US8075616B2 - Apparatus for applying a compressive load on body tissue - Google Patents
Apparatus for applying a compressive load on body tissue Download PDFInfo
- Publication number
- US8075616B2 US8075616B2 US10/500,188 US50018802A US8075616B2 US 8075616 B2 US8075616 B2 US 8075616B2 US 50018802 A US50018802 A US 50018802A US 8075616 B2 US8075616 B2 US 8075616B2
- Authority
- US
- United States
- Prior art keywords
- balloon
- shape
- state
- proximal
- stent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
- 238000004891 communication Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 210000003709 heart valve Anatomy 0.000 abstract description 13
- 230000000747 cardiac effect Effects 0.000 abstract description 5
- 210000003748 coronary sinus Anatomy 0.000 description 83
- 210000004115 mitral valve Anatomy 0.000 description 41
- 238000000034 method Methods 0.000 description 33
- 239000000463 material Substances 0.000 description 32
- 238000011282 treatment Methods 0.000 description 25
- 208000005907 mitral valve insufficiency Diseases 0.000 description 19
- 210000001519 tissue Anatomy 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 206010027727 Mitral valve incompetence Diseases 0.000 description 17
- 230000008859 change Effects 0.000 description 17
- 208000016569 congenital mitral valve insufficiency Diseases 0.000 description 17
- 210000003462 vein Anatomy 0.000 description 17
- 230000033001 locomotion Effects 0.000 description 16
- 230000007246 mechanism Effects 0.000 description 14
- 210000004165 myocardium Anatomy 0.000 description 13
- 238000004904 shortening Methods 0.000 description 13
- 230000009467 reduction Effects 0.000 description 12
- 239000012781 shape memory material Substances 0.000 description 12
- 229910001000 nickel titanium Inorganic materials 0.000 description 11
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 11
- 230000012010 growth Effects 0.000 description 10
- 210000002216 heart Anatomy 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 230000000452 restraining effect Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 230000008602 contraction Effects 0.000 description 9
- 230000003111 delayed effect Effects 0.000 description 9
- 230000035876 healing Effects 0.000 description 9
- 210000004072 lung Anatomy 0.000 description 9
- 210000000056 organ Anatomy 0.000 description 9
- 230000000087 stabilizing effect Effects 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 238000001356 surgical procedure Methods 0.000 description 8
- 230000002861 ventricular Effects 0.000 description 8
- 230000008439 repair process Effects 0.000 description 7
- 210000005166 vasculature Anatomy 0.000 description 7
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 210000004712 air sac Anatomy 0.000 description 5
- 238000004873 anchoring Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 239000000560 biocompatible material Substances 0.000 description 4
- 230000002612 cardiopulmonary effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 210000005240 left ventricle Anatomy 0.000 description 4
- 210000005245 right atrium Anatomy 0.000 description 4
- 229920000431 shape-memory polymer Polymers 0.000 description 4
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 3
- 206010014561 Emphysema Diseases 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 230000001746 atrial effect Effects 0.000 description 3
- 210000000038 chest Anatomy 0.000 description 3
- 230000010339 dilation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 210000004975 mitral orifice Anatomy 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 210000003899 penis Anatomy 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical group CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 229920004934 Dacron® Polymers 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 206010014665 endocarditis Diseases 0.000 description 2
- 210000003038 endothelium Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000032646 lung growth Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 210000004224 pleura Anatomy 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- MFRCZYUUKMFJQJ-UHFFFAOYSA-N 1,4-dioxane-2,5-dione;1,3-dioxan-2-one Chemical compound O=C1OCCCO1.O=C1COC(=O)CO1 MFRCZYUUKMFJQJ-UHFFFAOYSA-N 0.000 description 1
- LCSKNASZPVZHEG-UHFFFAOYSA-N 3,6-dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione Chemical group O=C1COC(=O)CO1.CC1OC(=O)C(C)OC1=O LCSKNASZPVZHEG-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920004937 Dexon® Polymers 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 208000001435 Thromboembolism Diseases 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 210000001557 animal structure Anatomy 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000003157 atrial septum Anatomy 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 230000002308 calcification Effects 0.000 description 1
- 238000007675 cardiac surgery Methods 0.000 description 1
- 230000001101 cardioplegic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 208000028831 congenital heart disease Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000002674 endoscopic surgery Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000036433 growing body Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 208000014471 histiocytoid cardiomyopathy Diseases 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000013152 interventional procedure Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 208000023589 ischemic disease Diseases 0.000 description 1
- 210000001847 jaw Anatomy 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 210000005246 left atrium Anatomy 0.000 description 1
- 231100000516 lung damage Toxicity 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 210000002050 maxilla Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 210000003540 papillary muscle Anatomy 0.000 description 1
- 230000009589 pathological growth Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000003281 pleural cavity Anatomy 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 201000003068 rheumatic fever Diseases 0.000 description 1
- 238000013538 segmental resection Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229960001967 tacrolimus Drugs 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000017105 transposition Effects 0.000 description 1
- 238000007794 visualization technique Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2451—Inserts in the coronary sinus for correcting the valve shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2478—Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
- A61F2/2481—Devices outside the heart wall, e.g. bags, strips or bands
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/26—Penis implants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2002/043—Bronchi
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
- A61F2002/072—Encapsulated stents, e.g. wire or whole stent embedded in lining
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/826—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents more than one stent being applied sequentially
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2002/828—Means for connecting a plurality of stents allowing flexibility of the whole structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/848—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
- A61F2002/8483—Barbs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
Definitions
- the present invention relates to a medical device and a method for reshaping a cardiac valve.
- Mitral insufficiency can result from several causes, such as ischemic disease, degenerative disease of the mitral apparatus, rheumatic fever, endocarditis, congenital heart disease and cardiomyopathy.
- the four major structural components of the mitral valve are the annulus, the two leaflets, the chordae and the papillary muscles. Any one or all of these in different combinations may be injured and create insufficiency.
- Annular dilation is a major component in the pathology of mitral insufficiency regardless of cause.
- many patients have a mitral insufficiency primarily or exclusively due to posterior annular dilation, since the annulus of the anterior leaflet does not dilate because it is anchored to the fibrous skeleton of the base of the heart.
- mitral insufficiency Studies of the natural history of mitral insufficiency have found that totally asymptomatic patients with severe mitral insufficiency usually progress to severe disability within five years.
- the treatment consists of either mitral valve replacements or repair, both methods requiring open heart surgery. Replacement can be performed with either mechanical or biological valves.
- the mechanical valve carries the risk of thromboembolism and requires anticoagulation, with all its potential hazards, whereas biological prostheses suffer from limited durability. Another hazard with replacement is the risk of endocarditis. These risks and other valve related complications are greatly diminished with valve repair.
- Mitral valve repair theoretically is possible if an essentially normal anterior leaflet is present.
- the basic four techniques of repair include the use of an annuloplasty ring, quadrangular segmental resection of diseased posterior leaflet, shortening of elongated chordae, and transposition of posterior leaflet chordae to the anterior leaflet.
- Annuloplasty rings are needed to achieve a durable reduction of the annular dilation. All the common rings are sutured along the posterior mitral leaflet adjacent to the mitral annulus in the left atrium.
- the Duran ring encircles the valve completely, whereas the others are open towards the anterior leaflet.
- the ring can either be rigid, like the original Carpentier ring, or flexible but non-elastic, like the Duran ring or the Cosgrove-Edwards ring.
- U.S. Pat. No. 6,210,432 describes a method for treatment of mitral insufficiency without the need for cardiopulmonary by-pass and opening of the chest and heart.
- the method uses a device comprising an elongate body having such dimensions as to be insertable into the coronary sinus, which is a vein that substantially encircles the mitral orifice and annulus and drains blood from the myocardium to the right atrium.
- the elongate body has two states, in a first of which the elongate body has a shape that is adaptable to the shape of the coronary sinus, and to the second of which the elongate body is transferable from said first state assuming a reduced radius of curvature.
- the radius of curvature of the coronary sinus is reduced. Due to the coronary sinus encircling the mitral annulus, the radius of curvature as well as the circumference of the mitral annulus are reduced. Thus, the described method takes advantage of the position of the coronary sinus being close to the mitral annulus, which makes repair possible by the use of current catheter-guided techniques.
- a device comprising an elongate stent is used.
- the elongate stent includes hooks which are arranged to dig into the walls of the coronary sinus, by means of the surgeon retracting a cover sheet from the stent, in order to fix the position of the stent in the coronary sinus.
- a stabilizing instrument is used for keeping the elongate stent in its first state and then, after the hooks have dug into the walls, releasing it to its second state assuming a reduced radius of curvature.
- the device comprises three stent sections that are positioned in the coronary sinus and connected by wires.
- the wires may be maneuvered from outside the vein system such that the distances between the adjacent stent sections are reduced. Also with this method there is a risk of dislocation of the device, since the surgeon might accidentally move insufficiently fixed stent sections out of their proper position while manipulating them from outside the vein system.
- An object of the present invention is to provide an improved medical device and method for reshaping a cardiac valve, as described above.
- a particular object of the invention is to provide a more secure fixation of a device for reshaping a cardiac valve.
- a device according to the present invention for reshaping a cardiac valve is elongate and has such dimensions as to be insertable into a cardiac vessel and has two states, in a first state of which the device has a shape that is adaptable to the shape of the vessel, and to the second state of which the device is transferable from said first state.
- the inventive device comprises a fixing means for fixing the ends of the device within the vessel, when the device is first positioned therein, a shape-changing member for transferring the device to the second state by reshaping it, and a delay means for delaying said reshaping until the fixing of the ends of the device has been reinforced, wherein said delay means delays said reshaping by keeping said device in said first state until the delay means is resorbed.
- the delay means comprises a resorbable material, which is such material that when it is inserted into the body of an organism, it will be resorbed by the body by means of enzymatic processes, by active absorption by the cells in the blood and tissue cells of the body, and/or by hydrolysis. Thus, a resorbable material will be decomposed and gradually vanish from the device by time, without leaving any major waste products in the body.
- said fixing means provides for a “temporary” fixing of the ends of the device within the vessel.
- said shape-changing member is e.g. by means of inherent forces of its material arranged to provide a change of shape of the device, and thereby also a change of shape of the adjacent cardiac valve.
- said delay means is arranged to delay this change of shape by keeping the device in said first state until the delay means is enough resorbed by the surrounding body. After some period of time, when there is nothing left of the delay means to hold the device in the first state, the fixing of the ends of the device will have had time to be reinforced by, for instance, the ends of the device having grown on to the vessel wall. The time period is thus determined by how fast the resorption of the delay means proceeds.
- the device may be allowed to heal on to the vessel wall before the change of shape of the device occurs.
- the normal healing process that occurs in every living organism is thus allowed to provide a well-established fixation of the device.
- the present invention provides a more secure fixation of a device for reshaping a cardiac valve.
- Another advantage of the present invention is that there is no need for a stabilizing surgical instrument for keeping the device in said first state of shape during operation, since the shape is preserved by means of said delay means of the device.
- said delay means comprises a resorbable sheath being arranged to enclose said shape-changing member. This is advantageous since with the shape of a sheath the delay means is both easy to manufacture and easy to arrange on the shape-changing member.
- said fixing means is arranged to expand against the wall of the vessel when first positioned therein. This expansion against the wall of the vessel initiates and contributes to the fixing of the ends of the device, thus providing said “temporary” fixing of the ends of the device within the vessel and enabling a more rigid fixing by ingrowth.
- said fixing means is arranged to grow into the wall of the vessel, whereby said fixing of the ends of the device is reinforced.
- said fixing means comprises hook means, by means of which said fixing of the ends of the device is reinforced. These hook means may be combined with the above-mentioned ingrowth of the fixing means in order to provide an even more secure fixation.
- the hook means may dig into the vessel wall and grow firmly fixed in the wall by the healing process.
- said fixing means comprises a self-expandable stent at each end of the device.
- said shape-changing member comprises a shape memory material providing said reshaping of the device.
- a shape memory material is a material that has two different forms, one at lower temperatures and another at higher temperatures. At the lower temperatures, e.g. below 30° C., the material is elastic and may be introduced into the body. At the higher temperatures, the material is still elastic but becomes also superelastic and assumes its preferred original shape unless the transformation to this original shape is obstructed by external stress to the material.
- shape-changing member is advantageous inter alia because then one can easily provide the device with said delay means while the shape-changing member, at a lower temperature outside the body, more easily remains in a shape corresponding to said non-preferred state of shape inside the body.
- said shape-changing member comprises a shape memory metal providing said reshaping of the device.
- said shape-changing member comprises Nitinol.
- said shape-changing member comprises a shape memory polymer.
- said reshaping of said device comprises shortening of said device.
- said device is used for treatment of mitral annulus dilatation. Since the device can be inserted into a body vessel using catheter-guided techniques, the use of this device for treatment of mitral annulus dilatation is advantageous compared to open-heart surgery, which is the present procedure for repairing or replacing the mitral valve.
- said vessel is the coronary sinus.
- the coronary sinus encircles the mitral orifice and annulus. Therefore, a reshaping of this vein also has a compressing effect on the mitral annulus.
- said reshaping of said device is used for reducing the radius of curvature of the coronary sinus. Hence, the radius of curvature as well as the circumference of the mitral annulus are also reduced.
- a method for reshaping a cardiac valve comprises the steps of inserting an elongate device into a cardiac vessel, fixing the ends of the device within the vessel, reinforcing said fixing of the ends of the device, reshaping the device, and delaying said reshaping by a delay means so that the step of reinforcing said fixing is performed before the step of reshaping the device.
- said step of fixing the ends of the device comprises providing a growth of the ends into the wall of the vessel.
- a shape memory material is used in the device for said step of reshaping the device.
- Nitinol is used in the device for said step of reshaping the device.
- said step of reshaping the device comprises the step of shortening the device.
- the method is used for treatment of mitral annulus dilatation.
- said device is inserted into the coronary sinus in the vicinity of the posterior leaflet of the mitral valve.
- said reshaping is used for reducing the curvature of the coronary sinus and thereby reducing the radius of circumference of the mitral valve annulus.
- the device in accordance with principles of the present invention may further comprise one or more components suitable for deployment in the coronary sinus and adjoining coronary veins.
- the device may be configured to bend in-situ to apply a compressive load to the mitral valve annulus with or without a length change, or may include multiple components that are drawn or contracted towards one another to reduce the circumference of the mitral valve annulus.
- Any of a number of types of anchors may be used to engage the surrounding vein and tissue, including hooks, barbs, flanges, partial or completely through-wall tee structures, or biological anchoring. Where multiple components are provided, reduction of the mitral valve annulus may be accomplished during initial deployment of the device, or by biological actuation during subsequent in-dwelling of the device.
- the device comprises proximal and distal stent sections, wherein the proximal stent section comprises a deployable flange.
- the stent sections are delivered into the coronary sinus in a contracted state, and then are deployed within the coronary venous vasculature so that the flange engages the coronary sinus ostium.
- a cinch mechanism comprising, for example, a plurality of wires and eyelets, is provided to reduce the distance between proximal and distal stent sections, thereby reducing the circumference of the mitral valve annulus.
- the distal stent is replaced by or includes a suitably-shaped distal anchor that is disposed within or through the left ventricular myocardium.
- the distal anchor may be in the form of a Tee-shape or barbed section, and engages the ventricular myocardium, or extends into the left ventricle, to provide a distal fixation point.
- a cinch mechanism is provided to shorten a structure, such as a wire, that extends between the proximal stent and the distal anchor.
- the distal anchor may be used alone or in conjunction with the proximal flange of the preceding embodiment.
- a balloon catheter wherein a balloon in fluid communication with a lumen of the catheter comprises a predetermined deployed shape.
- a stent which may be compressed onto the balloon in a contracted state, then is plastically deformed by the balloon within the coronary sinus, and the stent substantially conforms to the predetermined shape of the balloon in a deployed state.
- the balloon preferably comprises a convex shape, so that the stent will assume the convex shape of the balloon and bend the coronary sinus accordingly.
- the shape of the stent, convex or otherwise will be configured to reduce the circumference of the mitral valve annulus when deployed in the coronary sinus.
- the proximal and distal stent sections are directly coupled to one another by a central section, so that expansion of the central section causes the proximal and distal stent sections to be drawn together.
- the central section includes one or more biodegradable structures, such as biodegradable sutures, that retain the central section in its contracted state until the vessel endothelium has overgrown a portion of the proximal and distal stent sections, thereby providing biological anchoring of the proximal and distal stent sections.
- the biodegradable structure degrades, releasing the central section and enabling it to expand.
- the central section thereby applies a tensile load to the proximal and distal stent sections, causing a reduction in the circumference of the mitral valve annulus.
- a yet further alternative embodiment comprises a series of linked segments that are capable of relative rotational and telescoping movement.
- each segment includes a ball element that couples to a socket element on an adjacent segment.
- the ball and socket connections permit the segments of the device to become angled relative to one another so that the device is capable of assuming a three-dimensional curvature.
- a cinch wire extends through a passage in the segments and permits the device to be cinched rigidly into a predetermined shape.
- Some segments also may include telescoping joints that permit the overall length of the device to be reduced upon actuation of the cinch wire.
- the cinch wire may include either a locking mechanism attached to the cinch wire or alternatively may include striations on the contacting ball and socket surfaces that permit the segments to rigidly engage one another when cinched.
- FIGS. 1 and 2 schematically illustrate an embodiment of a device according to the invention for reshaping a cardiac valve, shown in a first state and a second shortened state, respectively;
- FIGS. 1 a and 2 a schematically illustrate another embodiment of a device according to the invention for reshaping a cardiac valve, shown in a first state and a second shortened state, respectively;
- FIGS. 3 , 4 and 5 are schematic views illustrating the positioning, the fixing and the shortening respectively, of a device according to FIG. 1 when used in the coronary sinus;
- FIGS. 6-9 are schematic views of a device illustrating the principle of delayed shortening
- FIGS. 10-13 are schematic views of a device illustrating the principle of delayed elongation
- FIG. 14 is a schematic view showing an alternative to the device shown in FIG. 12 ;
- FIGS. 15 and 16 schematically illustrate another device, shown in a first state and a second shortened state, respectively;
- FIGS. 15 a and 16 a schematically illustrate an alternative to the device shown in FIGS. 15 and 16 , wherein a delay means is provided in the form of resorbable threads;
- FIGS. 17 and 18 schematically illustrate another device, shown in a first state and a second elongated state, respectively;
- FIG. 19 is a schematic view of yet another device, shown in a first state
- FIG. 20 a is a schematic view of another device being an alternative to the device shown in FIG. 19 and being shown in a first state;
- FIG. 20 b is a schematic view of a device according to FIG. 20 a , illustrating the structure of a part of the device;
- FIG. 21 is a schematic view illustrating the second state of a device according to FIG. 19 or 20 a;
- FIGS. 22 and 23 are schematic views illustrating another device, shown in a first state and a second state, respectively;
- FIG. 24 is a schematic perspective view of a device for two-dimensional contraction
- FIG. 25 is a schematic perspective view of another device for two-dimensional contraction
- FIG. 26 is a schematic perspective view illustrating a part of one possible arrangement of a device presenting a reshapable area
- FIGS. 27 and 28 are schematic views illustrating the positioning of an embodiment of a device for treatment of chronic obstructive pulmonary disease.
- FIG. 29 is a cross-sectional view of a part of a heart
- FIGS. 30-31 are schematic views of a first embodiment according to the present invention.
- FIGS. 32-34 are schematic views illustrating an instrument that may be used when positioning the device of FIGS. 30-31 in the coronary sinus;
- FIG. 35 is a partial, enlarged view of the first embodiment shown in FIG. 30 ;
- FIGS. 36-37 are schematic views illustrating the positioning of the device of FIGS. 30-31 in the coronary sinus;
- FIGS. 38-39 are schematic views illustrating the positioning of a solid U-shaped wire within the coronary sinus
- FIGS. 40A-40D illustrate an alternative embodiment comprising a deployable flange coupled to the proximal stent section
- FIGS. 41A-41B illustrate deployment and actuation of the device of FIGS. 40A-40D ;
- FIGS. 42A-42C illustrate an alternative embodiment of the device of the present invention having a distal anchor
- FIGS. 43A-43B illustrate deployment and actuation of the device of FIGS. 42A-42C ;
- FIGS. 44A-44B illustrate another alternative embodiment of the device of the present invention comprising a balloon-expandable device that is deployed to a curved shape;
- FIGS. 45A-45B illustrate a balloon that deploys to a predetermined curved shape
- FIGS. 46A-46C are perspective and side views of a further alternative embodiment of a device of the present invention.
- FIGS. 47A-47D illustrate deployment of the device depicted in FIGS. 46A-46C ;
- FIGS. 48A-50 illustrate a still further alternative embodiment of the present invention comprising a plurality of interconnected segments and deployment thereof.
- the present invention takes advantage of the position of the coronary sinus being close to the mitral annulus. This makes repair possible by the use of current catheter-guided techniques by deploying one element in the coronary venous vasculature that applies a load to, and reshapes, the adjacent posterior portion of the mitral annulus.
- the coronary veins drain blood from the myocardium to the right atrium.
- the smaller veins drain blood directly into the atrial cavity, and the larger veins accompany the major arteries and run into the coronary sinus which substantially encircles the mitral orifice and annulus.
- the coronary sinus runs in the posterior atrioventricular groove, lying in the fatty tissue between the left atrial wall and the ventricular myocardium, before draining into the right atrium between the atrial septum and the post-Eustachian sinus.
- FIG. 1 shows one embodiment of a device according to the present invention for reshaping a cardiac valve, which may be used for treatment of mitral annulus dilatation.
- the device shown in FIG. 1 being in an elongate and non-activated state of shape K, comprises a shape-changing member in the form of a shape memory metal thread 20 , a delay means in the form of a resorbable sheath 21 enclosing the shape memory metal thread 20 for holding it in a straightened state of shape, and preferably self-expandable stents 22 and 23 located at the opposite ends of the device.
- the device may include one or more additional shape memory metal threads, e.g. if a stronger shortening force is desired.
- the shape-changing member in this embodiment in the form of the shape memory metal thread 20 , may consist of or at least include Nitinol, or some other similar material which has a memory of an original shape as illustrated in FIG. 2 , and can be temporarily forced into another shape, e.g. as illustrated in FIG. 1 .
- Nitinol is an alloy composed of nickel (54-60%) and titanium. Small traces of chromium, cobalt, magnesium and iron may also be present in Nitinol.
- the material of the shape-changing member does not have to be a metal.
- Other materials such as Shape Memory Polymers (SMP) could be used as shape memory material as well.
- SMP Shape Memory Polymers
- the shape-changing material does not have to be a shape memory material. Any superelastic material would function in most cases.
- stainless steel and other metals may also be forced into a non-preferred state of shape by means of a resorbable restraining means.
- the delay means is in this embodiment in the form of the resorbable sheath 21 .
- This resorbable sheath 21 is made of a material which is resorbable by the surrounding blood and tissue when applied in a human body and has the required stability and bending properties.
- Examples of usable resorbable materials from which the delay means may be made, or that are at least included, are PDS (polydioxanon), Pronova (polyhexaflouropropylen-VDF), Maxon (polyglyconat), Dexon (PGA, polyglycolic acid), Vicryl (polyglactin), PLA (polylactic acid), PDLLA (polydexolactic acid), PLLA (pololevolactic acid), starch, different kinds of sugar, butyric acid, collagen, and collatamp.
- PDS polydioxanon
- Pronova polyhexaflouropropylen-VDF
- Maxon polyglyconat
- Dexon PGA
- Vicryl polyglactin
- PLA polylactic acid
- PDLLA polydexolactic acid
- PLLA polyolevolactic acid
- starch different kinds of sugar, butyric acid, collagen, and collatamp.
- the release of the shape-changing forces of the shape-changing member may be delayed for a desired period of time.
- design parameters such as the thickness of the resorbable material may be set so that the change of shape is delayed as long as desired.
- the delay time may vary from e.g. a few days up to several years depending on the application.
- the thickness of the delay means is chosen so that the time needed for the surrounding blood and tissue in the coronary sinus 24 to resorb the delay means enough for the device to enter its second shorter state of shape K′ is adapted to the time needed for the ends of the device to be fixed within the coronary sinus 24 .
- the thickness of the delay means may vary along the device, so that the order in which different parts of the device are released by the delay means may be controlled.
- the delay means may be flexible enough to follow the curves in e.g. a vessel, but has a stiffness, here especially in its radial direction, which withstands the shape-changing force of the shape-changing member.
- the shape-changing member of the device will strive towards its original, here curved, shape according to FIG. 2 , but is restrained by the delay means.
- the self-expandable stents 22 and 23 may be of conventional type with an elastic cylindrical unit, made of e.g. Nitinol, in an opened zigzag configuration.
- the self-expandable stents 22 and 23 may be provided with hook means (not shown), in the form of protrusions extending from the outer surface of the stents 22 and 23 .
- hook means are arranged to dig into the wall of the coronary sinus 24 when the self-expandable stents 22 and 23 expand against the wall, and thereby facilitate and enhance the fixing of the self-expandable stents 22 and 23 into the wall of the coronary sinus 24 .
- FIG. 1 a shows an alternative embodiment according to the invention of a device for reshaping a cardiac valve.
- the shape memory metal thread 20 is replaced by a scissors-shaped shape-changing member 20 a .
- the resorbable sheath 21 may then be replaced by resorbable threads 21 a .
- self-expandable stents 22 a and 23 a are located at the opposite ends of the device.
- the state of shape corresponding to K′ in FIG. 2 of the device shown in FIG. 1 a is shown in FIG. 2 a.
- the above-described device as seen in FIG. 1 (or the device as seen in FIG. 1 a ), is positioned in the coronary sinus 24 , shown in FIGS. 3 to 5 , in the following way:
- An introduction sheath (not shown) of synthetic material may be used to get access to the venous system. Having reached the venous system, a long guiding metal wire (not shown) is advanced through the introduction sheath and via the venous system to the coronary sinus 24 .
- This guiding wire and/or a delivery catheter is provided with X-ray distance markers so that the position of the device in the coronary sinus 24 may be monitored.
- the elongate device in FIG. 1 (or the one in FIG. 1 a ) is locked onto a stent insertion device (not shown) so that the self-expandable stents 22 and 23 (or 22 a and 23 a ) are held in a crimped, non-expanded state. Thereafter, the stent insertion device with the elongate device locked thereon is pushed through the introduction sheath and the venous system to the coronary sinus 24 riding on the guiding wire. After having obtained an exact positioning of the elongate device in the coronary sinus 24 , as illustrated in FIG. 3 where the mitral valve annulus 25 and the mitral valve 26 having a central gap 27 are shown, the stent insertion device is removed.
- the self-expandable stents 22 and 23 (or 22 a and 23 a ) will grow into the wall of the coronary sinus 24 while at the same time the resorbable sheath 21 (or restraining threads 21 a ) will be resorbed by the surrounding blood and tissue in the coronary sinus 24 , as schematically illustrated in FIG. 4 .
- the resorbable sheath 21 (or resorbable threads 21 a ) has been resorbed to such a degree that it cannot hold the shape memory metal thread 20 (or the scissors-shaped member 20 a ) in its straightened state of shape any longer, the self-expandable stents 22 and 23 (or 22 a and 23 a ) will be properly fixed into the wall of the coronary sinus 24 as a result of the normal healing process which always occurs after positioning a stent in a blood vessel. Then the shape memory metal thread 20 (or the scissors-shaped member 20 a ) retracts and the device is transformed to its activated shorter state of shape K′, as illustrated in FIGS. 2 and 5 (corresponding to FIG. 2 a ). This shortening of the device makes it bend towards the mitral valve annulus 25 , moving the posterior part thereof forward. This movement reduces the circumference of the mitral valve annulus 25 and thereby closes the central gap 27 .
- the device may be positioned by catheter technique or by any other adequate technique. It may be heparin-coated so as to avoid thrombosis in the coronary sinus 24 , thus reducing the need for aspirin, ticlopedine or anticoagulant therapy. At least parts of the device may contain or be covered with drugs like Tacrolimus, Rappamycin or Taxiferol to be delivered into the tissue to prohibit excessive reaction from surrounding tissue. At least parts of the device may be covered with or contain VEGF (Vascular Endothelial Growth Factor) to ensure smooth coverage with endothelial cells.
- VEGF Vascular Endothelial Growth Factor
- the activated state of shape K′ could be a bended shape instead of a shorter shape, whereby the desired closure of the central gap 27 still may be achieved.
- the basic inventive idea of the present invention which solves the problem with insufficient fixing of the implantable device before the shape of it is changed, is to delay the reshaping of the device by means of a (resorbable) delay means being comprised in the device itself, and thereby allow the device to grow fixed in body tissue by means of natural healing processes.
- FIGS. 6 to 9 show the principle of delayed shortening.
- a shape-changing member 1 here in the form of a thread 1 , made of or at least in part including a shape memory material is shown having a curved shape.
- This shape is the original shape that the shape-changing member 1 “remembers” and will assume when the temperature thereof passes a certain threshold, e.g. exceeds 30° C.
- FIG. 7 shows the shape-changing member 1 of FIG. 6 having been straightened by stretching to a substantially straight shape.
- FIG. 8 illustrates a device which is in its non-activated state of shape A. More specifically, by covering the stretched and straight shape-changing member 1 in FIG. 7 with a delay means 2 , here in the form of a tube 2 having a sufficiently small inner cross-section, the stretched shape of the shape-changing member 1 can be maintained even when the device is implanted into a human body and the temperature of the shape-changing member 1 thus exceeds the threshold, e.g. 30° C.
- a delay means 2 here in the form of a tube 2 having a sufficiently small inner cross-section
- the delay means 2 By manufacturing the delay means 2 from a resorbable material, the delay means 2 will be resorbed by time and the shape-changing member 1 will resume its original shape when the delay means 2 has been resorbed to such a degree or extent that it cannot restrain the shape-changing member 1 any longer, as schematically illustrated in FIG. 9 .
- the device has now “been transformed” from its non-activated long state of shape A ( FIG. 8 ), to an activated, shortened state of shape A′ ( FIG. 9 ), where the device consists essentially of the shape-changing member 1 only.
- the curved thread 1 is located to the left in FIG. 9 , but, after its transformation, the thread 1 may just as well be located anywhere along the remaining parts of the tube 2 .
- the device in FIG. 8 may be manufactured in the following way, which is also applicable for manufacturing all except the ends of the embodiment of a device according to the present invention shown in FIG. 1 .
- the thread 1 of a shape memory material e.g. with the shape illustrated in FIG. 7
- the thread 1 is programmed to remember the shape illustrated in FIG. 6 by being held in that shape while at the same time being heated to a temperature above said threshold.
- the thread 1 Upon cooling, beneath the threshold temperature, e.g. down to room temperature, the thread 1 will become more flexible and may more easily be deformed into its previous shape shown in FIG. 7 .
- the thread 1 is covered by the resorbable tube 2 , e.g. by threading the tube 2 onto the thread 1 or by forming the tube 2 around the thread 1 .
- a shape-changing member of a memory material is first held in a “preferred” state of shape while being heated above a threshold temperature, and then cooled beneath the threshold temperature so that it can easily be deformed into its previous “non-preferred” state of shape. Thereafter, the now “programmed” shape-changing member is “locked” in said non-preferred state of shape by a delay means in such a way that the delay means will obstruct the shape-changing member from resuming its preferred state of shape when being heated again, e.g. in a human body.
- the inner radius of the tube 2 must not necessarily be so small that the shape-changing member in the form of the thread 1 cannot move at all in the radial direction. Hence, there may be a small radial play in which the shape-changing member 1 can move without consequently being able to change the length of the device to any larger extent.
- the device in FIG. 8 may also be manufactured with essentially no play between the shape-changing member 1 and the inner side of the delay means 2 , possibly also with a pretension or bias force from the delay means 2 acting on the shape-changing member 1 .
- FIGS. 10 to 13 the principle of delayed elongation is shown.
- FIG. 10 shows a shape-changing member 3 , here in the form of a thread 3 of a shape-memory material, having a straight original shape.
- FIG. 11 shows the shape-changing thread member 3 of FIG. 10 when having been folded to a curved shape.
- FIG. 12 illustrates a device according to the basic inventive idea comprising a thread 3 as illustrated in FIG. 11 , where the device is in its non-activated state of shape B.
- a delay means 4 in the form of a tube 4 of a resorbable material, the curved shape B can be maintained even when the device is implanted into a human body and strives towards its original straight shape.
- the delay means 4 is resorbed by time and consequently the shape-changing member 3 will be released to resume its original straight shape B′.
- the device has now been transformed from its non-activated short state of shape B ( FIG. 12 ) to an activated, elongated state of shape B′ ( FIG. 13 ).
- the length of the shape-changing member 1 ; 3 is substantially unchanged by the transformation, whereas the shape of the shape-changing member 1 ; 3 is changed so that the length of the device is changed.
- FIGS. 14 to 25 show some different devices according to the basic inventive idea.
- FIG. 14 shows a device being an alternative arrangement of a device for delayed elongation as compared to the device shown in FIG. 12 .
- the delay means comprises resorbable crosslinks 6 which hold the shape-changing member 5 in its curved state of shape and thus the device in its non-activated short state of shape C.
- Resorbable crosslinks 6 may also be combined with a tube 4 ( FIG. 12 ).
- FIG. 15 shows a device in its non-activated elongate state of shape D.
- the shape-changing member 7 is scissors-shaped.
- a delay means 8 in the form of a tube 8 of resorbable material holds the shape-changing member 7 in a stretched, elongated state of shape and, thus, also the device in its elongate state of shape D.
- the delay means 8 has been sufficiently resorbed, the scissors-shaped shape-changing member 7 will resume its original non-stretched shape and the device is transformed to its activated short state of shape D′ ( FIG. 16 ).
- FIG. 15 a shows an alternative device where the tube 8 in FIG. 15 is replaced by a delay means in the form of resorbable threads 8 a .
- the delay means 8 a holds the scissors-shaped shape-changing member 7 a in a stretched, elongate state of shape and, thus, the device in a state of shape corresponding to D in FIG. 15 .
- the shape-changing member 7 a will resume its original non-stretched shape and the device is transformed to its activated short state of shape corresponding to D′ in FIG. 16 .
- FIG. 17 shows a device according to the basic inventive idea in its non-activated short state of shape E.
- a scissors-shaped shape-changing member 9 of the device is held in a short state of shape by means of a delay means in the form of a resorbable thread 10 , and, thereby, the whole device is held in its short state of shape E.
- the delay means 10 is cut off by means of resorption, the shape-changing member 9 will resume its original elongate shape so that the device is transformed to its activated state of shape E′ ( FIG. 18 ).
- FIG. 19 shows a device according to the basic inventive idea comprising a shape-changing member in the form of a coil 11 of a shape-memory material having been stretched and arranged in a delay means in the form of a tube 12 of resorbable material. The device is then in its non-activated state of shape F. When the delay means 12 has been sufficiently resorbed, the shape-changing member 11 will resume its original shorter and wider shape as shown in FIG. 21 , and the device is transformed to its activated state of shape F′.
- the tube 12 in FIG. 19 is replaced by a resorbable rod 13 provided with grooves 13 a in which a coil 11 is initially wound.
- the winding of the coil 11 in the grooves 13 a obstructs the coil 11 from resuming its original shape ( FIG. 21 ) and, hence, the device is held in its non-activated state of shape G by the rod 13 , as illustrated in FIG. 20 a .
- the rod 13 By resorption of the rod 13 in e.g. a human body, the shape-changing force of the coil 11 is released and the device is transformed to its activated state of shape G′ as shown in FIG. 21 .
- a coil 14 is wound around a resorbable rod 15 .
- the shape-changing forces of the coil 14 will be released so that the coil 14 resumes an original elongate shape, as shown in FIG. 23 , whereby the device is transformed from its non-activated state of shape H to its activated state of shape H′.
- FIG. 24 shows a device according to the basic inventive idea in the form of a patch for closing or obstructing openings, e.g. in the heart of a human or animal body.
- the patch has a shape-changing member 16 comprising a grid matrix formed by threads made of memory material such as Nitinol or SMP.
- the threads may be covered individually by biocompatible material such as PTFE or dacron to fill in the gaps between the threads, e.g. in the way shown in FIG. 26 with threads 28 and biocompatible material 29 .
- the patch in FIG. 24 further comprises a frame 17 for anchoring the patch in the body, e.g. by means of sutures.
- the frame may be made of any biocompatible material, such as PTFE or dacron.
- the threads may be spread apart, creating a central opening 16 a in the patch.
- the cone is advanced until a delay means 18 in the form of a separate ring 18 of a resorbable material, initially positioned on the cone, is positioned in the opening 16 a .
- the cone is then drawn back and the ring 18 is left in the opening 16 a , restraining the elastic threads in such a way that the central opening 16 a in the patch is maintained.
- the patch 24 shows the patch in its non-activated state of shape I with the ring 18 positioned centrally. After implant and sufficient resorption of the restraining ring 18 and after a specified period of time, the central opening in the patch is closed and the patch is activated.
- FIG. 25 shows an alternative device according to the basic inventive idea in the form of a patch for closing openings.
- the patch may be constructed by attaching delay means 19 in the form of resorbable threads or bands 19 to the top of a sharp cone and down along the sides of the cone, advancing the cone through the middle of the patch so that the elastic threads 16 are spread out and thus an opening 16 a in the patch is created, and fastening one end of each band to the frame 17 on one side of the patch and the other end of each band 19 to the frame 17 on the other side of the patch, so that each band 19 encircles the opening.
- the bands 19 could be placed at regular intervals along the circumference of the opening so that they expand a substantially circular hole in the middle of the patch.
- the single shape-changing thread in FIGS. 6 to 14 may be replaced by several threads or by one or more bands.
- the scissors-shaped members 7 and 9 in FIGS. 15 to 18 may be multiplied so as to form a scissor-shaped area, which in turn may be shaped into different forms.
- the single tube in FIGS. 8 , 12 , 15 and 19 may be slotted or may be divided into several tube segments.
- a delay means may also be provided in the form of resorbable glue, which holds parts of the shape-changing member together and in that way delay the change of shape of the device.
- FIG. 26 shows one possible arrangement of a part of a contractable area according to the basic inventive idea.
- the contractable area comprises a shape-changing member in the form of a grid matrix of shape memory metal threads 28 covered by a delay means in the form of a fabric of a resorbable material (it should be noted that FIG. 26 was previously used to illustrate how the threads of the patches of FIGS. 24 and 25 may be covered with biocompatible material).
- the fabric comprises resorbable bands 29 which have been weaved together to form an area. Each of the resorbable bands 29 is solid except for a cylindrical hollow space in which a thread 28 is located, just like the thread 1 is located inside the tube 2 in FIG. 8 .
- the bands 29 restrain the threads 28 from being folded to their original curved shapes as long as the fabric 29 is not resorbed.
- each band 29 must not necessarily be cylindrical. In fact, if the width of each band 29 is small enough as compared to the curves that the threads 28 will assume when being “activated” as a result of the bands 29 being resorbed, the bands 29 may be hollow.
- the contractable area in FIG. 26 may be manufactured by threading a thread 28 of a memory material into each resorbable band 29 and then weaving the bands 29 with threads 28 together to form the fabric as illustrated in FIG. 26 .
- Another possible way of making a contractable area would be to arrange threads or bands of a memory material in a grid matrix and to fix the threads or bands together with resorbable crosslinks. The resorbable crosslinks would then restrain the threads or bands from being folded as long as enough resorbable material in the crosslinks is left unresorbed.
- the basic inventive idea opens up for new possibilities within many medical applications.
- the basic inventive idea would for example be useful where openings of human, or animal, organs or other structures need to be opened or closed slowly. For instance, when an opening between the left and right side of the heart is present, an immediate closure of the opening could be dangerous, whereas a slower closure would be tolerated.
- One such application would be a device designed to shorten or lengthen a human or animal structure in one or more dimensions. The device would then have time to heal into the body structure before shape-changing forces are released and force the body structure to slowly change its shape.
- the basic inventive idea would be useful when it comes to tooth-regulation and lengthening of the maxilla and/or mandibula, i.e. the upper and lower jaws.
- An example within the area of urology surgery is lengthening of a penis.
- a device made of three segments could be designed, where the distal ends of the device first are allowed to grow into the tissue. After fixation of the two ends of the device in the penis tissue, the mid portion which temporarily has been restrained by means of a resorbable material as described above will be released and the mid portion of the device will grow in length.
- One specific capacity of a human or animal body is to allow slow deformation of organs or tissues by compensatory tissue adaptation. A penis would therefore grow slowly to a predetermined length.
- a sequential effect of shape-changing forces could also be provided, i.e. change of shape could occur in two or several steps as a result of resorbable material releasing the shape-changing forces in predetermined steps.
- a part or parts of a device could first heal into a body structure and secondly the desired shape-changing effects could be released.
- a substantial advantage of the basic inventive idea is that a change of shape is allowed to be made slowly so that body tissues have time to adapt.
- Another medical application of particular interest which could be improved by using the basic inventive idea, is treatment of pathological alveolar sac growth. Some background of this disease will be given next.
- COPD chronic obstructive pulmonary disease
- Emphysema causes irreversible lung damage by weakening and breaking the air sacs within the lungs. Further, sick air sacs sometimes grow unrestrainedly and repress smaller air sacs, resulting in lack of oxygen and by time death. This disease is hard to treat. At present, surgical treatment of dilated air sacs involves cutting them away, but this treatment gives no long-term effect since a new air sac will soon start to grow.
- a contractable area may be formed into a contractable sheet for treatment of alveolar sac growth, e.g. emphysematic pulmonary diseases.
- FIGS. 27 and 28 show the use of a device according to the basic inventive idea for treatment of alveolar sac growth.
- a contractable sheet 34 in its non-activated state of shape M is rolled up on a catheter 35 , introduced between ribs 36 into the pleural cavity (the space between the pleura of the lung and the pleura of the chest wall), and placed upon the lung 38 surface to be treated.
- the contractable sheet 34 may also be inserted into the body by means of open surgery or by means of endoscopic surgery and positioned on an organ surface.
- the sheet 34 is then rolled out over the lung 38 and the catheter 35 is removed.
- the sheet 34 is arranged to grow fixed to the lung surface so that subsequent contraction of the sheet 34 , as a result of the resorbable material of the sheet 34 being resorbed, causes the sheet 34 to compress the lung 38 by means of a force of the shape memory metal threads in the sheet 34 .
- bullae and areas of enlarged alveolar sacs may be shrunk or eliminated and further pathological growth of alveolar sacs may be prevented.
- the contractable sheet 34 contracts in two directions, one approximately vertical and one approximately horizontal.
- the sheet 34 could also be designed to contract in one direction only, e.g. the most horizontal one, or contract in a circular mode, and still be able to shrink bullous areas and prevent alveolar sacs from growing.
- a device for treatment of pathological lung growth is implantable into the body of an organism and comprises an elastic contractable member being arranged to enclose at least part of the lung of the organism, and a delay means being arranged to delay contraction of the contractable member when the device is implanted in the body of the organism by counteracting the contraction during resorption of the delay means by the surrounding body of the organism.
- a basic advantage of this device is that the device, since said contractable member is elastic, can be inserted into the body using catheter-guided techniques. Hence, less invasive treatments can be provided.
- Another advantage which comes both from the elasticity and the delayed contraction, is that the device can be inserted by means of catheter-guided techniques even if said contractable member comprises a large area. This is due to the fact that the substantially elastic device at the insertion can be rolled up on a catheter and then be unfolded to enclose said organ.
- the device After a period of time after the surgical or percutaneous insertion, the device will start to contract as a result of the delay means being resorbed. The contraction will then make the device enclose the organ tight and apply a restraining force which holds back the growth of the organ. Since the implanted device applies a continuous restraining force to the organ, more long-term effects can be achieved in treatment of growing body organs. It is to be noted that if the contraction of the device would not have been delayed, it would have been very difficult to roll up the device on a catheter and then unfold it round the organ.
- said contractable member comprises a shape memory material, e.g. Nitinol.
- a method for treatment of pathological lung growth comprises the steps of inserting a restraining device into the body of an organism, enclosing the lung of the organism with the restraining device, compressing said restraining device by means of a contractable member of said restraining device, and delaying said compression by a resorbable delay means.
- the method may be used for treatment of bullous emphysema. It may also be used for treatment of alveolar sac growth.
- a device according to the basic inventive idea may be fixed in body tissue by other means in combination with or instead of the healing process allowed by the delaying of the change of shape.
- fixing of a device according to the basic inventive idea may as well be accomplished for example by means of suturing, gluing, clipping or using hooks. These means of fixation would permit a better healing in of the device in the tissue and also prohibit dislocation while healing in.
- the basic inventive idea provides:
- FIG. 29 is a cross-sectional view through the heart area of posterior atrioventricular groove 101 , which is filled with fatty tissue. It shows posterior leaflet 102 of the mitral valve and adjoining parts 103 , 104 of the atrial myocardium and the ventricular myocardium. Coronary sinus 105 is shown close to mitral annulus 106 and behind attachment 107 of posterior leaflet 102 . Since coronary sinus 105 substantially encircles mitral annulus 106 , a reduction of the radius of curvature of bent coronary sinus 105 also will result in a diameter and circumference reduction of mitral annulus 6 .
- coronary sinus 105 may approach within 5-15 mm of the medial attachment of posterior leaflet 102 of the mitral valve. Preliminary measurements performed at autopsies of adults of normal weight show similar results, with a distance of 5.3+/ ⁇ 0.6 mm at the medial attachment and about 10 mm at the lateral aspect of posterior leaflet 102 .
- the circumference of coronary sinus 105 was 18.3+/ ⁇ 2.9 mm at its ostium (giving a sinus diameter of the septal aspect of the posterior leaflet of 5.8+/ ⁇ 0.9 mm) and 9.7+/ ⁇ 0.6 mm along the lateral aspect of posterior leaflet 102 (corresponding to a sinus diameter of 3.1+/ ⁇ 0.2 mm).
- devices and methods for treating mitral insufficiency are provided, wherein the circumference of the mitral valve annulus is reduced when the device is deployed and/or actuated in at least a portion of the coronary sinus.
- Devices constructed in accordance with principles of the present invention may comprise one or more components suitable for deployment in the coronary sinus and adjoining coronary veins.
- the device may be configured to bend in-situ to apply a compressive load to the mitral valve annulus with or without a length change, or may include multiple components that are drawn or contracted towards one another to reduce the circumference of the mitral valve annulus.
- Any of a number of types of anchors may be used to engage the surrounding vein and tissue, including hooks, barbs, flanges, partial or completely through-wall tee structures, or biological anchoring. Where multiple components are provided, reduction of the mitral valve annulus may be accomplished during initial deployment of the device, or by biological actuation during subsequent in-dwelling of the device.
- a device that experiences shortening during deployment is described as comprising an elongate body 108 made of memory metal, e.g. Nitinol, or other similar material which has a memory of an original shape, illustrated in FIG. 31 , and which can be temporarily forced into another shape, illustrated in FIG. 30 .
- Elongate body 108 comprises one, two or more memory metal strings 109 of helical or other shape so as to fit together and be able of to permit the movements described below.
- plurality of hooks 110 are fastened so as to extend radially out therefrom. Hooks 110 are covered by a cover sheath 111 in FIG. 30 .
- Elongate body 108 is forced into a stretched or extended state by means of stabilizing instrument 112 shown in FIG. 32 .
- Instrument 112 has two arms 113 at distal end 114 of rod 115 and locking means 116 at proximal end of rod 115 .
- the distance between the ends of rod 115 corresponds to the desired length of elongate body 108 when being inserted into coronary sinus 105 .
- Locking means 116 has two locking knobs 117 , which are pressed radially outwards from rod 115 by two spring blades 118 .
- elongated body 108 can be pushed over rod 115 of stabilizing instrument 112 , then stretched between arms 113 and knobs 117 , and finally locked in its stretched state on stabilizing instrument 112 between arms 113 and knobs 117 , as illustrated in FIG. 33 .
- Rod 115 may be a metal wire which is relatively stiff between distal end 114 and locking means 116 but still so bendable that it will follow the shape of coronary sinus 105 . Proximally of locking means 116 the metal wire of stabilizing instrument 111 is more pliable to be able to easily follow the bends of the veins.
- the above-described elongate body 108 is positioned in the coronary sinus 105 in the following way:
- An introduction sheath (not shown) of synthetic material may be used to get access to the venous system. Having reached access to the venous system, a long guiding wire (not shown) of metal is advanced through the introduction sheath and via the venous system to coronary sinus 105 . This guiding wire is provided with X-ray distance markers so that the position of the guiding wire in coronary sinus 105 may be monitored.
- Elongate body 108 is locked onto stabilizing instrument 112 , as shown in FIG. 33 , and introduced into long cover sheath 111 of synthetic material. This aggregate is then pushed through the introduction sheath and the venous system to coronary sinus 105 riding on the guiding wire.
- cover sheath 111 is retracted to expose elongate body 108 within coronary sinus 105 . This maneuver allows hooks 110 on elongate body 108 to dig into the walls of coronary sinus 105 and into the heart.
- Elongate body 108 is still locked on to stabilizing instrument 112 such that hooks 110 engage the walls of coronary sinus 105 in the stretched or extended state of elongate body 108 .
- Catheter 112 shown in FIG. 34 , is pushed forward on the guiding wire and rod 115 , to release elongate body 108 from locking means 116 by pressing spring blades 118 toward rod 115 .
- This movement releases knobs 117 as well as arms 113 from engagement with elongate body 108 , which contracts elongate body 108 as illustrated in FIG. 37 , thereby shortening the radius of curvature of coronary sinus 105 .
- mitral valve annulus 106 shrinks moving the posterior part thereof forward (shown by arrows in FIG. 37 ). This movement reduces the circumference of mitral valve annulus 106 and thereby closes central gap 120 .
- FIG. 35 illustrates a part of an arrangement of wires 109 and hooks 110 along a peripheral part of elongate body 108 , whereby elongate body 108 will be asymmetrically contracted resulting in a bending thereof when interconnecting parts 113 of at least some of hooks 110 are shortened to an original shape.
- FIGS. 38 and 39 illustrate an alternative embodiment of an elongate body 108 ′ which does not experience shortening during deployment.
- Elongate body 108 ′ comprises a solid wire in the shape of an open U-shaped ring that will engage the wall of coronary sinus 105 most adjacent to mitral valve annulus 106 when inserted into coronary sinus 105 .
- Elongate body 108 ′ consists of a memory metal material which when reverting to its original shape will bend as illustrated in FIG. 39 .
- the return of open ring 108 ′ to its original shape may be initiated in several ways, as is obvious to the man skilled in the art.
- proximal stent section includes a flange that can be deployed to abut against the coronary ostium.
- Apparatus 156 comprises device 158 disposed within delivery sheath 160 .
- Device 158 comprises proximal stent section 162 joined to distal stent section 164 via wire 166 and cinch mechanism 167 .
- Proximal and distal stent sections 162 and 164 illustratively are self-expanding stents, but alternatively may comprise balloon expandable stents, coiled-sheet stents, or other type of stent.
- Stents 162 and 164 are disposed within delivery sheath 160 with a distal end of push tube 168 contacting the proximal end of proximal stent section 162 .
- Proximal stent section 162 comprises deployable flange 169 .
- Deployable flange 169 is initially constrained within delivery sheath 160 , as shown in FIG. 40A , and preferably comprises a shape memory material, e.g., Nitinol, so that flange 169 self-deploys to a predetermined shape upon retraction of delivery sheath 160 .
- Wire 166 and cinch mechanism 167 may comprise a combination of wires and eyelets as described in accordance with any of the embodiments in the above-incorporated reference, or any other arrangement that permits the wire to be tightened and locked into position, as will be apparent to one of ordinary skill.
- Wire 166 includes a proximal portion that remains outside of the patient's vessel for manipulation by a physician, and is configured to reduce the distance between proximal and distal stent sections 162 and 164 .
- Apparatus 156 is navigated through the patient's vasculature with stents 162 and 164 in the contracted state and into coronary sinus C.
- the distal end of sheath 160 is disposed, under fluoroscopic guidance, at a suitable position within the coronary sinus, great cardiac vein, or adjacent vein.
- Push tube 168 is then urged distally to eject distal stent section 164 from within delivery sheath 160 , thereby permitting distal stent section 164 to self-expand into engagement with the vessel wall, as shown in FIG. 40B .
- Delivery sheath 160 is then withdrawn proximally, under fluoroscopic guidance, until proximal stent 162 is situated extending from the coronary sinus.
- Push tube 168 is then held stationary while sheath 160 is further retracted, thus releasing proximal stent section 162 .
- proximal stent section 162 expands into engagement with the wall of the coronary sinus, and flange 169 abuts against the coronary ostium O, as shown in FIG. 40C .
- Delivery sheath 160 (and or push tube 168 ) may then be positioned against flange 169 of proximal stent section 162 , and wire 166 retracted in the proximal direction to draw distal stent section 164 towards proximal stent section 162 .
- distal stent section 164 is drawn towards proximal stent section 162 under fluoroscopic or other type of guidance, so that the degree of reduction in the mitral valve annulus may be assessed.
- cinch mechanism 168 prevents distal slipping of the wire.
- wire 166 may include a series of grooves along its length that are successively captured in a V-shaped groove, a pall and ratchet mechanism, or other well-known mechanism that permits one-way motion.
- Catheter 160 and push tube 168 then may be removed, as shown in FIG. 40D .
- Flange 161 may comprise a substantially circular shape-memory member, as illustrated, a plurality of wire members, e.g., manufactured using Nitinol, that self-deploy upon removal of sheath 164 and abut ostium O when proximally retracted, or other suitable shape.
- FIGS. 41A-41B a preferred method for using apparatus 156 of FIGS. 40A-40D to close a central gap 172 of mitral valve 170 is described.
- proximal and distal stent sections 162 and 164 are deployed in the coronary sinus so that flange 169 of proximal stent section 162 engages coronary ostium O.
- Distal stent section 164 is disposed at such a distance apart from proximal stent section 162 that the two stent sections apply a compressive force upon mitral valve 170 when wire 166 and cinch 167 are actuated.
- cinch 167 is actuated from the proximal end to reduce the distance between proximal and distal stent section 162 and 164 , e.g., as described hereinabove.
- wire 166 and cinch mechanism 167 are actuated, distal stent section 164 is pulled in a proximal direction and proximal stent section 162 is pulled in a distal direction until flange 169 abuts coronary ostium O.
- the reduction in distance between proximal and distal stent sections 162 and 164 reduces the circumference of mitral valve annulus 171 and thereby closes gap 172 .
- Flange 169 provides a secure anchor point that prevents further distally-directed movement of proximal stent section 162 , and reduces shear stresses applied to the proximal portion of the coronary sinus.
- Device 190 comprises proximal stent section 192 coupled by wire 194 and cinch mechanism 195 to distal anchor 196 .
- Proximal stent section 192 may include flange 193 .
- Optional coil section 198 extends distally from proximal stent section 192 to distal anchor 196 , and serves to distribute compressive forces created by wire 194 to a larger area of the venous vessel wall.
- Curved stylet 202 preferably comprises a shape memory alloy capable of being straightened, but adopting a curved shape when extended beyond a distal end of delivery sheath 206 .
- Curved stylet 202 includes sharpened distal tip 201 capable of piercing the left ventricular myocardium, and is disposed in lumen 205 of delivery sheath.
- Push wire 204 is slidably disposed in lumen 203 of curved stylet 202 , and may be advanced distally to eject distal anchor 196 into the left ventricular myocardium or the left ventricle.
- distal anchor comprises a Tee-shaped bar to which wire 194 is coupled.
- Optional coil section 198 also may be coupled to distal anchor 196 , and is contracted around curved stylet 202 when device 190 is loaded into delivery sheath 206 .
- Distal anchor 196 is disposed within lumen 203 of curved stylet so that wire 194 and coil section 198 exit through lateral slot 207 in the stylet.
- Push wire 204 is disposed in lumen 203 of stylet 202 abutting against the proximal face of distal anchor 196 .
- FIG. 42A device 190 is shown loaded into delivery apparatus 200 .
- Delivery apparatus 200 has been disposed in the coronary sinus using conventional guidance and visualization techniques. The distal end of delivery apparatus 200 is advanced into the coronary venous vasculature to a desired location, and then stylet 202 is advanced distally beyond the end of delivery sheath 206 , thereby causing the stylet to regain its curved shape. Further advancement of stylet 202 causes the distal end of the stylet to pierce the coronary vein and extend into the left ventricular myocardium. Push rod 204 is then advanced distally to eject distal anchor 196 into the myocardium, or within the left ventricle, as shown in FIG. 42B .
- Stylet 202 and push wire 204 are then withdrawn, and delivery sheath 206 is retracted until the proximal stent section is disposed extending out of the coronary ostium.
- proximal stent section 192 may be deployed simply by retracting delivery sheath 206 , because distal anchor 196 and wire 194 will prevent further proximal movement of proximal stent section 192 .
- proximal stent section 192 when proximal stent section 192 is released from delivery sheath 206 , it self-expands to engage the vessel wall while flange 193 contacts the coronary ostium, as shown in FIG. 42C .
- proximal wire 194 extends through lumen 205 of delivery sheath 206 and may be manipulated by a physician. As in the previous embodiment, once the proximal stent section is deployed, wire 194 may be pulled proximally, with cinch mechanism 195 taking up any slack. The distance between distal anchor 196 and proximal stent section 192 may therefore be reduced a desired amount, causing a corresponding reduction in the circumference of the mitral valve annulus. Optional coil section 198 , if present, assists in redistributing the compressive forces applied by wire 194 to the interior surface of the venous vessel.
- device 190 of FIG. 42 is illustrated in a deployed state to treat mitral insufficiency.
- Flange 193 is deployed abutting coronary ostium O, e.g., within right atrium A.
- Proximal stent section 192 and optional coil section 198 are deployed within the coronary sinus and great cardiac vein C.
- Distal anchor 196 is disposed within myocardium M, or alternatively, may extend into the left ventricle or another suitable region, as will be obvious to those skilled in the art. It should further be appreciated to those skilled in the art that while anchor 196 is illustrated as a cylindrical bar, it may comprise square, circular or other configurations, e.g., a plurality of barbs.
- the proximal end of wire 194 extends through cinch mechanism 195 and is manipulated to impose tension on wire 194 , thereby reducing the distance between proximal stent section 192 and distal anchor 196 . This in turn reduces the circumference of coronary sinus C accordingly, as shown in FIG. 43B .
- apparatus 200 is removed from the patient's vessel.
- distal anchor 196 is expected to reduce the shear stress imposed on coronary sinus C relative to the use of a proximal stent section alone as described for the embodiment of FIGS. 40A-40D and 41 A- 41 B.
- device 210 comprises a balloon expandable stent 212 , which may be tapered along its length.
- Stent 212 is disposed on the distal region of balloon catheter 213 , which is capable of assuming a curved shape when inflated.
- stent 212 and balloon catheter 213 are disposed in the patient's coronary sinus through the coronary ostium.
- balloon 214 is inflated to expand the balloon 214 to its predetermined curved shape. Inflation of balloon 214 causes stent 212 to be plastically deformed in accordance with the predetermined shape of balloon 214 .
- the degree of mitral valve regurgitation may be monitored during the step of inflating balloon 214 , so that stent 2 12 applies only so much compressive load on the mitral valve annulus as is required to reduce the regurgitation to a clinically acceptable level:
- Catheter 214 is removed from the patient's vessel upon completion of the stenting procedure.
- balloon catheter 213 has proximal and distal ends, and comprises balloon 214 , and inflation lumen and guidewire lumens, as is per se known.
- balloon 214 includes an anchor element 216 , such as a strand of wire, affixed to its interior surface, so that when the balloon is inflated, it adopts a predetermined shape, as shown in FIG. 45B .
- anchor element 216 such as a strand of wire
- balloon 214 assumes a straight configuration, shown in FIG. 45A , thus permitting stent 212 to be crimped to its outer surface.
- the device comprises proximal and distal stent sections joined by a central section capable of undergoing foreshortening.
- Device 220 comprises proximal stent section 222 , distal stent section 224 and central section 226 .
- device 220 includes one or more biodegradable structures 228 , such as sutures, disposed on central section 226 to retain that section in the contracted shape for a predetermined period after placement of the device in a patient's vessel.
- biodegradable structures 228 such as sutures
- FIG. 46A device 220 is depicted with its proximal and distal stent sections radially expanded, but with central section 226 restrained in the contracted position.
- FIG. 46B depicts device 220 with all three stent sections contracted as if disposed in a delivery catheter.
- FIG. 46C shows all three stent sections fully expanded.
- all three sections are integrally formed from a single shape memory alloy tube, e.g., by laser cutting.
- the stent sections then are processed, using known techniques, to form a self-expanding unit.
- Device 220 has a contracted delivery configuration, wherein the device is radially contracted within a delivery sheath, and a deployed expanded configuration, wherein at least the proximal and distal sections self-expand to engage the interior surface of the coronary sinus or adjoining veins.
- the biodegradable structures may be designed to biodegrade simultaneously or at selected intervals.
- this embodiment of the present invention permits the proximal and distal stent sections 222 and 224 to become biologically anchored in the venous vasculature before those sections are drawn together by expansion of central section 226 to impose a compressive load on the mitral valve annulus.
- device 220 is loaded into delivery sheath 221 and positioned within the patient's coronary sinus. The device is then ejected from the delivery sheath, so that the proximal and distal stent sections 222 and 224 radially expand into engagement with the vessel wall.
- central section 226 is retained in a contracted state by biodegradable structures 228 , illustratively biodegradable sutures, e.g., a poly-glycol lactide strand or VICREL suture, offered by Ethicon, Inc., New Brunswick, N.J., USA.
- the proximal and distal stent sections 222 and 224 will endothelialize, i.e., the vessel endothelium will form a layer E that extends through the apertures in the proximal and distal stent sections and causes those stent sections to become biologically anchored to the vessel wall, as depicted in FIG. 47C .
- This phenomenon may be further enhanced by the use of a copper layer on the proximal and distal stent sections, as this element is known to cause an aggressive inflammatory reaction.
- biodegradable structures 228 that retain central section 226 in the contracted state will biodegrade.
- the self-expanding force of the central section will cause the biodegradable structures to break, and release central section 226 to expand.
- central section 226 is designed to shorten as it expands radially, it causes the proximal and distal stent sections 222 and 224 of device 220 to be drawn towards one another, as shown in FIG. 47D .
- the compressive force created by expansion of central section 226 thereby compressively loads, and thus remodels, the mitral valve annulus, as depicted.
- biodegradable structures 228 may be designed to rupture simultaneously, or alternatively, at selected intervals over a prolonged period of several months or more. In this manner, progressive remodeling of the mitral valve annulus may be accomplished over a gradual period, without additional interventional procedures. In addition, because the collateral drainage paths exist for blood entering the coronary sinus, it is possible for the device to accomplish its objective even if it results in gradual total occlusion of the coronary sinus.
- apparatus 280 comprises a plurality of interlocking segments 281 .
- Each interlocking segment 281 preferably comprises a proximal section having socket 284 , a distal section having ball 282 , and a central section 283 extending therebetween.
- Each interlocking segment 281 further comprises lumen 285 configured to permit cinch wire 287 to pass through lumen 285 .
- Cinch wire 287 having proximal and distal ends preferably comprises ball 288 affixed to the distal end so that ball 288 engages a distalmost interlocking segment 281 when retracted proximally. The retraction of cinch wire 287 enables a ball 282 to interlock with a socket 284 of an adjacent segment 281 .
- Apparatus 280 of FIG. 48A preferably is used in combination with apparatus 290 of FIG. 48B .
- Apparatus 290 comprises proximal ball segment 302 , distal ball segment 300 , and connecting segment 304 having a plurality of sockets 305 separated by humps 309 .
- Proximal ball segment 302 comprises proximal and distal ball segments 312 and 310 , respectively, each having lumens extending therethrough, and hollow rod 311 extending therebetween.
- distal ball segment 300 comprises proximal and distal balls 308 and 306 , respectively, each having lumens extending therethrough, and hollow rod 307 extending therebetween.
- Distal ball 310 of proximal segment 302 initially is configured to engage the most proximal socket 305 within connecting segment 304
- proximal ball 308 of distal segment 300 initially is configured to engage a distalmost socket 305 .
- Proximal and distal ball segments 302 and 300 are capable of relative rotational and telescoping movement. Such movement may be achieved using a cinch wire configured to pass through each segment 300 and 302 , as shown in FIG. 49A .
- cinch wire 318 comprises distal ball 320 that is larger than a lumen of hollow rod 307 and is configured to abut distal ball 306 when a proximal end of cinch wire 318 is retracted proximally.
- Cinch wire 318 preferably is used in combination with push tube 316 that may stabilize or distally advance proximal segment 302 .
- Apparatus 290 further comprises push tube 316 and wire loop 325 .
- Wire loop 325 extends through a lumen within proximal and distal segments 302 and 300 , then loops around the distal end of distal segment 300 and back into opening 327 of push tube 316 .
- a physician then may manipulate a proximal portion of wire loop 325 to provide a range of telescoping or rotational motions between proximal and distal segments 302 and 300 .
- a combination of apparatus 280 and apparatus 290 are used to provide a range of motion within vessel V, e.g., the coronary sinus.
- the present invention aims to treat mitral insufficiency by shortening the radius of curvature of the coronary sinus, which in turn applies a compressive force upon the mitral valve.
- the combination of apparatus 280 and apparatus 290 first may engage a wall of vessel V, e.g., via barbs or hooks (not shown) affixed to apparatus 280 and 290 , and then the relative telescoping or rotational motion of segments may be used to bend vessel V to apply a compressive load on the mitral valve annulus.
- mitral insufficiency apparatus 279 comprises a proximal and distal section comprising apparatus 280 , and a plurality of sections comprising apparatus 290 disposed therebetween.
- Cinch wire 318 and push tube 316 of FIGS. 49A-49B preferably are used to manipulate relative rotational and telescopic motion of all of the components.
- the balls of apparatus 280 are coupled to their respective sockets, e.g., by proximally retracting cinch wire 318 .
- balls 340 and 350 which connect apparatus 280 to apparatus 290 are rotated within sockets of connective segment 304 to allow apparatus 280 to be angled relative to apparatus 290 by angles .alpha.
- the balls of apparatus 290 may be advanced incrementally in a longitudinal direction within sockets 305 of connective segments 304 to reduce distance X.
- reducing the distance X will apply a compressive force to the mitral valve to treat mitral insufficiency.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Networks Using Active Elements (AREA)
- Pulse Circuits (AREA)
Abstract
Description
-
- 1. less invasive surgical treatments;
- 2. devices that are properly fixed inside the body by means of parts healing into the body tissue;
- 3. devices to be designed that have multiple purposes;
- 4. eliminating stabilizing surgical instruments for keeping a present shape of the device during operation;
- 5. engineering to decide when a shape-changing action by the device is to take place in the body;
- 6. a change of shape to be made slowly so that body tissue has time to adapt.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/500,188 US8075616B2 (en) | 2001-12-28 | 2002-12-20 | Apparatus for applying a compressive load on body tissue |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US34412101P | 2001-12-28 | 2001-12-28 | |
SE0200073A SE524709C2 (en) | 2002-01-11 | 2002-01-11 | Device for delayed reshaping of a heart vessel and a heart valve |
SE0200073 | 2002-01-11 | ||
SE0200073-5 | 2002-01-11 | ||
US10/141,348 US7192443B2 (en) | 2002-01-11 | 2002-05-09 | Delayed memory device |
US10141348 | 2002-05-09 | ||
US10/500,188 US8075616B2 (en) | 2001-12-28 | 2002-12-20 | Apparatus for applying a compressive load on body tissue |
PCT/EP2002/014655 WO2003055417A1 (en) | 2001-12-28 | 2002-12-20 | Delayed memory device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/141,348 Continuation-In-Part US7192443B2 (en) | 2001-12-28 | 2002-05-09 | Delayed memory device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050080483A1 US20050080483A1 (en) | 2005-04-14 |
US8075616B2 true US8075616B2 (en) | 2011-12-13 |
Family
ID=27354792
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/500,188 Expired - Lifetime US8075616B2 (en) | 2001-12-28 | 2002-12-20 | Apparatus for applying a compressive load on body tissue |
US11/343,382 Abandoned US20060184230A1 (en) | 2002-01-11 | 2006-01-30 | Delayed memory device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/343,382 Abandoned US20060184230A1 (en) | 2002-01-11 | 2006-01-30 | Delayed memory device |
Country Status (7)
Country | Link |
---|---|
US (2) | US8075616B2 (en) |
EP (4) | EP2181669A3 (en) |
AT (1) | ATE462378T1 (en) |
AU (2) | AU2002360066B2 (en) |
CA (2) | CA2688796A1 (en) |
DE (1) | DE60235834D1 (en) |
WO (1) | WO2003055417A1 (en) |
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8858623B2 (en) * | 2011-11-04 | 2014-10-14 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
US8926695B2 (en) | 2006-12-05 | 2015-01-06 | Valtech Cardio, Ltd. | Segmented ring placement |
US9119719B2 (en) | 2009-05-07 | 2015-09-01 | Valtech Cardio, Ltd. | Annuloplasty ring with intra-ring anchoring |
US9192472B2 (en) | 2008-06-16 | 2015-11-24 | Valtec Cardio, Ltd. | Annuloplasty devices and methods of delivery therefor |
US9414921B2 (en) | 2009-10-29 | 2016-08-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9474606B2 (en) | 2009-05-04 | 2016-10-25 | Valtech Cardio, Ltd. | Over-wire implant contraction methods |
US9526613B2 (en) | 2005-03-17 | 2016-12-27 | Valtech Cardio Ltd. | Mitral valve treatment techniques |
US9610162B2 (en) | 2013-12-26 | 2017-04-04 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US9622861B2 (en) | 2009-12-02 | 2017-04-18 | Valtech Cardio, Ltd. | Tool for actuating an adjusting mechanism |
US9662209B2 (en) | 2008-12-22 | 2017-05-30 | Valtech Cardio, Ltd. | Contractible annuloplasty structures |
US9693865B2 (en) | 2013-01-09 | 2017-07-04 | 4 Tech Inc. | Soft tissue depth-finding tool |
US9713530B2 (en) | 2008-12-22 | 2017-07-25 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US9724192B2 (en) | 2011-11-08 | 2017-08-08 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US9730793B2 (en) | 2012-12-06 | 2017-08-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
US9801720B2 (en) | 2014-06-19 | 2017-10-31 | 4Tech Inc. | Cardiac tissue cinching |
US9883943B2 (en) | 2006-12-05 | 2018-02-06 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9907681B2 (en) | 2013-03-14 | 2018-03-06 | 4Tech Inc. | Stent with tether interface |
US9907547B2 (en) | 2014-12-02 | 2018-03-06 | 4Tech Inc. | Off-center tissue anchors |
US9949828B2 (en) | 2012-10-23 | 2018-04-24 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US9968454B2 (en) | 2009-10-29 | 2018-05-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of artificial chordae |
US9968452B2 (en) | 2009-05-04 | 2018-05-15 | Valtech Cardio, Ltd. | Annuloplasty ring delivery cathethers |
US10022114B2 (en) | 2013-10-30 | 2018-07-17 | 4Tech Inc. | Percutaneous tether locking |
US10052095B2 (en) | 2013-10-30 | 2018-08-21 | 4Tech Inc. | Multiple anchoring-point tension system |
US10058323B2 (en) | 2010-01-22 | 2018-08-28 | 4 Tech Inc. | Tricuspid valve repair using tension |
US10098737B2 (en) | 2009-10-29 | 2018-10-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US10195030B2 (en) | 2014-10-14 | 2019-02-05 | Valtech Cardio, Ltd. | Leaflet-restraining techniques |
US10226342B2 (en) | 2016-07-08 | 2019-03-12 | Valtech Cardio, Ltd. | Adjustable annuloplasty device with alternating peaks and troughs |
US10231831B2 (en) | 2009-12-08 | 2019-03-19 | Cardiovalve Ltd. | Folding ring implant for heart valve |
US10238491B2 (en) | 2010-01-22 | 2019-03-26 | 4Tech Inc. | Tricuspid valve repair using tension |
US10299793B2 (en) | 2013-10-23 | 2019-05-28 | Valtech Cardio, Ltd. | Anchor magazine |
US10350068B2 (en) | 2009-02-17 | 2019-07-16 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US10376266B2 (en) | 2012-10-23 | 2019-08-13 | Valtech Cardio, Ltd. | Percutaneous tissue anchor techniques |
US10405978B2 (en) | 2010-01-22 | 2019-09-10 | 4Tech Inc. | Tricuspid valve repair using tension |
US10449333B2 (en) | 2013-03-14 | 2019-10-22 | Valtech Cardio, Ltd. | Guidewire feeder |
US10470882B2 (en) | 2008-12-22 | 2019-11-12 | Valtech Cardio, Ltd. | Closure element for use with annuloplasty structure |
US10517719B2 (en) | 2008-12-22 | 2019-12-31 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US10682232B2 (en) | 2013-03-15 | 2020-06-16 | Edwards Lifesciences Corporation | Translation catheters, systems, and methods of use thereof |
US10695046B2 (en) | 2005-07-05 | 2020-06-30 | Edwards Lifesciences Corporation | Tissue anchor and anchoring system |
US10702274B2 (en) | 2016-05-26 | 2020-07-07 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
US10751182B2 (en) | 2015-12-30 | 2020-08-25 | Edwards Lifesciences Corporation | System and method for reshaping right heart |
US10765514B2 (en) | 2015-04-30 | 2020-09-08 | Valtech Cardio, Ltd. | Annuloplasty technologies |
US10792152B2 (en) | 2011-06-23 | 2020-10-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US10828160B2 (en) | 2015-12-30 | 2020-11-10 | Edwards Lifesciences Corporation | System and method for reducing tricuspid regurgitation |
US10835221B2 (en) | 2017-11-02 | 2020-11-17 | Valtech Cardio, Ltd. | Implant-cinching devices and systems |
US10918373B2 (en) | 2013-08-31 | 2021-02-16 | Edwards Lifesciences Corporation | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US10918374B2 (en) | 2013-02-26 | 2021-02-16 | Edwards Lifesciences Corporation | Devices and methods for percutaneous tricuspid valve repair |
US10925610B2 (en) | 2015-03-05 | 2021-02-23 | Edwards Lifesciences Corporation | Devices for treating paravalvular leakage and methods use thereof |
US11026791B2 (en) | 2018-03-20 | 2021-06-08 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
US11045627B2 (en) | 2017-04-18 | 2021-06-29 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US11123191B2 (en) | 2018-07-12 | 2021-09-21 | Valtech Cardio Ltd. | Annuloplasty systems and locking tools therefor |
US11135062B2 (en) | 2017-11-20 | 2021-10-05 | Valtech Cardio Ltd. | Cinching of dilated heart muscle |
US11259924B2 (en) | 2006-12-05 | 2022-03-01 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US11285003B2 (en) | 2018-03-20 | 2022-03-29 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11395648B2 (en) | 2012-09-29 | 2022-07-26 | Edwards Lifesciences Corporation | Plication lock delivery system and method of use thereof |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US11660191B2 (en) | 2008-03-10 | 2023-05-30 | Edwards Lifesciences Corporation | Method to reduce mitral regurgitation |
US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
US11666442B2 (en) | 2018-01-26 | 2023-06-06 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for facilitating heart valve tethering and chord replacement |
US11779458B2 (en) | 2016-08-10 | 2023-10-10 | Cardiovalve Ltd. | Prosthetic valve with leaflet connectors |
US11779463B2 (en) | 2018-01-24 | 2023-10-10 | Edwards Lifesciences Innovation (Israel) Ltd. | Contraction of an annuloplasty structure |
US11801135B2 (en) | 2015-02-05 | 2023-10-31 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US11819411B2 (en) | 2019-10-29 | 2023-11-21 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty and tissue anchor technologies |
US11844691B2 (en) | 2013-01-24 | 2023-12-19 | Cardiovalve Ltd. | Partially-covered prosthetic valves |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11969348B2 (en) | 2011-12-12 | 2024-04-30 | Edwards Lifesciences Corporation | Cardiac valve replacement |
US12023247B2 (en) | 2020-05-20 | 2024-07-02 | Edwards Lifesciences Corporation | Reducing the diameter of a cardiac valve annulus with independent control over each of the anchors that are launched into the annulus |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US12035898B2 (en) | 2005-04-22 | 2024-07-16 | Edwards Lifesciences Corporation | Catheter-based tissue remodeling devices and methods |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US12138165B2 (en) | 2011-06-23 | 2024-11-12 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty implants |
US12208006B2 (en) | 2019-09-25 | 2025-01-28 | Edwards Lifesciences Corporation | Constricting a cardiac valve annulus using a cord that has a loop portion and a single second portion |
US12226096B2 (en) | 2019-05-29 | 2025-02-18 | Edwards Lifesciences Innovation (Israel) Ltd. | Tissue anchor handling systems and methods |
US12310575B2 (en) | 2023-04-19 | 2025-05-27 | Cardiovalve Ltd. | Helical anchor implantation |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7883539B2 (en) | 1997-01-02 | 2011-02-08 | Edwards Lifesciences Llc | Heart wall tension reduction apparatus and method |
US6332893B1 (en) | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
SE514718C2 (en) * | 1999-06-29 | 2001-04-09 | Jan Otto Solem | Apparatus for treating defective closure of the mitral valve apparatus |
US6997951B2 (en) * | 1999-06-30 | 2006-02-14 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
US6440164B1 (en) | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US7011682B2 (en) * | 2000-01-31 | 2006-03-14 | Edwards Lifesciences Ag | Methods and apparatus for remodeling an extravascular tissue structure |
US20090287179A1 (en) | 2003-10-01 | 2009-11-19 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
US8956407B2 (en) * | 2000-09-20 | 2015-02-17 | Mvrx, Inc. | Methods for reshaping a heart valve annulus using a tensioning implant |
US7691144B2 (en) | 2003-10-01 | 2010-04-06 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US20080091264A1 (en) | 2002-11-26 | 2008-04-17 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
US6723038B1 (en) | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US6602286B1 (en) | 2000-10-26 | 2003-08-05 | Ernst Peter Strecker | Implantable valve system |
US7635387B2 (en) | 2001-11-01 | 2009-12-22 | Cardiac Dimensions, Inc. | Adjustable height focal tissue deflector |
US6824562B2 (en) | 2002-05-08 | 2004-11-30 | Cardiac Dimensions, Inc. | Body lumen device anchor, device and assembly |
US7179282B2 (en) | 2001-12-05 | 2007-02-20 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
US6976995B2 (en) | 2002-01-30 | 2005-12-20 | Cardiac Dimensions, Inc. | Fixed length anchor and pull mitral valve device and method |
SE524709C2 (en) * | 2002-01-11 | 2004-09-21 | Edwards Lifesciences Ag | Device for delayed reshaping of a heart vessel and a heart valve |
EP2181669A3 (en) * | 2001-12-28 | 2011-11-23 | Edwards Lifesciences AG | Device for treating mitral insufficiency |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US6752828B2 (en) | 2002-04-03 | 2004-06-22 | Scimed Life Systems, Inc. | Artificial valve |
EP2039325A1 (en) | 2002-05-08 | 2009-03-25 | Cardiac Dimensions, Inc. | Device for modifying the shape of a body organ |
WO2004037128A1 (en) | 2002-10-24 | 2004-05-06 | Boston Scientific Limited | Venous valve apparatus and method |
US7112219B2 (en) | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7247134B2 (en) | 2002-11-12 | 2007-07-24 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7837729B2 (en) | 2002-12-05 | 2010-11-23 | Cardiac Dimensions, Inc. | Percutaneous mitral valve annuloplasty delivery system |
US7316708B2 (en) | 2002-12-05 | 2008-01-08 | Cardiac Dimensions, Inc. | Medical device delivery system |
US6945957B2 (en) | 2002-12-30 | 2005-09-20 | Scimed Life Systems, Inc. | Valve treatment catheter and methods |
US7314485B2 (en) * | 2003-02-03 | 2008-01-01 | Cardiac Dimensions, Inc. | Mitral valve device using conditioned shape memory alloy |
US20040220654A1 (en) | 2003-05-02 | 2004-11-04 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
DE602004026858D1 (en) * | 2003-05-20 | 2010-06-10 | Cleveland Clinic Foundation | DEVICE FOR REPAIRING HEADLAPS |
US7887582B2 (en) | 2003-06-05 | 2011-02-15 | Cardiac Dimensions, Inc. | Device and method for modifying the shape of a body organ |
WO2005018507A2 (en) * | 2003-07-18 | 2005-03-03 | Ev3 Santa Rosa, Inc. | Remotely activated mitral annuloplasty system and methods |
CA2548541A1 (en) * | 2003-12-16 | 2005-06-30 | Edwards Lifesciences Ag | Device for changing the shape of the mitral annulus |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US7794496B2 (en) | 2003-12-19 | 2010-09-14 | Cardiac Dimensions, Inc. | Tissue shaping device with integral connector and crimp |
US7837728B2 (en) | 2003-12-19 | 2010-11-23 | Cardiac Dimensions, Inc. | Reduced length tissue shaping device |
US9526616B2 (en) | 2003-12-19 | 2016-12-27 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
GB0329654D0 (en) * | 2003-12-23 | 2004-01-28 | Smith & Nephew | Tunable segmented polyacetal |
US7993397B2 (en) * | 2004-04-05 | 2011-08-09 | Edwards Lifesciences Ag | Remotely adjustable coronary sinus implant |
US20050288783A1 (en) | 2004-06-29 | 2005-12-29 | Emanuel Shaoulian | Methods for treating cardiac valves using magnetic fields |
US20080183285A1 (en) * | 2004-06-29 | 2008-07-31 | Micardia Corporation | Adjustable cardiac valve implant with selective dimensional adjustment |
WO2006019943A1 (en) * | 2004-07-15 | 2006-02-23 | Micardia Corporation | Implants and methods for reshaping heart valves |
US7566343B2 (en) | 2004-09-02 | 2009-07-28 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US7211110B2 (en) | 2004-12-09 | 2007-05-01 | Edwards Lifesciences Corporation | Diagnostic kit to assist with heart valve annulus adjustment |
AU2006206254B2 (en) | 2005-01-20 | 2012-02-09 | Cardiac Dimensions Pty. Ltd. | Tissue shaping device |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US20060173490A1 (en) | 2005-02-01 | 2006-08-03 | Boston Scientific Scimed, Inc. | Filter system and method |
US7878966B2 (en) | 2005-02-04 | 2011-02-01 | Boston Scientific Scimed, Inc. | Ventricular assist and support device |
US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7670368B2 (en) | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US10219902B2 (en) | 2005-03-25 | 2019-03-05 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve anulus, including the use of a bridge implant having an adjustable bridge stop |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7357815B2 (en) * | 2005-04-21 | 2008-04-15 | Micardia Corporation | Dynamically adjustable implants and methods for reshaping tissue |
US20060238019A1 (en) * | 2005-04-21 | 2006-10-26 | Mark Yu | Brakable wheel hub device |
SE531468C2 (en) | 2005-04-21 | 2009-04-14 | Edwards Lifesciences Ag | An apparatus for controlling blood flow |
US7500989B2 (en) * | 2005-06-03 | 2009-03-10 | Edwards Lifesciences Corp. | Devices and methods for percutaneous repair of the mitral valve via the coronary sinus |
US20060281968A1 (en) * | 2005-06-07 | 2006-12-14 | Duran Carlos M | System, including method and apparatus for percutaneous endovascular treatment of functional mitral valve insufficiency |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US20080221673A1 (en) * | 2005-08-12 | 2008-09-11 | Donald Bobo | Medical implant with reinforcement mechanism |
US20070038297A1 (en) * | 2005-08-12 | 2007-02-15 | Bobo Donald E Jr | Medical implant with reinforcement mechanism |
US9492277B2 (en) | 2005-08-30 | 2016-11-15 | Mayo Foundation For Medical Education And Research | Soft body tissue remodeling methods and apparatus |
US7569071B2 (en) | 2005-09-21 | 2009-08-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US20070073391A1 (en) * | 2005-09-28 | 2007-03-29 | Henry Bourang | System and method for delivering a mitral valve repair device |
US20070173926A1 (en) * | 2005-12-09 | 2007-07-26 | Bobo Donald E Jr | Anchoring system for medical implant |
US7799038B2 (en) | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US7637946B2 (en) * | 2006-02-09 | 2009-12-29 | Edwards Lifesciences Corporation | Coiled implant for mitral valve repair |
EP1849440A1 (en) * | 2006-04-28 | 2007-10-31 | Younes Boudjemline | Vascular stents with varying diameter |
US9101338B2 (en) | 2006-05-03 | 2015-08-11 | Mayo Foundation For Medical Education And Research | Soft body tissue remodeling methods and apparatus |
US11285005B2 (en) | 2006-07-17 | 2022-03-29 | Cardiac Dimensions Pty. Ltd. | Mitral valve annuloplasty device with twisted anchor |
US20080065205A1 (en) * | 2006-09-11 | 2008-03-13 | Duy Nguyen | Retrievable implant and method for treatment of mitral regurgitation |
CN101594831B (en) * | 2006-11-30 | 2011-09-14 | 史密夫和内修有限公司 | Fiber reinforced composite material |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
EP2109417B1 (en) | 2007-02-05 | 2013-11-06 | Boston Scientific Limited | Percutaneous valve and delivery system |
US8911461B2 (en) | 2007-03-13 | 2014-12-16 | Mitralign, Inc. | Suture cutter and method of cutting suture |
US20080228265A1 (en) | 2007-03-13 | 2008-09-18 | Mitralign, Inc. | Tissue anchors, systems and methods, and devices |
US20080255447A1 (en) * | 2007-04-16 | 2008-10-16 | Henry Bourang | Diagnostic catheter |
WO2008129245A1 (en) | 2007-04-18 | 2008-10-30 | Smith & Nephew Plc | Expansion moulding of shape memory polymers |
AU2008242737B2 (en) | 2007-04-19 | 2013-09-26 | Smith & Nephew, Inc. | Multi-modal shape memory polymers |
US9770534B2 (en) | 2007-04-19 | 2017-09-26 | Smith & Nephew, Inc. | Graft fixation |
FR2916959B1 (en) * | 2007-06-08 | 2009-09-04 | Perouse Soc Par Actions Simpli | NECESSARY TO BE IMPLANTED IN A BLOOD CIRCULATION CONDUIT |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US8100820B2 (en) * | 2007-08-22 | 2012-01-24 | Edwards Lifesciences Corporation | Implantable device for treatment of ventricular dilation |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US8167787B2 (en) | 2008-01-03 | 2012-05-01 | Revent Medical, Inc. | Partially erodable systems for treatment of obstructive sleep apnea |
US20090276040A1 (en) | 2008-05-01 | 2009-11-05 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
JP5834337B2 (en) | 2008-05-12 | 2015-12-16 | レベント メディカル インコーポレイテッド | Partially erosive system for the treatment of obstructive sleep apnea |
US9439801B2 (en) | 2012-06-29 | 2016-09-13 | Revent Medical, Inc. | Systems and methods for treatment of sleep apnea |
US20100076470A1 (en) * | 2008-09-22 | 2010-03-25 | Tyco Healthcare Group Lp | Methods and Devices for Sheath Compression |
US8006594B2 (en) | 2008-08-11 | 2011-08-30 | Cardiac Dimensions, Inc. | Catheter cutting tool |
JP2012508597A (en) * | 2008-11-12 | 2012-04-12 | シンピライカ スパイン, インコーポレイテッド | Adjusted restraint device and method of use |
EP2547296A4 (en) | 2010-03-19 | 2014-08-06 | Revent Medical Inc | Systems and methods for treatment of sleep apnea |
EP2547297A4 (en) | 2010-03-19 | 2014-08-06 | Revent Medical Inc | Systems and methods for treatment of sleep apnea |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
JP2013526392A (en) | 2010-05-21 | 2013-06-24 | レベント メディカル インコーポレイテッド | System and method for treating sleep apnea |
JP2013538075A (en) | 2010-07-26 | 2013-10-10 | レベント メディカル インコーポレイテッド | System and method for treating sleep apnea |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
WO2013038013A1 (en) * | 2011-09-16 | 2013-03-21 | Syntach Ag | A device, and a method for treatment of increased blood pressure |
US10076414B2 (en) | 2012-02-13 | 2018-09-18 | Mitraspan, Inc. | Method and apparatus for repairing a mitral valve |
CA2900930A1 (en) | 2012-02-13 | 2013-08-22 | Mitraspan, Inc. | Method and apparatus for repairing a mitral valve |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US8961594B2 (en) | 2012-05-31 | 2015-02-24 | 4Tech Inc. | Heart valve repair system |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
EP3062709A2 (en) | 2013-10-30 | 2016-09-07 | 4Tech Inc. | Multiple anchoring-point tension system |
WO2016144391A1 (en) | 2015-03-11 | 2016-09-15 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US10278818B2 (en) | 2015-12-10 | 2019-05-07 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
JP7002451B2 (en) | 2015-12-15 | 2022-01-20 | ニオバスク ティアラ インコーポレイテッド | Transseptal delivery system |
CN113633435B (en) | 2016-01-29 | 2024-11-29 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve for preventing outflow obstruction |
WO2018090148A1 (en) | 2016-11-21 | 2018-05-24 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
US10390953B2 (en) | 2017-03-08 | 2019-08-27 | Cardiac Dimensions Pty. Ltd. | Methods and devices for reducing paravalvular leakage |
WO2019036810A1 (en) | 2017-08-25 | 2019-02-28 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
CA3118599A1 (en) | 2018-11-08 | 2020-05-14 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
CA3129701C (en) * | 2019-02-22 | 2024-01-16 | W. L. Gore & Associates, Inc. | Actuation line storage systems and methods |
AU2020233892A1 (en) | 2019-03-08 | 2021-11-04 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
CA3135753C (en) | 2019-04-01 | 2023-10-24 | Neovasc Tiara Inc. | Controllably deployable prosthetic valve |
CA3136334A1 (en) | 2019-04-10 | 2020-10-15 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
CA3140925A1 (en) | 2019-05-20 | 2020-11-26 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism |
CA3143344A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
WO2022132571A1 (en) | 2020-12-14 | 2022-06-23 | Cardiac Dimensions Pty. Ltd. | Modular pre-loaded medical implants and delivery systems |
Citations (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4164046A (en) | 1977-05-16 | 1979-08-14 | Cooley Denton | Valve prosthesis |
US4655771A (en) | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4877030A (en) * | 1988-02-02 | 1989-10-31 | Andreas Beck | Device for the widening of blood vessels |
US5006106A (en) | 1990-10-09 | 1991-04-09 | Angelchik Jean P | Apparatus and method for laparoscopic implantation of anti-reflux prosthesis |
US5061275A (en) | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US5064435A (en) | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5104404A (en) | 1989-10-02 | 1992-04-14 | Medtronic, Inc. | Articulated stent |
US5163955A (en) | 1991-01-24 | 1992-11-17 | Autogenics | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
US5170802A (en) | 1991-01-07 | 1992-12-15 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
US5209730A (en) | 1989-12-19 | 1993-05-11 | Scimed Life Systems, Inc. | Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor |
US5224491A (en) | 1991-01-07 | 1993-07-06 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
US5304131A (en) | 1991-07-15 | 1994-04-19 | Paskar Larry D | Catheter |
US5382259A (en) | 1992-10-26 | 1995-01-17 | Target Therapeutics, Inc. | Vasoocclusion coil with attached tubular woven or braided fibrous covering |
US5383892A (en) | 1991-11-08 | 1995-01-24 | Meadox France | Stent for transluminal implantation |
US5390661A (en) | 1993-02-03 | 1995-02-21 | W. L. Gore & Associates, Inc. | Introducer for esophageal probes |
US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5449373A (en) | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US5476471A (en) | 1993-08-19 | 1995-12-19 | Mind - E.M.S.G. Ltd | Device and method for external correction of insufficient valves in venous junctions |
US5496275A (en) | 1991-05-15 | 1996-03-05 | Advanced Cardiovascular Systems, Inc. | Low profile dilatation catheter |
US5531779A (en) | 1992-10-01 | 1996-07-02 | Cardiac Pacemakers, Inc. | Stent-type defibrillation electrode structures |
US5534007A (en) | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5545209A (en) | 1993-09-30 | 1996-08-13 | Texas Petrodet, Inc. | Controlled deployment of a medical device |
EP0727239A2 (en) | 1995-02-14 | 1996-08-21 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US5571135A (en) | 1993-10-22 | 1996-11-05 | Scimed Life Systems Inc. | Stent delivery apparatus and method |
US5575771A (en) * | 1995-04-24 | 1996-11-19 | Walinsky; Paul | Balloon catheter with external guidewire |
US5584879A (en) | 1993-12-13 | 1996-12-17 | Brigham & Women's Hospital | Aortic valve supporting device |
US5591197A (en) | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
US5593442A (en) | 1995-06-05 | 1997-01-14 | Localmed, Inc. | Radially expansible and articulated vessel scaffold |
US5607444A (en) * | 1993-12-02 | 1997-03-04 | Advanced Cardiovascular Systems, Inc. | Ostial stent for bifurcations |
US5674280A (en) | 1989-12-21 | 1997-10-07 | Smith & Nephew, Inc. | Valvular annuloplasty rings of a biocompatible low elastic modulus titanium-niobium-zirconium alloy |
US5690642A (en) * | 1996-01-18 | 1997-11-25 | Cook Incorporated | Rapid exchange stent delivery balloon catheter |
DE19605042A1 (en) | 1996-02-12 | 1998-01-15 | Figulla Hans Reiner Prof Dr Me | Vessel implant for bridging vascular weaknesses |
US5713949A (en) | 1996-08-06 | 1998-02-03 | Jayaraman; Swaminathan | Microporous covered stents and method of coating |
DE19611755A1 (en) | 1996-03-25 | 1998-02-05 | Joerg Meyer | Expandable blood vessel implant |
US5741274A (en) | 1995-12-22 | 1998-04-21 | Cardio Vascular Concepts, Inc. | Method and apparatus for laparoscopically reinforcing vascular stent-grafts |
US5817126A (en) | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
US5824071A (en) | 1996-09-16 | 1998-10-20 | Circulation, Inc. | Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion |
US5876419A (en) | 1976-10-02 | 1999-03-02 | Navius Corporation | Stent and method for making a stent |
US5876433A (en) | 1996-05-29 | 1999-03-02 | Ethicon, Inc. | Stent and method of varying amounts of heparin coated thereon to control treatment |
US5891108A (en) | 1994-09-12 | 1999-04-06 | Cordis Corporation | Drug delivery stent |
US5911732A (en) | 1997-03-10 | 1999-06-15 | Johnson & Johnson Interventional Systems, Co. | Articulated expandable intraluminal stent |
US5919233A (en) | 1993-05-12 | 1999-07-06 | Ethicon, Inc. | Flexible implant |
US5935081A (en) | 1998-01-20 | 1999-08-10 | Cardiac Pacemakers, Inc. | Long term monitoring of acceleration signals for optimization of pacing therapy |
US5954761A (en) | 1997-03-25 | 1999-09-21 | Intermedics Inc. | Implantable endocardial lead assembly having a stent |
US5961545A (en) | 1997-01-17 | 1999-10-05 | Meadox Medicals, Inc. | EPTFE graft-stent composite device |
US6006122A (en) | 1997-09-25 | 1999-12-21 | Medtronic, Inc. | Medical electrical lead |
US6013854A (en) | 1994-06-17 | 2000-01-11 | Terumo Kabushiki Kaisha | Indwelling stent and the method for manufacturing the same |
US6019739A (en) | 1998-06-18 | 2000-02-01 | Baxter International Inc. | Minimally invasive valve annulus sizer |
US6027525A (en) | 1996-05-23 | 2000-02-22 | Samsung Electronics., Ltd. | Flexible self-expandable stent and method for making the same |
US6051020A (en) | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US6071292A (en) | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
US6077296A (en) | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6093203A (en) | 1998-05-13 | 2000-07-25 | Uflacker; Renan | Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation |
WO2000044313A1 (en) | 1999-01-27 | 2000-08-03 | Viacor Incorporated | Cardiac valve procedure methods and devices |
US6110100A (en) | 1998-04-22 | 2000-08-29 | Scimed Life Systems, Inc. | System for stress relieving the heart muscle and for controlling heart function |
US6123699A (en) | 1997-09-05 | 2000-09-26 | Cordis Webster, Inc. | Omni-directional steerable catheter |
US6161029A (en) | 1999-03-08 | 2000-12-12 | Medtronic, Inc. | Apparatus and method for fixing electrodes in a blood vessel |
US6161543A (en) | 1993-02-22 | 2000-12-19 | Epicor, Inc. | Methods of epicardial ablation for creating a lesion around the pulmonary veins |
US6165169A (en) | 1994-03-04 | 2000-12-26 | Ep Technologies, Inc. | Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays |
US6168619B1 (en) | 1998-10-16 | 2001-01-02 | Quanam Medical Corporation | Intravascular stent having a coaxial polymer member and end sleeves |
WO2001000111A1 (en) | 1999-06-29 | 2001-01-04 | Jan Otto Solem | Device and method for treatment of mitral insufficiency |
US6171329B1 (en) | 1994-12-19 | 2001-01-09 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
US6183411B1 (en) | 1998-09-21 | 2001-02-06 | Myocor, Inc. | External stress reduction device and method |
US6203556B1 (en) | 1997-10-29 | 2001-03-20 | Kensey Nash Corporation | Transmyocardial revascularization system and method of use |
US6221103B1 (en) | 1996-01-02 | 2001-04-24 | The University Of Cincinnati | Device and method for restructuring heart chamber geometry |
US6248119B1 (en) | 2000-02-28 | 2001-06-19 | Jan Otto Solem | Device and method for endoscopic vascular surgery |
US6250308B1 (en) | 1998-06-16 | 2001-06-26 | Cardiac Concepts, Inc. | Mitral valve annuloplasty ring and method of implanting |
WO2001050985A1 (en) | 2000-01-14 | 2001-07-19 | Viacor Incorporated | Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same |
US6264602B1 (en) | 1998-07-29 | 2001-07-24 | Myocor, Inc. | Stress reduction apparatus and method |
US6264691B1 (en) | 1999-04-23 | 2001-07-24 | Shlomo Gabbay | Apparatus and method for supporting a heart valve |
WO2001054618A1 (en) | 2000-01-31 | 2001-08-02 | Mitralife | Percutaneous mitral annuloplasty and cardiac reinforcement |
US20010018611A1 (en) | 1999-06-30 | 2001-08-30 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
WO2001085061A2 (en) | 2000-05-10 | 2001-11-15 | Acorn Cardiovascular, Inc. | Cardiac disease treatment and device |
WO2001089426A1 (en) | 2000-05-25 | 2001-11-29 | Bioring S.A. | Device for shrinking or reinforcing the heart valvular orifices |
US6325826B1 (en) | 1998-01-14 | 2001-12-04 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
WO2002000099A2 (en) | 2000-06-23 | 2002-01-03 | Viacor Incorporated | Automated annular plication for mitral valve repair |
WO2002001999A2 (en) | 2000-06-30 | 2002-01-10 | Viacor, Incorporated | Method and apparatus for performing a procedure on a cardiac valve |
WO2002005888A1 (en) | 2000-06-30 | 2002-01-24 | Viacor Incorporated | Intravascular filter with debris entrapment mechanism |
US6343605B1 (en) | 2000-08-08 | 2002-02-05 | Scimed Life Systems, Inc. | Percutaneous transluminal myocardial implantation device and method |
US20020019660A1 (en) | 1998-09-05 | 2002-02-14 | Marc Gianotti | Methods and apparatus for a curved stent |
US6350277B1 (en) | 1999-01-15 | 2002-02-26 | Scimed Life Systems, Inc. | Stents with temporary retaining bands |
US6368348B1 (en) | 2000-05-15 | 2002-04-09 | Shlomo Gabbay | Annuloplasty prosthesis for supporting an annulus of a heart valve |
US20020052638A1 (en) * | 1996-05-20 | 2002-05-02 | Gholam-Reza Zadno-Azizi | Method and apparatus for emboli containment |
WO2002034118A2 (en) | 2000-10-27 | 2002-05-02 | Viacor, Inc. | Intracardiovascular access (icvatm) system |
US6409760B1 (en) | 1998-03-05 | 2002-06-25 | University Of Cincinnati | Device and method for restructuring heart chamber geometry |
US20020087173A1 (en) | 2000-12-28 | 2002-07-04 | Alferness Clifton A. | Mitral valve constricting device, system and method |
WO2002060352A1 (en) | 2001-01-30 | 2002-08-08 | Ev3 Santa Rosa, Inc. | Medical system and method for remodeling an extravascular tissue structure |
WO2002062408A2 (en) | 2001-02-05 | 2002-08-15 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
WO2002062263A2 (en) | 2001-02-05 | 2002-08-15 | Viacor, Inc. | Apparatus and method for reducing mitral regurgitation |
US20020111647A1 (en) | 1999-11-08 | 2002-08-15 | Khairkhahan Alexander K. | Adjustable left atrial appendage occlusion device |
US20020111533A1 (en) | 1996-01-02 | 2002-08-15 | Melvin David Boyd | Device and method for restructuring heart chamber geometry |
US20020124857A1 (en) | 1997-08-19 | 2002-09-12 | Intermedics Inc. | Apparatus for imparting physician-determined shapes to implantable tubular devices |
WO2002076284A2 (en) | 2001-03-23 | 2002-10-03 | Viacor, Inc. | Method and apparatus for reducing mitral regurgitation |
WO2002078576A2 (en) | 2001-03-29 | 2002-10-10 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US20020151961A1 (en) | 2000-01-31 | 2002-10-17 | Lashinski Randall T. | Medical system and method for remodeling an extravascular tissue structure |
US20020183837A1 (en) | 2001-03-05 | 2002-12-05 | Streeter Richard B. | Apparatus and method for reducing mitral regurgitation |
US20020183838A1 (en) | 2001-03-29 | 2002-12-05 | Liddicoat John R. | Method and apparatus for improving mitral valve function |
US20020188170A1 (en) | 2001-04-27 | 2002-12-12 | Santamore William P. | Prevention of myocardial infarction induced ventricular expansion and remodeling |
US20030078465A1 (en) | 2001-10-16 | 2003-04-24 | Suresh Pai | Systems for heart treatment |
US20030078654A1 (en) | 2001-08-14 | 2003-04-24 | Taylor Daniel C. | Method and apparatus for improving mitral valve function |
US20030083538A1 (en) | 2001-11-01 | 2003-05-01 | Cardiac Dimensions, Inc. | Focused compression mitral valve device and method |
US6569198B1 (en) | 2000-03-31 | 2003-05-27 | Richard A. Wilson | Mitral or tricuspid valve annuloplasty prosthetic device |
US20030105520A1 (en) | 2001-12-05 | 2003-06-05 | Cardiac Dimensions, Inc. | Anchor and pull mitral valve device and method |
US20030120341A1 (en) | 2001-12-21 | 2003-06-26 | Hani Shennib | Devices and methods of repairing cardiac valves |
US20030130730A1 (en) | 2001-10-26 | 2003-07-10 | Cohn William E. | Method and apparatus for reducing mitral regurgitation |
US20030135267A1 (en) | 2002-01-11 | 2003-07-17 | Solem Jan Otto | Delayed memory device |
US20030144697A1 (en) | 2002-01-30 | 2003-07-31 | Cardiac Dimensions, Inc. | Fixed length anchor and pull mitral valve device and method |
US6626899B2 (en) | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
US6629534B1 (en) | 1999-04-09 | 2003-10-07 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
US6669687B1 (en) | 1999-06-25 | 2003-12-30 | Vahid Saadat | Apparatus and methods for treating tissue |
US6676702B2 (en) | 2001-05-14 | 2004-01-13 | Cardiac Dimensions, Inc. | Mitral valve therapy assembly and method |
US20040039443A1 (en) | 1999-06-30 | 2004-02-26 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US20040153146A1 (en) | 2000-01-31 | 2004-08-05 | Randall Lashinski | Methods and apparatus for remodeling an extravascular tissue structure |
US6797001B2 (en) | 2002-03-11 | 2004-09-28 | Cardiac Dimensions, Inc. | Device, assembly and method for mitral valve repair |
US6800090B2 (en) | 2001-05-14 | 2004-10-05 | Cardiac Dimensions, Inc. | Mitral valve therapy device, system and method |
WO2004084746A2 (en) | 2003-03-26 | 2004-10-07 | Reitan Oeyvind M D | Device for treatment of an insufficiency of a heart valve |
US6810882B2 (en) | 2001-01-30 | 2004-11-02 | Ev3 Santa Rosa, Inc. | Transluminal mitral annuloplasty |
US6824562B2 (en) | 2002-05-08 | 2004-11-30 | Cardiac Dimensions, Inc. | Body lumen device anchor, device and assembly |
US20040267358A1 (en) | 2001-12-11 | 2004-12-30 | Oyvind Reitan | Implant for treating an insufficiency of a heart valve |
US20050060030A1 (en) | 2000-01-31 | 2005-03-17 | Lashinski Randall T. | Remotely activated mitral annuloplasty system and methods |
US20050096740A1 (en) | 2001-01-30 | 2005-05-05 | Edwards Lifesciences Ag | Transluminal mitral annuloplasty |
US20060184230A1 (en) | 2002-01-11 | 2006-08-17 | Solem Jan O | Delayed memory device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5980522A (en) * | 1994-07-22 | 1999-11-09 | Koros; Tibor | Expandable spinal implants |
US6217610B1 (en) * | 1994-07-29 | 2001-04-17 | Edwards Lifesciences Corporation | Expandable annuloplasty ring |
US6123662A (en) * | 1998-07-13 | 2000-09-26 | Acorn Cardiovascular, Inc. | Cardiac disease treatment and device |
DE60033232T2 (en) * | 1999-05-11 | 2007-11-15 | Atrionix Inc., Palo Alto | BALLOON ANCHOR WIRE |
CA2445281C (en) * | 2001-04-27 | 2013-07-16 | Myomend, Inc. | Prevention of myocardial infarction induced ventricular expansion and remodeling |
US7503904B2 (en) * | 2002-04-25 | 2009-03-17 | Cardiac Pacemakers, Inc. | Dual balloon telescoping guiding catheter |
US7211110B2 (en) * | 2004-12-09 | 2007-05-01 | Edwards Lifesciences Corporation | Diagnostic kit to assist with heart valve annulus adjustment |
-
2002
- 2002-12-20 EP EP10154122A patent/EP2181669A3/en not_active Withdrawn
- 2002-12-20 AT AT02795253T patent/ATE462378T1/en not_active IP Right Cessation
- 2002-12-20 AU AU2002360066A patent/AU2002360066B2/en not_active Expired
- 2002-12-20 CA CA2688796A patent/CA2688796A1/en not_active Abandoned
- 2002-12-20 EP EP02795253A patent/EP1458313B1/en not_active Expired - Lifetime
- 2002-12-20 CA CA2507449A patent/CA2507449C/en not_active Expired - Lifetime
- 2002-12-20 EP EP10154120A patent/EP2181668A1/en not_active Withdrawn
- 2002-12-20 US US10/500,188 patent/US8075616B2/en not_active Expired - Lifetime
- 2002-12-20 EP EP10154124A patent/EP2181670A3/en not_active Withdrawn
- 2002-12-20 DE DE60235834T patent/DE60235834D1/en not_active Expired - Lifetime
- 2002-12-20 WO PCT/EP2002/014655 patent/WO2003055417A1/en not_active Application Discontinuation
-
2006
- 2006-01-30 US US11/343,382 patent/US20060184230A1/en not_active Abandoned
-
2009
- 2009-02-02 AU AU2009200373A patent/AU2009200373A1/en not_active Abandoned
Patent Citations (161)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5876419A (en) | 1976-10-02 | 1999-03-02 | Navius Corporation | Stent and method for making a stent |
US4164046A (en) | 1977-05-16 | 1979-08-14 | Cooley Denton | Valve prosthesis |
US4655771A (en) | 1982-04-30 | 1987-04-07 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4954126A (en) | 1982-04-30 | 1990-09-04 | Shepherd Patents S.A. | Prosthesis comprising an expansible or contractile tubular body |
US4655771B1 (en) | 1982-04-30 | 1996-09-10 | Medinvent Ams Sa | Prosthesis comprising an expansible or contractile tubular body |
US4954126B1 (en) | 1982-04-30 | 1996-05-28 | Ams Med Invent S A | Prosthesis comprising an expansible or contractile tubular body |
US5061275A (en) | 1986-04-21 | 1991-10-29 | Medinvent S.A. | Self-expanding prosthesis |
US4877030A (en) * | 1988-02-02 | 1989-10-31 | Andreas Beck | Device for the widening of blood vessels |
US5104404A (en) | 1989-10-02 | 1992-04-14 | Medtronic, Inc. | Articulated stent |
US5209730A (en) | 1989-12-19 | 1993-05-11 | Scimed Life Systems, Inc. | Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor |
US5674280A (en) | 1989-12-21 | 1997-10-07 | Smith & Nephew, Inc. | Valvular annuloplasty rings of a biocompatible low elastic modulus titanium-niobium-zirconium alloy |
US5071407A (en) | 1990-04-12 | 1991-12-10 | Schneider (U.S.A.) Inc. | Radially expandable fixation member |
US5064435A (en) | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US5006106A (en) | 1990-10-09 | 1991-04-09 | Angelchik Jean P | Apparatus and method for laparoscopic implantation of anti-reflux prosthesis |
US5224491A (en) | 1991-01-07 | 1993-07-06 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
US5170802A (en) | 1991-01-07 | 1992-12-15 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
US5163955A (en) | 1991-01-24 | 1992-11-17 | Autogenics | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
US5496275A (en) | 1991-05-15 | 1996-03-05 | Advanced Cardiovascular Systems, Inc. | Low profile dilatation catheter |
US5304131A (en) | 1991-07-15 | 1994-04-19 | Paskar Larry D | Catheter |
US5383892A (en) | 1991-11-08 | 1995-01-24 | Meadox France | Stent for transluminal implantation |
US5531779A (en) | 1992-10-01 | 1996-07-02 | Cardiac Pacemakers, Inc. | Stent-type defibrillation electrode structures |
US5382259A (en) | 1992-10-26 | 1995-01-17 | Target Therapeutics, Inc. | Vasoocclusion coil with attached tubular woven or braided fibrous covering |
US5390661A (en) | 1993-02-03 | 1995-02-21 | W. L. Gore & Associates, Inc. | Introducer for esophageal probes |
US6161543A (en) | 1993-02-22 | 2000-12-19 | Epicor, Inc. | Methods of epicardial ablation for creating a lesion around the pulmonary veins |
US5441515A (en) | 1993-04-23 | 1995-08-15 | Advanced Cardiovascular Systems, Inc. | Ratcheting stent |
US5919233A (en) | 1993-05-12 | 1999-07-06 | Ethicon, Inc. | Flexible implant |
US5476471A (en) | 1993-08-19 | 1995-12-19 | Mind - E.M.S.G. Ltd | Device and method for external correction of insufficient valves in venous junctions |
US5545209A (en) | 1993-09-30 | 1996-08-13 | Texas Petrodet, Inc. | Controlled deployment of a medical device |
US5571135A (en) | 1993-10-22 | 1996-11-05 | Scimed Life Systems Inc. | Stent delivery apparatus and method |
US5607444A (en) * | 1993-12-02 | 1997-03-04 | Advanced Cardiovascular Systems, Inc. | Ostial stent for bifurcations |
US5584879A (en) | 1993-12-13 | 1996-12-17 | Brigham & Women's Hospital | Aortic valve supporting device |
US6051020A (en) | 1994-02-09 | 2000-04-18 | Boston Scientific Technology, Inc. | Bifurcated endoluminal prosthesis |
US6165169A (en) | 1994-03-04 | 2000-12-26 | Ep Technologies, Inc. | Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays |
US5980552A (en) | 1994-03-17 | 1999-11-09 | Medinol Ltd. | Articulated stent |
US5449373A (en) | 1994-03-17 | 1995-09-12 | Medinol Ltd. | Articulated stent |
US6013854A (en) | 1994-06-17 | 2000-01-11 | Terumo Kabushiki Kaisha | Indwelling stent and the method for manufacturing the same |
US5891108A (en) | 1994-09-12 | 1999-04-06 | Cordis Corporation | Drug delivery stent |
US6171329B1 (en) | 1994-12-19 | 2001-01-09 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
EP0727239A2 (en) | 1995-02-14 | 1996-08-21 | Daig Corporation | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
US5591197A (en) | 1995-03-14 | 1997-01-07 | Advanced Cardiovascular Systems, Inc. | Expandable stent forming projecting barbs and method for deploying |
US5575771A (en) * | 1995-04-24 | 1996-11-19 | Walinsky; Paul | Balloon catheter with external guidewire |
US5534007A (en) | 1995-05-18 | 1996-07-09 | Scimed Life Systems, Inc. | Stent deployment catheter with collapsible sheath |
US5593442A (en) | 1995-06-05 | 1997-01-14 | Localmed, Inc. | Radially expansible and articulated vessel scaffold |
US5741274A (en) | 1995-12-22 | 1998-04-21 | Cardio Vascular Concepts, Inc. | Method and apparatus for laparoscopically reinforcing vascular stent-grafts |
US20020111533A1 (en) | 1996-01-02 | 2002-08-15 | Melvin David Boyd | Device and method for restructuring heart chamber geometry |
US20020022880A1 (en) | 1996-01-02 | 2002-02-21 | Melvin David B. | Device and method for restructuring heart chamber geometry |
US6221103B1 (en) | 1996-01-02 | 2001-04-24 | The University Of Cincinnati | Device and method for restructuring heart chamber geometry |
US5690642A (en) * | 1996-01-18 | 1997-11-25 | Cook Incorporated | Rapid exchange stent delivery balloon catheter |
DE19605042A1 (en) | 1996-02-12 | 1998-01-15 | Figulla Hans Reiner Prof Dr Me | Vessel implant for bridging vascular weaknesses |
DE19611755A1 (en) | 1996-03-25 | 1998-02-05 | Joerg Meyer | Expandable blood vessel implant |
US20020052638A1 (en) * | 1996-05-20 | 2002-05-02 | Gholam-Reza Zadno-Azizi | Method and apparatus for emboli containment |
US6027525A (en) | 1996-05-23 | 2000-02-22 | Samsung Electronics., Ltd. | Flexible self-expandable stent and method for making the same |
US5876433A (en) | 1996-05-29 | 1999-03-02 | Ethicon, Inc. | Stent and method of varying amounts of heparin coated thereon to control treatment |
US5713949A (en) | 1996-08-06 | 1998-02-03 | Jayaraman; Swaminathan | Microporous covered stents and method of coating |
US5824071A (en) | 1996-09-16 | 1998-10-20 | Circulation, Inc. | Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion |
US5961545A (en) | 1997-01-17 | 1999-10-05 | Meadox Medicals, Inc. | EPTFE graft-stent composite device |
US5911732A (en) | 1997-03-10 | 1999-06-15 | Johnson & Johnson Interventional Systems, Co. | Articulated expandable intraluminal stent |
US5817126A (en) | 1997-03-17 | 1998-10-06 | Surface Genesis, Inc. | Compound stent |
US5954761A (en) | 1997-03-25 | 1999-09-21 | Intermedics Inc. | Implantable endocardial lead assembly having a stent |
US6071292A (en) | 1997-06-28 | 2000-06-06 | Transvascular, Inc. | Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures |
US20020124857A1 (en) | 1997-08-19 | 2002-09-12 | Intermedics Inc. | Apparatus for imparting physician-determined shapes to implantable tubular devices |
US6123699A (en) | 1997-09-05 | 2000-09-26 | Cordis Webster, Inc. | Omni-directional steerable catheter |
US6006122A (en) | 1997-09-25 | 1999-12-21 | Medtronic, Inc. | Medical electrical lead |
US6203556B1 (en) | 1997-10-29 | 2001-03-20 | Kensey Nash Corporation | Transmyocardial revascularization system and method of use |
US6325826B1 (en) | 1998-01-14 | 2001-12-04 | Advanced Stent Technologies, Inc. | Extendible stent apparatus |
US5935081A (en) | 1998-01-20 | 1999-08-10 | Cardiac Pacemakers, Inc. | Long term monitoring of acceleration signals for optimization of pacing therapy |
US6077296A (en) | 1998-03-04 | 2000-06-20 | Endologix, Inc. | Endoluminal vascular prosthesis |
US6409760B1 (en) | 1998-03-05 | 2002-06-25 | University Of Cincinnati | Device and method for restructuring heart chamber geometry |
US6110100A (en) | 1998-04-22 | 2000-08-29 | Scimed Life Systems, Inc. | System for stress relieving the heart muscle and for controlling heart function |
US6093203A (en) | 1998-05-13 | 2000-07-25 | Uflacker; Renan | Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation |
US6250308B1 (en) | 1998-06-16 | 2001-06-26 | Cardiac Concepts, Inc. | Mitral valve annuloplasty ring and method of implanting |
US6019739A (en) | 1998-06-18 | 2000-02-01 | Baxter International Inc. | Minimally invasive valve annulus sizer |
US6402680B2 (en) | 1998-07-29 | 2002-06-11 | Myocor, Inc. | Stress reduction apparatus and method |
US6264602B1 (en) | 1998-07-29 | 2001-07-24 | Myocor, Inc. | Stress reduction apparatus and method |
US20020019660A1 (en) | 1998-09-05 | 2002-02-14 | Marc Gianotti | Methods and apparatus for a curved stent |
US6402679B1 (en) | 1998-09-21 | 2002-06-11 | Myocor, Inc. | External stress reduction device and method |
US6183411B1 (en) | 1998-09-21 | 2001-02-06 | Myocor, Inc. | External stress reduction device and method |
US6168619B1 (en) | 1998-10-16 | 2001-01-02 | Quanam Medical Corporation | Intravascular stent having a coaxial polymer member and end sleeves |
US6350277B1 (en) | 1999-01-15 | 2002-02-26 | Scimed Life Systems, Inc. | Stents with temporary retaining bands |
WO2000044313A1 (en) | 1999-01-27 | 2000-08-03 | Viacor Incorporated | Cardiac valve procedure methods and devices |
US6161029A (en) | 1999-03-08 | 2000-12-12 | Medtronic, Inc. | Apparatus and method for fixing electrodes in a blood vessel |
US6629534B1 (en) | 1999-04-09 | 2003-10-07 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
US6264691B1 (en) | 1999-04-23 | 2001-07-24 | Shlomo Gabbay | Apparatus and method for supporting a heart valve |
US6669687B1 (en) | 1999-06-25 | 2003-12-30 | Vahid Saadat | Apparatus and methods for treating tissue |
US6626899B2 (en) | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
US20040133192A1 (en) | 1999-06-25 | 2004-07-08 | Houser Russell A. | Apparatus and methods for treating tissue |
US20050043792A1 (en) | 1999-06-29 | 2005-02-24 | Edwards Lifesciences Ag | Device and method for treatment of mitral insufficiency |
WO2001000111A1 (en) | 1999-06-29 | 2001-01-04 | Jan Otto Solem | Device and method for treatment of mitral insufficiency |
US6210432B1 (en) | 1999-06-29 | 2001-04-03 | Jan Otto Solem | Device and method for treatment of mitral insufficiency |
US6997951B2 (en) | 1999-06-30 | 2006-02-14 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
US20060116756A1 (en) | 1999-06-30 | 2006-06-01 | Solem Jan O | Method and device for treatment of mitral insufficiency |
US20040102840A1 (en) | 1999-06-30 | 2004-05-27 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
US7090695B2 (en) | 1999-06-30 | 2006-08-15 | Edwards Lifesciences Ag | Method for treatment of mitral insufficiency |
US20010018611A1 (en) | 1999-06-30 | 2001-08-30 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
US20040039443A1 (en) | 1999-06-30 | 2004-02-26 | Solem Jan Otto | Method and device for treatment of mitral insufficiency |
US20020111647A1 (en) | 1999-11-08 | 2002-08-15 | Khairkhahan Alexander K. | Adjustable left atrial appendage occlusion device |
WO2001050985A1 (en) | 2000-01-14 | 2001-07-19 | Viacor Incorporated | Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same |
US20010044568A1 (en) | 2000-01-31 | 2001-11-22 | Langberg Jonathan J. | Endoluminal ventricular retention |
US20040153146A1 (en) | 2000-01-31 | 2004-08-05 | Randall Lashinski | Methods and apparatus for remodeling an extravascular tissue structure |
US20020103533A1 (en) | 2000-01-31 | 2002-08-01 | Langberg Jonathan J. | Percutaneous mitral annuloplasty and cardiac reinforcement |
US6706065B2 (en) | 2000-01-31 | 2004-03-16 | Ev3 Santa Rosa, Inc. | Endoluminal ventricular retention |
US20040102841A1 (en) | 2000-01-31 | 2004-05-27 | Langberg Jonathan J. | Percutaneous mitral annuloplasty with cardiac rhythm management |
US20020016628A1 (en) | 2000-01-31 | 2002-02-07 | Langberg Jonathan J. | Percutaneous mitral annuloplasty with hemodynamic monitoring |
US6709456B2 (en) | 2000-01-31 | 2004-03-23 | Ev3 Santa Rosa, Inc. | Percutaneous mitral annuloplasty with hemodynamic monitoring |
US20040176840A1 (en) | 2000-01-31 | 2004-09-09 | Langberg Jonathan J. | Percutaneous mitral annuloplasty with hemodynamic monitoring |
US6402781B1 (en) | 2000-01-31 | 2002-06-11 | Mitralife | Percutaneous mitral annuloplasty and cardiac reinforcement |
US20050060030A1 (en) | 2000-01-31 | 2005-03-17 | Lashinski Randall T. | Remotely activated mitral annuloplasty system and methods |
US6989028B2 (en) | 2000-01-31 | 2006-01-24 | Edwards Lifesciences Ag | Medical system and method for remodeling an extravascular tissue structure |
US20060116757A1 (en) | 2000-01-31 | 2006-06-01 | Randall Lashinski | Methods and apparatus for remodeling an extravascular tissue structure |
US20020151961A1 (en) | 2000-01-31 | 2002-10-17 | Lashinski Randall T. | Medical system and method for remodeling an extravascular tissue structure |
US6537314B2 (en) | 2000-01-31 | 2003-03-25 | Ev3 Santa Rosa, Inc. | Percutaneous mitral annuloplasty and cardiac reinforcement |
WO2001054618A1 (en) | 2000-01-31 | 2001-08-02 | Mitralife | Percutaneous mitral annuloplasty and cardiac reinforcement |
US7011682B2 (en) | 2000-01-31 | 2006-03-14 | Edwards Lifesciences Ag | Methods and apparatus for remodeling an extravascular tissue structure |
US6248119B1 (en) | 2000-02-28 | 2001-06-19 | Jan Otto Solem | Device and method for endoscopic vascular surgery |
US6569198B1 (en) | 2000-03-31 | 2003-05-27 | Richard A. Wilson | Mitral or tricuspid valve annuloplasty prosthetic device |
WO2001085061A2 (en) | 2000-05-10 | 2001-11-15 | Acorn Cardiovascular, Inc. | Cardiac disease treatment and device |
US6368348B1 (en) | 2000-05-15 | 2002-04-09 | Shlomo Gabbay | Annuloplasty prosthesis for supporting an annulus of a heart valve |
WO2001089426A1 (en) | 2000-05-25 | 2001-11-29 | Bioring S.A. | Device for shrinking or reinforcing the heart valvular orifices |
WO2002000099A2 (en) | 2000-06-23 | 2002-01-03 | Viacor Incorporated | Automated annular plication for mitral valve repair |
WO2002005888A1 (en) | 2000-06-30 | 2002-01-24 | Viacor Incorporated | Intravascular filter with debris entrapment mechanism |
WO2002001999A2 (en) | 2000-06-30 | 2002-01-10 | Viacor, Incorporated | Method and apparatus for performing a procedure on a cardiac valve |
US6343605B1 (en) | 2000-08-08 | 2002-02-05 | Scimed Life Systems, Inc. | Percutaneous transluminal myocardial implantation device and method |
WO2002034118A2 (en) | 2000-10-27 | 2002-05-02 | Viacor, Inc. | Intracardiovascular access (icvatm) system |
US20020087173A1 (en) | 2000-12-28 | 2002-07-04 | Alferness Clifton A. | Mitral valve constricting device, system and method |
WO2002053206A2 (en) | 2000-12-28 | 2002-07-11 | Cardiac Dimensions, Inc. | Mitral valve constricting device, system and method |
WO2002060352A1 (en) | 2001-01-30 | 2002-08-08 | Ev3 Santa Rosa, Inc. | Medical system and method for remodeling an extravascular tissue structure |
US6810882B2 (en) | 2001-01-30 | 2004-11-02 | Ev3 Santa Rosa, Inc. | Transluminal mitral annuloplasty |
US20050096740A1 (en) | 2001-01-30 | 2005-05-05 | Edwards Lifesciences Ag | Transluminal mitral annuloplasty |
US6790231B2 (en) | 2001-02-05 | 2004-09-14 | Viacor, Inc. | Apparatus and method for reducing mitral regurgitation |
US6656221B2 (en) | 2001-02-05 | 2003-12-02 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
WO2002062263A2 (en) | 2001-02-05 | 2002-08-15 | Viacor, Inc. | Apparatus and method for reducing mitral regurgitation |
WO2002062270A1 (en) | 2001-02-05 | 2002-08-15 | Edwards Lifesciences Ag | Device for treatment of mitral insufficiency |
WO2002062408A2 (en) | 2001-02-05 | 2002-08-15 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
WO2002096275A2 (en) | 2001-03-05 | 2002-12-05 | Viacor, Incorporated | Apparatus and method for reducing mitral regurgitation |
US20020183837A1 (en) | 2001-03-05 | 2002-12-05 | Streeter Richard B. | Apparatus and method for reducing mitral regurgitation |
US20020183841A1 (en) | 2001-03-23 | 2002-12-05 | Cohn William E. | Method and apparatus for reducing mitral regurgitation |
US6890353B2 (en) | 2001-03-23 | 2005-05-10 | Viacor, Inc. | Method and apparatus for reducing mitral regurgitation |
WO2002076284A2 (en) | 2001-03-23 | 2002-10-03 | Viacor, Inc. | Method and apparatus for reducing mitral regurgitation |
US20020183838A1 (en) | 2001-03-29 | 2002-12-05 | Liddicoat John R. | Method and apparatus for improving mitral valve function |
WO2002078576A2 (en) | 2001-03-29 | 2002-10-10 | Viacor, Inc. | Method and apparatus for improving mitral valve function |
US20020188170A1 (en) | 2001-04-27 | 2002-12-12 | Santamore William P. | Prevention of myocardial infarction induced ventricular expansion and remodeling |
US6800090B2 (en) | 2001-05-14 | 2004-10-05 | Cardiac Dimensions, Inc. | Mitral valve therapy device, system and method |
US6676702B2 (en) | 2001-05-14 | 2004-01-13 | Cardiac Dimensions, Inc. | Mitral valve therapy assembly and method |
EP1279382A1 (en) | 2001-07-26 | 2003-01-29 | Jomed Nv | Curved stent |
US20030078654A1 (en) | 2001-08-14 | 2003-04-24 | Taylor Daniel C. | Method and apparatus for improving mitral valve function |
US20030078465A1 (en) | 2001-10-16 | 2003-04-24 | Suresh Pai | Systems for heart treatment |
US20030130730A1 (en) | 2001-10-26 | 2003-07-10 | Cohn William E. | Method and apparatus for reducing mitral regurgitation |
WO2003037171A2 (en) | 2001-11-01 | 2003-05-08 | Cardiac Dimensions, Inc. | Focused compression mitral valve device and method |
US20030083538A1 (en) | 2001-11-01 | 2003-05-01 | Cardiac Dimensions, Inc. | Focused compression mitral valve device and method |
US20030105520A1 (en) | 2001-12-05 | 2003-06-05 | Cardiac Dimensions, Inc. | Anchor and pull mitral valve device and method |
US6908478B2 (en) | 2001-12-05 | 2005-06-21 | Cardiac Dimensions, Inc. | Anchor and pull mitral valve device and method |
US20040267358A1 (en) | 2001-12-11 | 2004-12-30 | Oyvind Reitan | Implant for treating an insufficiency of a heart valve |
US20030120341A1 (en) | 2001-12-21 | 2003-06-26 | Hani Shennib | Devices and methods of repairing cardiac valves |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US20030135267A1 (en) | 2002-01-11 | 2003-07-17 | Solem Jan Otto | Delayed memory device |
US20060184230A1 (en) | 2002-01-11 | 2006-08-17 | Solem Jan O | Delayed memory device |
US20040019377A1 (en) | 2002-01-14 | 2004-01-29 | Taylor Daniel C. | Method and apparatus for reducing mitral regurgitation |
US20030144697A1 (en) | 2002-01-30 | 2003-07-31 | Cardiac Dimensions, Inc. | Fixed length anchor and pull mitral valve device and method |
US6797001B2 (en) | 2002-03-11 | 2004-09-28 | Cardiac Dimensions, Inc. | Device, assembly and method for mitral valve repair |
US6824562B2 (en) | 2002-05-08 | 2004-11-30 | Cardiac Dimensions, Inc. | Body lumen device anchor, device and assembly |
WO2004084746A2 (en) | 2003-03-26 | 2004-10-07 | Reitan Oeyvind M D | Device for treatment of an insufficiency of a heart valve |
Non-Patent Citations (18)
Title |
---|
Brennan, Suite of Shape-Memory Polymers, http:///pubs.acs.org/cen/topstory/7906notw1.html, News of the Week Materials, Feb. 5, 2001, vol. 79, No. 6, Cenear 79 6 pp. 5, ISSN 0009-2347, three sheets. |
Buchanan et al., Circumferential Suture of the Mitral Annulus for Correction of Mitral Regurgitation in Dogs, Veterinary Surgery, 27: 182-193, 1998. |
Buchanan JW, Sammarco CD, Circumferential Suture of the Mitral Annulus for Correction of Mitral Regurgitation in Dogs, PubMed, Excerpt from Vet Surg May-Jun. 1998; 27(3): 183-93, abstract, one sheet. |
Civjan et al., Potential applications of certain nickel-titanium (nitinol) alloys, PubMed, Excerpt from J Dent Res Jan.-Feb. 1975;54(1):89-96, one sheet. |
European Patent Office Office action dated Dec. 22, 2003 for Application No. 00 946 661.6-2310, 4 sheets. |
European Search Report dated Mar. 9, 2010. |
International Search Report dated Apr. 23, 2002 for International application No. PCT/EP01/10371, 4 sheets. |
International Search Report dated Jun. 5, 2003 for International application No. PCT/EP 02/14655, 7 sheets. |
International Search Report dated Mar. 15, 2000 for National application No. SE 9902455-6, 3 sheets. |
International Search Report dated Oct. 9, 2002 for National application No. SE 0200073-5, 5 sheets. |
Kotian, Shape memory effect and super elasticity it's dental applications, PubMed, Excerpt from Indian J Dent Res Apr.-Jun. 2001; 12(2):101-4, one sheet. |
Kuo et al., The use of nickel-titanium alloy in orthopedic surgery in China, PubMed, Excerpt from Orthopedics Jan. 1989; 12(1):111-6, one sheet. |
Laaksovirta et al., Expansion and bioabsorption of the self-reinforced lactic and glycolic acid copolymer prostatic spiral stent, PubMed, Excerpt from J Urol Sep. 2001; 166(3):919-22, one sheet. |
Liu et al., Sutural expansion osteogenesis for management of the bony-tissue defect in cleft palate repair: experimental studies in dogs, PubMed, Excerpt from Plast Reconstr Surg May 2000; 105(6):2012-25; discussion 2026-7, two sheets. |
Stikeman, Total Recall, An MIT Enterprise Technology Review-Innovation, Jun. 2001, two sheets. |
Stikeman, Total Recall, An MIT Enterprise Technology Review—Innovation, Jun. 2001, two sheets. |
Written Opinion dated Nov. 8, 2002 for International application No. PCT/EP01/10371, 14 sheets. |
Yoneyama et al., Super-elastic property of Ti-Ni alloy for use in dentistry, PubMed, Excerpt from Front Med Biol Eng 2000; 10(2):97-103, one sheet. |
Cited By (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10561498B2 (en) | 2005-03-17 | 2020-02-18 | Valtech Cardio, Ltd. | Mitral valve treatment techniques |
US9526613B2 (en) | 2005-03-17 | 2016-12-27 | Valtech Cardio Ltd. | Mitral valve treatment techniques |
US11497605B2 (en) | 2005-03-17 | 2022-11-15 | Valtech Cardio Ltd. | Mitral valve treatment techniques |
US12035898B2 (en) | 2005-04-22 | 2024-07-16 | Edwards Lifesciences Corporation | Catheter-based tissue remodeling devices and methods |
US10695046B2 (en) | 2005-07-05 | 2020-06-30 | Edwards Lifesciences Corporation | Tissue anchor and anchoring system |
US10357366B2 (en) | 2006-12-05 | 2019-07-23 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9351830B2 (en) | 2006-12-05 | 2016-05-31 | Valtech Cardio, Ltd. | Implant and anchor placement |
US10363137B2 (en) | 2006-12-05 | 2019-07-30 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US11259924B2 (en) | 2006-12-05 | 2022-03-01 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US11344414B2 (en) | 2006-12-05 | 2022-05-31 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US9974653B2 (en) | 2006-12-05 | 2018-05-22 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9883943B2 (en) | 2006-12-05 | 2018-02-06 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9872769B2 (en) | 2006-12-05 | 2018-01-23 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US8926695B2 (en) | 2006-12-05 | 2015-01-06 | Valtech Cardio, Ltd. | Segmented ring placement |
US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
US11660191B2 (en) | 2008-03-10 | 2023-05-30 | Edwards Lifesciences Corporation | Method to reduce mitral regurgitation |
US9192472B2 (en) | 2008-06-16 | 2015-11-24 | Valtec Cardio, Ltd. | Annuloplasty devices and methods of delivery therefor |
US12138168B2 (en) | 2008-12-22 | 2024-11-12 | Edwards Lifesciences Innovation (Israel) Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US10470882B2 (en) | 2008-12-22 | 2019-11-12 | Valtech Cardio, Ltd. | Closure element for use with annuloplasty structure |
US9713530B2 (en) | 2008-12-22 | 2017-07-25 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US10856986B2 (en) | 2008-12-22 | 2020-12-08 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US9662209B2 (en) | 2008-12-22 | 2017-05-30 | Valtech Cardio, Ltd. | Contractible annuloplasty structures |
US11116634B2 (en) | 2008-12-22 | 2021-09-14 | Valtech Cardio Ltd. | Annuloplasty implants |
US10517719B2 (en) | 2008-12-22 | 2019-12-31 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US11202709B2 (en) | 2009-02-17 | 2021-12-21 | Valtech Cardio Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US10350068B2 (en) | 2009-02-17 | 2019-07-16 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US9968452B2 (en) | 2009-05-04 | 2018-05-15 | Valtech Cardio, Ltd. | Annuloplasty ring delivery cathethers |
US10548729B2 (en) | 2009-05-04 | 2020-02-04 | Valtech Cardio, Ltd. | Deployment techniques for annuloplasty ring and over-wire rotation tool |
US11076958B2 (en) | 2009-05-04 | 2021-08-03 | Valtech Cardio, Ltd. | Annuloplasty ring delivery catheters |
US11844665B2 (en) | 2009-05-04 | 2023-12-19 | Edwards Lifesciences Innovation (Israel) Ltd. | Deployment techniques for annuloplasty structure |
US11185412B2 (en) | 2009-05-04 | 2021-11-30 | Valtech Cardio Ltd. | Deployment techniques for annuloplasty implants |
US11766327B2 (en) | 2009-05-04 | 2023-09-26 | Edwards Lifesciences Innovation (Israel) Ltd. | Implantation of repair chords in the heart |
US9474606B2 (en) | 2009-05-04 | 2016-10-25 | Valtech Cardio, Ltd. | Over-wire implant contraction methods |
US9937042B2 (en) | 2009-05-07 | 2018-04-10 | Valtech Cardio, Ltd. | Multiple anchor delivery tool |
US11723774B2 (en) | 2009-05-07 | 2023-08-15 | Edwards Lifesciences Innovation (Israel) Ltd. | Multiple anchor delivery tool |
US9592122B2 (en) | 2009-05-07 | 2017-03-14 | Valtech Cardio, Ltd | Annuloplasty ring with intra-ring anchoring |
US10856987B2 (en) | 2009-05-07 | 2020-12-08 | Valtech Cardio, Ltd. | Multiple anchor delivery tool |
US9119719B2 (en) | 2009-05-07 | 2015-09-01 | Valtech Cardio, Ltd. | Annuloplasty ring with intra-ring anchoring |
US11141271B2 (en) | 2009-10-29 | 2021-10-12 | Valtech Cardio Ltd. | Tissue anchor for annuloplasty device |
US10751184B2 (en) | 2009-10-29 | 2020-08-25 | Valtech Cardio, Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US9414921B2 (en) | 2009-10-29 | 2016-08-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US12097118B2 (en) | 2009-10-29 | 2024-09-24 | Edwards Lifesciences Innovation (Israel) Ltd. | Tissue anchor for heart implant |
US11617652B2 (en) | 2009-10-29 | 2023-04-04 | Edwards Lifesciences Innovation (Israel) Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US10098737B2 (en) | 2009-10-29 | 2018-10-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9968454B2 (en) | 2009-10-29 | 2018-05-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of artificial chordae |
US10492909B2 (en) | 2009-12-02 | 2019-12-03 | Valtech Cardio, Ltd. | Tool for actuating an adjusting mechanism |
US9622861B2 (en) | 2009-12-02 | 2017-04-18 | Valtech Cardio, Ltd. | Tool for actuating an adjusting mechanism |
US11602434B2 (en) | 2009-12-02 | 2023-03-14 | Edwards Lifesciences Innovation (Israel) Ltd. | Systems and methods for tissue adjustment |
US10231831B2 (en) | 2009-12-08 | 2019-03-19 | Cardiovalve Ltd. | Folding ring implant for heart valve |
US11351026B2 (en) | 2009-12-08 | 2022-06-07 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
US10548726B2 (en) | 2009-12-08 | 2020-02-04 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
US10660751B2 (en) | 2009-12-08 | 2020-05-26 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11839541B2 (en) | 2009-12-08 | 2023-12-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11141268B2 (en) | 2009-12-08 | 2021-10-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper and lower skirts |
US10405978B2 (en) | 2010-01-22 | 2019-09-10 | 4Tech Inc. | Tricuspid valve repair using tension |
US10058323B2 (en) | 2010-01-22 | 2018-08-28 | 4 Tech Inc. | Tricuspid valve repair using tension |
US10433963B2 (en) | 2010-01-22 | 2019-10-08 | 4Tech Inc. | Tissue anchor and delivery tool |
US10238491B2 (en) | 2010-01-22 | 2019-03-26 | 4Tech Inc. | Tricuspid valve repair using tension |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US10792152B2 (en) | 2011-06-23 | 2020-10-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US12138165B2 (en) | 2011-06-23 | 2024-11-12 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty implants |
US9775709B2 (en) | 2011-11-04 | 2017-10-03 | Valtech Cardio, Ltd. | Implant having multiple adjustable mechanisms |
US10363136B2 (en) | 2011-11-04 | 2019-07-30 | Valtech Cardio, Ltd. | Implant having multiple adjustment mechanisms |
US8858623B2 (en) * | 2011-11-04 | 2014-10-14 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
US11197759B2 (en) | 2011-11-04 | 2021-12-14 | Valtech Cardio Ltd. | Implant having multiple adjusting mechanisms |
US12274620B2 (en) | 2011-11-04 | 2025-04-15 | Edwards Lifesciences Innovation (Israel) Ltd. | Implant having multiple adjusting mechanisms |
US9265608B2 (en) | 2011-11-04 | 2016-02-23 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
US10568738B2 (en) | 2011-11-08 | 2020-02-25 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US9724192B2 (en) | 2011-11-08 | 2017-08-08 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US11857415B2 (en) | 2011-11-08 | 2024-01-02 | Edwards Lifesciences Innovation (Israel) Ltd. | Controlled steering functionality for implant-delivery tool |
US11969348B2 (en) | 2011-12-12 | 2024-04-30 | Edwards Lifesciences Corporation | Cardiac valve replacement |
US11395648B2 (en) | 2012-09-29 | 2022-07-26 | Edwards Lifesciences Corporation | Plication lock delivery system and method of use thereof |
US9949828B2 (en) | 2012-10-23 | 2018-04-24 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US11344310B2 (en) | 2012-10-23 | 2022-05-31 | Valtech Cardio Ltd. | Percutaneous tissue anchor techniques |
US11890190B2 (en) | 2012-10-23 | 2024-02-06 | Edwards Lifesciences Innovation (Israel) Ltd. | Location indication system for implant-delivery tool |
US12274618B2 (en) | 2012-10-23 | 2025-04-15 | Edwards Lifesciences Innovation (Israel) Ltd. | Location indication system for implant-delivery tool |
US10376266B2 (en) | 2012-10-23 | 2019-08-13 | Valtech Cardio, Ltd. | Percutaneous tissue anchor techniques |
US10893939B2 (en) | 2012-10-23 | 2021-01-19 | Valtech Cardio, Ltd. | Controlled steering functionality for implant delivery tool |
US10610360B2 (en) | 2012-12-06 | 2020-04-07 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
US11583400B2 (en) | 2012-12-06 | 2023-02-21 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for guided advancement of a tool |
US9730793B2 (en) | 2012-12-06 | 2017-08-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
US12251307B2 (en) | 2012-12-06 | 2025-03-18 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for guide-wire based advancement of a tool |
US9788948B2 (en) | 2013-01-09 | 2017-10-17 | 4 Tech Inc. | Soft tissue anchors and implantation techniques |
US10449050B2 (en) | 2013-01-09 | 2019-10-22 | 4 Tech Inc. | Soft tissue depth-finding tool |
US9693865B2 (en) | 2013-01-09 | 2017-07-04 | 4 Tech Inc. | Soft tissue depth-finding tool |
US11844691B2 (en) | 2013-01-24 | 2023-12-19 | Cardiovalve Ltd. | Partially-covered prosthetic valves |
US11793505B2 (en) | 2013-02-26 | 2023-10-24 | Edwards Lifesciences Corporation | Devices and methods for percutaneous tricuspid valve repair |
US10918374B2 (en) | 2013-02-26 | 2021-02-16 | Edwards Lifesciences Corporation | Devices and methods for percutaneous tricuspid valve repair |
US9907681B2 (en) | 2013-03-14 | 2018-03-06 | 4Tech Inc. | Stent with tether interface |
US11534583B2 (en) | 2013-03-14 | 2022-12-27 | Valtech Cardio Ltd. | Guidewire feeder |
US10449333B2 (en) | 2013-03-14 | 2019-10-22 | Valtech Cardio, Ltd. | Guidewire feeder |
US12156981B2 (en) | 2013-03-14 | 2024-12-03 | Edwards Lifesciences Innovation (Israel) Ltd. | Guidewire feeder |
US10682232B2 (en) | 2013-03-15 | 2020-06-16 | Edwards Lifesciences Corporation | Translation catheters, systems, and methods of use thereof |
US11890194B2 (en) | 2013-03-15 | 2024-02-06 | Edwards Lifesciences Corporation | Translation catheters, systems, and methods of use thereof |
US11744573B2 (en) | 2013-08-31 | 2023-09-05 | Edwards Lifesciences Corporation | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US10918373B2 (en) | 2013-08-31 | 2021-02-16 | Edwards Lifesciences Corporation | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US11065001B2 (en) | 2013-10-23 | 2021-07-20 | Valtech Cardio, Ltd. | Anchor magazine |
US11766263B2 (en) | 2013-10-23 | 2023-09-26 | Edwards Lifesciences Innovation (Israel) Ltd. | Anchor magazine |
US10299793B2 (en) | 2013-10-23 | 2019-05-28 | Valtech Cardio, Ltd. | Anchor magazine |
US10022114B2 (en) | 2013-10-30 | 2018-07-17 | 4Tech Inc. | Percutaneous tether locking |
US10052095B2 (en) | 2013-10-30 | 2018-08-21 | 4Tech Inc. | Multiple anchoring-point tension system |
US10265170B2 (en) | 2013-12-26 | 2019-04-23 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US9610162B2 (en) | 2013-12-26 | 2017-04-04 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US10973637B2 (en) | 2013-12-26 | 2021-04-13 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US9801720B2 (en) | 2014-06-19 | 2017-10-31 | 4Tech Inc. | Cardiac tissue cinching |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US10195030B2 (en) | 2014-10-14 | 2019-02-05 | Valtech Cardio, Ltd. | Leaflet-restraining techniques |
US11071628B2 (en) | 2014-10-14 | 2021-07-27 | Valtech Cardio, Ltd. | Leaflet-restraining techniques |
US9907547B2 (en) | 2014-12-02 | 2018-03-06 | 4Tech Inc. | Off-center tissue anchors |
US11801135B2 (en) | 2015-02-05 | 2023-10-31 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US10925610B2 (en) | 2015-03-05 | 2021-02-23 | Edwards Lifesciences Corporation | Devices for treating paravalvular leakage and methods use thereof |
US11020227B2 (en) | 2015-04-30 | 2021-06-01 | Valtech Cardio, Ltd. | Annuloplasty technologies |
US10765514B2 (en) | 2015-04-30 | 2020-09-08 | Valtech Cardio, Ltd. | Annuloplasty technologies |
US12138164B2 (en) | 2015-04-30 | 2024-11-12 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty technologies |
US11660192B2 (en) | 2015-12-30 | 2023-05-30 | Edwards Lifesciences Corporation | System and method for reshaping heart |
US10751182B2 (en) | 2015-12-30 | 2020-08-25 | Edwards Lifesciences Corporation | System and method for reshaping right heart |
US10828160B2 (en) | 2015-12-30 | 2020-11-10 | Edwards Lifesciences Corporation | System and method for reducing tricuspid regurgitation |
US11890193B2 (en) | 2015-12-30 | 2024-02-06 | Edwards Lifesciences Corporation | System and method for reducing tricuspid regurgitation |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US10702274B2 (en) | 2016-05-26 | 2020-07-07 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
US11540835B2 (en) | 2016-05-26 | 2023-01-03 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
US10226342B2 (en) | 2016-07-08 | 2019-03-12 | Valtech Cardio, Ltd. | Adjustable annuloplasty device with alternating peaks and troughs |
US12102533B2 (en) | 2016-07-08 | 2024-10-01 | Edwards Lifesciences Innovation (Israel) Ltd. | Adjustable annuloplasty device with alternating peaks and troughs |
US10959845B2 (en) | 2016-07-08 | 2021-03-30 | Valtech Cardio, Ltd. | Adjustable annuloplasty device with alternating peaks and troughs |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US11779458B2 (en) | 2016-08-10 | 2023-10-10 | Cardiovalve Ltd. | Prosthetic valve with leaflet connectors |
US11045627B2 (en) | 2017-04-18 | 2021-06-29 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US11883611B2 (en) | 2017-04-18 | 2024-01-30 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US12232958B2 (en) | 2017-08-03 | 2025-02-25 | Cardiovalve Ltd. | Prosthetic heart valve |
US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US10835221B2 (en) | 2017-11-02 | 2020-11-17 | Valtech Cardio, Ltd. | Implant-cinching devices and systems |
US11832784B2 (en) | 2017-11-02 | 2023-12-05 | Edwards Lifesciences Innovation (Israel) Ltd. | Implant-cinching devices and systems |
US11135062B2 (en) | 2017-11-20 | 2021-10-05 | Valtech Cardio Ltd. | Cinching of dilated heart muscle |
US11779463B2 (en) | 2018-01-24 | 2023-10-10 | Edwards Lifesciences Innovation (Israel) Ltd. | Contraction of an annuloplasty structure |
US11666442B2 (en) | 2018-01-26 | 2023-06-06 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for facilitating heart valve tethering and chord replacement |
US11026791B2 (en) | 2018-03-20 | 2021-06-08 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
US11285003B2 (en) | 2018-03-20 | 2022-03-29 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11931261B2 (en) | 2018-03-20 | 2024-03-19 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11701228B2 (en) | 2018-03-20 | 2023-07-18 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
US11890191B2 (en) | 2018-07-12 | 2024-02-06 | Edwards Lifesciences Innovation (Israel) Ltd. | Fastener and techniques therefor |
US11123191B2 (en) | 2018-07-12 | 2021-09-21 | Valtech Cardio Ltd. | Annuloplasty systems and locking tools therefor |
US12226096B2 (en) | 2019-05-29 | 2025-02-18 | Edwards Lifesciences Innovation (Israel) Ltd. | Tissue anchor handling systems and methods |
US12208006B2 (en) | 2019-09-25 | 2025-01-28 | Edwards Lifesciences Corporation | Constricting a cardiac valve annulus using a cord that has a loop portion and a single second portion |
US11819411B2 (en) | 2019-10-29 | 2023-11-21 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty and tissue anchor technologies |
US12023247B2 (en) | 2020-05-20 | 2024-07-02 | Edwards Lifesciences Corporation | Reducing the diameter of a cardiac valve annulus with independent control over each of the anchors that are launched into the annulus |
US12310575B2 (en) | 2023-04-19 | 2025-05-27 | Cardiovalve Ltd. | Helical anchor implantation |
Also Published As
Publication number | Publication date |
---|---|
WO2003055417A1 (en) | 2003-07-10 |
EP2181669A2 (en) | 2010-05-05 |
DE60235834D1 (en) | 2010-05-12 |
AU2002360066B2 (en) | 2008-11-06 |
EP2181670A2 (en) | 2010-05-05 |
CA2688796A1 (en) | 2003-07-10 |
US20050080483A1 (en) | 2005-04-14 |
EP1458313B1 (en) | 2010-03-31 |
CA2507449A1 (en) | 2003-07-10 |
AU2009200373A1 (en) | 2009-02-19 |
EP2181668A1 (en) | 2010-05-05 |
EP1458313A1 (en) | 2004-09-22 |
ATE462378T1 (en) | 2010-04-15 |
EP2181670A3 (en) | 2011-05-25 |
US20060184230A1 (en) | 2006-08-17 |
CA2507449C (en) | 2012-12-18 |
EP2181669A3 (en) | 2011-11-23 |
AU2002360066A1 (en) | 2003-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8075616B2 (en) | Apparatus for applying a compressive load on body tissue | |
US8709074B2 (en) | Method and device for treatment of mitral insufficiency | |
US7192443B2 (en) | Delayed memory device | |
JP7516587B2 (en) | Tetherable stent graft and delivery system | |
US20220168091A1 (en) | Stent graft with fenestration lock and methods of use | |
US7316706B2 (en) | Tensioning device, system, and method for treating mitral valve regurgitation | |
US20050177228A1 (en) | Device for changing the shape of the mitral annulus | |
JP4691017B2 (en) | Body tissue remodeling method and apparatus | |
US20190231568A1 (en) | Delivery System For Radially Constricting A Stent Graft And Method Of Use | |
US20080065205A1 (en) | Retrievable implant and method for treatment of mitral regurgitation | |
CA2548541A1 (en) | Device for changing the shape of the mitral annulus | |
US20100030330A1 (en) | Device and method for mitral valve repair | |
US20070185572A1 (en) | Coiled implant for mitral valve repair | |
JP2005510293A (en) | Intravascular aneurysm repair system | |
JP2011183218A (en) | Endovascular aneurysm repair system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EDWARDS LIFESCIENCES AG, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOLEM, JAN OTTO;KIMBLAD, PER-OLA;VON OEPEN, RANDOLF;AND OTHERS;SIGNING DATES FROM 20040619 TO 20040623;REEL/FRAME:024949/0871 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 11.5 YR SURCHARGE- LATE PMT W/IN 6 MO, LARGE ENTITY (ORIGINAL EVENT CODE: M1556); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |