US8032219B2 - Cardiac pacemaker having a sealed oblong housing - Google Patents
Cardiac pacemaker having a sealed oblong housing Download PDFInfo
- Publication number
- US8032219B2 US8032219B2 US11/408,773 US40877306A US8032219B2 US 8032219 B2 US8032219 B2 US 8032219B2 US 40877306 A US40877306 A US 40877306A US 8032219 B2 US8032219 B2 US 8032219B2
- Authority
- US
- United States
- Prior art keywords
- cardiac pacemaker
- housing
- cardiac
- pacemaker
- implemented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000000747 cardiac effect Effects 0.000 title claims abstract description 104
- 230000000638 stimulation Effects 0.000 claims abstract description 58
- 238000001514 detection method Methods 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 9
- 238000002513 implantation Methods 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 239000012777 electrically insulating material Substances 0.000 claims 1
- 210000002837 heart atrium Anatomy 0.000 description 13
- 230000001746 atrial effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 210000005245 right atrium Anatomy 0.000 description 8
- 210000005241 right ventricle Anatomy 0.000 description 8
- 230000002861 ventricular Effects 0.000 description 6
- 230000008602 contraction Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 210000003748 coronary sinus Anatomy 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000005240 left ventricle Anatomy 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 210000003109 clavicle Anatomy 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/368—Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37205—Microstimulators, e.g. implantable through a cannula
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/375—Constructional arrangements, e.g. casings
- A61N1/3756—Casings with electrodes thereon, e.g. leadless stimulators
Definitions
- the present invention relates to a cardiac pacemaker, which is implemented to stimulate at least one atrium or one ventricle.
- the cardiac pacemaker has a sealed housing, in which a battery and a pacemaker controller, a stimulation pulse generator, and a detection stage for cardiac signals are situated, each of which is connected to the battery.
- the present invention also relates to a dual-chamber pacemaker, i.e., a cardiac pacemaker that is capable of stimulating both the atrium and also the ventricle of a heart, preferably the right atrium and the right ventricle.
- a dual-chamber pacemaker i.e., a cardiac pacemaker that is capable of stimulating both the atrium and also the ventricle of a heart, preferably the right atrium and the right ventricle.
- Implantable cardiac pacemakers in their basic known form have housings in which a battery is situated, which allows operation of the pacemaker over many years.
- the battery powers a pacemaker controller, which is typically connected to a detection stage for cardiac signals and to a stimulation pulse generator. Both the stimulation pulse generator and also the detection stage for cardiac signals are in turn connected to terminals for one or more electrode lines, which allow stimulation pulses generated by the stimulation pulse generator to be delivered to the muscle tissue of the heart (myocardium) or electrical potentials in the heart to be detected and processed.
- a DDD pacemaker is a pacemaker which may deliver stimulation pulses to both the ventricle and also to the atrium, which may additionally detect electrical potentials both in the ventricle and also in the atrium, and which finally may be operated inter alia in a demand mode, in which stimulation pulses are only delivered to the ventricle or to the atrium when this is required, i.e., when an electrical potential accompanying a natural contraction of the atrium or ventricle is not detected within a ventricular or atrial escape interval.
- a pacemaker which is capable of stimulating the atrium in the demand mode is referred to as an AAI pacemaker.
- the first letter describes the capability of the pacemaker of delivering stimulation pulses to the atrium
- the second letter describes a capability of the pacemaker of detecting atrial cardiac actions
- the third letter describes the capability of the pacemaker of suppressing the delivery of an atrial stimulation pulse if a natural cardiac action is detected within a set interval, typically referred to as an escape interval.
- a pacemaker which may stimulate the ventricle in the demand mode is referred to as a VVI cardiac pacemaker.
- Known cardiac pacemakers are typically implanted beneath the clavicle of a patient.
- the connection to the heart is produced via flexible electrode lines, which end in the particular chamber of the heart (atrium or ventricle) and are provided with electrodes there.
- the electrode lines are provided with standardized plugs, which engage in similarly standardized sockets of the cardiac pacemaker to produce the desired electrical connection.
- These sockets of the pacemaker are typically situated in a header of the pacemaker, manufactured from electrically insulating plastic, which is electrically connected via a bushing to the detection stage(s) and the stimulation pulse generator(s) in the interior of a sealed metal housing of the pacemaker.
- This metal housing additionally houses a battery for operating the pacemaker and control electronics.
- the stimulation pulse generators typically comprise capacitors in which the energy for a stimulation pulse is stored before delivery of a stimulation pulse.
- the capacitors are charged with the aid of a suitable charging stage, which acquires its energy from the battery of the pacemaker.
- a large part of this metal housing if not even the largest part of the metal housing, is occupied by the battery of the pacemaker.
- the present invention has the object of specifying a cardiac pacemaker which avoids many of the restrictions of the standard arrangement of a pacemaker presented here and thus opens up new fields of application for pacemaker treatment.
- a cardiac pacemaker of the type cited at the beginning whose housing is not relatively flat as in known pacemakers, but rather is oblong and is implemented as rod-shaped or cigar-shaped, for example.
- the cross-sectional area of the housing is less than 100 mm 2 .
- the maximum diameter of the housing is 12 mm, so that a cross-sectional shape results whose diameters in different directions do not differ from one another by a factor of more than 2, for example.
- the length of the housing is at most 70 mm.
- the housing volume is less than 7 cm 3 .
- the largest cross-sectional dimension of the housing of at most 12 mm thus allows a transvenous implantation. It is especially advantageous if the housing has an at least approximately round cross-section.
- Alternative cross-sectional shapes which are also advantageous would be slightly flattened, nearly circular cross-sections, such as oval or elliptical cross-sections. Polygons having rounded corners also represent a suitable cross-sectional shape.
- the cardiac pacemaker has the same cross-sectional shape over the largest part of its length and, especially advantageously, is cylindrically shaped.
- the longitudinal axis of the cardiac pacemaker is linear, but it may also be slightly curved.
- the radius of curvature is preferably a multiple of the length of the cardiac pacemaker in this case.
- the housing carries at least two electrodes, each of which has an electrically conductive surface directed outward and is implemented as a stimulation electrode, as well as being at least temporarily electrically connected to the stimulation pulse generator via an electrical connection situated in the interior of the housing and an electrical switching element.
- those electrically conductive components via which stimulation pulses may be delivered or electrical potentials may also be detected, for example, are referred to as electrodes.
- the electrodes thus form poles for stimulation using their electrically conductive surface. They are integrated into the housing of the cardiac pacemaker according to the present invention.
- a cardiac pacemaker of this type has the property of being able to be situated in the auricle of the heart accessible from the right atrium or directly in the ventricle, for example, and, because of the stimulation electrodes situated on its surface, being able to stimulate at least the atrium or the ventricle as an autonomous device.
- At least the first electrode of the electrodes has a very small area—i.e., it is punctual, for example—and has a surface area of less than 5 mm 2 .
- This first electrode is preferably positioned on one longitudinal end of the oblong housing.
- the second electrode may also have a small area and may have the same shape as the first electrode, for example.
- both electrodes are positioned directly neighboring one another on the same longitudinal end of the housing.
- the second electrode may also be formed by a large-area housing part of the housing of the cardiac pacemaker, however, and thus forms an indifferent pole which more or less acts as a neutral electrode.
- the electrodes are implemented as annular electrodes which run around the periphery of the housing.
- the electrodes are preferably positioned closely neighboring one another. In this way, the precise orientation of the cardiac pacemaker after implantation in the right auricle of the heart or even in the ventricle, for example, is relatively noncritical.
- the cardiac pacemaker is preferably implemented as a single-chamber demand pacemaker (AAI or VVI).
- the electrodes advantageously are additionally used as sensing electrodes, which are to be connected at least sometimes to a detection stage in the interior of the housing.
- the cardiac pacemaker has a telemetry transmitter and a telemetry receiver, which are connected to the pacemaker controller and allow operational data of the cardiac pacemaker and detected physiological data, such as intracardial electrocardiograms, to be transmitted to an external device and, vice versa, programming and control commands to be received.
- Operational parameters such as a particular stimulation pulse strength to be selected, may also be ascertained in this way using an external device and transmitted to the cardiac pacemaker, so that the operational parameters are also to be stored in a corresponding memory of the pacemaker controller for the further, also autonomous pacemaker operation.
- the cardiac pacemaker In order to be able to stimulate not only the right atrium, but rather also the right or left ventricle, for example, using a cardiac pacemaker implantable in the heart itself, the cardiac pacemaker preferably has a wired or, even better, wireless interface, which is connected to the pacemaker controller and is implemented to exchange data in regard to the times of events occurring in a particular chamber of the heart (natural or stimulated chamber contractions) with a corresponding interface of a second pacemaker.
- a system made of two or more pacemakers is possible, one of which may be placed in atrium and one of which may be placed in the ventricle, and which together have the functionality of a dual-chamber pacemaker.
- the atrial cardiac pacemaker transmits the times of atrial events to the ventricular cardiac pacemaker and vice versa. Therefore, the controller of one cardiac pacemaker may respond to events in the particular other chamber of the heart, i.e., for example, the ventricular cardiac pacemaker may respond to atrial events, so that an atrium-synchronous stimulation of the ventricle, which is known per se, is possible using physiologically adequate atrioventricular delay time (AV interval).
- AV interval physiologically adequate atrioventricular delay time
- a triple-chamber stimulation in the course of resynchronization therapy is also possible, for example, using more than two intracardially implantable pacemakers of the type according to the present invention.
- a cardiac pacemaker to be placed in one chamber of the heart may also have an electrode line for a particular other chamber of the heart connected to it.
- This electrode line is flexible and carries at least one stimulation electrode on its free end or in proximity to its free end. Its length is dimensioned in such a way that it either allows stimulation of the left ventricle via the coronary sinus and possibly a lateral vein branching therefrom or it projects through the right atrium into the right ventricle.
- An electrode line which is to be inserted into the coronary sinus and into a lateral vein branching from the coronary sinus is preferred.
- the electrode line is preferably permanently connected to the housing of the cardiac pacemaker and has an electrical conductor in any case which connects the stimulation electrode of the electrode line to the stimulation pulse generator of the cardiac pacemaker.
- the cardiac pacemaker becomes a dual-chamber pacemaker, which carries electrodes on its housing for the stimulation of the chamber of the heart in which it is placed in application and which has a flexible electrode line for the stimulation of the other chamber of the heart.
- the cardiac pacemaker may have a single stimulation pulse generator, which is to be connected alternately to the atrial stimulation electrode and the ventricular stimulation electrode. Two separate stimulation pulse generators for the atrium and the ventricle may also be provided, which are connected using a line.
- a battery whose cross-section is preferably also round may advantageously be used in a way which exploits the housing volume in the best possible way. This particularly advantageously allows the electrodes of the battery to be coiled in a way known per se.
- the battery volume to be achieved is between 1 cm 3 and 3 cm 3 .
- the battery capacitance is preferably between 0.25 and 0.75 Ah.
- the housing is preferably formed by housing elements made of metal which are welded to one another. At least one of the electrodes is electrically insulated in relation to the welded metal housing. Of the metal housing elements, one is implemented as tubular having a closed floor, for example. Battery and control electronics may be inserted into this housing element. This advantageously allows the housing to be assembled from three housing elements, for example, namely a central, tubular housing element and two end caps. The stimulation and/or sensing electrodes may then each be positioned between one of the housing caps and the central, tubular housing limit and are also easy to mount at this location.
- the housing elements may be manufactured from ceramic or plastic and the electrodes may be formed by metal rings.
- FIG. 1 shows an external view of a first variation of a single-chamber cardiac pacemaker to be implanted in the right auricle of the heart or in the ventricle;
- FIG. 2 shows a perspective exploded illustration of the cardiac pacemaker from FIG. 1 ;
- FIG. 3 shows a block diagram of the cardiac pacemaker from FIGS. 1 and 2 ;
- FIG. 4 shows the arrangement of the cardiac pacemaker from FIGS. 1 and 2 as an AAI cardiac pacemaker in the right auricle of the heart;
- FIG. 5 shows the arrangement of the cardiac pacemaker from FIGS. 1 and 2 as a VVI cardiac pacemaker in the right ventricle;
- FIG. 6 shows a dual-chamber pacemaker system formed by two implanted cardiac pacemakers
- FIG. 7 shows the system from FIG. 6 in the non-implanted state
- FIG. 8 shows the system from FIGS. 6 and 7 having a wired instead of a wireless bidirectional telemetric connection
- FIG. 9 shows a block diagram of the dual-chamber pacemaker system formed by cardiac pacemakers like 10 A and 10 V;
- FIG. 10 shows an alternative intracardially implantable dual-chamber cardiac pacemaker.
- a cardiac pacemaker of the type according to the present invention is shown in the form of a single-chamber demand cardiac pacemaker.
- the cardiac pacemaker 10 has an oblong, cylindrical housing 12 having a semi-spherical housing cap 14 .
- Two small-area stimulation electrodes 16 and 18 are positioned at the tip of the housing cap 14 .
- locking hooks 20 are provided on the housing 12 .
- the housing 12 is connected to the housing cap 14 to form a seal, so that the space enclosed by the housing 12 and the housing cap 14 is hermetically sealed.
- the electrodes 16 and 18 are introduced into the housing cap 14 and have electrically conductive surfaces which are electrically insulated in relation to the remaining housing and are used as poles for the stimulation of cardiac tissue.
- FIG. 2 is an exploded illustration of the cardiac pacemaker 10 from FIG. 1 and shows the components situated in the interior of the housing 12 , namely a battery 22 and an electronics module 24 .
- the electronics module 24 comprises an electronic pacemaker controller and at least one stimulation pulse generator and, if the cardiac pacemaker is implemented as a demand pacemaker, additionally a detection stage for cardiac signals.
- the stimulation pulse generator and the detection state for cardiac signals are each alternately electrically connected to the two electrodes 16 and 18 .
- FIG. 3 is a block diagram of the electronics module 24 of a single-chamber demand cardiac pacemaker.
- the electrode 18 is the reference electrode.
- the electrode 16 is connected via a coupling capacitor 30 to both a stimulation pulse generator 32 and also a detection stage, which comprises a preamplifier 34 , a filter 36 , and a trigger 38 .
- the trigger 38 is connected to a timer 40 , which is in turn connected to the stimulation pulse generator 32 .
- the trigger 38 has the function of resetting the timer 40 . If the timer 40 is not reset, but rather continues to run up to a predefined final value, the timer 40 triggers the delivery of the stimulation pulse via the stimulation pulse generator 32 .
- the trigger 38 delivers a pulse which resets the timer 40 and in this way prevents the timer 40 from expiring and triggering a stimulation pulse. If no natural chamber contractions are detected, the timer expires normally and then resets itself, so that it outputs stimulation pulses at a set stimulation rate.
- the stimulation rate may be predefined telemetrically via a pacemaker controller not shown in greater detail in FIG. 3 , for example. However, the stimulation rate may also be tailored to the physiological requirements of the patient with the aid of a physiological sensor. A rate-adaptive pacemaker results in this way.
- FIG. 4 shows the arrangement of the pacemaker from FIGS. 1 and 2 in the right auricle of the heart 54 , branching from the right atrium 52 of a human heart 50 .
- the cardiac pacemaker 10 operates as an AAI pacemaker.
- the cardiac pacemaker 10 may also be situated in the right ventricle 56 of the heart 50 and then operates as a VVI pacemaker.
- the electronics module 24 of a particular pacemaker may have a wired or, even better, wireless interface to one or more further pacemakers of the same type, so that two or more pacemakers may jointly form a multichamber pacemaker system, as is shown in FIGS. 6 through 8 .
- a dual-chamber system is shown in FIG. 6 .
- a first pacemaker 10 A is situated in the right auricle of the right atrium 52
- a second cardiac pacemaker 10 V is situated in the right ventricle 56 of the heart 50 .
- the system formed by two pacemakers 10 A and 10 V, each having a wireless interface, is shown once again in FIG. 7 .
- FIG. 8 shows a less preferred variation, in which the cardiac pacemakers 10 A′ and 10 V′ are connected to one another via a wire 60 and corresponding wired interfaces.
- FIG. 9 shows a block diagram of the dual-chamber pacemaker system formed by cardiac pacemakers like 10 A and 10 V.
- the block diagram is a block diagram of a typical dual-chamber cardiac pacemaker, which is distributed to two housings in the present case, however. These housings are indicated by a dot-dashed line in each case.
- the upper part of the block diagram represents the part which is to be assigned to the cardiac pacemaker 10 A to be placed in the atrium, while the lower part of the block diagram represents the circuit of the cardiac pacemaker 10 V to be placed in the ventricle.
- the circuit of the cardiac pacemaker 10 A and the circuit of the cardiac pacemaker 10 V are connected to one another via appropriate wireless interfaces, such as a bidirectional, wireless telemetry link.
- an AV timer in the ventricular cardiac pacemaker 10 V may be triggered by the detection of an atrial event or by the delivery of an atrial stimulation pulse, while, vice versa, the detection of a ventricular event triggers the timer for the delivery of the atrial stimulation pulse.
- the sensor for the physiological requirements of the patient which was already noted in connection with FIG. 3 is indicated in FIG. 9 .
- FIG. 10 shows a variation of a dual-chamber cardiac pacemaker 10 DDD, in which all of the electronics shown in FIG. 9 are housed in a housing which is to be implanted in the auricle of the right atrium, for example.
- the telemetry link is then replaced by a wired connection.
- a flexible electrode line 70 is attached to this cardiac pacemaker 10 DDD, which carries a bipolar electrode head 72 on its end, which is to be placed in the apex of the right ventricle.
- the electrode line 70 is correspondingly dimensioned in such way that it bridges the distance from the right auricle of the heart up to the apex of the right ventricle.
- the cardiac pacemaker 10 DDD shown in FIG. 10 is thus also completely implantable endocardially and/or intravascularly.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Electrotherapy Devices (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Primary Cells (AREA)
Abstract
Description
Claims (21)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005020071A DE102005020071A1 (en) | 2005-04-22 | 2005-04-22 | Pacemaker |
DE102005020071.0 | 2005-04-22 | ||
DE102005020071 | 2005-04-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060241705A1 US20060241705A1 (en) | 2006-10-26 |
US8032219B2 true US8032219B2 (en) | 2011-10-04 |
Family
ID=36579221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/408,773 Expired - Fee Related US8032219B2 (en) | 2005-04-22 | 2006-04-21 | Cardiac pacemaker having a sealed oblong housing |
Country Status (4)
Country | Link |
---|---|
US (1) | US8032219B2 (en) |
EP (1) | EP1714670B1 (en) |
AT (1) | ATE372806T1 (en) |
DE (2) | DE102005020071A1 (en) |
Cited By (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8478408B2 (en) | 2004-10-20 | 2013-07-02 | Boston Scientific Scimed Inc. | Leadless cardiac stimulation systems |
EP2614855A1 (en) * | 2011-11-04 | 2013-07-17 | Pacesetter, Inc. | Dual-chamber leadless intra-cardiac medical device with intra-cardiac extension |
US8644934B2 (en) | 2006-09-13 | 2014-02-04 | Boston Scientific Scimed Inc. | Cardiac stimulation using leadless electrode assemblies |
US8670842B1 (en) | 2012-12-14 | 2014-03-11 | Pacesetter, Inc. | Intra-cardiac implantable medical device |
US8700181B2 (en) | 2011-11-03 | 2014-04-15 | Pacesetter, Inc. | Single-chamber leadless intra-cardiac medical device with dual-chamber functionality and shaped stabilization intra-cardiac extension |
WO2014070472A1 (en) * | 2012-10-31 | 2014-05-08 | Medtronic, Inc. | Leadless pacemaker system |
US8738147B2 (en) | 2008-02-07 | 2014-05-27 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US8781605B2 (en) | 2011-10-31 | 2014-07-15 | Pacesetter, Inc. | Unitary dual-chamber leadless intra-cardiac medical device and method of implanting same |
US8996109B2 (en) | 2012-01-17 | 2015-03-31 | Pacesetter, Inc. | Leadless intra-cardiac medical device with dual chamber sensing through electrical and/or mechanical sensing |
US9002467B2 (en) | 2005-05-18 | 2015-04-07 | Cardiac Pacemakers, Inc. | Modular antitachyarrhythmia therapy system |
US9017341B2 (en) | 2011-10-31 | 2015-04-28 | Pacesetter, Inc. | Multi-piece dual-chamber leadless intra-cardiac medical device and method of implanting same |
US9265436B2 (en) | 2011-11-04 | 2016-02-23 | Pacesetter, Inc. | Leadless intra-cardiac medical device with built-in telemetry system |
US9289612B1 (en) | 2014-12-11 | 2016-03-22 | Medtronic Inc. | Coordination of ventricular pacing in a leadless pacing system |
US9308374B2 (en) | 2006-07-21 | 2016-04-12 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9399140B2 (en) | 2014-07-25 | 2016-07-26 | Medtronic, Inc. | Atrial contraction detection by a ventricular leadless pacing device for atrio-synchronous ventricular pacing |
US9468766B2 (en) | 2014-10-24 | 2016-10-18 | Medtronic, Inc. | Sensing and atrial-synchronized ventricular pacing in an intracardiac pacemaker |
US9492668B2 (en) | 2014-11-11 | 2016-11-15 | Medtronic, Inc. | Mode switching by a ventricular leadless pacing device |
US9492671B2 (en) | 2014-05-06 | 2016-11-15 | Medtronic, Inc. | Acoustically triggered therapy delivery |
US9492669B2 (en) | 2014-11-11 | 2016-11-15 | Medtronic, Inc. | Mode switching by a ventricular leadless pacing device |
US9511233B2 (en) | 2013-11-21 | 2016-12-06 | Medtronic, Inc. | Systems and methods for leadless cardiac resynchronization therapy |
US9526909B2 (en) | 2014-08-28 | 2016-12-27 | Cardiac Pacemakers, Inc. | Medical device with triggered blanking period |
US9592391B2 (en) | 2014-01-10 | 2017-03-14 | Cardiac Pacemakers, Inc. | Systems and methods for detecting cardiac arrhythmias |
US9592392B2 (en) | 2014-10-24 | 2017-03-14 | Medtronic, Inc. | Sensing and atrial-synchronized ventricular pacing in an intracardiac pacemaker |
US9597513B2 (en) | 2014-10-24 | 2017-03-21 | Medtronic, Inc. | Sensing and atrial-synchronized ventricular pacing in an intracardiac pacemaker |
US9623234B2 (en) | 2014-11-11 | 2017-04-18 | Medtronic, Inc. | Leadless pacing device implantation |
US9669230B2 (en) | 2015-02-06 | 2017-06-06 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US9669224B2 (en) | 2014-05-06 | 2017-06-06 | Medtronic, Inc. | Triggered pacing system |
US9694189B2 (en) | 2014-08-06 | 2017-07-04 | Cardiac Pacemakers, Inc. | Method and apparatus for communicating between medical devices |
WO2017127689A1 (en) * | 2016-01-21 | 2017-07-27 | Medtronic, Inc. | Interventional medical systems |
US9724519B2 (en) | 2014-11-11 | 2017-08-08 | Medtronic, Inc. | Ventricular leadless pacing device mode switching |
US9731138B1 (en) | 2016-02-17 | 2017-08-15 | Medtronic, Inc. | System and method for cardiac pacing |
US9757570B2 (en) | 2014-08-06 | 2017-09-12 | Cardiac Pacemakers, Inc. | Communications in a medical device system |
US9802055B2 (en) | 2016-04-04 | 2017-10-31 | Medtronic, Inc. | Ultrasound powered pulse delivery device |
US9808631B2 (en) | 2014-08-06 | 2017-11-07 | Cardiac Pacemakers, Inc. | Communication between a plurality of medical devices using time delays between communication pulses to distinguish between symbols |
US9808633B2 (en) | 2012-10-31 | 2017-11-07 | Medtronic, Inc. | Leadless pacemaker system |
US9853743B2 (en) | 2015-08-20 | 2017-12-26 | Cardiac Pacemakers, Inc. | Systems and methods for communication between medical devices |
US20180036547A1 (en) * | 2016-08-05 | 2018-02-08 | Cardiac Pacemakers, Inc. | Pacemakers for implant in the internal thoracic vasculature with communication to other implantable devices |
US9956414B2 (en) | 2015-08-27 | 2018-05-01 | Cardiac Pacemakers, Inc. | Temporal configuration of a motion sensor in an implantable medical device |
US9968787B2 (en) | 2015-08-27 | 2018-05-15 | Cardiac Pacemakers, Inc. | Spatial configuration of a motion sensor in an implantable medical device |
US10022538B2 (en) | 2005-12-09 | 2018-07-17 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US10029107B1 (en) | 2017-01-26 | 2018-07-24 | Cardiac Pacemakers, Inc. | Leadless device with overmolded components |
US10046167B2 (en) | 2015-02-09 | 2018-08-14 | Cardiac Pacemakers, Inc. | Implantable medical device with radiopaque ID tag |
US10050700B2 (en) | 2015-03-18 | 2018-08-14 | Cardiac Pacemakers, Inc. | Communications in a medical device system with temporal optimization |
US10065041B2 (en) | 2015-10-08 | 2018-09-04 | Cardiac Pacemakers, Inc. | Devices and methods for adjusting pacing rates in an implantable medical device |
US10092760B2 (en) | 2015-09-11 | 2018-10-09 | Cardiac Pacemakers, Inc. | Arrhythmia detection and confirmation |
US10099050B2 (en) | 2016-01-21 | 2018-10-16 | Medtronic, Inc. | Interventional medical devices, device systems, and fixation components thereof |
US10137305B2 (en) | 2015-08-28 | 2018-11-27 | Cardiac Pacemakers, Inc. | Systems and methods for behaviorally responsive signal detection and therapy delivery |
US10159842B2 (en) | 2015-08-28 | 2018-12-25 | Cardiac Pacemakers, Inc. | System and method for detecting tamponade |
US10183170B2 (en) | 2015-12-17 | 2019-01-22 | Cardiac Pacemakers, Inc. | Conducted communication in a medical device system |
US10213610B2 (en) | 2015-03-18 | 2019-02-26 | Cardiac Pacemakers, Inc. | Communications in a medical device system with link quality assessment |
US10220213B2 (en) | 2015-02-06 | 2019-03-05 | Cardiac Pacemakers, Inc. | Systems and methods for safe delivery of electrical stimulation therapy |
US10226631B2 (en) | 2015-08-28 | 2019-03-12 | Cardiac Pacemakers, Inc. | Systems and methods for infarct detection |
US10328272B2 (en) | 2016-05-10 | 2019-06-25 | Cardiac Pacemakers, Inc. | Retrievability for implantable medical devices |
US10350423B2 (en) | 2016-02-04 | 2019-07-16 | Cardiac Pacemakers, Inc. | Delivery system with force sensor for leadless cardiac device |
US10357159B2 (en) | 2015-08-20 | 2019-07-23 | Cardiac Pacemakers, Inc | Systems and methods for communication between medical devices |
US10390720B2 (en) | 2014-07-17 | 2019-08-27 | Medtronic, Inc. | Leadless pacing system including sensing extension |
US10391319B2 (en) | 2016-08-19 | 2019-08-27 | Cardiac Pacemakers, Inc. | Trans septal implantable medical device |
US10413733B2 (en) | 2016-10-27 | 2019-09-17 | Cardiac Pacemakers, Inc. | Implantable medical device with gyroscope |
US10426962B2 (en) | 2016-07-07 | 2019-10-01 | Cardiac Pacemakers, Inc. | Leadless pacemaker using pressure measurements for pacing capture verification |
US10434314B2 (en) | 2016-10-27 | 2019-10-08 | Cardiac Pacemakers, Inc. | Use of a separate device in managing the pace pulse energy of a cardiac pacemaker |
US10434317B2 (en) | 2016-10-31 | 2019-10-08 | Cardiac Pacemakers, Inc. | Systems and methods for activity level pacing |
US10463305B2 (en) | 2016-10-27 | 2019-11-05 | Cardiac Pacemakers, Inc. | Multi-device cardiac resynchronization therapy with timing enhancements |
US10512784B2 (en) | 2016-06-27 | 2019-12-24 | Cardiac Pacemakers, Inc. | Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management |
US10518084B2 (en) | 2013-07-31 | 2019-12-31 | Medtronic, Inc. | Fixation for implantable medical devices |
US10561330B2 (en) | 2016-10-27 | 2020-02-18 | Cardiac Pacemakers, Inc. | Implantable medical device having a sense channel with performance adjustment |
US10583303B2 (en) | 2016-01-19 | 2020-03-10 | Cardiac Pacemakers, Inc. | Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device |
US10583301B2 (en) | 2016-11-08 | 2020-03-10 | Cardiac Pacemakers, Inc. | Implantable medical device for atrial deployment |
US10596383B2 (en) | 2018-04-03 | 2020-03-24 | Medtronic, Inc. | Feature based sensing for leadless pacing therapy |
US10617874B2 (en) | 2016-10-31 | 2020-04-14 | Cardiac Pacemakers, Inc. | Systems and methods for activity level pacing |
US10632313B2 (en) | 2016-11-09 | 2020-04-28 | Cardiac Pacemakers, Inc. | Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device |
US10639486B2 (en) | 2016-11-21 | 2020-05-05 | Cardiac Pacemakers, Inc. | Implantable medical device with recharge coil |
US10668294B2 (en) | 2016-05-10 | 2020-06-02 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker configured for over the wire delivery |
US10688304B2 (en) | 2016-07-20 | 2020-06-23 | Cardiac Pacemakers, Inc. | Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system |
US10722720B2 (en) | 2014-01-10 | 2020-07-28 | Cardiac Pacemakers, Inc. | Methods and systems for improved communication between medical devices |
US10737102B2 (en) | 2017-01-26 | 2020-08-11 | Cardiac Pacemakers, Inc. | Leadless implantable device with detachable fixation |
US10758737B2 (en) | 2016-09-21 | 2020-09-01 | Cardiac Pacemakers, Inc. | Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter |
US10758724B2 (en) | 2016-10-27 | 2020-09-01 | Cardiac Pacemakers, Inc. | Implantable medical device delivery system with integrated sensor |
US10765871B2 (en) | 2016-10-27 | 2020-09-08 | Cardiac Pacemakers, Inc. | Implantable medical device with pressure sensor |
US10780278B2 (en) | 2016-08-24 | 2020-09-22 | Cardiac Pacemakers, Inc. | Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing |
US10821288B2 (en) | 2017-04-03 | 2020-11-03 | Cardiac Pacemakers, Inc. | Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate |
US10835753B2 (en) | 2017-01-26 | 2020-11-17 | Cardiac Pacemakers, Inc. | Intra-body device communication with redundant message transmission |
US10870008B2 (en) | 2016-08-24 | 2020-12-22 | Cardiac Pacemakers, Inc. | Cardiac resynchronization using fusion promotion for timing management |
US10874861B2 (en) | 2018-01-04 | 2020-12-29 | Cardiac Pacemakers, Inc. | Dual chamber pacing without beat-to-beat communication |
US10881869B2 (en) | 2016-11-21 | 2021-01-05 | Cardiac Pacemakers, Inc. | Wireless re-charge of an implantable medical device |
US10881863B2 (en) | 2016-11-21 | 2021-01-05 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker with multimode communication |
US10894163B2 (en) | 2016-11-21 | 2021-01-19 | Cardiac Pacemakers, Inc. | LCP based predictive timing for cardiac resynchronization |
US10905889B2 (en) | 2016-09-21 | 2021-02-02 | Cardiac Pacemakers, Inc. | Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery |
US10905872B2 (en) | 2017-04-03 | 2021-02-02 | Cardiac Pacemakers, Inc. | Implantable medical device with a movable electrode biased toward an extended position |
US10905886B2 (en) | 2015-12-28 | 2021-02-02 | Cardiac Pacemakers, Inc. | Implantable medical device for deployment across the atrioventricular septum |
US10918875B2 (en) | 2017-08-18 | 2021-02-16 | Cardiac Pacemakers, Inc. | Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator |
US10994145B2 (en) | 2016-09-21 | 2021-05-04 | Cardiac Pacemakers, Inc. | Implantable cardiac monitor |
US11052258B2 (en) | 2017-12-01 | 2021-07-06 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker |
US11058880B2 (en) | 2018-03-23 | 2021-07-13 | Medtronic, Inc. | VFA cardiac therapy for tachycardia |
US11065459B2 (en) | 2017-08-18 | 2021-07-20 | Cardiac Pacemakers, Inc. | Implantable medical device with pressure sensor |
US11071870B2 (en) | 2017-12-01 | 2021-07-27 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker |
US11116988B2 (en) | 2016-03-31 | 2021-09-14 | Cardiac Pacemakers, Inc. | Implantable medical device with rechargeable battery |
US11147979B2 (en) | 2016-11-21 | 2021-10-19 | Cardiac Pacemakers, Inc. | Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing |
US11185703B2 (en) | 2017-11-07 | 2021-11-30 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker for bundle of his pacing |
US11207527B2 (en) | 2016-07-06 | 2021-12-28 | Cardiac Pacemakers, Inc. | Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system |
US11207532B2 (en) | 2017-01-04 | 2021-12-28 | Cardiac Pacemakers, Inc. | Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system |
US11213676B2 (en) | 2019-04-01 | 2022-01-04 | Medtronic, Inc. | Delivery systems for VfA cardiac therapy |
US11235159B2 (en) | 2018-03-23 | 2022-02-01 | Medtronic, Inc. | VFA cardiac resynchronization therapy |
US11235161B2 (en) | 2018-09-26 | 2022-02-01 | Medtronic, Inc. | Capture in ventricle-from-atrium cardiac therapy |
US11235163B2 (en) | 2017-09-20 | 2022-02-01 | Cardiac Pacemakers, Inc. | Implantable medical device with multiple modes of operation |
US11260216B2 (en) | 2017-12-01 | 2022-03-01 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker |
US11285326B2 (en) | 2015-03-04 | 2022-03-29 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US11305127B2 (en) | 2019-08-26 | 2022-04-19 | Medtronic Inc. | VfA delivery and implant region detection |
US11400296B2 (en) | 2018-03-23 | 2022-08-02 | Medtronic, Inc. | AV synchronous VfA cardiac therapy |
US11446510B2 (en) | 2019-03-29 | 2022-09-20 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US11529523B2 (en) | 2018-01-04 | 2022-12-20 | Cardiac Pacemakers, Inc. | Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone |
US11571582B2 (en) | 2019-09-11 | 2023-02-07 | Cardiac Pacemakers, Inc. | Tools and systems for implanting and/or retrieving a leadless cardiac pacing device with helix fixation |
US11679265B2 (en) | 2019-02-14 | 2023-06-20 | Medtronic, Inc. | Lead-in-lead systems and methods for cardiac therapy |
US11697025B2 (en) | 2019-03-29 | 2023-07-11 | Medtronic, Inc. | Cardiac conduction system capture |
US11712188B2 (en) | 2019-05-07 | 2023-08-01 | Medtronic, Inc. | Posterior left bundle branch engagement |
US11759632B2 (en) | 2019-03-28 | 2023-09-19 | Medtronic, Inc. | Fixation components for implantable medical devices |
US11813464B2 (en) | 2020-07-31 | 2023-11-14 | Medtronic, Inc. | Cardiac conduction system evaluation |
US11813463B2 (en) | 2017-12-01 | 2023-11-14 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker with reversionary behavior |
US11813466B2 (en) | 2020-01-27 | 2023-11-14 | Medtronic, Inc. | Atrioventricular nodal stimulation |
US11833349B2 (en) | 2019-03-29 | 2023-12-05 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US11911168B2 (en) | 2020-04-03 | 2024-02-27 | Medtronic, Inc. | Cardiac conduction system therapy benefit determination |
US11951313B2 (en) | 2018-11-17 | 2024-04-09 | Medtronic, Inc. | VFA delivery systems and methods |
US12157003B2 (en) | 2010-12-29 | 2024-12-03 | Medtronic, Inc. | Implantable medical device fixation |
US12296177B2 (en) | 2019-12-20 | 2025-05-13 | Medtronic, Inc. | Delivery systems and methods for left ventricular pacing |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9168383B2 (en) | 2005-10-14 | 2015-10-27 | Pacesetter, Inc. | Leadless cardiac pacemaker with conducted communication |
US8457742B2 (en) | 2005-10-14 | 2013-06-04 | Nanostim, Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
DE102008029004A1 (en) | 2007-06-29 | 2009-01-02 | Rpc Bramlage Gmbh | Dispenser for dispensing liquid or pasty masses |
WO2009039400A1 (en) * | 2007-09-20 | 2009-03-26 | Nanostim, Inc. | Leadless cardiac pacemaker with secondary fixation capability |
WO2010088687A1 (en) | 2009-02-02 | 2010-08-05 | Nanostim, Inc. | Leadless cardiac pacemaker with secondary fixation capability |
US9099720B2 (en) | 2009-05-29 | 2015-08-04 | Medtronic, Inc. | Elongate battery for implantable medical device |
US20100305627A1 (en) * | 2009-05-29 | 2010-12-02 | Medtronic, Inc. | Battery with suture hole |
EP2566571A4 (en) * | 2010-05-05 | 2013-11-20 | Univ Winthrop Hospital | REDUNDANT STIMULATION STIMULATION SYSTEM WITH BYPASS AND WITHOUT BYPASS |
US9060692B2 (en) | 2010-10-12 | 2015-06-23 | Pacesetter, Inc. | Temperature sensor for a leadless cardiac pacemaker |
US8543205B2 (en) | 2010-10-12 | 2013-09-24 | Nanostim, Inc. | Temperature sensor for a leadless cardiac pacemaker |
JP2013540022A (en) | 2010-10-13 | 2013-10-31 | ナノスティム・インコーポレイテッド | Leadless cardiac pacemaker with screw anti-rotation element |
WO2012082755A1 (en) | 2010-12-13 | 2012-06-21 | Nanostim, Inc. | Pacemaker retrieval systems and methods |
CN103429296A (en) | 2010-12-13 | 2013-12-04 | 内诺斯蒂姆股份有限公司 | Delivery catheter systems and methods |
JP2014501584A (en) | 2010-12-20 | 2014-01-23 | ナノスティム・インコーポレイテッド | Leadless space maker with radial fixing mechanism |
US10112045B2 (en) | 2010-12-29 | 2018-10-30 | Medtronic, Inc. | Implantable medical device fixation |
US8639335B2 (en) | 2011-01-28 | 2014-01-28 | Medtronic, Inc. | Disabling an implanted medical device with another medical device |
US9511236B2 (en) | 2011-11-04 | 2016-12-06 | Pacesetter, Inc. | Leadless cardiac pacemaker with integral battery and redundant welds |
DE202012012867U1 (en) | 2011-12-08 | 2014-01-30 | Biotronik Se & Co. Kg | Medical implant and medical arrangement |
US10485435B2 (en) | 2012-03-26 | 2019-11-26 | Medtronic, Inc. | Pass-through implantable medical device delivery catheter with removeable distal tip |
US9802054B2 (en) | 2012-08-01 | 2017-10-31 | Pacesetter, Inc. | Biostimulator circuit with flying cell |
US20140172034A1 (en) * | 2012-12-18 | 2014-06-19 | Pacesetter, Inc. | Intra-cardiac implantable medical device with ic device extension for lv pacing/sensing |
DE102014009322A1 (en) | 2014-06-27 | 2015-12-31 | Heraeus Deutschland GmbH & Co. KG | Wireless pacemaker with cermet electrode |
CN104606784B (en) * | 2015-02-06 | 2017-08-25 | 上海微创医疗器械(集团)有限公司 | A kind of cardiac pacemaker system and its control method |
US9808618B2 (en) * | 2015-04-23 | 2017-11-07 | Medtronic, Inc. | Dual chamber intracardiac medical device |
WO2016172625A1 (en) * | 2015-04-23 | 2016-10-27 | Medtronic, Inc. | Intracardiac medical device |
EP3292884B1 (en) | 2016-09-12 | 2019-09-04 | BIOTRONIK SE & Co. KG | Modified implantation tool tip configuration for the improved installation of leadless pacemakers with short tine-based anchors |
US10751542B2 (en) | 2017-10-13 | 2020-08-25 | Medtronic, Inc. | Power management for implantable medical device systems |
US11633607B2 (en) | 2019-07-24 | 2023-04-25 | Medtronic, Inc. | AV synchronous septal pacing |
IT202200017871A1 (en) | 2022-08-31 | 2024-03-02 | Napoleone Carlo Pace | Pacemaker adapter |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3943936A (en) * | 1970-09-21 | 1976-03-16 | Rasor Associates, Inc. | Self powered pacers and stimulators |
WO1990002581A1 (en) | 1988-09-01 | 1990-03-22 | Siemens-Elema Ab | Feedthrough connector for implantable medical device |
US5411535A (en) * | 1992-03-03 | 1995-05-02 | Terumo Kabushiki Kaisha | Cardiac pacemaker using wireless transmission |
EP1139477A1 (en) | 1999-09-16 | 2001-10-04 | Matsushita Electric Industrial Co., Ltd. | Sealed cylindrical nickel-hydrogen storage battery |
US6445953B1 (en) * | 2001-01-16 | 2002-09-03 | Kenergy, Inc. | Wireless cardiac pacing system with vascular electrode-stents |
EP0916363B1 (en) | 1997-11-10 | 2004-06-02 | Vitatron Medical B.V. | Pacing lead with porous electrode |
US20040147973A1 (en) * | 2002-06-27 | 2004-07-29 | Hauser Robert G. | Intra cardiac pacer and method |
EP1491235A2 (en) | 2003-06-23 | 2004-12-29 | Alfred E. Mann Foundation for Scientific Research | A housing for an implantable medical device |
-
2005
- 2005-04-22 DE DE102005020071A patent/DE102005020071A1/en not_active Withdrawn
-
2006
- 2006-03-24 EP EP06006092A patent/EP1714670B1/en active Active
- 2006-03-24 DE DE502006000094T patent/DE502006000094D1/en active Active
- 2006-03-24 AT AT06006092T patent/ATE372806T1/en not_active IP Right Cessation
- 2006-04-21 US US11/408,773 patent/US8032219B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3943936A (en) * | 1970-09-21 | 1976-03-16 | Rasor Associates, Inc. | Self powered pacers and stimulators |
WO1990002581A1 (en) | 1988-09-01 | 1990-03-22 | Siemens-Elema Ab | Feedthrough connector for implantable medical device |
US5411535A (en) * | 1992-03-03 | 1995-05-02 | Terumo Kabushiki Kaisha | Cardiac pacemaker using wireless transmission |
EP0916363B1 (en) | 1997-11-10 | 2004-06-02 | Vitatron Medical B.V. | Pacing lead with porous electrode |
EP1139477A1 (en) | 1999-09-16 | 2001-10-04 | Matsushita Electric Industrial Co., Ltd. | Sealed cylindrical nickel-hydrogen storage battery |
US6445953B1 (en) * | 2001-01-16 | 2002-09-03 | Kenergy, Inc. | Wireless cardiac pacing system with vascular electrode-stents |
US20040147973A1 (en) * | 2002-06-27 | 2004-07-29 | Hauser Robert G. | Intra cardiac pacer and method |
EP1491235A2 (en) | 2003-06-23 | 2004-12-29 | Alfred E. Mann Foundation for Scientific Research | A housing for an implantable medical device |
Non-Patent Citations (2)
Title |
---|
European Search Report dated Aug. 29, 2006. |
German search report dated Jan. 18, 2006. |
Cited By (184)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9072911B2 (en) | 2004-10-20 | 2015-07-07 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
US8478408B2 (en) | 2004-10-20 | 2013-07-02 | Boston Scientific Scimed Inc. | Leadless cardiac stimulation systems |
US10493288B2 (en) | 2004-10-20 | 2019-12-03 | Boston Scientific Scimed Inc. | Leadless cardiac stimulation systems |
US9925386B2 (en) | 2004-10-20 | 2018-03-27 | Cardiac Pacemakers, Inc. | Leadless cardiac stimulation systems |
US9242113B2 (en) | 2005-05-18 | 2016-01-26 | Cardiac Pacemarkers, Inc. | Modular antitachyarrhythmia therapy system |
US9002467B2 (en) | 2005-05-18 | 2015-04-07 | Cardiac Pacemakers, Inc. | Modular antitachyarrhythmia therapy system |
US11083898B2 (en) | 2005-05-18 | 2021-08-10 | Cardiac Pacemakers, Inc. | Modular antitachyarrhythmia therapy system |
US10363428B2 (en) | 2005-05-18 | 2019-07-30 | Cardiac Pacemakers, Inc. | Modular antitachyarrhythmia therapy system |
US9352164B2 (en) | 2005-05-18 | 2016-05-31 | Cardiac Pacemakers, Inc. | Modular antitachyarrhythmia therapy system |
US9993654B2 (en) | 2005-05-18 | 2018-06-12 | Cardiac Pacemakers, Inc. | Modular antitachyarrhythmia therapy system |
US11766219B2 (en) | 2005-12-09 | 2023-09-26 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US10022538B2 (en) | 2005-12-09 | 2018-07-17 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US12076164B2 (en) | 2005-12-09 | 2024-09-03 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US11154247B2 (en) | 2005-12-09 | 2021-10-26 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US9308374B2 (en) | 2006-07-21 | 2016-04-12 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US10426952B2 (en) | 2006-07-21 | 2019-10-01 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9662487B2 (en) | 2006-07-21 | 2017-05-30 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US12102822B2 (en) | 2006-07-21 | 2024-10-01 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US11338130B2 (en) | 2006-07-21 | 2022-05-24 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US9956401B2 (en) | 2006-09-13 | 2018-05-01 | Boston Scientific Scimed, Inc. | Cardiac stimulation using intravascularly-deliverable electrode assemblies |
US8644934B2 (en) | 2006-09-13 | 2014-02-04 | Boston Scientific Scimed Inc. | Cardiac stimulation using leadless electrode assemblies |
US10307604B2 (en) | 2008-02-07 | 2019-06-04 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US8738147B2 (en) | 2008-02-07 | 2014-05-27 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US9795797B2 (en) | 2008-02-07 | 2017-10-24 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US9393405B2 (en) | 2008-02-07 | 2016-07-19 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
US12268868B2 (en) | 2010-12-29 | 2025-04-08 | Medtronic, Inc. | Implantable medical device fixation |
US12268867B2 (en) | 2010-12-29 | 2025-04-08 | Medtronic, Inc. | Implantable medical device fixation |
US12157003B2 (en) | 2010-12-29 | 2024-12-03 | Medtronic, Inc. | Implantable medical device fixation |
US9878151B2 (en) | 2011-10-31 | 2018-01-30 | Pacesetter, Inc. | Multi-piece dual-chamber leadless intra-cardiac medical device and method of implanting same |
US9463315B2 (en) | 2011-10-31 | 2016-10-11 | Pacesetter, Inc. | Method of implanting a unitary dual-chamber leadless intra-cardiac medical device |
US8781605B2 (en) | 2011-10-31 | 2014-07-15 | Pacesetter, Inc. | Unitary dual-chamber leadless intra-cardiac medical device and method of implanting same |
US9017341B2 (en) | 2011-10-31 | 2015-04-28 | Pacesetter, Inc. | Multi-piece dual-chamber leadless intra-cardiac medical device and method of implanting same |
US8700181B2 (en) | 2011-11-03 | 2014-04-15 | Pacesetter, Inc. | Single-chamber leadless intra-cardiac medical device with dual-chamber functionality and shaped stabilization intra-cardiac extension |
US8914131B2 (en) | 2011-11-03 | 2014-12-16 | Pacesetter, Inc. | Method of implanting a single-chamber leadless intra-cardiac medical device with dual-chamber functionality and shaped stabilization intra-cardiac extension |
US9265436B2 (en) | 2011-11-04 | 2016-02-23 | Pacesetter, Inc. | Leadless intra-cardiac medical device with built-in telemetry system |
US9278218B2 (en) | 2011-11-04 | 2016-03-08 | Pacesetter, Inc. | Leadless intra-cardiac medical device with dual chamber sensing through electrical and/or mechanical sensing |
EP2614855A1 (en) * | 2011-11-04 | 2013-07-17 | Pacesetter, Inc. | Dual-chamber leadless intra-cardiac medical device with intra-cardiac extension |
US8634912B2 (en) | 2011-11-04 | 2014-01-21 | Pacesetter, Inc. | Dual-chamber leadless intra-cardiac medical device with intra-cardiac extension |
US8996109B2 (en) | 2012-01-17 | 2015-03-31 | Pacesetter, Inc. | Leadless intra-cardiac medical device with dual chamber sensing through electrical and/or mechanical sensing |
WO2014070472A1 (en) * | 2012-10-31 | 2014-05-08 | Medtronic, Inc. | Leadless pacemaker system |
US8923963B2 (en) | 2012-10-31 | 2014-12-30 | Medtronic, Inc. | Leadless pacemaker system |
CN104684615A (en) * | 2012-10-31 | 2015-06-03 | 美敦力公司 | Leadless pacemaker system |
US9808633B2 (en) | 2012-10-31 | 2017-11-07 | Medtronic, Inc. | Leadless pacemaker system |
US9375580B2 (en) | 2012-10-31 | 2016-06-28 | Medtronic, Inc. | Leadless pacemaker system |
US8670842B1 (en) | 2012-12-14 | 2014-03-11 | Pacesetter, Inc. | Intra-cardiac implantable medical device |
US12208259B2 (en) | 2013-07-31 | 2025-01-28 | Medtronic, Inc. | Fixation for implantable medical devices |
US11400281B2 (en) | 2013-07-31 | 2022-08-02 | Medtronic, Inc. | Fixation for implantable medical devices |
US10518084B2 (en) | 2013-07-31 | 2019-12-31 | Medtronic, Inc. | Fixation for implantable medical devices |
USRE48319E1 (en) | 2013-11-21 | 2020-11-24 | Medtronic, Inc. | Systems and methods for leadless cardiac resynchronization therapy |
US9511233B2 (en) | 2013-11-21 | 2016-12-06 | Medtronic, Inc. | Systems and methods for leadless cardiac resynchronization therapy |
US10086206B2 (en) | 2013-11-21 | 2018-10-02 | Medtronic, Inc. | Systems and methods for leadless cardiac resynchronization therapy |
US9789319B2 (en) | 2013-11-21 | 2017-10-17 | Medtronic, Inc. | Systems and methods for leadless cardiac resynchronization therapy |
US9592391B2 (en) | 2014-01-10 | 2017-03-14 | Cardiac Pacemakers, Inc. | Systems and methods for detecting cardiac arrhythmias |
US10722720B2 (en) | 2014-01-10 | 2020-07-28 | Cardiac Pacemakers, Inc. | Methods and systems for improved communication between medical devices |
US9492671B2 (en) | 2014-05-06 | 2016-11-15 | Medtronic, Inc. | Acoustically triggered therapy delivery |
US9669224B2 (en) | 2014-05-06 | 2017-06-06 | Medtronic, Inc. | Triggered pacing system |
US10390720B2 (en) | 2014-07-17 | 2019-08-27 | Medtronic, Inc. | Leadless pacing system including sensing extension |
US10674928B2 (en) | 2014-07-17 | 2020-06-09 | Medtronic, Inc. | Leadless pacing system including sensing extension |
US9399140B2 (en) | 2014-07-25 | 2016-07-26 | Medtronic, Inc. | Atrial contraction detection by a ventricular leadless pacing device for atrio-synchronous ventricular pacing |
USRE48197E1 (en) | 2014-07-25 | 2020-09-08 | Medtronic, Inc. | Atrial contraction detection by a ventricular leadless pacing device for atrio-synchronous ventricular pacing |
US9757570B2 (en) | 2014-08-06 | 2017-09-12 | Cardiac Pacemakers, Inc. | Communications in a medical device system |
US9694189B2 (en) | 2014-08-06 | 2017-07-04 | Cardiac Pacemakers, Inc. | Method and apparatus for communicating between medical devices |
US10912943B2 (en) | 2014-08-06 | 2021-02-09 | Cardiac Pacemakers, Inc. | Communications between a plurality of medical devices using time delays between communication pulses between symbols |
US9808631B2 (en) | 2014-08-06 | 2017-11-07 | Cardiac Pacemakers, Inc. | Communication between a plurality of medical devices using time delays between communication pulses to distinguish between symbols |
US9526909B2 (en) | 2014-08-28 | 2016-12-27 | Cardiac Pacemakers, Inc. | Medical device with triggered blanking period |
US9592392B2 (en) | 2014-10-24 | 2017-03-14 | Medtronic, Inc. | Sensing and atrial-synchronized ventricular pacing in an intracardiac pacemaker |
US9468766B2 (en) | 2014-10-24 | 2016-10-18 | Medtronic, Inc. | Sensing and atrial-synchronized ventricular pacing in an intracardiac pacemaker |
US9597513B2 (en) | 2014-10-24 | 2017-03-21 | Medtronic, Inc. | Sensing and atrial-synchronized ventricular pacing in an intracardiac pacemaker |
US9492668B2 (en) | 2014-11-11 | 2016-11-15 | Medtronic, Inc. | Mode switching by a ventricular leadless pacing device |
US9808628B2 (en) | 2014-11-11 | 2017-11-07 | Medtronic, Inc. | Mode switching by a ventricular leadless pacing device |
US9492669B2 (en) | 2014-11-11 | 2016-11-15 | Medtronic, Inc. | Mode switching by a ventricular leadless pacing device |
US9623234B2 (en) | 2014-11-11 | 2017-04-18 | Medtronic, Inc. | Leadless pacing device implantation |
US9724519B2 (en) | 2014-11-11 | 2017-08-08 | Medtronic, Inc. | Ventricular leadless pacing device mode switching |
US10279168B2 (en) | 2014-11-11 | 2019-05-07 | Medtronic, Inc. | Leadless pacing device implantation |
US9289612B1 (en) | 2014-12-11 | 2016-03-22 | Medtronic Inc. | Coordination of ventricular pacing in a leadless pacing system |
US9669230B2 (en) | 2015-02-06 | 2017-06-06 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US11224751B2 (en) | 2015-02-06 | 2022-01-18 | Cardiac Pacemakers, Inc. | Systems and methods for safe delivery of electrical stimulation therapy |
US11020595B2 (en) | 2015-02-06 | 2021-06-01 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US10238882B2 (en) | 2015-02-06 | 2019-03-26 | Cardiac Pacemakers | Systems and methods for treating cardiac arrhythmias |
US10220213B2 (en) | 2015-02-06 | 2019-03-05 | Cardiac Pacemakers, Inc. | Systems and methods for safe delivery of electrical stimulation therapy |
US10046167B2 (en) | 2015-02-09 | 2018-08-14 | Cardiac Pacemakers, Inc. | Implantable medical device with radiopaque ID tag |
US11020600B2 (en) | 2015-02-09 | 2021-06-01 | Cardiac Pacemakers, Inc. | Implantable medical device with radiopaque ID tag |
US11285326B2 (en) | 2015-03-04 | 2022-03-29 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US10213610B2 (en) | 2015-03-18 | 2019-02-26 | Cardiac Pacemakers, Inc. | Communications in a medical device system with link quality assessment |
US10050700B2 (en) | 2015-03-18 | 2018-08-14 | Cardiac Pacemakers, Inc. | Communications in a medical device system with temporal optimization |
US11476927B2 (en) | 2015-03-18 | 2022-10-18 | Cardiac Pacemakers, Inc. | Communications in a medical device system with temporal optimization |
US10946202B2 (en) | 2015-03-18 | 2021-03-16 | Cardiac Pacemakers, Inc. | Communications in a medical device system with link quality assessment |
US9853743B2 (en) | 2015-08-20 | 2017-12-26 | Cardiac Pacemakers, Inc. | Systems and methods for communication between medical devices |
US10357159B2 (en) | 2015-08-20 | 2019-07-23 | Cardiac Pacemakers, Inc | Systems and methods for communication between medical devices |
US10709892B2 (en) | 2015-08-27 | 2020-07-14 | Cardiac Pacemakers, Inc. | Temporal configuration of a motion sensor in an implantable medical device |
US9956414B2 (en) | 2015-08-27 | 2018-05-01 | Cardiac Pacemakers, Inc. | Temporal configuration of a motion sensor in an implantable medical device |
US9968787B2 (en) | 2015-08-27 | 2018-05-15 | Cardiac Pacemakers, Inc. | Spatial configuration of a motion sensor in an implantable medical device |
US10589101B2 (en) | 2015-08-28 | 2020-03-17 | Cardiac Pacemakers, Inc. | System and method for detecting tamponade |
US10226631B2 (en) | 2015-08-28 | 2019-03-12 | Cardiac Pacemakers, Inc. | Systems and methods for infarct detection |
US10137305B2 (en) | 2015-08-28 | 2018-11-27 | Cardiac Pacemakers, Inc. | Systems and methods for behaviorally responsive signal detection and therapy delivery |
US10159842B2 (en) | 2015-08-28 | 2018-12-25 | Cardiac Pacemakers, Inc. | System and method for detecting tamponade |
US10092760B2 (en) | 2015-09-11 | 2018-10-09 | Cardiac Pacemakers, Inc. | Arrhythmia detection and confirmation |
US10065041B2 (en) | 2015-10-08 | 2018-09-04 | Cardiac Pacemakers, Inc. | Devices and methods for adjusting pacing rates in an implantable medical device |
US10183170B2 (en) | 2015-12-17 | 2019-01-22 | Cardiac Pacemakers, Inc. | Conducted communication in a medical device system |
US10933245B2 (en) | 2015-12-17 | 2021-03-02 | Cardiac Pacemakers, Inc. | Conducted communication in a medical device system |
US10905886B2 (en) | 2015-12-28 | 2021-02-02 | Cardiac Pacemakers, Inc. | Implantable medical device for deployment across the atrioventricular septum |
US10583303B2 (en) | 2016-01-19 | 2020-03-10 | Cardiac Pacemakers, Inc. | Devices and methods for wirelessly recharging a rechargeable battery of an implantable medical device |
US11027125B2 (en) | 2016-01-21 | 2021-06-08 | Medtronic, Inc. | Interventional medical devices, device systems, and fixation components thereof |
WO2017127689A1 (en) * | 2016-01-21 | 2017-07-27 | Medtronic, Inc. | Interventional medical systems |
US12251559B2 (en) | 2016-01-21 | 2025-03-18 | Medtronic, Inc. | Interventional medical devices, device systems, and fixation components thereof |
US10463853B2 (en) | 2016-01-21 | 2019-11-05 | Medtronic, Inc. | Interventional medical systems |
US10099050B2 (en) | 2016-01-21 | 2018-10-16 | Medtronic, Inc. | Interventional medical devices, device systems, and fixation components thereof |
US10350423B2 (en) | 2016-02-04 | 2019-07-16 | Cardiac Pacemakers, Inc. | Delivery system with force sensor for leadless cardiac device |
US9731138B1 (en) | 2016-02-17 | 2017-08-15 | Medtronic, Inc. | System and method for cardiac pacing |
US11116988B2 (en) | 2016-03-31 | 2021-09-14 | Cardiac Pacemakers, Inc. | Implantable medical device with rechargeable battery |
US9802055B2 (en) | 2016-04-04 | 2017-10-31 | Medtronic, Inc. | Ultrasound powered pulse delivery device |
US10668294B2 (en) | 2016-05-10 | 2020-06-02 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker configured for over the wire delivery |
US10328272B2 (en) | 2016-05-10 | 2019-06-25 | Cardiac Pacemakers, Inc. | Retrievability for implantable medical devices |
US10512784B2 (en) | 2016-06-27 | 2019-12-24 | Cardiac Pacemakers, Inc. | Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management |
US11497921B2 (en) | 2016-06-27 | 2022-11-15 | Cardiac Pacemakers, Inc. | Cardiac therapy system using subcutaneously sensed p-waves for resynchronization pacing management |
US11207527B2 (en) | 2016-07-06 | 2021-12-28 | Cardiac Pacemakers, Inc. | Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system |
US10426962B2 (en) | 2016-07-07 | 2019-10-01 | Cardiac Pacemakers, Inc. | Leadless pacemaker using pressure measurements for pacing capture verification |
US10688304B2 (en) | 2016-07-20 | 2020-06-23 | Cardiac Pacemakers, Inc. | Method and system for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system |
CN109562271B (en) * | 2016-08-05 | 2023-01-13 | 心脏起搏器股份公司 | Active medical device implantation using intrathoracic vasculature |
US20180036547A1 (en) * | 2016-08-05 | 2018-02-08 | Cardiac Pacemakers, Inc. | Pacemakers for implant in the internal thoracic vasculature with communication to other implantable devices |
US10471250B2 (en) * | 2016-08-05 | 2019-11-12 | Cardiac Pacemakers, Inc. | Pacemakers for implant in the internal thoracic vasculature with communication to other implantable devices |
CN109562271A (en) * | 2016-08-05 | 2019-04-02 | 心脏起搏器股份公司 | It is implanted into using the active medical device of vascular system in thorax |
US10391319B2 (en) | 2016-08-19 | 2019-08-27 | Cardiac Pacemakers, Inc. | Trans septal implantable medical device |
US11464982B2 (en) | 2016-08-24 | 2022-10-11 | Cardiac Pacemakers, Inc. | Integrated multi-device cardiac resynchronization therapy using p-wave to pace timing |
US10780278B2 (en) | 2016-08-24 | 2020-09-22 | Cardiac Pacemakers, Inc. | Integrated multi-device cardiac resynchronization therapy using P-wave to pace timing |
US10870008B2 (en) | 2016-08-24 | 2020-12-22 | Cardiac Pacemakers, Inc. | Cardiac resynchronization using fusion promotion for timing management |
US10905889B2 (en) | 2016-09-21 | 2021-02-02 | Cardiac Pacemakers, Inc. | Leadless stimulation device with a housing that houses internal components of the leadless stimulation device and functions as the battery case and a terminal of an internal battery |
US10994145B2 (en) | 2016-09-21 | 2021-05-04 | Cardiac Pacemakers, Inc. | Implantable cardiac monitor |
US10758737B2 (en) | 2016-09-21 | 2020-09-01 | Cardiac Pacemakers, Inc. | Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter |
US11305125B2 (en) | 2016-10-27 | 2022-04-19 | Cardiac Pacemakers, Inc. | Implantable medical device with gyroscope |
US10413733B2 (en) | 2016-10-27 | 2019-09-17 | Cardiac Pacemakers, Inc. | Implantable medical device with gyroscope |
US10434314B2 (en) | 2016-10-27 | 2019-10-08 | Cardiac Pacemakers, Inc. | Use of a separate device in managing the pace pulse energy of a cardiac pacemaker |
US10561330B2 (en) | 2016-10-27 | 2020-02-18 | Cardiac Pacemakers, Inc. | Implantable medical device having a sense channel with performance adjustment |
US10765871B2 (en) | 2016-10-27 | 2020-09-08 | Cardiac Pacemakers, Inc. | Implantable medical device with pressure sensor |
US10463305B2 (en) | 2016-10-27 | 2019-11-05 | Cardiac Pacemakers, Inc. | Multi-device cardiac resynchronization therapy with timing enhancements |
US10758724B2 (en) | 2016-10-27 | 2020-09-01 | Cardiac Pacemakers, Inc. | Implantable medical device delivery system with integrated sensor |
US10617874B2 (en) | 2016-10-31 | 2020-04-14 | Cardiac Pacemakers, Inc. | Systems and methods for activity level pacing |
US10434317B2 (en) | 2016-10-31 | 2019-10-08 | Cardiac Pacemakers, Inc. | Systems and methods for activity level pacing |
US10583301B2 (en) | 2016-11-08 | 2020-03-10 | Cardiac Pacemakers, Inc. | Implantable medical device for atrial deployment |
US10632313B2 (en) | 2016-11-09 | 2020-04-28 | Cardiac Pacemakers, Inc. | Systems, devices, and methods for setting cardiac pacing pulse parameters for a cardiac pacing device |
US11147979B2 (en) | 2016-11-21 | 2021-10-19 | Cardiac Pacemakers, Inc. | Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing |
US10894163B2 (en) | 2016-11-21 | 2021-01-19 | Cardiac Pacemakers, Inc. | LCP based predictive timing for cardiac resynchronization |
US10639486B2 (en) | 2016-11-21 | 2020-05-05 | Cardiac Pacemakers, Inc. | Implantable medical device with recharge coil |
US10881863B2 (en) | 2016-11-21 | 2021-01-05 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker with multimode communication |
US10881869B2 (en) | 2016-11-21 | 2021-01-05 | Cardiac Pacemakers, Inc. | Wireless re-charge of an implantable medical device |
US11207532B2 (en) | 2017-01-04 | 2021-12-28 | Cardiac Pacemakers, Inc. | Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system |
US10835753B2 (en) | 2017-01-26 | 2020-11-17 | Cardiac Pacemakers, Inc. | Intra-body device communication with redundant message transmission |
US10029107B1 (en) | 2017-01-26 | 2018-07-24 | Cardiac Pacemakers, Inc. | Leadless device with overmolded components |
US11590353B2 (en) | 2017-01-26 | 2023-02-28 | Cardiac Pacemakers, Inc. | Intra-body device communication with redundant message transmission |
US10737102B2 (en) | 2017-01-26 | 2020-08-11 | Cardiac Pacemakers, Inc. | Leadless implantable device with detachable fixation |
US10905872B2 (en) | 2017-04-03 | 2021-02-02 | Cardiac Pacemakers, Inc. | Implantable medical device with a movable electrode biased toward an extended position |
US10821288B2 (en) | 2017-04-03 | 2020-11-03 | Cardiac Pacemakers, Inc. | Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate |
US12151116B2 (en) | 2017-08-18 | 2024-11-26 | Cardiac Pacemakers, Inc. | Implantable medical device with pressure sensor |
US11065459B2 (en) | 2017-08-18 | 2021-07-20 | Cardiac Pacemakers, Inc. | Implantable medical device with pressure sensor |
US10918875B2 (en) | 2017-08-18 | 2021-02-16 | Cardiac Pacemakers, Inc. | Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator |
US11235163B2 (en) | 2017-09-20 | 2022-02-01 | Cardiac Pacemakers, Inc. | Implantable medical device with multiple modes of operation |
US11185703B2 (en) | 2017-11-07 | 2021-11-30 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker for bundle of his pacing |
US11260216B2 (en) | 2017-12-01 | 2022-03-01 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker |
US11813463B2 (en) | 2017-12-01 | 2023-11-14 | Cardiac Pacemakers, Inc. | Leadless cardiac pacemaker with reversionary behavior |
US11052258B2 (en) | 2017-12-01 | 2021-07-06 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker |
US11071870B2 (en) | 2017-12-01 | 2021-07-27 | Cardiac Pacemakers, Inc. | Methods and systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker |
US10874861B2 (en) | 2018-01-04 | 2020-12-29 | Cardiac Pacemakers, Inc. | Dual chamber pacing without beat-to-beat communication |
US11529523B2 (en) | 2018-01-04 | 2022-12-20 | Cardiac Pacemakers, Inc. | Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone |
US11400296B2 (en) | 2018-03-23 | 2022-08-02 | Medtronic, Inc. | AV synchronous VfA cardiac therapy |
US11058880B2 (en) | 2018-03-23 | 2021-07-13 | Medtronic, Inc. | VFA cardiac therapy for tachycardia |
US11235159B2 (en) | 2018-03-23 | 2022-02-01 | Medtronic, Inc. | VFA cardiac resynchronization therapy |
US11819699B2 (en) | 2018-03-23 | 2023-11-21 | Medtronic, Inc. | VfA cardiac resynchronization therapy |
US10596383B2 (en) | 2018-04-03 | 2020-03-24 | Medtronic, Inc. | Feature based sensing for leadless pacing therapy |
US11235161B2 (en) | 2018-09-26 | 2022-02-01 | Medtronic, Inc. | Capture in ventricle-from-atrium cardiac therapy |
US12172021B2 (en) | 2018-09-26 | 2024-12-24 | Medtronic, Inc. | Capture in ventricle-from-atrium cardiac therapy |
US11951313B2 (en) | 2018-11-17 | 2024-04-09 | Medtronic, Inc. | VFA delivery systems and methods |
US11679265B2 (en) | 2019-02-14 | 2023-06-20 | Medtronic, Inc. | Lead-in-lead systems and methods for cardiac therapy |
US11759632B2 (en) | 2019-03-28 | 2023-09-19 | Medtronic, Inc. | Fixation components for implantable medical devices |
US11446510B2 (en) | 2019-03-29 | 2022-09-20 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US11833349B2 (en) | 2019-03-29 | 2023-12-05 | Cardiac Pacemakers, Inc. | Systems and methods for treating cardiac arrhythmias |
US11697025B2 (en) | 2019-03-29 | 2023-07-11 | Medtronic, Inc. | Cardiac conduction system capture |
US11213676B2 (en) | 2019-04-01 | 2022-01-04 | Medtronic, Inc. | Delivery systems for VfA cardiac therapy |
US11712188B2 (en) | 2019-05-07 | 2023-08-01 | Medtronic, Inc. | Posterior left bundle branch engagement |
US11305127B2 (en) | 2019-08-26 | 2022-04-19 | Medtronic Inc. | VfA delivery and implant region detection |
US11571582B2 (en) | 2019-09-11 | 2023-02-07 | Cardiac Pacemakers, Inc. | Tools and systems for implanting and/or retrieving a leadless cardiac pacing device with helix fixation |
US12296177B2 (en) | 2019-12-20 | 2025-05-13 | Medtronic, Inc. | Delivery systems and methods for left ventricular pacing |
US11813466B2 (en) | 2020-01-27 | 2023-11-14 | Medtronic, Inc. | Atrioventricular nodal stimulation |
US11911168B2 (en) | 2020-04-03 | 2024-02-27 | Medtronic, Inc. | Cardiac conduction system therapy benefit determination |
US11813464B2 (en) | 2020-07-31 | 2023-11-14 | Medtronic, Inc. | Cardiac conduction system evaluation |
Also Published As
Publication number | Publication date |
---|---|
US20060241705A1 (en) | 2006-10-26 |
EP1714670A1 (en) | 2006-10-25 |
DE502006000094D1 (en) | 2007-10-25 |
EP1714670B1 (en) | 2007-09-12 |
ATE372806T1 (en) | 2007-09-15 |
DE102005020071A1 (en) | 2006-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8032219B2 (en) | Cardiac pacemaker having a sealed oblong housing | |
US10449354B2 (en) | Intracardiac medical device | |
US8634912B2 (en) | Dual-chamber leadless intra-cardiac medical device with intra-cardiac extension | |
US10583300B2 (en) | Leadless implantable medical device with fixation antenna member | |
US9999774B2 (en) | Optical trigger for therapy delivery | |
US9808618B2 (en) | Dual chamber intracardiac medical device | |
US7310556B2 (en) | Implantable medical stimulation apparatus with intra-conductor capacitive energy storage | |
JP6295327B2 (en) | Leadless implantable medical device and method | |
US9227077B2 (en) | Leadless cardiac pacemaker triggered by conductive communication | |
CN102791327B (en) | Implantable medical device battery | |
US7233825B2 (en) | Impedance measurement in implanted device | |
CN106572807A (en) | Power saving communication for medical devices | |
US12017078B2 (en) | Enhanced implant-to-implant communications using accelerometer | |
US20160175601A1 (en) | Systems and methods for managing tiered tachycardia therapy | |
US10347972B2 (en) | Antenna structures for implantable medical devices and methods of assembling same | |
CN110225778A (en) | In-vivo device communication with redundancy message transmission | |
US10549105B2 (en) | Apparatuses and methods that improve conductive communication between external programmers and implantable medical devices | |
JP2010506610A (en) | Electrical energy delivery tissue site verification | |
CN110709131B (en) | Implantable medical device with tethered transmit coil for transmitting power to another implantable medical device | |
US10035022B2 (en) | Rate-adaptive heart stimulator and activity sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BIOTRONIK CRM PATENT AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEUMANN, ANDREAS;LEWALTER, THORSTEN;PHILIPP, JENS;SIGNING DATES FROM 20060402 TO 20060407;REEL/FRAME:017869/0569 Owner name: BIOTRONIK CRM PATENT AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NEUMANN, ANDREAS;LEWALTER, THORSTEN;PHILIPP, JENS;REEL/FRAME:017869/0569;SIGNING DATES FROM 20060402 TO 20060407 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20151004 |