financial instrument impairment calculation |
US10121177B2 (en) | 2015-05-05 | 2018-11-06 | Partfiniti Inc. | Techniques for configurable part generation |
US10324903B1 (en) | 2017-12-28 | 2019-06-18 | Dropbox, Inc. | Content management client synchronization service |
US20230103939A1 (en) * | 2021-10-04 | 2023-04-06 | Palantir Technologies Inc. | Synchronization of data across different ontologies |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7904488B2 (en) * | 2004-07-21 | 2011-03-08 | Rockwell Automation Technologies, Inc. | Time stamp methods for unified plant model |
US8185643B2 (en) * | 2005-11-17 | 2012-05-22 | Oracle International Corporation | System and method for providing security in a communities framework |
US20070112913A1 (en) * | 2005-11-17 | 2007-05-17 | Bales Christopher E | System and method for displaying HTML content from portlet as a page element in a communites framework |
US7805459B2 (en) * | 2005-11-17 | 2010-09-28 | Bea Systems, Inc. | Extensible controls for a content data repository |
US8255818B2 (en) | 2005-11-17 | 2012-08-28 | Oracle International Corporation | System and method for providing drag and drop functionality in a communities framework |
US7493329B2 (en) * | 2005-11-17 | 2009-02-17 | Bea Systems, Inc. | System and method for providing generic controls in a communities framework |
US20070113188A1 (en) * | 2005-11-17 | 2007-05-17 | Bales Christopher E | System and method for providing dynamic content in a communities framework |
US7680927B2 (en) * | 2005-11-17 | 2010-03-16 | Bea Systems, Inc. | System and method for providing testing for a communities framework |
US8078597B2 (en) | 2005-11-17 | 2011-12-13 | Oracle International Corporation | System and method for providing extensible controls in a communities framework |
US8046696B2 (en) * | 2005-11-17 | 2011-10-25 | Oracle International Corporation | System and method for providing active menus in a communities framework |
US20070112798A1 (en) * | 2005-11-17 | 2007-05-17 | Bea Systems, Inc. | System and method for providing unique key stores for a communities framework |
US7590687B2 (en) | 2005-11-17 | 2009-09-15 | Bea Systems, Inc. | System and method for providing notifications in a communities framework |
US8150857B2 (en) | 2006-01-20 | 2012-04-03 | Glenbrook Associates, Inc. | System and method for context-rich database optimized for processing of concepts |
US8332209B2 (en) * | 2007-04-24 | 2012-12-11 | Zinovy D. Grinblat | Method and system for text compression and decompression |
US8832175B2 (en) * | 2010-09-21 | 2014-09-09 | Sourcecode Technology Holdings, Inc. | Methods and apparatus for dynamic endpoint generators and dynamic remote object discovery and brokerage |
US11138236B1 (en) * | 2017-05-17 | 2021-10-05 | Palantir Technologies Inc. | Systems and methods for packaging information into data objects |
US11113261B2 (en) * | 2018-01-19 | 2021-09-07 | Sap Se | Data locking |
DE102021123997A1 (en) | 2021-09-16 | 2023-03-16 | Swedex Holding GmbH | Computer-implemented database method, data processing system, computer program product and computer-readable storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020165731A1 (en) * | 2001-03-09 | 2002-11-07 | Sentinel Wireless, Llc | System and method for performing object association at a tradeshow using a location tracking system |
US6505191B1 (en) * | 1998-07-24 | 2003-01-07 | Jarg Corporation | Distributed computer database system and method employing hypertext linkage analysis |
US6658413B1 (en) * | 1999-09-01 | 2003-12-02 | I2 Technologies Us, Inc. | Multidimensional database system with intermediate lockable intersections |
US20040172536A1 (en) * | 2001-06-08 | 2004-09-02 | Eric Malville | Method for authentication between a portable telecommunication object and a public access terminal |
US7167876B2 (en) * | 2002-10-25 | 2007-01-23 | Ammon Cookson | Generalized configurator software system |
-
2004
- 2004-07-12 US US10/889,229 patent/US7634482B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6505191B1 (en) * | 1998-07-24 | 2003-01-07 | Jarg Corporation | Distributed computer database system and method employing hypertext linkage analysis |
US6658413B1 (en) * | 1999-09-01 | 2003-12-02 | I2 Technologies Us, Inc. | Multidimensional database system with intermediate lockable intersections |
US20020165731A1 (en) * | 2001-03-09 | 2002-11-07 | Sentinel Wireless, Llc | System and method for performing object association at a tradeshow using a location tracking system |
US20040172536A1 (en) * | 2001-06-08 | 2004-09-02 | Eric Malville | Method for authentication between a portable telecommunication object and a public access terminal |
US7167876B2 (en) * | 2002-10-25 | 2007-01-23 | Ammon Cookson | Generalized configurator software system |
Cited By (118)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8606723B2 (en) | 2004-06-04 | 2013-12-10 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8655756B2 (en) | 2004-06-04 | 2014-02-18 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8694397B2 (en) | 2004-06-18 | 2014-04-08 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8744937B2 (en) | 2005-02-25 | 2014-06-03 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8374931B2 (en) | 2006-03-31 | 2013-02-12 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8924269B2 (en) | 2006-05-13 | 2014-12-30 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8392364B2 (en) | 2006-07-10 | 2013-03-05 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8566193B2 (en) | 2006-08-11 | 2013-10-22 | Sap Ag | Consistent set of interfaces derived from a business object model |
US8402473B1 (en) | 2006-09-28 | 2013-03-19 | Sap Ag | Managing consistent interfaces for demand business objects across heterogeneous systems |
US8606639B1 (en) | 2006-09-28 | 2013-12-10 | Sap Ag | Managing consistent interfaces for purchase order business objects across heterogeneous systems |
US8396768B1 (en) | 2006-09-28 | 2013-03-12 | Sap Ag | Managing consistent interfaces for human resources business objects across heterogeneous systems |
US8571961B1 (en) | 2006-09-28 | 2013-10-29 | Sap Ag | Managing consistent interfaces for financial business objects across heterogeneous systems |
US8468544B1 (en) | 2006-09-28 | 2013-06-18 | Sap Ag | Managing consistent interfaces for demand planning business objects across heterogeneous systems |
US9081852B2 (en) * | 2007-10-05 | 2015-07-14 | Fujitsu Limited | Recommending terms to specify ontology space |
US20090094020A1 (en) * | 2007-10-05 | 2009-04-09 | Fujitsu Limited | Recommending Terms To Specify Ontology Space |
US8799115B2 (en) | 2008-02-28 | 2014-08-05 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8417593B2 (en) | 2008-02-28 | 2013-04-09 | Sap Ag | System and computer-readable medium for managing consistent interfaces for business objects across heterogeneous systems |
US8423418B2 (en) | 2008-03-31 | 2013-04-16 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8433585B2 (en) * | 2008-03-31 | 2013-04-30 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8370233B2 (en) | 2008-03-31 | 2013-02-05 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8930248B2 (en) | 2008-03-31 | 2015-01-06 | Sap Se | Managing consistent interfaces for supply network business objects across heterogeneous systems |
US8473317B2 (en) | 2008-03-31 | 2013-06-25 | Sap Ag | Managing consistent interfaces for service part business objects across heterogeneous systems |
US8413165B2 (en) | 2008-03-31 | 2013-04-02 | Sap Ag | Managing consistent interfaces for maintenance order business objects across heterogeneous systems |
US8589263B2 (en) | 2008-03-31 | 2013-11-19 | Sap Ag | Managing consistent interfaces for retail business objects across heterogeneous systems |
US8577991B2 (en) | 2008-03-31 | 2013-11-05 | Sap Ag | Managing consistent interfaces for internal service request business objects across heterogeneous systems |
US8364715B2 (en) | 2008-03-31 | 2013-01-29 | Sap Ag | Managing consistent interfaces for automatic identification label business objects across heterogeneous systems |
US8645228B2 (en) | 2008-06-26 | 2014-02-04 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US8566185B2 (en) | 2008-06-26 | 2013-10-22 | Sap Ag | Managing consistent interfaces for financial instrument business objects across heterogeneous systems |
US8554586B2 (en) | 2008-06-26 | 2013-10-08 | Sap Ag | Managing consistent interfaces for business objects across heterogeneous systems |
US9047578B2 (en) | 2008-06-26 | 2015-06-02 | Sap Se | Consistent set of interfaces for business objects across heterogeneous systems |
US8671064B2 (en) | 2008-06-26 | 2014-03-11 | Sap Ag | Managing consistent interfaces for supply chain management business objects across heterogeneous systems |
US8577760B2 (en) | 2008-11-25 | 2013-11-05 | Sap Ag | Managing consistent interfaces for tax authority business objects across heterogeneous systems |
US8463666B2 (en) * | 2008-11-25 | 2013-06-11 | Sap Ag | Managing consistent interfaces for merchandise and assortment planning business objects across heterogeneous systems |
US8671041B2 (en) | 2008-12-12 | 2014-03-11 | Sap Ag | Managing consistent interfaces for credit portfolio business objects across heterogeneous systems |
US8554637B2 (en) | 2009-09-30 | 2013-10-08 | Sap Ag | Managing consistent interfaces for merchandising business objects across heterogeneous systems |
US20110077999A1 (en) * | 2009-09-30 | 2011-03-31 | Sap Ag | Managing consistent interfaces for retail event business objects across heterogeneous systems |
US8396751B2 (en) | 2009-09-30 | 2013-03-12 | Sap Ag | Managing consistent interfaces for merchandising business objects across heterogeneous systems |
US8732083B2 (en) | 2010-06-15 | 2014-05-20 | Sap Ag | Managing consistent interfaces for number range, number range profile, payment card payment authorisation, and product template template business objects across heterogeneous systems |
US8370272B2 (en) | 2010-06-15 | 2013-02-05 | Sap Ag | Managing consistent interfaces for business document message monitoring view, customs arrangement, and freight list business objects across heterogeneous systems |
US8412603B2 (en) | 2010-06-15 | 2013-04-02 | Sap Ag | Managing consistent interfaces for currency conversion and date and time business objects across heterogeneous systems |
US8364608B2 (en) | 2010-06-15 | 2013-01-29 | Sap Ag | Managing consistent interfaces for export declaration and export declaration request business objects across heterogeneous systems |
US9135585B2 (en) | 2010-06-15 | 2015-09-15 | Sap Se | Managing consistent interfaces for property library, property list template, quantity conversion virtual object, and supplier property specification business objects across heterogeneous systems |
US8515794B2 (en) | 2010-06-15 | 2013-08-20 | Sap Ag | Managing consistent interfaces for employee time event and human capital management view of payroll process business objects across heterogeneous systems |
US8417588B2 (en) | 2010-06-15 | 2013-04-09 | Sap Ag | Managing consistent interfaces for goods tag, production bill of material hierarchy, and release order template business objects across heterogeneous systems |
US20120317125A1 (en) * | 2011-05-18 | 2012-12-13 | International Business Machines Corporation | Method and apparatus for identifier retrieval |
US20120296932A1 (en) * | 2011-05-18 | 2012-11-22 | International Business Machines Corporation | Method and apparatus for identifier retrieval |
US8725654B2 (en) | 2011-07-28 | 2014-05-13 | Sap Ag | Managing consistent interfaces for employee data replication business objects across heterogeneous systems |
US8560392B2 (en) | 2011-07-28 | 2013-10-15 | Sap Ag | Managing consistent interfaces for a point of sale transaction business object across heterogeneous systems |
US8601490B2 (en) | 2011-07-28 | 2013-12-03 | Sap Ag | Managing consistent interfaces for business rule business object across heterogeneous systems |
US8666845B2 (en) | 2011-07-28 | 2014-03-04 | Sap Ag | Managing consistent interfaces for a customer requirement business object across heterogeneous systems |
US8521838B2 (en) | 2011-07-28 | 2013-08-27 | Sap Ag | Managing consistent interfaces for communication system and object identifier mapping business objects across heterogeneous systems |
US8775280B2 (en) | 2011-07-28 | 2014-07-08 | Sap Ag | Managing consistent interfaces for financial business objects across heterogeneous systems |
US9253181B2 (en) * | 2011-08-11 | 2016-02-02 | Nanjie Liu | Cyber gene identification technology based on entity features in cyber space |
US20140325625A1 (en) * | 2011-08-11 | 2014-10-30 | Nanjie Liu | Cyber gene identification technology based on entity features in cyber space |
US8984050B2 (en) | 2012-02-16 | 2015-03-17 | Sap Se | Consistent interface for sales territory message type set 2 |
US8756274B2 (en) | 2012-02-16 | 2014-06-17 | Sap Ag | Consistent interface for sales territory message type set 1 |
US8762454B2 (en) | 2012-02-16 | 2014-06-24 | Sap Ag | Consistent interface for flag and tag |
US8762453B2 (en) | 2012-02-16 | 2014-06-24 | Sap Ag | Consistent interface for feed collaboration group and feed event subscription |
US9237425B2 (en) | 2012-02-16 | 2016-01-12 | Sap Se | Consistent interface for feed event, feed event document and feed event type |
US9232368B2 (en) | 2012-02-16 | 2016-01-05 | Sap Se | Consistent interface for user feed administrator, user feed event link and user feed settings |
US9367826B2 (en) | 2012-06-28 | 2016-06-14 | Sap Se | Consistent interface for entitlement product |
US9261950B2 (en) | 2012-06-28 | 2016-02-16 | Sap Se | Consistent interface for document output request |
US8615451B1 (en) | 2012-06-28 | 2013-12-24 | Sap Ag | Consistent interface for goods and activity confirmation |
US9400998B2 (en) | 2012-06-28 | 2016-07-26 | Sap Se | Consistent interface for message-based communication arrangement, organisational centre replication request, and payment schedule |
US8949855B2 (en) | 2012-06-28 | 2015-02-03 | Sap Se | Consistent interface for address snapshot and approval process definition |
US8756135B2 (en) | 2012-06-28 | 2014-06-17 | Sap Ag | Consistent interface for product valuation data and product valuation level |
US8521621B1 (en) | 2012-06-28 | 2013-08-27 | Sap Ag | Consistent interface for inbound delivery request |
US9246869B2 (en) | 2012-06-28 | 2016-01-26 | Sap Se | Consistent interface for opportunity |
US9043236B2 (en) | 2012-08-22 | 2015-05-26 | Sap Se | Consistent interface for financial instrument impairment attribute values analytical result |
US9076112B2 (en) | 2012-08-22 | 2015-07-07 | Sap Se | Consistent interface for financial instrument impairment expected cash flow analytical result |
US9547833B2 (en) | 2012-08-22 | 2017-01-17 | Sap Se | Consistent interface for financial instrument impairment calculation |
US9191357B2 (en) | 2013-03-15 | 2015-11-17 | Sap Se | Consistent interface for email activity business object |
US9191343B2 (en) | 2013-03-15 | 2015-11-17 | Sap Se | Consistent interface for appointment activity business object |
US10121177B2 (en) | 2015-05-05 | 2018-11-06 | Partfiniti Inc. | Techniques for configurable part generation |
US12154155B2 (en) | 2015-05-05 | 2024-11-26 | Partfiniti Inc. | Techniques for configurable part generation |
US11734741B2 (en) | 2015-05-05 | 2023-08-22 | Partfiniti Inc. | Techniques for configurable part generation |
US11087375B2 (en) | 2015-05-05 | 2021-08-10 | Partfiniti Inc. | Techniques for configurable part generation |
US10877993B2 (en) | 2017-12-28 | 2020-12-29 | Dropbox, Inc. | Updating a local tree for a client synchronization service |
US11188559B2 (en) | 2017-12-28 | 2021-11-30 | Dropbox, Inc. | Directory snapshots with searchable file paths |
US10733205B2 (en) | 2017-12-28 | 2020-08-04 | Dropbox, Inc. | Violation resolution in client synchronization |
US10762104B2 (en) | 2017-12-28 | 2020-09-01 | Dropbox, Inc. | File journal interface for synchronizing content |
US10776386B2 (en) | 2017-12-28 | 2020-09-15 | Dropbox, Inc. | Content management client synchronization service |
US10789269B2 (en) | 2017-12-28 | 2020-09-29 | Dropbox, Inc. | Resynchronizing metadata in a content management system |
US10866964B2 (en) | 2017-12-28 | 2020-12-15 | Dropbox, Inc. | Updating a local tree for a client synchronization service |
US10872098B2 (en) | 2017-12-28 | 2020-12-22 | Dropbox, Inc. | Allocation and reassignment of unique identifiers for synchronization of content items |
US10691720B2 (en) | 2017-12-28 | 2020-06-23 | Dropbox, Inc. | Resynchronizing metadata in a content management system |
US10922333B2 (en) | 2017-12-28 | 2021-02-16 | Dropbox, Inc. | Efficient management of client synchronization updates |
US10929427B2 (en) | 2017-12-28 | 2021-02-23 | Dropbox, Inc. | Selective synchronization of content items in a content management system |
US10936622B2 (en) | 2017-12-28 | 2021-03-02 | Dropbox, Inc. | Storage interface for synchronizing content |
US10949445B2 (en) | 2017-12-28 | 2021-03-16 | Dropbox, Inc. | Content management client synchronization service |
US11003685B2 (en) | 2017-12-28 | 2021-05-11 | Dropbox, Inc. | Commit protocol for synchronizing content items |
US11010402B2 (en) | 2017-12-28 | 2021-05-18 | Dropbox, Inc. | Updating a remote tree for a client synchronization service |
US11016991B2 (en) | 2017-12-28 | 2021-05-25 | Dropbox, Inc. | Efficient filename storage and retrieval |
US11048720B2 (en) | 2017-12-28 | 2021-06-29 | Dropbox, Inc. | Efficiently propagating diff values |
US11080297B2 (en) | 2017-12-28 | 2021-08-03 | Dropbox, Inc. | Incremental client synchronization |
US10671638B2 (en) | 2017-12-28 | 2020-06-02 | Dropbox, Inc. | Allocation and reassignment of unique identifiers for synchronization of content items |
US11120039B2 (en) | 2017-12-28 | 2021-09-14 | Dropbox, Inc. | Updating a remote tree for a client synchronization service |
US11176164B2 (en) | 2017-12-28 | 2021-11-16 | Dropbox, Inc. | Transition to an organization directory |
US10726044B2 (en) | 2017-12-28 | 2020-07-28 | Dropbox, Inc. | Atomic moves with lamport clocks in a content management system |
US11423048B2 (en) | 2017-12-28 | 2022-08-23 | Dropbox, Inc. | Content management client synchronization service |
US11429634B2 (en) | 2017-12-28 | 2022-08-30 | Dropbox, Inc. | Storage interface for synchronizing content |
US11461365B2 (en) | 2017-12-28 | 2022-10-04 | Dropbox, Inc. | Atomic moves with lamport clocks in a content management system |
US11475041B2 (en) | 2017-12-28 | 2022-10-18 | Dropbox, Inc. | Resynchronizing metadata in a content management system |
US11500899B2 (en) | 2017-12-28 | 2022-11-15 | Dropbox, Inc. | Efficient management of client synchronization updates |
US11500897B2 (en) | 2017-12-28 | 2022-11-15 | Dropbox, Inc. | Allocation and reassignment of unique identifiers for synchronization of content items |
US11514078B2 (en) | 2017-12-28 | 2022-11-29 | Dropbox, Inc. | File journal interface for synchronizing content |
US12169505B2 (en) | 2017-12-28 | 2024-12-17 | Dropbox, Inc. | Updating a local tree for a client synchronization service |
US11657067B2 (en) | 2017-12-28 | 2023-05-23 | Dropbox Inc. | Updating a remote tree for a client synchronization service |
US11669544B2 (en) | 2017-12-28 | 2023-06-06 | Dropbox, Inc. | Allocation and reassignment of unique identifiers for synchronization of content items |
US11704336B2 (en) | 2017-12-28 | 2023-07-18 | Dropbox, Inc. | Efficient filename storage and retrieval |
US10599673B2 (en) | 2017-12-28 | 2020-03-24 | Dropbox, Inc. | Content management client synchronization service |
US11782949B2 (en) | 2017-12-28 | 2023-10-10 | Dropbox, Inc. | Violation resolution in client synchronization |
US11836151B2 (en) | 2017-12-28 | 2023-12-05 | Dropbox, Inc. | Synchronizing symbolic links |
US12061623B2 (en) | 2017-12-28 | 2024-08-13 | Dropbox, Inc. | Selective synchronization of content items in a content management system |
US10324903B1 (en) | 2017-12-28 | 2019-06-18 | Dropbox, Inc. | Content management client synchronization service |
US12135733B2 (en) | 2017-12-28 | 2024-11-05 | Dropbox, Inc. | File journal interface for synchronizing content |
US12111843B2 (en) * | 2021-10-04 | 2024-10-08 | Palantir Technologies Inc. | Synchronization of data across different ontologies |
US20230103939A1 (en) * | 2021-10-04 | 2023-04-06 | Palantir Technologies Inc. | Synchronization of data across different ontologies |
Also Published As
Publication number | Publication date |
---|---|
US20050097111A1 (en) | 2005-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7634482B2 (en) | System and method for data integration using multi-dimensional, associative unique identifiers | |
US8965914B2 (en) | Grouping identity records to generate candidate lists to use in an entity and relationship resolution process | |
Zhou et al. | Preserving privacy in social networks against neighborhood attacks | |
Templ et al. | Statistical disclosure control for micro-data using the R package sdcMicro | |
Leydesdorff | Betweenness centrality as an indicator of the interdisciplinarity of scientific journals | |
US20180349384A1 (en) | Differentially private database queries involving rank statistics | |
US20190058719A1 (en) | System and a method for detecting anomalous activities in a blockchain network | |
US20070226209A1 (en) | Methods and Apparatus for Clustering Evolving Data Streams Through Online and Offline Components | |
Leoni | Non-interactive differential privacy: a survey | |
US7809747B2 (en) | Fuzzy database matching | |
CN101939742A (en) | Searching for associated events in log data | |
CN111292008A (en) | A risk assessment method for privacy-preserving data release based on knowledge graph | |
Chen et al. | Catching the trend: A framework for clustering concept-drifting categorical data | |
Li et al. | Protecting privacy against record linkage disclosure: A bounded swapping approach for numeric data | |
US20060143603A1 (en) | Data object association based on graph theory techniques | |
KR102129405B1 (en) | Systems and methods for anonymized statistical database queries using noise elements | |
CN115618341A (en) | Big data based analysis method and system for database user behaviors | |
CN113743496B (en) | K-anonymous data processing method and system based on cluster mapping | |
Lichtenstein et al. | Attribute-driven case notion discovery for unlabeled event logs | |
CN112003884A (en) | Network asset acquisition and natural language retrieval method | |
Whang et al. | Disinformation techniques for entity resolution | |
Papadopoulos et al. | Authenticated multistep nearest neighbor search | |
Lenz | Measuring the disclosure protection of micro aggregated business microdata. An analysis taking as an example the german structure of costs survey | |
US8307001B2 (en) | Auditing of curation information | |
Nuray-Turan et al. | Self-tuning in graph-based reference disambiguation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GLOBAL IDS INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUKHERJEE, ARKA;MARGOLIN, OLEG;REEL/FRAME:015525/0049 Effective date: 20041231 |
|
AS | Assignment |
Owner name: GLOBAL IDS INC., NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MITRA, PRASENJIT;REEL/FRAME:022888/0858 Effective date: 20090626 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: PEAPACK-GLADSTONE BANK, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNOR:GLOBAL IDS INC.;REEL/FRAME:033359/0001 Effective date: 20140707 |
|
AS | Assignment |
Owner name: PEAPACK-GLADSTONE BANK, NEW JERSEY Free format text: SECURITY INTEREST;ASSIGNORS:MUKHERJEE, ARKA, DR;GLOBAL IDS INC.;REEL/FRAME:033819/0580 Effective date: 20140707 |
|
AS | Assignment |
Owner name: PEAPACK-GLADSTONE BANK, NEW JERSEY Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:GLOBAL IDS INC.;MUKHERJEE, ARKA;REEL/FRAME:039379/0437 Effective date: 20160527 |
|
REMI | Maintenance fee reminder mailed | ||
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555) |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |