US7719812B2 - Power converters with rate of change monitoring for fault prediction and/or detection - Google Patents
Power converters with rate of change monitoring for fault prediction and/or detection Download PDFInfo
- Publication number
- US7719812B2 US7719812B2 US11/803,708 US80370807A US7719812B2 US 7719812 B2 US7719812 B2 US 7719812B2 US 80370807 A US80370807 A US 80370807A US 7719812 B2 US7719812 B2 US 7719812B2
- Authority
- US
- United States
- Prior art keywords
- power converter
- change
- rate
- controller
- monitored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/44—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to the rate of change of electrical quantities
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H5/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
- H02H5/04—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
Definitions
- the present disclosure relates to detecting and/or predicting faults in power converters, including AC/DC and DC/DC power converters.
- a wide variety of power converters are known in the art for converting electric power from one form to another, including AC/DC and DC/DC power converters.
- These power converters commonly include one or more controllers that, among other things, monitor critical parameters such as input current, output current and/or temperature. When an overcurrent or over-temperature condition is detected, the controller can generate a fault signal and/or shutdown the power converter to prevent or minimize damage to the power converter and any system hosting the power converter (e.g., a computer or automotive system).
- the present inventors have recognized a need for improvements in detecting fault conditions.
- a power converter includes a controller having at least one input for monitoring a rate of change of an operating parameter of the power converter.
- the controller is configured for comparing the monitored rate of change of the operating parameter with an allowable rate of change for the operating parameter, and for generating a fault signal when the monitored rate of change of the operating parameter deviates from the allowable rate of change for the operating parameter.
- a power converter includes a controller having at least one input for monitoring a rate of change of a temperature in the power converter.
- the controller is configured for comparing the monitored rate of temperature change with an allowable rate of temperature change, and generating a fault signal when the monitored rate of temperature change deviates from the allowable rate of temperature change.
- a power converter includes a controller having at least one input for monitoring a rate of current change in the power converter.
- the controller is configured for determining whether the monitored rate of current change is abnormal, and generating a fault signal after determining the monitored rate of current change is abnormal.
- a method for predicting a fault in a power converter. The method includes monitoring a rate of change of an operating parameter of the power converter, determining whether the monitored rate of change of the operating parameter is abnormal, and providing a fault signal after determining the monitored rate of change of the operating parameter is abnormal.
- FIG. 1 is flow diagram of a method of monitoring the rate of change of an operating parameter according to one example of the present disclosure.
- FIG. 2 is a block diagram of a power converter configured to monitor the rate of change of a temperature.
- FIG. 3 is a block diagram of a power converter configured to monitor the rate of change of a current.
- FIG. 4 illustrates an overcurrent condition for two output currents having different rates of rise (slopes).
- FIG. 5 is a block diagram of a power converter configured to monitor its overall efficiency.
- FIG. 6 is a flow diagram of a method of estimating the remaining life of a component based on monitored historical stress on the component.
- FIG. 7 is a block diagram of a power converter configured to estimate the remaining life of an electrolytic capacitor.
- FIG. 8 is a block diagram of a power converter configured to monitor its overall efficiency, to monitor the rate of change of several operating parameters, and to estimate the remaining life of multiple components.
- a method of predicting a fault in a power converter is indicated generally by reference number 100 in FIG. 1 .
- the method 100 includes, at step 102 , monitoring a rate of change of an operating parameter of the power converter.
- step 104 a determination is made as to whether the monitored rate of change of the operating parameter is abnormal. If the monitored rate of change of the operating parameter is not abnormal, the method 100 reverts back to step 102 , as shown in FIG. 1 . If, instead, the monitored rate of change of the operating parameter is determined to be abnormal in step 104 , the method 100 continues to step 106 and a fault signal is generated.
- the fault signal generated at step 106 may be used to activate a visual or audible alarm, and/or may be provided to a system hosting the digital power converter. Additionally, or in the alternative, the digital power converter may be configured to shut down in response to the fault signal generated at step 106 . In this manner, faults in the digital power converter may be detected or predicted by monitoring the rate of change of a critical parameter, either instead of or in addition to monitoring the instantaneous value of the operating parameter to determine whether a threshold (e.g., a minimum or maximum allowable value) has been reached.
- a threshold e.g., a minimum or maximum allowable value
- a warning signal can be provided to a user and/or to a system hosting the digital power converter, and/or the digital power converter can be shut down, upon detecting an abnormal rate of change of a critical parameter, even before a threshold for the instantaneous value of such parameter is reached.
- monitoring the rate of change of a critical parameter in the digital power converter can result in an earlier detection or prediction of faults as compared to simply detecting when the instantaneous value of such parameter has reached a threshold value.
- the monitored rate of change can be compared to an allowable rate of change (which may be defined as a range of allowable rates of change) to determine whether the monitored rate of change deviates from the allowable rate.
- an allowable rate of change which may be defined as a range of allowable rates of change
- the monitored rate of change can be deemed abnormal when the monitored operating parameter changes in a non-linear fashion (or vice versa).
- Other approaches can also be employed for determining whether the monitored rate of change for the operating parameter is abnormal without departing from the scope of the present disclosure.
- FIG. 2 illustrates a power converter 200 having a (digital or analog) controller 202 .
- the controller 202 includes at least one input 204 for monitoring the rate of change of a temperature. As shown in FIG. 2 , the rate of temperature change is determined by applying a derivative function 206 to the monitored temperature. In this particular example, the controller 202 compares the monitored rate of temperature change to an allowable rate of change for such temperature.
- the allowable rate of temperature change may be a predetermined value, or alternatively, may depend on other operating conditions of the power converter 200 such as ambient temperature, temperatures at other locations in the power converter, load conditions, input conditions, etc.
- the controller 202 can send a fault signal to a system hosting the power converter 200 and/or shut down the power converter 200 immediately or after a predetermined amount of time.
- the monitored temperature shown in FIG. 2 can be any critical temperature in the power converter 200 , such as the temperature of a particular component such as an integrated circuit, a capacitor, etc.
- the rate of temperature change at a specific location in the power converter 200 may depend upon several factors such as the load, input conditions, operating temperature, airflow, etc. Because these factors are known, the rate of rate of temperature change is predictable. For example, if the power converter 200 is operating at 10% of the rated output power and the load is increased to 50%, the temperature of a critical power component will start to rise predictably. However, if the power converter 200 is not operating normally (e.g., because of a fan failure or blockage, or the failure of a redundant part, or the failure of a control circuit, etc.), the temperature will start to rise at a different rate, even if the load is not increased.
- the controller 202 is configured to identify this abnormal rate of temperature change and advise the system hosting the power converter 200 of an impending failure. In response, the system may reduce the load or take other appropriate action.
- FIG. 3 illustrates another example of a power converter 300 having a controller 302 .
- the controller 302 includes at least one input 304 for monitoring the rate of change of a current in the power converter 300 .
- the rate of change of the monitored current is determined by applying a derivative function 306 to the monitored current, as shown in FIG. 3 .
- the controller 302 can determine whether the monitored rate of current change is abnormal by comparing the monitored rate of change with an allowable rate of change.
- the allowable rate of change (which can be defined as a range of allowable rates of change) can be predetermined. Alternatively, the allowable rate of change may depend on operating conditions of the power converter 300 such as the operating duty cycle, the output voltage, start-up conditions, steady state operation, etc. It should be understood, however, that other approaches can be employed for determining whether the monitored rate of current change is abnormal. For example, if the monitored current is a current through a coil 308 (such as an inductor or a transformer winding) as shown in FIG. 3 , changes in the monitored current should be linear.
- the controller 302 can determine whether the monitored rate of current change is abnormal by determining whether the monitored rate of change is constant. If the monitored rate of current change in the coil 308 is not constant, the controller 302 can generate a fault signal.
- the fault signal generated by the controller 302 can be provided to a load 310 supplied by the power converter 300 , as shown in FIG. 3 .
- the controller 302 can interpret this as an advance warning of a short circuit or extreme overload, even before reaching a maximum instantaneous current threshold. In that event, the controller 302 can shut down the power converter 300 in an effort to minimize damage to the converter 300 and/or the load supplied by the converter 300 .
- the rate of rise of a voltage in the power converter 300 may depend on active and/or passive parts as well as the power architecture, but is nevertheless predictable.
- the controller 302 can be configured to monitor the rate of rise of a voltage. As an example, if the controller 302 determines that the rate of change in the output voltage is greater than the rate of change during transient load conditions, which may indicate an open loop condition, the controller 302 can shut down the power converter 300 in an effort to minimize damage to the converter 300 and/or the load supplied by the converter 300 .
- FIG. 4 illustrates how monitoring the instantaneous value of a critical parameter, by itself, may provide insufficient protection in a power converter.
- the output current 402 (on the right in FIG. 4 ) is shown rising at a faster rate than the output current 404 (on the left in FIG. 4 ).
- a conventional power converter will typically monitor the instantaneous value of the output current and shut down if the output current exceeds a threshold limit I limit .
- the detection cycle typically includes a propagation delay. In other words, the power converter may require a finite amount of time to detect and respond to an excessive output current. As shown in FIG.
- the output current 404 has reached the level I max1 .
- the output current 402 has reached the level I max2 . This is because the rate of rise of the output current 402 is greater than the rate of rise of the output current 404 .
- the power converter can detect and respond to a fault condition even before the threshold limit I limit is reached, resulting in less abuse of the power converter and any load supplied by the power converter.
- FIG. 4 illustrates this point in the context of output current, the same can be said for any critical parameter of the power converter including other currents, temperatures, voltages, etc.
- FIG. 5 illustrates a power converter 500 according to another example of the present disclosure.
- the power converter 500 includes a controller 502 that is configured to monitor the overall efficiency of the power converter 500 .
- the controller 502 can generate a fault signal upon detecting an efficiency degradation.
- the power converter 500 can optionally reduce the operating load by sacrificing some functionality until proper servicing action is taken.
- the generated fault signal can also prompt part or system replacement.
- the power converter 500 includes an input choke 504 , an output inductor 506 and an output capacitor 508 .
- the controller 502 includes inputs for monitoring the input current through the input choke 504 , and the input voltage provided to the choke 504 . Additionally, the controller is configured to monitor the output current through the output inductor 506 , as well as the output voltage across the output capacitor 508 . In this manner, the controller 502 can calculate the input power, the output power, and thus the overall efficiency of the power converter 500 . Upon determining that the efficiency of the power converter 500 has dropped by more than a predetermined amount, the controller 502 can generate a fault signal.
- the controller 502 includes a look up table of efficiencies for the power converter 500 under normal operating conditions and various loads, input line conditions and operating temperatures.
- the power converter 500 may include, for example, parallel power devices or components (such as parallel rectifier devices) for reducing losses. When such a device or component fails, the power converter 500 may continue to operate but at a reduced efficiency.
- the controller 502 can detect the component failure and, for example, provide a fault signal to the system hosting (i.e., receiving power from) the power converter 500 .
- FIG. 6 is a block diagram of a method for predicting the fault of a component in a power converter (or other device or system) according to another aspect of the present disclosure.
- the method 600 includes the step 602 of monitoring historical operating stresses on a component.
- the stresses may include voltage, current and/or temperature fluctuations over time.
- the expected remaining life of the component is estimated. If the estimated remaining life of the component is less than a predetermined value, a fault signal is generated in step 606 , as shown in FIG. 6 .
- the component can be replaced near the end of its expected life, before the component fails. Further, because many manufacturers are conservative when estimating the expected life of a component. This, in turn, results in many users replacing the component prematurely.
- the method 600 of FIG. 6 such premature placement of parts and/or systems can be avoided, resulting in savings. Similarly, the use of redundant parts can be minimized or eliminated, resulting in further savings.
- FIG. 7 illustrates a power converter 700 having a controller 702 and an electrolytic capacitor 704 .
- the controller 702 is configured to monitor the ambient or case temperature of the capacitor 704 , as well the voltage and current stresses on the capacitor 704 .
- the controller 702 is configured to monitor the voltage stresses on the capacitor 704 by applying an integration function 706 to the monitored voltage.
- the controller 702 is configured to monitor the current stresses on the capacitor 704 by applying a derivative function 708 to the monitored voltage (which enables the controller to calculate the current stresses, since the value of the capacitor 704 is known).
- the controller 702 is configured to monitor the temperature stresses on the capacitor 704 by applying an integration function 710 to the monitored temperature. Using the monitored voltage, current and temperature stresses on the capacitor 704 , as well as stored data for the capacitor 704 , the controller 702 can estimate the expected remaining life of the capacitor 704 quite accurately.
- the controller 702 is also configured to monitor the instantaneous voltage and temperature across the capacitor, as well as the rate of change of such temperature and voltage, for detecting and/or predicting faults of the capacitor 704 .
- the controller 702 can be configured for monitoring operating stresses on a fan to predict its remaining useful life. For example, the life of a fan can depend upon the applied voltage and ambient operating temperatures. Typically, a specific operating temperature profile is expected for a given season and load profile. Components are selected to meet these requirements over the expected operating life of the fan. These conditions may change in the field, however, and reduce the useful life of the fan.
- the controller 702 which, like the other controllers disclosed herein, may be a microprocessor—can periodically sample the operating temperature, fan voltage and fan speed. Using this data, the controller 702 can calculate the remaining expected life of the fan using a stored formula. When the remaining fan life is determined to be lower than the expected life stored in memory, the controller 702 can provide a fault signal to the system hosting the power converter 700 .
- FIG. 8 illustrates a power converter 800 having a controller 802 that is configured to implement several aspects of the present disclosure.
- the controller 802 is configured to monitor the input power and output power of the converter 800 for the purpose of monitoring and detecting changes in the overall efficiency of the power converter 800 .
- the controller 802 is configured to monitor the rate of current change in the input inductor 806 a primary winding 808 , and an output inductor 810 .
- the controller 802 is configured to monitor the rate of temperature change in the electrolytic capacitors 812 , 814 , and is also configured to monitor historical current, voltage and/or temperature stresses on such capacitors 812 , 814 for the purpose of estimating the expected remaining life of these components.
- the controller Upon detecting a degradation in the overall efficiency of the converter, or an abnormal rate of change in one of the monitored temperatures, currents or voltages, or determining that the expected remaining life of a component is less than a threshold value, the controller generates a corresponding fault signal.
- This fault signal can be provided by the controller 802 to a load supplied by the power converter (i.e., a system hosting the power converter, such as a computer system), used to activate an alarm, and/or cause the controller 802 to shut down or alter the functionality of the power converter 800 as necessary or desired.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Power Conversion In General (AREA)
- Protection Of Static Devices (AREA)
- Inverter Devices (AREA)
Abstract
Description
Claims (30)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/803,708 US7719812B2 (en) | 2007-05-15 | 2007-05-15 | Power converters with rate of change monitoring for fault prediction and/or detection |
CN2008800163393A CN101680927B (en) | 2007-05-15 | 2008-04-18 | Power converter with rate-of-change monitoring for fault prediction and/or detection |
GB0921891.8A GB2462776B (en) | 2007-05-15 | 2008-04-18 | Power converters with rate of change monitoring for fault prediction and/or detection |
PCT/IB2008/000968 WO2008139283A2 (en) | 2007-05-15 | 2008-04-18 | Power converters with rate of change monitoring for fault prediction and/or detection |
GB1202801.5A GB2486356B (en) | 2007-05-15 | 2008-04-18 | Power converters with rate of change monitoring for fault prediction and/or detection |
GB1202800.7A GB2486355B (en) | 2007-05-15 | 2008-04-18 | Power converters with rate of change monitoring for fault prediction and/or detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/803,708 US7719812B2 (en) | 2007-05-15 | 2007-05-15 | Power converters with rate of change monitoring for fault prediction and/or detection |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080285192A1 US20080285192A1 (en) | 2008-11-20 |
US7719812B2 true US7719812B2 (en) | 2010-05-18 |
Family
ID=40002697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/803,708 Active 2028-03-14 US7719812B2 (en) | 2007-05-15 | 2007-05-15 | Power converters with rate of change monitoring for fault prediction and/or detection |
Country Status (4)
Country | Link |
---|---|
US (1) | US7719812B2 (en) |
CN (1) | CN101680927B (en) |
GB (3) | GB2486355B (en) |
WO (1) | WO2008139283A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012148774A3 (en) * | 2011-04-25 | 2013-03-28 | Volterra Semiconductor Corporation | Integrated protection devices with monitoring of electrical characteristics |
US9746502B2 (en) | 2014-11-03 | 2017-08-29 | General Electric Company | Systems and methods for monitoring and controlling a power converter |
US9762086B1 (en) * | 2010-12-28 | 2017-09-12 | Amazon Technologies, Inc. | Switchless power source redundancy |
US20210041281A1 (en) * | 2018-03-06 | 2021-02-11 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Device and method for air quantity recording |
US12240484B1 (en) * | 2021-02-24 | 2025-03-04 | Zoox, Inc. | Vehicle operation and/or simulation decision registry |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9194376B2 (en) * | 2011-05-24 | 2015-11-24 | General Electric Company | System and method for estimating remaining life for a device |
US20130027817A1 (en) * | 2011-07-25 | 2013-01-31 | General Electric Company | Micro electro-mechanical switch (mems) based over current motor protection system |
US9287766B2 (en) * | 2011-09-27 | 2016-03-15 | General Electric Company | Power system junction temperature control |
US8988914B2 (en) * | 2012-04-18 | 2015-03-24 | Strategic Patent Management, Llc | Variable input control for improving switched power supplies |
JP2014064354A (en) * | 2012-09-20 | 2014-04-10 | Fanuc Ltd | Digitally-controlled power supply having failure detection function |
US9092030B2 (en) * | 2013-03-14 | 2015-07-28 | Rockwell Automation Technologies, Inc. | Method to implement drive diagnostics and prognostics automatically |
US9710863B2 (en) | 2013-04-19 | 2017-07-18 | Strategic Patent Management, Llc | Method and apparatus for optimizing self-power consumption of a controller-based device |
CN103264643B (en) * | 2013-05-10 | 2016-05-18 | 奇瑞汽车股份有限公司 | A kind of mode control method of bi-directional DC-DC converter |
US9667060B1 (en) | 2014-11-04 | 2017-05-30 | Google Inc. | Adjusting over current protection values during changes in load current |
WO2016080909A1 (en) * | 2014-11-19 | 2016-05-26 | Nanyang Technological University | Electronic circuit for single-event latch-up detection and protection |
DE102016116378B4 (en) * | 2016-09-01 | 2018-04-12 | Abb Schweiz Ag | Method for checking the operability of transmitters |
CN106368972B (en) * | 2016-10-13 | 2017-11-03 | 浙江宇视科技有限公司 | A kind of fan-status monitoring method, device and web camera |
JP6338804B1 (en) * | 2017-07-18 | 2018-06-06 | 三菱電機株式会社 | Programmable logic controller, unit life calculation method, and component-equipped unit |
DE102017221657A1 (en) | 2017-12-01 | 2019-06-06 | Continental Automotive Gmbh | Method for carrying out a self-test of an electrical converter circuit and converter circuit and vehicle light |
US10938314B2 (en) * | 2018-07-23 | 2021-03-02 | Smart Wires Inc. | Early detection of faults in power transmission lines |
CN112955840B (en) * | 2018-09-12 | 2025-04-25 | Abb瑞士股份有限公司 | Method and system for monitoring the condition of a sample handling system of a gas analyzer |
JP7279413B2 (en) * | 2019-02-27 | 2023-05-23 | 株式会社デンソー | Failure prediction system |
IT201900013065A1 (en) * | 2019-07-26 | 2021-01-26 | Eldor Corp Spa | Power supply system with protection against current variations |
US11454422B2 (en) * | 2020-03-27 | 2022-09-27 | Ademco Inc. | Water heating system for controlling an ability to set a parameter of a controller |
CN111596168B (en) * | 2020-05-22 | 2021-07-27 | 中国矿业大学 | A fault location method based on the difference of thermal characteristics of GIL distribution |
CN113341242A (en) * | 2021-04-25 | 2021-09-03 | 徐州大工电子科技有限公司 | Fault monitoring method and device for power converter |
CN114336516B (en) * | 2021-12-27 | 2024-03-19 | 深圳供电局有限公司 | Control method and system of intelligent air switch |
CN115995887B (en) * | 2023-03-22 | 2023-06-06 | 山东泰顺电气有限责任公司 | Intelligent monitoring system of power transformer based on big data |
CN116826669B (en) * | 2023-05-26 | 2024-03-08 | 西安图为电气技术有限公司 | Device junction temperature protection method, device, equipment and storage medium |
CN118731778B (en) * | 2024-07-24 | 2024-12-27 | 浙江大学 | Current transformer open-circuit fault diagnosis method based on critical characteristics |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3458795A (en) * | 1966-05-06 | 1969-07-29 | English Electric Co Ltd | Circuit for controlling the application of firing pulses to controlled devices in a static converter operating in the inversion mode |
US4896089A (en) | 1989-01-31 | 1990-01-23 | General Electric Company | Fault management system for a switched reluctance motor |
US5455736A (en) | 1993-10-20 | 1995-10-03 | Nec Corporation | Tantalum solid-state electrolytic capacitor and fabrication process therefor |
US5561610A (en) | 1994-06-30 | 1996-10-01 | Caterpillar Inc. | Method and apparatus for indicating a fault condition |
US5656765A (en) | 1995-06-28 | 1997-08-12 | General Motors Corporation | Air/fuel ratio control diagnostic |
US5786641A (en) | 1995-02-07 | 1998-07-28 | Mitsubishi Denki Kabushiki Kaisha | Failure detection system for detecting a failure in a power converter |
US5950147A (en) | 1997-06-05 | 1999-09-07 | Caterpillar Inc. | Method and apparatus for predicting a fault condition |
US6119074A (en) | 1998-05-20 | 2000-09-12 | Caterpillar Inc. | Method and apparatus of predicting a fault condition |
US6121886A (en) | 1999-05-18 | 2000-09-19 | General Electric Company | Method for predicting fault conditions in an intelligent electronic device |
US6275958B1 (en) | 1998-10-28 | 2001-08-14 | International Business Machines Corporation | Fault detection in a redundant power converter |
US6363332B1 (en) | 1998-12-22 | 2002-03-26 | Caterpillar Inc. | Method and apparatus for predicting a fault condition using non-linear curve fitting techniques |
US6424930B1 (en) | 1999-04-23 | 2002-07-23 | Graeme G. Wood | Distributed processing system for component lifetime prediction |
US6437963B1 (en) | 1999-09-24 | 2002-08-20 | Efc Systems, Inc. | Method and apparatus for controlling power supplied to an electrostatic device |
US6807507B2 (en) | 2001-11-27 | 2004-10-19 | Vasudevan Seshadhri Kumar | Electrical over stress (EOS) monitor |
US20050030772A1 (en) | 2003-08-08 | 2005-02-10 | Phadke Vijay Gangadhar | Circuit for maintaining hold-up time while reducing bulk capacitor size and improving efficiency in a power supply |
US6880967B2 (en) | 2002-02-21 | 2005-04-19 | Omron Corporation | Remaining lifetime estimating method, temperature detecting structure and electronic equipment |
US20050219883A1 (en) | 2004-02-24 | 2005-10-06 | Maple Robert D | Dynamically optimized power converter |
US7003409B2 (en) | 2003-08-19 | 2006-02-21 | International Business Machines Corporation | Predictive failure analysis and failure isolation using current sensing |
US7016825B1 (en) | 2000-10-26 | 2006-03-21 | Vextec Corporation | Method and apparatus for predicting the failure of a component |
US7050396B1 (en) | 2000-11-30 | 2006-05-23 | Cisco Technology, Inc. | Method and apparatus for automatically establishing bi-directional differentiated services treatment of flows in a network |
US20060273595A1 (en) | 2005-06-03 | 2006-12-07 | Avagliano Aaron J | System and method for operating a wind farm under high wind speed conditions |
US20070103163A1 (en) | 2002-07-22 | 2007-05-10 | Fujitsu Limited | Inverter system |
US7254514B2 (en) | 2005-05-12 | 2007-08-07 | General Electric Company | Method and system for predicting remaining life for motors featuring on-line insulation condition monitor |
US20080141072A1 (en) | 2006-09-21 | 2008-06-12 | Impact Technologies, Llc | Systems and methods for predicting failure of electronic systems and assessing level of degradation and remaining useful life |
US20080157742A1 (en) * | 2005-10-31 | 2008-07-03 | Martin Gary D | Power supply and controller circuits |
US20080215294A1 (en) * | 2006-10-31 | 2008-09-04 | Agilent Technologies, Inc. | System for Assured Reliability in DC to AC Power Converters |
US7424396B2 (en) | 2005-09-26 | 2008-09-09 | Intel Corporation | Method and apparatus to monitor stress conditions in a system |
US7456618B2 (en) * | 2005-10-31 | 2008-11-25 | Chil Semiconductor, Inc. | Digital controller for a voltage regulator module |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2297439B (en) * | 1995-01-25 | 1999-04-28 | Caradon Mk Electric Ltd | Power controller |
DE102006029389A1 (en) * | 2006-06-27 | 2008-01-10 | Robert Bosch Gmbh | Method for expanding the diagnostic capability of current regulators |
-
2007
- 2007-05-15 US US11/803,708 patent/US7719812B2/en active Active
-
2008
- 2008-04-18 GB GB1202800.7A patent/GB2486355B/en active Active
- 2008-04-18 GB GB1202801.5A patent/GB2486356B/en active Active
- 2008-04-18 GB GB0921891.8A patent/GB2462776B/en active Active
- 2008-04-18 WO PCT/IB2008/000968 patent/WO2008139283A2/en active Application Filing
- 2008-04-18 CN CN2008800163393A patent/CN101680927B/en active Active
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3458795A (en) * | 1966-05-06 | 1969-07-29 | English Electric Co Ltd | Circuit for controlling the application of firing pulses to controlled devices in a static converter operating in the inversion mode |
US4896089A (en) | 1989-01-31 | 1990-01-23 | General Electric Company | Fault management system for a switched reluctance motor |
US5455736A (en) | 1993-10-20 | 1995-10-03 | Nec Corporation | Tantalum solid-state electrolytic capacitor and fabrication process therefor |
US5561610A (en) | 1994-06-30 | 1996-10-01 | Caterpillar Inc. | Method and apparatus for indicating a fault condition |
US5786641A (en) | 1995-02-07 | 1998-07-28 | Mitsubishi Denki Kabushiki Kaisha | Failure detection system for detecting a failure in a power converter |
US5656765A (en) | 1995-06-28 | 1997-08-12 | General Motors Corporation | Air/fuel ratio control diagnostic |
US5950147A (en) | 1997-06-05 | 1999-09-07 | Caterpillar Inc. | Method and apparatus for predicting a fault condition |
US6119074A (en) | 1998-05-20 | 2000-09-12 | Caterpillar Inc. | Method and apparatus of predicting a fault condition |
US6275958B1 (en) | 1998-10-28 | 2001-08-14 | International Business Machines Corporation | Fault detection in a redundant power converter |
US6363332B1 (en) | 1998-12-22 | 2002-03-26 | Caterpillar Inc. | Method and apparatus for predicting a fault condition using non-linear curve fitting techniques |
US6424930B1 (en) | 1999-04-23 | 2002-07-23 | Graeme G. Wood | Distributed processing system for component lifetime prediction |
US6121886A (en) | 1999-05-18 | 2000-09-19 | General Electric Company | Method for predicting fault conditions in an intelligent electronic device |
US6437963B1 (en) | 1999-09-24 | 2002-08-20 | Efc Systems, Inc. | Method and apparatus for controlling power supplied to an electrostatic device |
US7016825B1 (en) | 2000-10-26 | 2006-03-21 | Vextec Corporation | Method and apparatus for predicting the failure of a component |
US7050396B1 (en) | 2000-11-30 | 2006-05-23 | Cisco Technology, Inc. | Method and apparatus for automatically establishing bi-directional differentiated services treatment of flows in a network |
US6807507B2 (en) | 2001-11-27 | 2004-10-19 | Vasudevan Seshadhri Kumar | Electrical over stress (EOS) monitor |
US6880967B2 (en) | 2002-02-21 | 2005-04-19 | Omron Corporation | Remaining lifetime estimating method, temperature detecting structure and electronic equipment |
US20070103163A1 (en) | 2002-07-22 | 2007-05-10 | Fujitsu Limited | Inverter system |
US20050030772A1 (en) | 2003-08-08 | 2005-02-10 | Phadke Vijay Gangadhar | Circuit for maintaining hold-up time while reducing bulk capacitor size and improving efficiency in a power supply |
US7003409B2 (en) | 2003-08-19 | 2006-02-21 | International Business Machines Corporation | Predictive failure analysis and failure isolation using current sensing |
US20050219883A1 (en) | 2004-02-24 | 2005-10-06 | Maple Robert D | Dynamically optimized power converter |
US7254514B2 (en) | 2005-05-12 | 2007-08-07 | General Electric Company | Method and system for predicting remaining life for motors featuring on-line insulation condition monitor |
US20060273595A1 (en) | 2005-06-03 | 2006-12-07 | Avagliano Aaron J | System and method for operating a wind farm under high wind speed conditions |
US7424396B2 (en) | 2005-09-26 | 2008-09-09 | Intel Corporation | Method and apparatus to monitor stress conditions in a system |
US20080157742A1 (en) * | 2005-10-31 | 2008-07-03 | Martin Gary D | Power supply and controller circuits |
US7456618B2 (en) * | 2005-10-31 | 2008-11-25 | Chil Semiconductor, Inc. | Digital controller for a voltage regulator module |
US20080141072A1 (en) | 2006-09-21 | 2008-06-12 | Impact Technologies, Llc | Systems and methods for predicting failure of electronic systems and assessing level of degradation and remaining useful life |
US20080215294A1 (en) * | 2006-10-31 | 2008-09-04 | Agilent Technologies, Inc. | System for Assured Reliability in DC to AC Power Converters |
Non-Patent Citations (1)
Title |
---|
"Influence of aging on electrolytic capacitors function in static converters: Fault prediction method," P. Venet, A. Lahyani, G. Grellet and A. Ah-Jaco; The European Physical Journal 1999; pp. 71-83. |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9762086B1 (en) * | 2010-12-28 | 2017-09-12 | Amazon Technologies, Inc. | Switchless power source redundancy |
WO2012148774A3 (en) * | 2011-04-25 | 2013-03-28 | Volterra Semiconductor Corporation | Integrated protection devices with monitoring of electrical characteristics |
US9679885B2 (en) | 2011-04-25 | 2017-06-13 | Volterra Semiconductor Corporation | Integrated protection devices with monitoring of electrical characteristics |
US10559559B2 (en) | 2011-04-25 | 2020-02-11 | Volterra Semiconductor Corporation | Integrated protection devices with monitoring of electrical characteristics |
US9746502B2 (en) | 2014-11-03 | 2017-08-29 | General Electric Company | Systems and methods for monitoring and controlling a power converter |
US20210041281A1 (en) * | 2018-03-06 | 2021-02-11 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Device and method for air quantity recording |
US11920968B2 (en) * | 2018-03-06 | 2024-03-05 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Device and method for air quantity recording |
US12240484B1 (en) * | 2021-02-24 | 2025-03-04 | Zoox, Inc. | Vehicle operation and/or simulation decision registry |
Also Published As
Publication number | Publication date |
---|---|
GB2486355B (en) | 2012-09-26 |
GB201202801D0 (en) | 2012-04-04 |
GB2486356A (en) | 2012-06-13 |
GB201202800D0 (en) | 2012-04-04 |
GB2486356B (en) | 2012-10-03 |
WO2008139283A2 (en) | 2008-11-20 |
GB2462776A (en) | 2010-02-24 |
US20080285192A1 (en) | 2008-11-20 |
GB0921891D0 (en) | 2010-01-27 |
GB2462776B (en) | 2012-09-26 |
CN101680927A (en) | 2010-03-24 |
WO2008139283A3 (en) | 2009-12-23 |
CN101680927B (en) | 2012-10-10 |
GB2486355A (en) | 2012-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7719812B2 (en) | Power converters with rate of change monitoring for fault prediction and/or detection | |
US7719808B2 (en) | Power converters with operating efficiency monitoring for fault detection | |
US20080284449A1 (en) | Power converters with component stress monitoring for fault prediction | |
CN109660180B (en) | Motor driving device | |
CN107943130B (en) | Control device with current protection solid state relay | |
WO2004082114A1 (en) | Motor controller | |
WO2012062367A1 (en) | Overload detection in a switched mode power supply | |
US20130264986A1 (en) | Motor drive device having function of varying dc link low-voltage alarm detection level | |
WO2006107579A2 (en) | Integrated smart power switch | |
JP4942143B2 (en) | Inverter device and overvoltage protection method thereof | |
JPWO2019021479A1 (en) | Inverter device and abnormality detection method for inverter device | |
CN107342683B (en) | DCDC converter | |
JP5381229B2 (en) | Capacitor deterioration detection circuit and electronic device equipped with the same | |
WO2008139285A2 (en) | Power converters with component stress monitoring for fault prediction | |
RU2581612C1 (en) | Limitation of overload when operating at peak power | |
JP2009011042A (en) | Method for protecting rush current prevention circuits, and inverter device | |
JP5224797B2 (en) | Power supply control device and mechanical device using the same | |
JPH11215690A (en) | Overcurrent protective device | |
JP2007267582A (en) | Step-up/step-down chopper device and driving method therefor | |
JP6152426B2 (en) | Power supply | |
JP2007060787A (en) | Power supply transformer protection system | |
JP2001086764A (en) | Inverter | |
JP5638894B2 (en) | Power converter and DC power supply system | |
JPH09275679A (en) | Dc power supply unit | |
JP2011108455A (en) | Electronic breaker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASTEC INTERNATIONAL LIMITED, HONG KONG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PHADKE, VIJAY;CURRIE, GORDON;ASUNCION, ARLAINDO;REEL/FRAME:019374/0700 Effective date: 20070528 Owner name: ASTEC INTERNATIONAL LIMITED,HONG KONG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PHADKE, VIJAY;CURRIE, GORDON;ASUNCION, ARLAINDO;REEL/FRAME:019374/0700 Effective date: 20070528 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: AES GLOBAL HOLDINGS PTE. LTD., SINGAPORE Free format text: CONFIRMATORY PATENT ASSIGNMENT;ASSIGNOR:ASTEC INTERNATIONAL LIMITED;REEL/FRAME:070404/0890 Effective date: 20250214 |