US8221612B2 - Biosensor electrode mediators for regeneration of cofactors - Google Patents
Biosensor electrode mediators for regeneration of cofactors Download PDFInfo
- Publication number
- US8221612B2 US8221612B2 US12/242,760 US24276008A US8221612B2 US 8221612 B2 US8221612 B2 US 8221612B2 US 24276008 A US24276008 A US 24276008A US 8221612 B2 US8221612 B2 US 8221612B2
- Authority
- US
- United States
- Prior art keywords
- electrode
- sample
- electrodes
- working electrode
- mediator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 230000008929 regeneration Effects 0.000 title 1
- 238000011069 regeneration method Methods 0.000 title 1
- 102000004190 Enzymes Human genes 0.000 claims abstract description 64
- 108090000790 Enzymes Proteins 0.000 claims abstract description 64
- 238000006243 chemical reaction Methods 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 29
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 19
- 239000008103 glucose Substances 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 13
- 125000000217 alkyl group Chemical group 0.000 claims description 11
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 claims description 10
- 125000001072 heteroaryl group Chemical group 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 125000004104 aryloxy group Chemical group 0.000 claims description 4
- 125000006575 electron-withdrawing group Chemical group 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 239000005864 Sulphur Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 125000000524 functional group Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- ZTEZLVFOLHEFQP-UHFFFAOYSA-N nickel 1,10-phenanthroline-2,3-dione Chemical compound N=1C(C(C=C2C=CC3=CC=CN=C3C12)=O)=O.[Ni] ZTEZLVFOLHEFQP-UHFFFAOYSA-N 0.000 claims 1
- 125000006850 spacer group Chemical group 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 29
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 abstract description 21
- 230000001419 dependent effect Effects 0.000 abstract description 16
- 230000004044 response Effects 0.000 abstract description 12
- 101710088194 Dehydrogenase Proteins 0.000 abstract description 8
- 125000003396 thiol group Chemical group [H]S* 0.000 abstract description 8
- 230000005764 inhibitory process Effects 0.000 abstract description 3
- 230000003834 intracellular effect Effects 0.000 abstract description 3
- XJLXINKUBYWONI-NNYOXOHSSA-O NADP(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-O 0.000 abstract 2
- 239000000976 ink Substances 0.000 description 37
- 238000012360 testing method Methods 0.000 description 33
- 239000010410 layer Substances 0.000 description 32
- 239000000203 mixture Substances 0.000 description 30
- 239000000523 sample Substances 0.000 description 27
- VDXUUGGONYMWFW-UHFFFAOYSA-N 1,10-phenanthroline-2,3-dione Chemical compound C1=CN=C2C3=NC(=O)C(=O)C=C3C=CC2=C1 VDXUUGGONYMWFW-UHFFFAOYSA-N 0.000 description 26
- 239000012491 analyte Substances 0.000 description 26
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 25
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 21
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 description 20
- 230000000694 effects Effects 0.000 description 20
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 16
- 230000002829 reductive effect Effects 0.000 description 16
- 238000009472 formulation Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- 239000000945 filler Substances 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 12
- WHBMMWSBFZVSSR-GSVOUGTGSA-M (R)-3-hydroxybutyrate Chemical compound C[C@@H](O)CC([O-])=O WHBMMWSBFZVSSR-GSVOUGTGSA-M 0.000 description 11
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 11
- 229910021607 Silver chloride Inorganic materials 0.000 description 11
- 238000001914 filtration Methods 0.000 description 11
- 229950006238 nadide Drugs 0.000 description 11
- -1 pyronyl Chemical group 0.000 description 11
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 11
- CCBICDLNWJRFPO-UHFFFAOYSA-N 2,6-dichloroindophenol Chemical compound C1=CC(O)=CC=C1N=C1C=C(Cl)C(=O)C(Cl)=C1 CCBICDLNWJRFPO-UHFFFAOYSA-N 0.000 description 10
- GYEMOVUSSDZYLQ-UHFFFAOYSA-N 4-methylcyclohexa-3,5-diene-1,2-dione Chemical compound CC1=CC(=O)C(=O)C=C1 GYEMOVUSSDZYLQ-UHFFFAOYSA-N 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 10
- 239000004020 conductor Substances 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 229960003966 nicotinamide Drugs 0.000 description 10
- 235000005152 nicotinamide Nutrition 0.000 description 10
- 239000011570 nicotinamide Substances 0.000 description 10
- 102000034279 3-hydroxybutyrate dehydrogenases Human genes 0.000 description 9
- 108090000124 3-hydroxybutyrate dehydrogenases Proteins 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 8
- KCALAFIVPCAXJI-UHFFFAOYSA-N 1,10-phenanthroline-5,6-dione Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CN=C3C2=N1 KCALAFIVPCAXJI-UHFFFAOYSA-N 0.000 description 7
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 231100000673 dose–response relationship Toxicity 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000007650 screen-printing Methods 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- ZYDGCYWJDWIJCS-UHFFFAOYSA-N 1-methoxyphenazine Chemical compound C1=CC=C2N=C3C(OC)=CC=CC3=NC2=C1 ZYDGCYWJDWIJCS-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- HWYNRVXFYFQSID-UHFFFAOYSA-M benzo[a]phenoxazin-9-ylidene(dimethyl)azanium;chloride Chemical compound [Cl-].C1=CC=C2C(N=C3C=CC(C=C3O3)=[N+](C)C)=C3C=CC2=C1 HWYNRVXFYFQSID-UHFFFAOYSA-M 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 102100034289 Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 Human genes 0.000 description 5
- 101000641031 Homo sapiens Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 Proteins 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 230000001351 cycling effect Effects 0.000 description 5
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 150000004676 glycans Chemical class 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920000728 polyester Polymers 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 5
- 229940124272 protein stabilizer Drugs 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- JDULWGUNBZZVHN-UHFFFAOYSA-N 1,7-phenanthroline-2,3-dione Chemical compound C1=CC=C2C3=NC(=O)C(=O)C=C3C=CC2=N1 JDULWGUNBZZVHN-UHFFFAOYSA-N 0.000 description 4
- ZALRFQCZVVOIPI-UHFFFAOYSA-N C=C1C=CC(=[Y])C=C1.C=C1C=CC=CC1=[Y] Chemical compound C=C1C=CC(=[Y])C=C1.C=C1C=CC=CC1=[Y] ZALRFQCZVVOIPI-UHFFFAOYSA-N 0.000 description 4
- 229920002907 Guar gum Polymers 0.000 description 4
- 102000004316 Oxidoreductases Human genes 0.000 description 4
- 108090000854 Oxidoreductases Proteins 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 239000008135 aqueous vehicle Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000000665 guar gum Substances 0.000 description 4
- 235000010417 guar gum Nutrition 0.000 description 4
- 229960002154 guar gum Drugs 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 125000001624 naphthyl group Chemical group 0.000 description 4
- 229920000915 polyvinyl chloride Polymers 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- 125000004076 pyridyl group Chemical group 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- PSPFRKHKZRLPGV-UHFFFAOYSA-N 4,7-phenanthroline-1,2-dione Chemical compound N1=CC=CC2=C(C(C(=O)C=N3)=O)C3=CC=C21 PSPFRKHKZRLPGV-UHFFFAOYSA-N 0.000 description 3
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 3
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 108020005199 Dehydrogenases Proteins 0.000 description 3
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 3
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 3
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 3
- 229940072056 alginate Drugs 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 229920002301 cellulose acetate Polymers 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920001059 synthetic polymer Polymers 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- SYJPAKDNFZLSMV-HYXAFXHYSA-N (Z)-2-methylpropanal oxime Chemical compound CC(C)\C=N/O SYJPAKDNFZLSMV-HYXAFXHYSA-N 0.000 description 2
- VUEZBQJWLDBIDE-UHFFFAOYSA-N 3-ethenyl-1,3-oxazolidin-2-one Chemical compound C=CN1CCOC1=O VUEZBQJWLDBIDE-UHFFFAOYSA-N 0.000 description 2
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 2
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- 102100039702 Alcohol dehydrogenase class-3 Human genes 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920000161 Locust bean gum Polymers 0.000 description 2
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 2
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 2
- 239000000370 acceptor Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical compound BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 125000001589 carboacyl group Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 235000010418 carrageenan Nutrition 0.000 description 2
- 239000000679 carrageenan Substances 0.000 description 2
- 229920001525 carrageenan Polymers 0.000 description 2
- 229940113118 carrageenan Drugs 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 238000002484 cyclic voltammetry Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 108010051015 glutathione-independent formaldehyde dehydrogenase Proteins 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- JDNTWHVOXJZDSN-UHFFFAOYSA-N iodoacetic acid Chemical compound OC(=O)CI JDNTWHVOXJZDSN-UHFFFAOYSA-N 0.000 description 2
- 239000013038 irreversible inhibitor Substances 0.000 description 2
- 235000010420 locust bean gum Nutrition 0.000 description 2
- 239000000711 locust bean gum Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- IYRGXJIJGHOCFS-UHFFFAOYSA-N neocuproine Chemical compound C1=C(C)N=C2C3=NC(C)=CC=C3C=CC2=C1 IYRGXJIJGHOCFS-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 125000005561 phenanthryl group Chemical group 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 125000001725 pyrenyl group Chemical group 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 1
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 1
- WHBMMWSBFZVSSR-VKHMYHEASA-N (S)-3-hydroxybutyric acid Chemical compound C[C@H](O)CC(O)=O WHBMMWSBFZVSSR-VKHMYHEASA-N 0.000 description 1
- WOAHJDHKFWSLKE-UHFFFAOYSA-N 1,2-benzoquinone Chemical class O=C1C=CC=CC1=O WOAHJDHKFWSLKE-UHFFFAOYSA-N 0.000 description 1
- VRGCYEIGVVTZCC-UHFFFAOYSA-N 3,4,5,6-tetrachlorocyclohexa-3,5-diene-1,2-dione Chemical compound ClC1=C(Cl)C(=O)C(=O)C(Cl)=C1Cl VRGCYEIGVVTZCC-UHFFFAOYSA-N 0.000 description 1
- SJZRECIVHVDYJC-UHFFFAOYSA-M 4-hydroxybutyrate Chemical compound OCCCC([O-])=O SJZRECIVHVDYJC-UHFFFAOYSA-M 0.000 description 1
- ZBCATMYQYDCTIZ-UHFFFAOYSA-N 4-methylcatechol Chemical compound CC1=CC=C(O)C(O)=C1 ZBCATMYQYDCTIZ-UHFFFAOYSA-N 0.000 description 1
- 125000006163 5-membered heteroaryl group Chemical group 0.000 description 1
- 125000006164 6-membered heteroaryl group Chemical group 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical class CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- CTDZDOMJVSKASZ-UHFFFAOYSA-N C=C1C(=[Y])C2=CC=CN=C2/C2=N\C=C/C=C\12.C=C1C=CC(=[Y])C=C1.[1*].[2*] Chemical compound C=C1C(=[Y])C2=CC=CN=C2/C2=N\C=C/C=C\12.C=C1C=CC(=[Y])C=C1.[1*].[2*] CTDZDOMJVSKASZ-UHFFFAOYSA-N 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 101001066181 Homo sapiens 6-phosphogluconolactonase Proteins 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 150000001204 N-oxides Chemical class 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 238000007361 Wohl-Aue reaction Methods 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004644 alkyl sulfinyl group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 125000004391 aryl sulfonyl group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000008364 bulk solution Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920006184 cellulose methylcellulose Polymers 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229940125773 compound 10 Drugs 0.000 description 1
- 229940125797 compound 12 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940125532 enzyme inhibitor Drugs 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 125000004438 haloalkoxy group Chemical group 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 125000003387 indolinyl group Chemical group N1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000004594 isoindolinyl group Chemical group C1(NCC2=CC=CC=C12)* 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- ZLVXBBHTMQJRSX-VMGNSXQWSA-N jdtic Chemical compound C1([C@]2(C)CCN(C[C@@H]2C)C[C@H](C(C)C)NC(=O)[C@@H]2NCC3=CC(O)=CC=C3C2)=CC=CC(O)=C1 ZLVXBBHTMQJRSX-VMGNSXQWSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000007644 letterpress printing Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- OIRDBPQYVWXNSJ-UHFFFAOYSA-N methyl trifluoromethansulfonate Chemical compound COS(=O)(=O)C(F)(F)F OIRDBPQYVWXNSJ-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 125000004043 oxo group Chemical group O=* 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 125000005494 pyridonyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000012070 reactive reagent Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 1
- 229910000108 silver(I,III) oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003774 sulfhydryl reagent Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical group OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- OKYDCMQQLGECPI-UHFFFAOYSA-N thiopyrylium Chemical compound C1=CC=[S+]C=C1 OKYDCMQQLGECPI-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 238000001075 voltammogram Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/005—Enzyme electrodes involving specific analytes or enzymes
- C12Q1/006—Enzyme electrodes involving specific analytes or enzymes for glucose
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/004—Enzyme electrodes mediator-assisted
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/005—Enzyme electrodes involving specific analytes or enzymes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
- G01N27/3272—Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
Definitions
- the invention is in the general field of electrodes for amperometric biosensors. More specifically, the invention is in the field of compounds for use as mediators for the recycling of cofactors used in these electrodes.
- NAD- and NADP-dependent enzymes are of great interest insofar as many have substrates of clinical value, such as glucose, D-3-hydroxybutyrate, lactate, ethanol, and cholesterol.
- Amperometric electrodes for detection of these substrates and other analytes can be designed by incorporating this class of enzymes and establishing electrical communication with the electrode via the mediated oxidation of the reduced cofactors NADH and NADPH.
- NAD- and NADP-dependent enzymes are generally intracellular oxidoreductases (EC 1.x.x.x).
- the oxidoreductases are further classified according to the identity of the donor group of a substrate upon which they act. For example, oxidoreductases acting on a CH—OH group within a substrate are classified as EC 1.1.x.x whereas those acting on an aldehyde or keto-group of a substrate are classified as EC 1.2.x.x. Some important analytes (e.g., glucose, D-3-hydroxybutyrate, lactate, ethanol, and cholesterol) are substrates of the EC 1.1.x.x enzymes.
- the category of oxidoreductases is also broken down according to the type of acceptor utilized by the enzyme.
- the enzymes of relevance to the present invention have NAD + or NADP + as acceptors, and are classified as EC 1.x.1.x. These enzymes generally possess sulfydryl groups within their active sites and hence can be irreversibly inhibited by thiol-reactive reagents such as iodoacetate.
- An irreversible inhibitor forms a stable compound, often through the formation of a covalent bond with a particular amino acid residue (e.g., cysteine, or Cys) that is essential for enzymatic activity.
- glyceraldehyde-3-P dehydrogenase (EC 1.2.1.9) is stoichiometrically alkylated by iodoacetate at Cys 149 with concomitant loss of catalytic activity.
- the enzymes glucose dehydrogenase, D-3-hydroxybutyrate dehydrogenase (HBDH), and lactate dehydrogenase are known to be irreversibly inhibited by thiol reagents.
- HBDH D-3-hydroxybutyrate dehydrogenase
- lactate dehydrogenase lactate dehydrogenase
- the present invention is based on the discovery of NAD + and NADP + mediator compounds that do not bind irreversibly to thiol groups in the active sites of intracellular dehydrogenase enzymes.
- mediator compounds avoid a common mode of enzyme inhibition.
- the mediators can therefore increase the stability and reliability of the electrical response in amperometric electrodes constructed from NAD- or NADP-dependent enzymes.
- the invention features a test element for an amperometric biosensor.
- the element includes an electrode, which has test reagents distributed on it.
- the test reagents include a nicotinamide cofactor-dependent enzyme, a nicotinamide cofactor, and a mediator compound having one of the formulae:
- X and Y can independently be oxygen, sulphur, CR 3 R 4 , NR 3 , or NR 3 R 4+ ;
- R 1 and R 2 can independently be a substituted or unsubstituted aromatic or heteroaromatic group; and
- R 3 and R 4 can independently be a hydrogen atom, a hydroxyl group or a substituted or unsubstituted alkyl, aryl, heteroaryl, amino, alkoxyl, or aryloxyl group.
- either X or Y can be the functional group CZ 1 Z 2 , where Z 1 and Z 2 are electron withdrawing groups.
- Any alkyl group may be linear or branched and may contain up to 12, preferably up to 6, and especially up to 4 carbon atoms.
- Preferred alkyl groups are methyl, ethyl, propyl and butyl.
- an alkyl moiety forms part of another group, for example the alkyl moiety of an alkoxyl group, it is preferred that it contains up to 6, especially to 4, carbon atoms.
- Preferred alkyl moieties are methyl and ethyl.
- An aromatic or aryl group may be any aromatic hydrocarbon group and may contain from 6 to 24, preferably 6 to 18, more preferably 6 to 16, and especially 6 to 14, carbon atoms.
- Preferred aryl groups include phenyl, naphthyl, anthryl, phenanthryl and pyryl groups especially a phenyl or naphthyl, and particularly a phenyl group.
- an aryl moiety forms part of another group, for example, the aryl moiety of an aryloxyl group, it is preferred that it is a phenyl, naphthyl, anthryl, phenanthryl or pyryl, especially phenyl or naphthyl, and particularly a phenyl moeity.
- a heteroaromatic or heteraryl group may be any aromatic monocyclic or polycyclic ring system, which contains at least one heteroatom.
- a heteroaryl group is a 5 to 18-membered, particularly a 5 to 14-membered, and especially a 5 to 10-membered, aromatic ring system containing at least one heteroatom selected from oxygen, sulphur and nitrogen atoms.
- 5 and 6-membered heteroaryl groups, especially 6-membered groups are particularly preferred.
- Heteroaryl groups containing at least one nitrogen atom are especially preferred.
- Preferred heteroaryl groups include pyridyl, pyrylium, thiopyrylium, pyrrolyl, furyl, thienyl, indolinyl, isoindolinyl, indolizinyl, imidazolyl, pyridonyl, pyronyl, pyrimidinyl, pyrazinyl, oxazolyl, thiazolyl, purinyl, quinolinyl, isoquinolinyl. quinoxalinyl, pyridazinyl, benzofuranyl, benzoxazolyl and acridinyl groups.
- the substituent groups which may be present may be any one or more of those customarily employed in the development of compounds for use in electrochemical reactions and/or the modification of such compounds to influence their structure/activity, solubility, stability, mediating ability, formal potential (E°) or other property.
- substituents include, for example, halogen atoms, oxo, nitro, cyano, hydroxyl, cycloalkyl, alkyl, haloalkyl, alkoxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxycarbonyl, carboxyl, alkanoyl, alkylthio, alkylsulphinyl, alkylsulphonyl, arylsulphinyl, arylsulphonyl, carbamoyl, alkylamido, aryl or aryloxy groups.
- substituents represents or contains an alkyl substituent group
- this may be linear or branched and may contain up to 12, preferably up to 6, and especially up to 4, carbon atoms.
- a cycloalkyl group may contain from 3 to 8, preferably from 3 to 6, carbon atoms.
- An aryl group or moiety may contain from 6 to 10 carbon atoms, phenyl groups being especially preferred.
- a halogen atom may be a fluorine, chlorine, bromine or iodine atom and any group which contains a halo moiety, such as a haloalkyl group, may thus contain any one or more of these halogen atoms.
- An electron withdrawing group may be any group, which forms a stable methylene group CZ 1 Z 2 .
- Such electron withdrawing groups may include halogen atoms, nitro, cyano, formyl, alkanoyl, carboxyl and sulphonic acid groups.
- X and Y are both oxygen atoms.
- R 1 and R 2 are independently selected from phenyl, naphtuyl, pyridyl and pyrrolyl groups with pyridyl groups being especially preferred.
- pyridyl group also includes the N-oxide thereof as well as pyridinium and N-substituted pyridinium groups.
- R 1 and R 2 are unsubstituted or substituted only by one or more, preferably one or two, alkyl groups, especially methyl groups. It is especially preferred that R 1 and R 2 are unsubstituted.
- R 3 and R 4 are preferably independently selected from hydrogen atoms and alkyl groups.
- Metal complex and chelates include complexes and chelates with transition metals, especially first-, second-, and third-row transition elements such as ruthenium, chromium, cobalt, iron, nickel and rhenium, with ruthenium being particularly preferred.
- Other groups such as 4-vinyl-4′-methyl-2,2′-bipridyl (v-by) and bipyridyl (bpy) groups may also be included in such complexes and chelates as parts of a complex metal ion.
- such complexes and chelates will form as a result of heteroatoms in R 1 and R 2 coordinating with a metal ion or metal ion complex.
- test reagents can be deposited on the electrode in one or more ink-based layers.
- the test reagents can be screen-printed onto the working electrode in a single layer.
- the element can be an amperometric dry-strip sensor that includes an elongated, electrically insulating carrier having a pair of longitudinal, substantially parallel electrically conducting tracks thereupon, and a pair of electrodes.
- the electrodes can each be electrically connected to a different one of the tracks; one of the electrodes can be a reference/counter electrode, while another electrode can be a working electrode.
- the element can also include a dummy electrode. Further, the element can include a membrane positioned to filter samples prior to their introduction onto the electrodes.
- the sensor can additionally include a supporting strip of electrically insulating carrier material (e.g., a synthetic polymer such as polyvinyl chloride, or a blend of synthetic polymers).
- a supporting strip of electrically insulating carrier material e.g., a synthetic polymer such as polyvinyl chloride, or a blend of synthetic polymers.
- the mediator compound can be a quinone.
- suitable quinones include 1,10-phenanthroline quinone, 1,7-phenanthroline quinone, and 4,7-phenanthroline quinone.
- the invention features an electrode strip for an amperometric sensor having a readout.
- the strip includes a support adapted for releasable attachment to the readout, a first conductor extending along the support and comprising a conductive element for connection to the readout; a working electrode in contact with the first conductor and positioned to contact a sample mixture; a second conductor extending along the support and comprising a conductive element for connection to the readout; and a reference/counter electrode in contact with the second conductor and positioned to contact the sample and the second conductor.
- the active electrode of the strip includes a mediator compound having one of the formulae:
- Still another embodiment of the invention features a method for mediating electron transfer between an electrode and a nicotinamide cofactor.
- the method includes the steps of using a mediator compound in the presence of a nicotinamide cofactor-dependent enzyme, where the mediator compound is a quinoid compound that is incapable of binding irreversibly to the thiol groups.
- the mediator compound can, for example, have reactive unsaturated bonds in adjacent aromatic ring.
- Suitable mediator compounds include those having the formulae:
- the mediator compound can be 1,10-phenanthroline quinone, 1,7- phenanthroline quinone, or 4,7-phenanthroline quinone.
- the invention features a printing ink.
- the ink includes a nicotinamide cofactor-dependent enzyme, a nicotinamide cofactor, and a mediator compound having one of the formulae:
- the mediator compound can be 1,10-phenanthroline quinone, 1,7-phenanthroline quinone, or 4,7-phenanthroline quinone.
- the enzyme can be, for example, alcohol dehydrogenase, lactate dehydrogenase, 3-hydroxybutyrate dehydrogenase, glucose-6-phosphate dehydrogenase, glucose dehydrogenase, formaldehyde dehydrogenase, malate dehydrogenase, or 3-hydroxysteroid dehydrogenase.
- An advantage of the new mediators is their non-reactivity with respect to active-site thiol groups in enzymes. This improves the stability and the shelf life of biosensor electrodes to an unexpected degree. Also as a result of this stability, the enzyme and mediator can be incorporated together in a printing ink or dosing solution to facilitate construction of the biosensors. The use of a mediator that is not an irreversible inhibitor of the enzyme will result in the retention of a large proportion of enzyme activity during the biosensor manufacture. NAD-and NADP-dependent dehydrogenase enzymes are generally expensive and labile and improvement of their stability is therefore highly desirable.
- the compounds disclosed herein can also be used as mediators to the cofactors NADH and NADPH coupled with a wide range of NAD- or NADP-dependent enzymes; as labels for antigens or antibodies in immunochemical procedures; and in other applications in the field of electrochemistry and bioelectrochemistry.
- the mediators require low oxidation potentials for re-oxidation following the reaction with NADH or NADPH. This is of particular advantage when testing in whole blood, in which the potential for interference from exogenous electroactive species (e.g., ascorbic acid, uric acid) is particularly high.
- the low potential can be advantageous because it can obviate the need for a dummy electrode to remove electroactive species in the sample.
- the oxidized native form of the mediator can decrease the background current that would be present with a reduced mediator.
- FIG. 1 is an exploded view of an electrode strip according to one embodiment of the invention.
- FIG. 2 is a representation of an assembled electrode strip.
- FIG. 3 is a graphical plot of current in ⁇ A against NADH concentration in mM for printed electrodes containing 1,10-phenanthroline quinone.
- FIG. 4 is a graphical plot of current in ⁇ A against NADH concentration in mM for printed electrodes containing Meldola's Blue.
- FIG. 5 is a bar chart displaying residual enzyme activity (i.e., as a percentage of the initial activity) after incubation of HBDH with various mediators.
- FIG. 6 is a graphical plot of current in ⁇ A against D-3-hydroxybutyrate concentration in mM for printed electrodes containing 1,10-phenanthroline quinone, D-3-hydroxybutyrate dehydrogenase and NAD + tested after 4, 14, and 26 weeks.
- FIG. 7 is a graphical plot of current in ⁇ A against D-3-hydroxybutyrate concentration in mM for printed electrodes containing Meldola's Blue, D-3-hydroxybutyrate dehydrogenase, and NAD + tested after 2 and 14 weeks, respectively.
- FIG. 8 is a graphical plot of calibrated response to glucose in whole blood for printed electrodes containing 1,10-phenanthroline quinone, glucose dehydrogenase, and NAD + .
- FIG. 9 is a graphical plot of current ⁇ A as a function of potential in mV for a working electrode formulated in accordance with the present invention.
- FIG. 10 is a graphical plot of current in ⁇ A as a function of potential in mV for a working electrode formulated in accordance with Geng et al.
- FIG. 11 is a graphical plot of integrated current in ⁇ C as a function of the concentration of glucose in mM.
- FIG. 12 is a graphical plot of integrated current in ⁇ C as a function of the concentration of glucose in mM.
- a class of compounds, selected for their inability to combine irreversibly with thiols, is disclosed for use as NADH or NADPH mediators.
- the structural, electronic, and steric characteristics of these mediators render them nearly incapable of reacting with thiols. Because these mediators are virtually precluded from binding irreversibly to the active site sulphydryl groups of NAD- and NADP-dependent dehydrogenases, inactivation of the enzyme and consequent loss of biosensor stability is circumvented.
- NADH and NADPH mediators can be used in the manufacture of amperometric enzyme sensors for an analyte, where the analyte is a substrate of an NAD-or NADP-dependent enzyme present in the sensor, such as those of the kind described in EP 125867-A. Accordingly, amperometric enzyme sensors of use in assaying for the presence of an analyte in a sample, especially an aqueous sample, can be made.
- the sample can be a complex biological sample such as a biological fluid (e.g., whole blood, plasma, or serum) and the analyte can be a naturally occurring metabolite (e.g., glucose, D-3-hydroxybutyrate, ethanol, lactate, or cholesterol) or an introduced substance such as a drug.
- a biological fluid e.g., whole blood, plasma, or serum
- the analyte can be a naturally occurring metabolite (e.g., glucose, D-3-hydroxybutyrate, ethanol, lactate, or cholesterol) or an introduced substance such as a drug.
- a naturally occurring metabolite e.g., glucose, D-3-hydroxybutyrate, ethanol, lactate, or cholesterol
- an introduced substance such as a drug.
- the present invention further provides an ink that includes the NADH and NADPH mediators disclosed herein.
- the present invention also includes any precursor, adduct, or reduced (leuco) form of the above mediators that can be converted in situ by oxidation or decomposition to the corresponding active mediators.
- precursors or adducts can include hemiacetals, hemithioacetals, cyclic acetals, metal o-quinone complexes, protonated forms, acetone adducts, etc.
- Amperometric enzyme sensors adopting the mediators of the present invention generally use a test element, for example, a single-use strip.
- a disposable test element can carry a working electrode, for example, with the test reagents including the enzyme, the nicotinamide cofactor (i.e., NAD + or NADP + ), the mediators of the present invention for generation of a current indicative of the level of analyte, and a reference/counter electrode.
- the test reagents can be in one or more ink-based layers associated with the working electrode in the test element.
- the sensor electrodes can, for example, include an electrode area formed by printing, spraying, or other suitable deposition technique.
- an electrode support 1 typically made of PVC, polycarbonate, or polyester, or a mixture of polymers (e.g., Valox, a mixture of polycarbonate and polyester) supports three printed tracks of electrically conducting carbon ink 2 , 3 , and 4 .
- the printed tracks define the position of the working electrode 5 onto which the working electrode ink 16 is deposited, the reference/counter electrode 6 , the fill indicator electrode 7 , and contacts 8 , 9 , and 10 .
- the elongated portions of the conductive tracks are respectively overlaid with silver/silver chloride particle tracks 11 , 12 , and 13 (with the enlarged exposed area 14 of track 12 overlying the reference electrode 6 ), and further overlaid with a layer of hydrophobic electrically insulating material 15 that leaves exposed only positions of the reference/counter electrode 14 , the working electrode 5 , the fill indicator electrode 7 , and the contact areas 8 , 9 , and 10 .
- This hydrophobic insulating material serves to prevent short circuits. Because this insulating material is hydrophobic, it can serve to confine the sample to the exposed electrodes.
- a suitable insulating material is Sericard, commercially available from Sericol, Ltd. (Broadstairs, Kent, UK).
- a first mesh layer 17 , a second insulative layer 18 , a second mesh layer 19 , a third insulative layer 20 , and a tape 21 can overlay the hydrophobic insulating material.
- Respective ink mixtures can be applied onto a conductive track on a carrier, for example, in close proximity to a reference electrode 14 connected to a second track. In this way, a sensor can be produced, which is capable of functioning with a small sample of blood or other liquid covering the effective electrode area 5 .
- the mixtures are preferably, but not exclusively, applied to the carrier by screen printing.
- NAD(P)-dependent dehydrogenases catalyze reactions according to the equation: RH 2 +NAD(P) + ⁇ R+NAD(P)H+H + where RH 2 represents the substrate (analyte) and R the product.
- NAD(P) + i.e., NAD + or NADP +
- Suitable amperometric biosensors provide an electrochemical mediator that can reoxidize NAD(P)H, thereby regenerating NAD(P) + . Reoxidation occurs at an electrode to generate a current that is indicative of the concentration of the substrate.
- a dry sensor in one embodiment, includes an elongated electrically insulating carrier having a pair of longitudinal, substantially parallel, electrically conducting tracks thereupon, each track being provided at the same end with means for electrical connection to a read-out and provided with an electrode, one of the electrodes being the reference/counter electrode and the other being the working electrode, together with test reagents.
- the sensor can be configured in the form of a supporting strip of electrically insulating carrier material such as a synthetic polymer (e.g., PVC, polycarbonate, or polyester, or a mixture of polymers such as Valox) carrying the two electrodes supported on electrically conductive tracks between its ends.
- a synthetic polymer e.g., PVC, polycarbonate, or polyester, or a mixture of polymers such as Valox
- the electrodes can take the form of two rectangular areas side by side on the carrier strip, as shown in FIG. 2 (i.e., electrodes 14 and 16 ). Such areas can be designed as a target area to be covered by a single drop of sample, such as whole blood, for testing the analyte.
- sample such as whole blood
- non-rectangular areas e.g., diamond-shaped, semicircular, circular, or triangular areas
- the carrier includes at least two electrodes, namely a reference/counter electrode and a working electrode.
- Other electrodes such as a dummy electrode can also be included.
- These other electrodes can be of similar formulation to the working electrode (i.e., with the associated test reagents), but lacking one or more of the working electrode's active components.
- a dummy electrode for example, can provide more reliable results, in that if charge passed at the dummy electrode is subtracted from charge passed at the working electrode, then the resulting charge can be concluded to be due to the reaction of interest.
- a membrane can be provided at or above the target to perform a filtration function.
- a membrane can filter blood cells from a sample before the sample enters the test strip.
- examples of commercially available membranes that can be used include Hemasep V, Cytosep, and Hemadyne (Pall Biosupport, Fort Washington, N.Y. 11050).
- a filtration or cellular separation membrane can be cast in situ. This can be achieved by casting hydrophobic polymers such as cellulose acetate, polyvinyl butyral and polystyrene and/or hydrophilic polymers such as hydroxypropyl cellulose, polyvinylpyrrolidone, polyvinyl alcohol and polyvinyl acetate.
- a single use disposable electrode strip for attachment to signal readout circuitry of a sensor system.
- the strip can detect a current representative of an analyte in a liquid mixture.
- the strip includes an elongated support adapted for releasable attachment to the readout circuitry; a first conductor extending along the support and including a conductive element for connection to the readout circuitry; a working electrode on the strip in contact with the first conductor and positioned to contact the mixture; a second conductor extending along the support, comprising a conductive element for connection to the readout circuitry; and a reference/counter electrode in contact with the second conductive element and positioned to contact the mixture and the second conductor as depicted in FIG. 1 .
- the working electrode can include a printed layer on the support, and the printed layer itself can include an NAD- or NADP-dependent dehydrogenase enzyme capable of catalyzing a reaction involving a substrate for the enzyme.
- This layer can also include the corresponding nicotinamide cofactor and a mediator of the present invention capable of transferring electrons between the enzyme-catalyzed reaction and the first conductor via NADH or NADPH, to create a current representative of the activity of both the enzyme and the analyte.
- the first conductive element and the active electrode can be spaced apart from the second conductive element and the reference/counter electrode, and the electrodes sized and positioned to present a combined effective area small enough to be completely covered by a drop of blood or other test sample; typically the reaction zone is 5 mm 2 but can be as large as 25 mm 2 .
- the test sample completes an electrical circuit across the active electrode and the reference/counter electrode for amperometric detection of the activity of the enzyme.
- a working electrode is produced by using a formulation which includes not only the enzyme, nicotinamide cofactor and the mediator but also filler and binder ingredients which cause the working electrode to give an increasing monotonic response to concentrations of interest for the analyte being sensed when measured in a kinetic mode in which oxidation and reduction of the mediator both occur during the measurement.
- the concept is to provide a stable reaction layer on the surface of the working electrode when the sample is applied. This allows the use of mediators which are sparingly soluble in the sample. As the mediator is reduced by reaction with the enzyme, cofactor and analyte, it is retained in close proximity to the electrode surface so that it can be readily reoxidized without significant loss to precipitation. The maintenance of this thin reaction layer also allows the overall analytical reaction to occur in a small volume of the overall sample so in effect what is measured is the flux of analyte from the bulk specimen to this reaction layer.
- This reaction layer needs to remain stable for at least the time to conduct a reproducible kinetic measurement. Typical times for such a measurement range between about 5 and 60 seconds, although stability for longer times is preferred.
- the disposable electrode strips of interest are mass produced and therefore it is desirable to have a safety margin with regard to any required property to account for the inherent variability in any mass manufacturing process.
- the stability of the reaction layer can be improved by a proper combination of fillers and binders.
- the layer is preferably sufficiently stable to give an approximately linear reproducible response in a kinetic measurement over the concentration range of interest for a given analyte. For instance, for Ketone bodies (measured as hydroxybutyrate) this would be between about 1 and 8 mM while for glucose it would be between about 2 and 40 mM.
- the kinetic measurement involves the cycling of the mediator between an oxidized state and a reduced state.
- the rate of this cycling which is reflected in the current observed during the course of the test, is dependent upon the concentration of the analyte in the sample.
- the greater the concentration of the analyte the more enzyme cofactor which is reduced in the course of the enzyme oxidizing the analyte.
- the mediator in turn becomes reduced in reoxidizing the cofactor and is then reoxidized at the electrode surface.
- mediator because of its very low solubility only a small amount of mediator is immediately available to react with the reduced cofactor. Consequently mediator which reacts with reduced cofactor and is reoxidized at the electrode will then react with further reduced cofactor and this continues through the course of a kinetic measurement.
- the greater the concentration of the reduced cofactor reflective of a greater concentration of analyte in the sample
- the cofactor may also engage in cycling between an oxidized state and a reduced state during the kinetic measurement. This depends upon whether there is a sufficient quantity of cofactor initially present to convert all the analyte present in the reaction layer. If there is insufficient cofactor initially present as oxidized cofactor is regenerated it promotes the oxidation of any analyte remaining in the reaction layer by becoming reduced again.
- the signal may be the current observed at a fixed time after the test is initiated or it may be the current integrated over some period occurring some fixed time after the test is initiated (in essence the charge transferred over some such period).
- the test is conducted by covering the working electrode and a reference/counter electrode with sample and then applying a potential between them. The current which then flows is observed over some time period.
- the potential may be imposed as soon as the sample covers the electrodes or it may be imposed after a short delay, typically about 3 seconds, to ensure good wetting of the electrodes by the sample.
- the fixed time until the current or current integration is taken as the signal should be long enough to ensure that the major variable affecting the observed current is the analyte concentration.
- the reference electrode/counter electrode may be a classic silver/silver chloride electrode but it may also be identical to the working electrode in construction.
- the two separate conductive tracks may both be coated with an appropriate formulation of enzyme, cofactor and mediator in a binder and filler containing aqueous vehicle to yield a coating.
- a common coating may overlay both electrodes.
- the reaction layer which yields the desired behavior is obtained by formulating the working electrode with binder and filler ingredients.
- the object is to allow the sample to interact with the enzyme, cofactor and mediator but to also ensure that these chemically active ingredients remain in the immediate vicinity of the surface of the electrode.
- the binder ingredient should include materials which readily increase the viscosity of aqueous media and promote the formation of films or layers. Typical of such materials are the polysaccharides such as guar gum, alginate, locust bean gum, carrageenan and xanthan. Also helpful are materials commonly known as film formers such as polyvinyl alcohol (PVA), polyvinyl pyrrole, cellulose acetate, carboxymethyl cellulose and poly (vinyl oxazolidinone).
- the filler ingredient should be a particulate material which is chemically inert to the oxidation reduction reactions involved in the measurement and insoluble in aqueous media. It may be electrically conductive or non-conductive. Typical materials include carbon, commonly in the form of graphite, titanium dioxide, silica and alumina.
- the active electrode may be conveniently produced by formulating the enzyme, cofactor, mediator and binder and filler ingredients into an aqueous vehicle and applying it to the elongated, electrically insulating carrier having conducting tracks.
- the formulation may be applied by printing such as screen printing or other suitable techniques.
- the formulation may also include other ingredients such as a buffer to protect the enzyme during processing, a protein stabilizer to protect the enzyme against denaturation and a defoaming agent. These additional ingredients may also have an effect on the properties of the reaction layer.
- the working electrode typically has a dry thickness between about 2 and 50 microns preferably between about 10 and 25 microns.
- the actual dry thickness will to some extent depend upon the application technique used to apply the ingredients which make up the working electrode. For instance thicknesses between about 10 and 25 microns are typical for screen printing.
- the thickness of the reaction layer is not solely a function of the dry thickness of the working electrode but also depends upon the effect of the sample on the working electrode. In the case of aqueous samples the formulation of the working electrode ingredients will effect the degree of water uptake this layer displays.
- the filler typically makes up between about 20 and 30 weight percent of the aqueous vehicle.
- the amounts of the other ingredients are typically less than about 1 weight percent of the aqueous vehicle and are adjusted empirically to achieve the desired end properties. For instance, the amount of buffer and protein stabilizer are adjusted to achieve the desired degree of residual enzyme activity. In this regard one may use more enzyme and less stabilizer or less enzyme and more stabilizer to achieve the same final level of enzyme activity.
- the amount of binder and defoaming agent should be adjusted to give suitable viscosities for the method of application with higher viscosities being suitable for screen printing and lower viscosities being suitable for rotogravure printing.
- a suitable aqueous ink formulation can be formulated in accordance with Table 2 with the balance being deformer, buffer, enzyme activity enhancers and water to make up 1 gram of formulated ink.
- Enzyme such as Glucose Dehyrogenase 200 to 4000 Units or 3-hydroxybutyrate Dehydrogenase
- Nicotinamide cofactor such as NAD
- 5 to 30 weight percent Mediator such as 1,10 phenanthroline 0.1 to 1.5 weight percent quinone
- Filler such as ultra fine carbon or 10 to 30 weight percent titania
- Binder such as alginate or guar gum
- Protein stabilizer such as Trehalose 0.01 to 2 weight percent or Bovine Serum Albumin
- the stability of the reaction layer can be readily evaluated using cyclic voltammetry with various time delays.
- the working electrode formulation is evaluated by exposing it to a sample containing a relatively high concentration of analyte and subjecting it to a steadily increasing potential to a maximum value and then a steadily decreasing potential back to no applied potential. The resulting current increases to a peak value and then drops off as the voltage sweep continues.
- Such cyclic voltammetry evaluations are conducted after various delay periods after the working electrode is exposed to the sample.
- the change in peak current with increasingly long delay periods is a measure of the stability of the reaction layer. The more stable the reaction layer the smaller the decrease in peak current.
- a potential was applied at a scan rate of 50 millivolt per second up to 400 mV versus a silver/silver chloride reference electrode after exposing the working electrode to a 20 mM aqueous solution of glucose for 3 seconds and 60 seconds.
- the formulation according to the present invention yields a stable reaction layer in which the peak current after 60 seconds is 60% of that observed after 3 seconds while the formulation according to the Geng article yields an unstable reaction layer in which no peak current is observable after 60 seconds exposure.
- test strips of this invention can detect analytes that are substrates of NAD- or NADP-dependent dehydrogenase enzymes using a mediator selected from the compounds disclosed herein, such as 1,10-PQ.
- Test strips according to this invention are intended for use with electronic apparatus and meter systems. These control the progress of the electrochemical reaction (e.g., by maintaining a particular potential at the electrodes), monitor the reaction, and calculate and present the result.
- a particular feature that is desirable in a meter system for use with test strips of this type is the capability of detecting the wetting of the reaction zone by sample fluid, thus allowing timely initiation of the measurement and reducing the potential for inaccuracies caused by user error. This goal can be achieved by applying a potential to the electrodes of the test strip as soon as the strip is inserted into the meter; this potential can be removed for a short time to allow wetting to be completed before initiation of measurement.
- the meter can also feature a means for automatically identifying test strips for measuring different analytes. This can be achieved, for example, when one or more circuit loops are printed on the test strip; each loop can provide a resistance characteristic of the type of strip, as described in U.S. Pat. No. 5,126,034 at column 4, lines 3 to 17. As a further alternative, notches or other shapes might be cut into the proximal end of the test strip; switches or optical detectors in the meter can detect the presence or absence of each notch.
- strip-type recognition techniques include varying the color of the strips and providing the meter with a photodetector capable of distinguishing the range of colors; and providing the strips with barcodes, magnetic strips, or other markings, and providing the meter with a suitable reading arrangement.
- the strip electrodes have a two-electrode configuration comprising a reference/counter electrode and a working electrode.
- the carrier can be made from any material that has an electrically insulating surface, including poly (vinyl chloride), polycarbonate, polyester, paper, cardboard, ceramic, ceramic-coated metal, blends of these materials (e.g., a blend of polycarbonate and polyester), or another insulating substance.
- a conductive ink is applied to the carrier by a deposition method such as screen printing.
- This layer forms the contact areas, which allow the meter to interface with the test strip, and provides an electrical circuit between the contacts and the active chemistry occurring on the strip.
- the ink can be an air-dried, organic-based carbon mixture, for example.
- Alternative formulations include water-based carbon inks and metal inks such as silver, gold, platinum, and palladium. Other methods of drying or curing the inks include the use of infrared, ultraviolet, and radio-frequency radiation.
- a layer forming the reference/counter electrode is printed with an organic solvent-based ink containing a silver/silver chloride mixture.
- Alternative reference couples include Ag/AgBr, Ag/AgI, and Ag/Ag 2 O.
- the print extends to partially cover the middle track of the carbon print where it extends into the reaction zone. It is useful if separate parts of this print are extended to cover parts of other carbon tracks outside the reaction zone, so that the total electrical resistance of each track is reduced.
- a layer of dielectric ink can optionally be printed to cover the majority of the printed carbon and silver/silver chloride layers. In this case, two areas are left uncovered, namely the electrical contact areas and the sensing area which will underlie the reactive zone as depicted in FIGS. 1 and 2 . This print serves to define the area of the reactive zone, and to protect exposed tracks from short circuit.
- one or more inks are deposited to a precise thickness within a defined area on top of one of the conductive tracks within the reaction zone, to deposit the enzyme, cofactor and a mediator of the present invention. It is convenient to do this by means of screen printing. Other ways of laying down this ink include inkjet printing, volumetric dosing, gravure printing, flexographic printing, and letterpress printing.
- a second partially active ink can be deposited on a second conductive track to form a dummy electrode.
- Polysaccharides can optionally be included in the ink formulation. Suitable polysaccharides include guar gum, alginate, locust bean gum, carrageenan and xanthan.
- the ink can also include a film former; suitable film-forming polymers include polyvinyl alcohol (PVA), polyvinyl pyrrole, cellulose acetate, CMC, and poly (vinyl oxazolidinone).
- Ink fillers can include titanium dioxide, silica, alumina, or carbon.
- MB Meldola's Blue
- DCIP 2,6-Dichloroindophenol
- PBS phosphate buffered saline
- HBDH D-3-Hydroxybutyrate dehydrogenase
- NAD + p-Nicotinamide adenine dinucleotide
- D,L-3-hydroxybutyric acid D,L-3-hydroxybutyric acid
- 1,10-Phenanthroline quinone (1,10-PQ) (Compound 7) was prepared according to the method of Gillard et al. ( J. Chem. Soc. A, 1447-1451, 1970). 1,7-Phenanthroline quinone (1,7-PQ) (Compound 8) was synthesized using the procedure described by Eckert et al. ( Proc. Natl. Acad. Sci. USA, 79:2533-2536, 1982). 2,9-Dimethyl-1,10-phenanthroline quinone (2,9-Me 2 -1,10-PQ) (Compound 10) was synthesized as a byproduct of the nitration of neocuproine as disclosed by Mullins et al.
- Methyl trifluoromethane sulphonate (Aldrich) (1.0 ml) was added to a solution of 1,10-PQ (0.50 g, 2.38 mmol) in anhydrous methylene chloride (25 ml) under nitrogen. Immediate precipitation occurred and the resulting mixture was stirred for 24 hours. Filtration followed by washing with methylene chloride afforded 1-Me-1,10-PQ + (0.65 g, 73%) as a fine yellow powder.
- Screen-printed electrodes incorporating 1,10-PQ and MB were produced from an organic carbon ink containing these NAD(P)H mediators at a level of 3.5 mg/g ink.
- the solid mediators were mixed into a commercial conducting carbon ink (Gwent Electronic Materials).
- the dose response curve for the electrodes containing 1,10-PQ tested with aqueous NADH solutions (0-16.7 mM) in PBS at a poise potential of +400 mV versus a printed Ag/AgCl reference electrode is shown in FIG. 3 .
- a slope of 0.58 ⁇ A mM ⁇ 1 NADH was recorded.
- the dose response curve for the electrodes containing MB tested with aqueous NADH solutions (0-12.4 mM) at a poise potential of +100 mV versus a printed Ag/AgCl reference electrode is shown in FIG. 4 .
- a series of 18 solutions (2.5 ml each) were prepared, each containing 50 U/ml HBDH and 1.29 or 2.58 mg of the following NAD(P)H mediators: MB(3), 4-Me-BQ(4), I-Me0-PMS(5), DCIP(6), 1,10-PQ(7), 1,7-PQ(8), 2,9-Me 2 -1,10-PQ(10), 1-Me-1,10-PQ + (11), and [Ru(bpy) 2 (1,10-PQ)](PF 6 ) 2 (12) in Tris buffer (50 mM, pH 8.2).
- a control solution was also prepared, containing enzyme but no mediator.
- the enzyme was then reisolated from the mediator solutions by filtration through a polysulfone membrane (nominal molecular weight cut-off: 30,000) in a microcentrifuge filter (Millipore). The enzyme remaining on the filter was dissolved in Tris buffer (0.2 ml), and the resulting solution was assayed (in triplicate) with the Sigma kit. By comparing the results of the assays before and after filtration, the effect of any covalently and/or irreversibly bound mediator on the enzyme activity could be determined.
- the quinone mediator 4-Me-BQ proved to be the most potent inhibitor with only 4% of the original activity remaining “after filtration.”
- the latter four mediators partially inactivate HBDH while the newly described mediators advantageously had little or no effect on enzyme activity.
- the percentage residual enzyme activities for each mediator are displayed as a bar chart in FIG. 5 , which reveals that the mediators of the present invention, represented by black bars, are not strong inhibitors of HBDH.
- MB, 4-Me-BQ, 1-MeO-PMS, and DCIP all irreversibly inhibited HBDH, with concomitant losses in activity ranging from 43 to 96%; these results are represented by grey bars in FIG. 5 .
- Screen-printed electrodes were produced from an aqueous carbon ink incorporating 1,10-PQ or MB at a level of 2.4 or 4.3 mg/g ink, respectively, together with the enzyme HBDH (120 units/g ink) and NAD + (110 mg/g ink).
- the ink also contained a polysaccharide binder.
- the dose response curves for the electrodes containing 1,10-PQ are given in FIG. 6 .
- the electrodes were tested after 4, 14, and 26 weeks of storage (30° C., desiccated) with aqueous D-3-hydroxybutyrate solutions (0-25 mM) in PBS at a poise potential of +400 mV versus a printed Ag/AgCl reference electrode. All three dose responses were non-linear and levelled out with a current of 8.5 ⁇ A being recorded at 24 mM D-3-hydroxybutyrate. This demonstrated that the response of the dry electrodes was stable for at least 26 weeks.
- the dose response curves for the electrodes containing MB are provided in FIG. 7 .
- the electrodes were tested after 2 and 14 weeks storage (30° C., desiccated) with aqueous D-3-hydroxybutyrate solutions (0-28 mM) in PBS at a poise potential of +100 mV versus a printed Ag/AgCl reference electrode.
- the dose response curves were similar to those in FIG. 4 .
- a current of 8.6 ⁇ A was recorded at 24 mM D-3-hydroxybutyrate for these electrodes after 2 weeks storage. This is almost identical to responses obtained from dry strips containing 1,10-PQ.
- biosensor electrodes containing a mediator of the present invention displayed responses which were stable after at least 26 weeks storage.
- those electrodes incorporating a traditional mediator such as MB which is an irreversible enzyme inhibitor exhibited responses which declined after only 14 weeks storage.
- Screen-printed electrodes were produced from an aqueous carbon ink incorporating 1,10-PQ or MB at a level of 2.4 or 4.3 mg/g ink, respectively, together with the enzyme Glucose dehydrogenase (120 units/g ink) and NAD + (110 mg/g ink).
- the ink also contained a polysaccharide binder.
- the calibrated dose response curve for the electrodes is given in FIG. 8 .
- the electrodes were tested with whole blood containing physiologically relevant concentrations of glucose ranging from 3.3 to 26 mM. A poise potential of +50 mV was maintained against a printed Ag/AgCl electrode. The electrodes produced a linear response over the glucose range. Thus, it was demonstrated that a mediator of the present invention can be used to construct a clinically useful glucose sensor which operates at a particularly low applied potential.
- Electrode strips were prepared utilizing the construction illustrated in FIGS. 1 and 2 with a silver/silver chloride reference/counter electrode and a working electrode prepared by screen printing a formulation in accordance with Table 2.
- the filler was 25 weight percent ultra fine carbon and in the other case the filler was 25 weight percent titania.
- the enzyme was Glucose Dehydrogenase (GDH)
- the cofactor was NAD
- the mediator was 1,10-PQ
- the binder was guar gum
- the protein stabilizer was Bovine serum albumin (BSA)
- the buffer was Tris (0.325 weight percent).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Emergency Medicine (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
or a metal complex or chelate thereof, where X and Y can independently be oxygen, sulphur, CR3R4, NR3, or NR3R4+; R1 and R2 can independently be a substituted or unsubstituted aromatic or heteroaromatic group; and R3 and R4 can independently be a hydrogen atom, a hydroxyl group or a substituted or unsubstituted alkyl, aryl, heteroaryl, amino, alkoxyl, or aryloxyl group. In some cases, either X or Y can be the functional group CZ1Z2, where Z1 and Z2 are electron withdrawing groups.
TABLE 1 | |||
1.1.1.1 | Alcohol Dehydrogenase | ||
1.1.1.27 | Lactate Dehydrogenase | ||
1.1.1.31 | 3-Hydroxybutyrate Dehydrogenase | ||
1.1.1.49 | Glucose-6-phosphate Dehydrogenase | ||
1.1.1.47 | Glucose Dehydrogenase | ||
1.2.1.46 | Formaldehyde Dehydrogenase | ||
1.1.1.37 | Malate Dehydrogenase | ||
1.1.1.209 | 3-hydroxysteroid Dehydrogenase I | ||
RH2+NAD(P)+→R+NAD(P)H+H+
where RH2 represents the substrate (analyte) and R the product. In the process of the forward reaction, NAD(P)+ (i.e., NAD+ or NADP+) is reduced to NAD(P)H. Suitable amperometric biosensors provide an electrochemical mediator that can reoxidize NAD(P)H, thereby regenerating NAD(P)+. Reoxidation occurs at an electrode to generate a current that is indicative of the concentration of the substrate.
TABLE 2 | |
Enzyme (such as |
200 to 4000 Units |
or 3-hydroxybutyrate Dehydrogenase) | |
Nicotinamide cofactor (such as NAD) | 5 to 30 weight percent |
Mediator (such as 1,10 phenanthroline | 0.1 to 1.5 weight percent |
quinone) | |
Filler (such as ultra fine carbon or | 10 to 30 weight percent |
titania) | |
Binder (such as alginate or guar gum) | 0.01 to 0.5 weight percent |
Protein stabilizer (such as Trehalose | 0.01 to 2 weight percent |
or Bovine Serum Albumin) | |
TABLE 3 | ||
Assay Rate (absorbance units/min) |
control | before | after | ||
Mediator (Compound No.) | (no mediator) | | filtration | |
1,10-PQ | 0.167 | 0.149 | 0.160 (96%) | |
1,7-PQ | 0.155 | 0.115 | 0.150 (97%) | |
MB | 0.167 | 0.008 | 0.026 (16%) | |
4-Me-BQ | 0.170 | 0.005 | 0.007 (4%) | |
1-MeO-PMS | 0.150 | 0.009 | 0.071 (47%) | |
DCIP | 0.150 | 0.104 | 0.085 (57%) | |
2,9-Me2-1,10-PQ | 0.197 | 0.189 | n/a | |
1-Me-1,10-PQ+ | 0.197 | 0.150 | 0.185 (94%) | |
[Ru(bpy)2(1,10-PQ)](PF6)2 | 0.197 | 0.114 | 0.193 (98%) | |
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/242,760 US8221612B2 (en) | 1997-10-16 | 2008-09-30 | Biosensor electrode mediators for regeneration of cofactors |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6198297P | 1997-10-16 | 1997-10-16 | |
PCT/US1998/021815 WO1999019507A1 (en) | 1997-10-16 | 1998-10-16 | Biosensor electrode mediators for regeneration of cofactors |
US09/529,617 US6736957B1 (en) | 1997-10-16 | 1998-10-16 | Biosensor electrode mediators for regeneration of cofactors and process for using |
US10/832,408 US7504019B2 (en) | 1997-10-16 | 2004-04-26 | Biosensor electrode mediators for regeneration of cofactors |
US12/242,760 US8221612B2 (en) | 1997-10-16 | 2008-09-30 | Biosensor electrode mediators for regeneration of cofactors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/832,408 Continuation US7504019B2 (en) | 1997-10-16 | 2004-04-26 | Biosensor electrode mediators for regeneration of cofactors |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090090625A1 US20090090625A1 (en) | 2009-04-09 |
US8221612B2 true US8221612B2 (en) | 2012-07-17 |
Family
ID=32314229
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/529,617 Expired - Lifetime US6736957B1 (en) | 1997-10-16 | 1998-10-16 | Biosensor electrode mediators for regeneration of cofactors and process for using |
US10/832,408 Expired - Fee Related US7504019B2 (en) | 1997-10-16 | 2004-04-26 | Biosensor electrode mediators for regeneration of cofactors |
US11/849,790 Expired - Fee Related US8012341B2 (en) | 1997-10-16 | 2007-09-04 | Biosensor electrode mediators for regeneration of cofactors |
US12/242,774 Expired - Fee Related US7998337B2 (en) | 1997-10-16 | 2008-09-30 | Biosensor electrode mediators for regeneration of cofactors |
US12/242,744 Expired - Fee Related US8241485B2 (en) | 1997-10-16 | 2008-09-30 | Biosensor electrode mediators for regeneration of cofactors |
US12/242,760 Expired - Fee Related US8221612B2 (en) | 1997-10-16 | 2008-09-30 | Biosensor electrode mediators for regeneration of cofactors |
US13/561,933 Expired - Fee Related US8414760B2 (en) | 1997-10-16 | 2012-07-30 | Biosensor electrode mediators for regeneration of cofactors |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/529,617 Expired - Lifetime US6736957B1 (en) | 1997-10-16 | 1998-10-16 | Biosensor electrode mediators for regeneration of cofactors and process for using |
US10/832,408 Expired - Fee Related US7504019B2 (en) | 1997-10-16 | 2004-04-26 | Biosensor electrode mediators for regeneration of cofactors |
US11/849,790 Expired - Fee Related US8012341B2 (en) | 1997-10-16 | 2007-09-04 | Biosensor electrode mediators for regeneration of cofactors |
US12/242,774 Expired - Fee Related US7998337B2 (en) | 1997-10-16 | 2008-09-30 | Biosensor electrode mediators for regeneration of cofactors |
US12/242,744 Expired - Fee Related US8241485B2 (en) | 1997-10-16 | 2008-09-30 | Biosensor electrode mediators for regeneration of cofactors |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/561,933 Expired - Fee Related US8414760B2 (en) | 1997-10-16 | 2012-07-30 | Biosensor electrode mediators for regeneration of cofactors |
Country Status (1)
Country | Link |
---|---|
US (7) | US6736957B1 (en) |
Families Citing this family (212)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8346337B2 (en) | 1998-04-30 | 2013-01-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8465425B2 (en) | 1998-04-30 | 2013-06-18 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US8688188B2 (en) | 1998-04-30 | 2014-04-01 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods of use |
US20030116447A1 (en) | 2001-11-16 | 2003-06-26 | Surridge Nigel A. | Electrodes, methods, apparatuses comprising micro-electrode arrays |
WO2003074999A1 (en) * | 2002-03-01 | 2003-09-12 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
US20050191431A1 (en) * | 2002-07-26 | 2005-09-01 | Carina Horn | Method for the production of a hydrophilic substrate provided with a layer electrode |
US9017544B2 (en) | 2002-10-04 | 2015-04-28 | Roche Diagnostics Operations, Inc. | Determining blood glucose in a small volume sample receiving cavity and in a short time period |
US7501053B2 (en) * | 2002-10-23 | 2009-03-10 | Abbott Laboratories | Biosensor having improved hematocrit and oxygen biases |
AU2003290784A1 (en) * | 2002-11-15 | 2004-06-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for detecting asymmetric dimethylarginine in a biological sample |
US20040231983A1 (en) * | 2003-05-20 | 2004-11-25 | Shen Joseph C.L. | Electrochemical sensor with sample pre-treatment function |
US20190357827A1 (en) | 2003-08-01 | 2019-11-28 | Dexcom, Inc. | Analyte sensor |
EP1810185A4 (en) | 2004-06-04 | 2010-01-06 | Therasense Inc | Diabetes care host-client architecture and data management system |
GB0423025D0 (en) * | 2004-10-15 | 2004-11-17 | Oxford Biosensors Ltd | Voltammetric ion sensor |
US20090105569A1 (en) | 2006-04-28 | 2009-04-23 | Abbott Diabetes Care, Inc. | Introducer Assembly and Methods of Use |
US8512243B2 (en) | 2005-09-30 | 2013-08-20 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
US10226207B2 (en) | 2004-12-29 | 2019-03-12 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
US9398882B2 (en) | 2005-09-30 | 2016-07-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor and data processing device |
US8029441B2 (en) | 2006-02-28 | 2011-10-04 | Abbott Diabetes Care Inc. | Analyte sensor transmitter unit configuration for a data monitoring and management system |
US7883464B2 (en) | 2005-09-30 | 2011-02-08 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
US7697967B2 (en) | 2005-12-28 | 2010-04-13 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US9788771B2 (en) | 2006-10-23 | 2017-10-17 | Abbott Diabetes Care Inc. | Variable speed sensor insertion devices and methods of use |
US9259175B2 (en) | 2006-10-23 | 2016-02-16 | Abbott Diabetes Care, Inc. | Flexible patch for fluid delivery and monitoring body analytes |
US9572534B2 (en) | 2010-06-29 | 2017-02-21 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US8333714B2 (en) | 2006-09-10 | 2012-12-18 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
US9636450B2 (en) | 2007-02-19 | 2017-05-02 | Udo Hoss | Pump system modular components for delivering medication and analyte sensing at seperate insertion sites |
MX2007010778A (en) * | 2005-03-04 | 2007-11-07 | Bayer Healthcare Llc | Stabilizing the activity of pqq-dependent glucose dehydrogenase in electrochemical biosensors. |
US7588670B2 (en) * | 2005-04-12 | 2009-09-15 | Lifescan Scotland Limited | Enzymatic electrochemical-based sensor |
US20060226007A1 (en) * | 2005-04-12 | 2006-10-12 | Rodgers James I | Method for manufacturing an enzymatic electrochemical-based sensor |
US7465380B2 (en) * | 2005-04-12 | 2008-12-16 | Lifescan Scotland, Ltd. | Water-miscible conductive ink for use in enzymatic electrochemical-based sensors |
US20080314395A1 (en) | 2005-08-31 | 2008-12-25 | Theuniversity Of Virginia Patent Foundation | Accuracy of Continuous Glucose Sensors |
ATE553383T1 (en) * | 2005-11-17 | 2012-04-15 | Fraunhofer Ges Forschung | BIOSENSOR AND USE |
WO2007072922A1 (en) * | 2005-12-22 | 2007-06-28 | Rohm Co., Ltd. | Immunoassay apparatus and method |
US11298058B2 (en) | 2005-12-28 | 2022-04-12 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
US20070169533A1 (en) * | 2005-12-30 | 2007-07-26 | Medtronic Minimed, Inc. | Methods and systems for detecting the hydration of sensors |
US20070173712A1 (en) | 2005-12-30 | 2007-07-26 | Medtronic Minimed, Inc. | Method of and system for stabilization of sensors |
US8114269B2 (en) | 2005-12-30 | 2012-02-14 | Medtronic Minimed, Inc. | System and method for determining the point of hydration and proper time to apply potential to a glucose sensor |
US7826879B2 (en) | 2006-02-28 | 2010-11-02 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US7885698B2 (en) | 2006-02-28 | 2011-02-08 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
US8224415B2 (en) | 2009-01-29 | 2012-07-17 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US9675290B2 (en) | 2012-10-30 | 2017-06-13 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US7630748B2 (en) | 2006-10-25 | 2009-12-08 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US9392969B2 (en) | 2008-08-31 | 2016-07-19 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US8219173B2 (en) | 2008-09-30 | 2012-07-10 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
PL2017607T3 (en) * | 2006-04-19 | 2013-01-31 | Panasonic Healthcare Holdings Co Ltd | Biosensor |
US8784624B2 (en) * | 2006-07-12 | 2014-07-22 | Arkray, Inc. | Enzyme electrode |
ES2307400B1 (en) * | 2006-10-03 | 2009-09-30 | Consejo Superior De Investigaciones Cientificas | GLUCOSE OPTICAL SENSOR BASED ON THE DEPOSITION OF THE GDH ENZYME (GLUCOSE DEHYDROGENASE) AND ITS COENZYME NAD + (DINUCLEOTIC ADENINE NICOTINAMIDE) IN A STRICTED OPTICAL FIBER SUPPORT. |
JP2010508091A (en) | 2006-10-26 | 2010-03-18 | アボット ダイアベティス ケア インコーポレイテッド | Method, system, and computer program product for detecting in real time a decrease in sensitivity of an analyte sensor |
US8158081B2 (en) * | 2006-10-31 | 2012-04-17 | Abbott Diabetes Care Inc. | Analyte monitoring devices |
US7740580B2 (en) * | 2006-10-31 | 2010-06-22 | Abbott Diabetes Care Inc. | Analyte monitoring |
KR100829400B1 (en) * | 2006-11-30 | 2008-05-15 | 주식회사 인포피아 | Biosensor |
US7820105B2 (en) * | 2006-12-26 | 2010-10-26 | Abbott Diabetes Care Inc. | Analyte meter protectors and methods |
EP1964927A1 (en) * | 2007-02-27 | 2008-09-03 | F. Hoffmann-La Roche AG | Quinones as mediators for photometric tests |
US8080153B2 (en) | 2007-05-31 | 2011-12-20 | Abbott Diabetes Care Inc. | Analyte determination methods and devices |
CN101686804B (en) | 2007-06-21 | 2013-05-08 | 雅培糖尿病护理公司 | Health monitor |
CA2690742C (en) | 2007-06-21 | 2018-05-15 | Abbott Diabetes Care Inc. | Health management devices and methods |
WO2009001289A1 (en) * | 2007-06-28 | 2008-12-31 | Koninklijke Philips Electronics N. V. | Microelectronic sensor device for optical examinations on a wetted surface |
US8160900B2 (en) | 2007-06-29 | 2012-04-17 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
US8163146B2 (en) | 2007-10-12 | 2012-04-24 | Abbott Diabetes Care Inc. | Mediator stabilized reagent compositions for use in biosensor electrodes |
EP2232250A1 (en) | 2007-12-10 | 2010-09-29 | Bayer HealthCare LLC | Methods and systems for forming reagent with reduced background current |
US20090164239A1 (en) | 2007-12-19 | 2009-06-25 | Abbott Diabetes Care, Inc. | Dynamic Display Of Glucose Information |
US8103223B2 (en) * | 2007-12-28 | 2012-01-24 | Cypress Semiconductor Corporation | Cellular communication device with wireless pointing device function |
USD612279S1 (en) | 2008-01-18 | 2010-03-23 | Lifescan Scotland Limited | User interface in an analyte meter |
IL197532A0 (en) | 2008-03-21 | 2009-12-24 | Lifescan Scotland Ltd | Analyte testing method and system |
US8008037B2 (en) * | 2008-03-27 | 2011-08-30 | Roche Diagnostics Operations, Inc. | Matrix composition with alkylphenazine quaternary salt and a nitrosoaniline |
US8591410B2 (en) | 2008-05-30 | 2013-11-26 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
US8924159B2 (en) | 2008-05-30 | 2014-12-30 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
USD611151S1 (en) | 2008-06-10 | 2010-03-02 | Lifescan Scotland, Ltd. | Test meter |
WO2010009172A1 (en) | 2008-07-14 | 2010-01-21 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
US7896703B2 (en) * | 2008-07-17 | 2011-03-01 | Abbott Diabetes Care Inc. | Strip connectors for measurement devices |
US20100030052A1 (en) * | 2008-07-31 | 2010-02-04 | Bommakanti Balasubrahmanya S | Analyte sensors comprising plasticizers |
EP3808733A1 (en) | 2008-08-07 | 2021-04-21 | IDEXX Laboratories, Inc. | Methods for detecting symmetrical demethylarginine |
US8636884B2 (en) * | 2008-09-15 | 2014-01-28 | Abbott Diabetes Care Inc. | Cationic polymer based wired enzyme formulations for use in analyte sensors |
USD611372S1 (en) | 2008-09-19 | 2010-03-09 | Lifescan Scotland Limited | Analyte test meter |
US8983568B2 (en) | 2008-09-30 | 2015-03-17 | Abbott Diabetes Care Inc. | Analyte sensors comprising leveling agents |
US9326707B2 (en) | 2008-11-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US20100198034A1 (en) | 2009-02-03 | 2010-08-05 | Abbott Diabetes Care Inc. | Compact On-Body Physiological Monitoring Devices and Methods Thereof |
US20100198188A1 (en) * | 2009-02-05 | 2010-08-05 | Abbott Diabetes Care Inc. | Devices and Methods for Metering Insoluble Active Agent Particles |
US20100213057A1 (en) | 2009-02-26 | 2010-08-26 | Benjamin Feldman | Self-Powered Analyte Sensor |
EP3714788B8 (en) | 2009-02-26 | 2023-06-14 | Abbott Diabetes Care, Inc. | Method of making improved analyte sensors |
US8500990B2 (en) * | 2009-04-22 | 2013-08-06 | Nova Biomedical Corporation | Electrochemical biosensors based on NAD(P)-dependent dehydrogenase enzymes |
US8758583B2 (en) | 2009-04-28 | 2014-06-24 | Abbott Diabetes Care Inc. | Smart sensor ports and methods of using same |
US8359081B2 (en) * | 2009-04-28 | 2013-01-22 | Abbott Diabetes Care Inc. | Service-detectable analyte sensors and methods of using and making same |
US8236254B2 (en) * | 2009-05-14 | 2012-08-07 | Abbott Diabetes Care Inc. | Cap-linked test strip carrier for vial augmentation |
EP2434944B1 (en) | 2009-05-29 | 2014-12-03 | Abbott Diabetes Care, Inc. | Glucose monitoring system with wireless communications |
US9184490B2 (en) | 2009-05-29 | 2015-11-10 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
EP2438527B1 (en) | 2009-06-04 | 2018-05-02 | Abbott Diabetes Care, Inc. | Method and system for updating a medical device |
US8000763B2 (en) * | 2009-06-30 | 2011-08-16 | Abbott Diabetes Care Inc. | Integrated devices having extruded electrode structures and methods of using same |
US8437827B2 (en) * | 2009-06-30 | 2013-05-07 | Abbott Diabetes Care Inc. | Extruded analyte sensors and methods of using same |
LT3689237T (en) | 2009-07-23 | 2021-09-27 | Abbott Diabetes Care, Inc. | Method of manufacturing and system for continuous analyte measurement |
US9125603B2 (en) | 2009-08-11 | 2015-09-08 | Abbott Diabetes Care Inc. | Analyte sensor ports |
US20110046466A1 (en) * | 2009-08-19 | 2011-02-24 | Feldman Benjamin J | Analyte Sensors Including Nanomaterials and Methods of Using Same |
US9212380B2 (en) | 2009-08-31 | 2015-12-15 | Panasonic Healthcare Holdings Co., Ltd. | Sensor and concentration measurement method |
US8357276B2 (en) | 2009-08-31 | 2013-01-22 | Abbott Diabetes Care Inc. | Small volume test strips with large sample fill ports, supported test strips, and methods of making and using same |
WO2011025549A1 (en) | 2009-08-31 | 2011-03-03 | Abbott Diabetes Care Inc. | Medical devices and methods |
US20110127172A1 (en) * | 2009-10-26 | 2011-06-02 | University Of Hawaii | Systems and methods for carbohydrate detection |
WO2011053881A1 (en) | 2009-10-30 | 2011-05-05 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US20110124993A1 (en) * | 2009-11-24 | 2011-05-26 | Abbott Diabetes Care Inc. | Analyte Sensors Comprising Self-Polymerizing Hydrogels |
US8354013B2 (en) * | 2009-11-24 | 2013-01-15 | Abbott Diabetes Care Inc. | Analyte sensors comprising high-boiling point solvents |
US9042954B2 (en) * | 2009-11-24 | 2015-05-26 | Abbott Diabetes Care Inc. | Analyte sensors comprising hydrogel membranes |
US8828330B2 (en) * | 2010-01-28 | 2014-09-09 | Abbott Diabetes Care Inc. | Universal test strip port |
WO2011112753A1 (en) | 2010-03-10 | 2011-09-15 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
CA3135001A1 (en) | 2010-03-24 | 2011-09-29 | Abbott Diabetes Care Inc. | Medical device inserters and processes of inserting and using medical devices |
JP2013524888A (en) | 2010-04-16 | 2013-06-20 | アボット ダイアベティス ケア インコーポレイテッド | Analytical monitoring apparatus and method |
US9320432B2 (en) | 2010-04-16 | 2016-04-26 | Abbott Diabetes Care Inc. | Analyte meter communication module |
US9198623B2 (en) | 2010-04-22 | 2015-12-01 | Abbott Diabetes Care Inc. | Devices, systems, and methods related to analyte monitoring and management |
WO2011149857A1 (en) | 2010-05-24 | 2011-12-01 | Abbott Diabetes Care Inc. | Method and system for updating a medical device |
US11064921B2 (en) | 2010-06-29 | 2021-07-20 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
US10092229B2 (en) | 2010-06-29 | 2018-10-09 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
DK2598021T3 (en) | 2010-07-28 | 2015-09-28 | Abbott Diabetes Care Inc | Analyte sensors with temperature-independent membranes |
EP2633310A4 (en) | 2010-10-26 | 2016-02-24 | Abbott Diabetes Care Inc | Analyte measurement devices and systems, and components and methods related thereto |
US8702928B2 (en) | 2010-11-22 | 2014-04-22 | Abbott Diabetes Care Inc. | Modular analyte measurement system with extendable strip port |
US9713440B2 (en) | 2010-12-08 | 2017-07-25 | Abbott Diabetes Care Inc. | Modular analyte measurement systems, modular components thereof and related methods |
EP4397242A3 (en) | 2010-12-09 | 2024-08-28 | Abbott Diabetes Care Inc. | Analyte sensors with a sensing surface having small sensing spots |
WO2012108939A1 (en) | 2011-02-11 | 2012-08-16 | Abbott Diabetes Care Inc. | Feedback from cloud or hcp to payer or patient via meter or cell phone |
US9760679B2 (en) | 2011-02-11 | 2017-09-12 | Abbott Diabetes Care Inc. | Data synchronization between two or more analyte detecting devices in a database |
WO2012108938A1 (en) | 2011-02-11 | 2012-08-16 | Abbott Diabetes Care Inc. | Software applications residing on handheld analyte determining devices |
US10136845B2 (en) | 2011-02-28 | 2018-11-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
CA3177983A1 (en) | 2011-02-28 | 2012-11-15 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
US10010273B2 (en) | 2011-03-10 | 2018-07-03 | Abbott Diabetes Care, Inc. | Multi-function analyte monitor device and methods of use |
EP3825694B1 (en) | 2011-04-15 | 2023-10-25 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
EP2699175A4 (en) | 2011-04-20 | 2014-08-13 | Abbott Diabetes Care Inc | Analyte monitoring devices and methods |
US9380965B2 (en) | 2011-05-20 | 2016-07-05 | Abbott Diabetes Care Inc. | Analyte sensors having a membrane with low temperature sensitivity |
EP2720612B1 (en) | 2011-06-16 | 2019-02-06 | Abbott Diabetes Care, Inc. | Temperature-compensated analyte monitoring devices, systems, and methods thereof |
US9007781B2 (en) | 2011-06-17 | 2015-04-14 | Abbott Diabetes Care Inc. | Connectors for making connections between analyte sensors and other devices |
WO2013003735A1 (en) | 2011-06-30 | 2013-01-03 | Abbott Diabetes Care Inc. | Methods for generating hybrid analyte level output, and devices and systems related thereto |
WO2013049372A1 (en) | 2011-09-28 | 2013-04-04 | Abbott Diabetes Care Inc. | Methods, devices and systems for analyte monitoring management |
WO2013049381A1 (en) | 2011-09-28 | 2013-04-04 | Abbott Diabetes Care Inc. | Methods for analyte monitoring management and analyte measurement data management, and articles of manufacture related thereto |
USD680454S1 (en) | 2011-10-25 | 2013-04-23 | Abbott Diabetes Care Inc. | Analyte meter and strip port |
WO2013066849A1 (en) | 2011-10-31 | 2013-05-10 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
US8887911B2 (en) | 2011-12-09 | 2014-11-18 | Abbott Diabetes Care Inc. | Packages and kits for analyte monitoring devices, and methods related thereto |
EP4541272A3 (en) | 2012-04-24 | 2025-05-07 | Abbott Diabetes Care, Inc. | Methods of lag-compensation for analyte measurements, and devices related thereto |
US9535027B2 (en) | 2012-07-25 | 2017-01-03 | Abbott Diabetes Care Inc. | Analyte sensors and methods of using same |
US10006880B2 (en) | 2012-09-21 | 2018-06-26 | Abbott Diabetes Care Inc. | Test strips having ceria nanoparticle electrodes |
WO2014052136A1 (en) | 2012-09-26 | 2014-04-03 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
WO2014062985A1 (en) | 2012-10-17 | 2014-04-24 | University Of Maryland, Office Of Technology Commercialization | Device and methods of using device for detection of aminoacidopathies |
US8920628B2 (en) | 2012-11-02 | 2014-12-30 | Roche Diagnostics Operations, Inc. | Systems and methods for multiple analyte analysis |
US8921061B2 (en) | 2012-11-02 | 2014-12-30 | Roche Diagnostics Operations, Inc. | Reagent materials and associated test elements |
EP2935615B1 (en) | 2012-12-21 | 2018-03-07 | Abbott Diabetes Care, Inc. | Method for improving measurement accuracy and devices and systems related thereto |
US10339534B2 (en) * | 2013-02-05 | 2019-07-02 | [24]7.ai, Inc. | Segregation of chat sessions based on user query |
US10076285B2 (en) | 2013-03-15 | 2018-09-18 | Abbott Diabetes Care Inc. | Sensor fault detection using analyte sensor data pattern comparison |
US10433773B1 (en) | 2013-03-15 | 2019-10-08 | Abbott Diabetes Care Inc. | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
US9474475B1 (en) | 2013-03-15 | 2016-10-25 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
AU2014233435A1 (en) | 2013-03-15 | 2015-09-03 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
WO2014179343A1 (en) | 2013-04-30 | 2014-11-06 | Abbott Diabetes Care Inc. | Systems, devices, and methods for energy efficient electrical device activation |
WO2015035155A1 (en) | 2013-09-05 | 2015-03-12 | Idexx Laboratories, Inc. | Methods for detecting renal disease |
EP3087523B1 (en) | 2013-12-27 | 2023-01-18 | Abbott Diabetes Care Inc. | Application interface and display control in an analyte monitoring environment |
EP3087771B1 (en) | 2013-12-27 | 2020-06-17 | Abbott Diabetes Care, Inc. | Systems, devices, and methods for authentication in an analyte monitoring environment |
AU2014374361B9 (en) | 2013-12-31 | 2019-07-04 | Abbott Diabetes Care Inc. | Self-powered analyte sensor and devices using the same |
WO2015153482A1 (en) | 2014-03-30 | 2015-10-08 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
JP6998658B2 (en) | 2014-04-17 | 2022-01-18 | ユニバーシティ オブ メリーランド, カレッジ パーク | Devices for detecting amino acid metabolism disorders, and methods of using the devices |
LT3624475T (en) | 2014-05-21 | 2024-06-25 | Abbott Diabetes Care, Inc. | Management of multiple devices within an analyte monitoring environment |
US9775549B2 (en) | 2014-08-15 | 2017-10-03 | Abbott Diabetes Care Inc. | Temperature insensitive in vivo analyte devices, methods and systems |
WO2016065190A1 (en) | 2014-10-23 | 2016-04-28 | Abbott Diabetes Care Inc. | Electrodes having at least one sensing structure and methods for making and using the same |
HUE060884T2 (en) | 2015-02-20 | 2023-04-28 | Idexx Lab Inc | Homogeneous immunoassay for background signal compensation |
AU2016255825B2 (en) | 2015-04-27 | 2022-06-30 | Children's National Medical Center | Device and methods of using device for detection of hyperammonemia |
GB201507506D0 (en) * | 2015-04-30 | 2015-06-17 | Inside Biometrics Ltd | Electrochemical test device |
EP3967227A1 (en) | 2015-06-15 | 2022-03-16 | Abbott Diabetes Care Inc. | Stabilized lactate responsive enzymes, electrodes and sensors, and methods for making and using the same |
US10888272B2 (en) | 2015-07-10 | 2021-01-12 | Abbott Diabetes Care Inc. | Systems, devices, and methods for meal information collection, meal assessment, and analyte data correlation |
JP6986007B2 (en) | 2015-07-10 | 2021-12-22 | アボット ダイアベティス ケア インコーポレイテッドAbbott Diabetes Care Inc. | Systems, devices and methods of dynamic glucose profile response to physiological parameters |
US11091788B2 (en) | 2016-03-04 | 2021-08-17 | Abbott Diabetes Care Inc. | NAD(P)- dependent responsive enzymes, electrodes and sensors, and methods for making and using the same |
WO2018136898A1 (en) | 2017-01-23 | 2018-07-26 | Abbott Diabetes Care Inc. | Systems, devices and methods for analyte sensor insertion |
AU2018316818B2 (en) | 2017-08-18 | 2022-03-03 | Abbott Diabetes Care Inc. | Systems, devices, and methods related to the individualized calibration and/or manufacturing of medical devices |
JP7398366B2 (en) | 2017-10-19 | 2023-12-14 | アイデックス ラボラトリーズ インコーポレイテッド | Detection of symmetrical dimethylarginine |
WO2019083206A1 (en) * | 2017-10-23 | 2019-05-02 | 주식회사 비바이오 | Biosensor robust against coffee ring effect |
US20190120785A1 (en) | 2017-10-24 | 2019-04-25 | Dexcom, Inc. | Pre-connected analyte sensors |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
JP7078734B2 (en) | 2018-02-05 | 2022-05-31 | アボット ダイアベティス ケア インコーポレイテッド | Note and event log information related to the sample sensor |
US12076145B2 (en) | 2018-04-19 | 2024-09-03 | Abbott Diabetes Care Inc. | Lactate sensors and associated methods |
US20210236028A1 (en) | 2018-05-17 | 2021-08-05 | Abbott Diabetes Care Inc. | Analyte sensor antimicrobial configurations and adhesives |
EP3588073B1 (en) * | 2018-06-21 | 2024-05-22 | Biolan Health S.L. | Enzymatic electrochemical method for the quantification of analytes in biological fluid samples |
JP7196320B2 (en) | 2019-01-28 | 2022-12-26 | アボット ダイアベティス ケア インコーポレイテッド | Analyte sensor and sensing method for dual detection of glucose and ethanol |
US20200241015A1 (en) | 2019-01-28 | 2020-07-30 | Abbott Diabetes Care Inc. | Analyte Sensors and Sensing Methods for Detecting Creatinine |
CN119279579A (en) | 2019-01-28 | 2025-01-10 | 美国雅培糖尿病护理公司 | Analyte sensors using multiple enzymes and related methods |
EP4509046A3 (en) | 2019-01-28 | 2025-03-26 | Abbott Diabetes Care, Inc. | Analyte sensors and sensing methods featuring dual detection of glucose and ketones |
AU2020337996C1 (en) | 2019-08-30 | 2024-05-02 | Abbott Diabetes Care Inc. | Analyte sensors and sensing methods for the detection of alcohol |
EP4042149A1 (en) | 2019-10-02 | 2022-08-17 | Abbott Diabetes Care Inc. | Detection of analytes by protein switches |
CN114981649B (en) | 2019-12-23 | 2025-04-04 | 美国雅培糖尿病护理公司 | Analyte sensor and sensing method characterized by low potential detection |
CN115038381A (en) | 2020-01-03 | 2022-09-09 | 美国雅培糖尿病护理公司 | Sensor array systems and methods for detecting multiple analytes |
US20210369155A1 (en) | 2020-05-29 | 2021-12-02 | Abbott Diabetes Care Inc. | Analyte Sensors and Sensing Methods for Detecting Inhibitors of Diaphorase |
JP7564251B2 (en) | 2020-06-10 | 2024-10-08 | アボット ダイアベティス ケア インコーポレイテッド | Analyte Sensors with One or More Detection Facilitation Enhancements |
JP2023530305A (en) | 2020-06-16 | 2023-07-14 | アボット ダイアベティス ケア インコーポレイテッド | Analyte sensor featuring working electrode texture smoothing to reduce interfering signals |
JP2023531192A (en) | 2020-06-16 | 2023-07-21 | アボット ダイアベティス ケア インコーポレイテッド | Analyte sensor featuring reduced area working electrode to reduce interfering signals |
CA3182587A1 (en) | 2020-07-08 | 2022-01-13 | Stephen OJA | Analyte sensors featuring enhancements for decreasing interferent signal |
USD957438S1 (en) | 2020-07-29 | 2022-07-12 | Abbott Diabetes Care Inc. | Display screen or portion thereof with graphical user interface |
EP4203819B1 (en) | 2020-08-31 | 2024-07-31 | Abbott Diabetes Care Inc. | Systems, devices, and methods for analyte sensor insertion |
MX2023006880A (en) | 2020-12-10 | 2023-06-23 | Abbott Diabetes Care Inc | Analyte sensors for sensing ketones and methods of using the same. |
CA3200244A1 (en) | 2020-12-15 | 2022-06-23 | Tianmei Ouyang | Nad(p) depot for nad(p)-dependent enzyme-based sensors |
WO2022140695A1 (en) | 2020-12-23 | 2022-06-30 | Abbott Diabetes Care Inc. | Continuous potassium sensors and methods of use thereof |
WO2022140664A1 (en) | 2020-12-23 | 2022-06-30 | Abbott Diabetes Care Inc. | Analyte sensors for sensing glutamate and methods of using the same |
EP4267002A4 (en) | 2020-12-23 | 2025-02-26 | Abbott Diabetes Care Inc | ANALYTICAL SENSORS WITH REDUCED INTERFERENCE SIGNAL AND METHOD |
JP7670834B2 (en) | 2020-12-30 | 2025-04-30 | アボット ダイアベティス ケア インコーポレイテッド | Analyte sensor for detecting asparagine and aspartate and method of use thereof |
EP4271273A1 (en) | 2020-12-31 | 2023-11-08 | Abbott Diabetes Care, Inc. | An analyte sensor and sharp for delivering a therapeutic agent in close proximity to an analyte sensor and methods therefore |
JP7617282B2 (en) | 2020-12-31 | 2025-01-17 | アボット ダイアベティス ケア インコーポレイテッド | Analyte sensors and methods of use thereof - Patents.com |
AU2022204980A1 (en) | 2020-12-31 | 2023-06-29 | Abbott Diabetes Care Inc. | Analyte sensors with metal-containing redox mediators and methods of using the same |
CN117042687A (en) | 2021-01-26 | 2023-11-10 | 美国雅培糖尿病护理公司 | Systems, devices, and methods involving ketone sensors |
US20230123613A1 (en) | 2021-10-14 | 2023-04-20 | Medtronic Minimed, Inc. | Sensors for 3-hydroxybutyrate detection |
US20230172497A1 (en) | 2021-12-02 | 2023-06-08 | Medtronic Minimed, Inc. | Ketone limiting membrane and dual layer membrane approach for ketone sensing |
US20250051826A1 (en) | 2021-12-13 | 2025-02-13 | Heraeus Medical Gmbh | Tests and methods for detecting bacterial infection |
US20240027390A1 (en) | 2022-07-19 | 2024-01-25 | Abbott Diabetes Care Inc. | Analyte sensors with reduced interferent signal and methods |
EP4382611A1 (en) | 2022-08-31 | 2024-06-12 | Medtronic MiniMed, Inc. | Sensors for 3-hydroxybutyrate detection |
EP4357778A1 (en) | 2022-10-20 | 2024-04-24 | Heraeus Medical GmbH | Treatment of microbial infections diagnosed using the biomarker d-lactate |
US20240240159A1 (en) | 2022-11-28 | 2024-07-18 | Abbott Diabetes Care, Inc | Universal sensing system |
WO2024145693A1 (en) | 2022-12-30 | 2024-07-04 | Abbott Diabetes Care Inc. | Drug delivery compositions and methods of controlling drug delivery rates of subcutaneous sensors |
WO2024159018A2 (en) | 2023-01-25 | 2024-08-02 | Abbott Diabetes Care Inc. | Temperature-insensitive membranes for analyte sensors |
US20240324917A1 (en) | 2023-03-31 | 2024-10-03 | Abbott Diabetes Care, Inc. | Ascorbate blocking membrane |
US20240423511A1 (en) | 2023-05-24 | 2024-12-26 | Abbott Diabetes Care Inc. | Methods for incorporating therapeutic agents into analyte sensors |
US20240415422A1 (en) | 2023-06-16 | 2024-12-19 | Abbott Diabetes Care Inc. | Analyte monitoring devices having a strain gauge |
US20250040845A1 (en) | 2023-07-31 | 2025-02-06 | Abbott Diabetes Care Inc. | Background interference mitigation for high sensitivity creatinine sensing |
WO2025029928A1 (en) | 2023-07-31 | 2025-02-06 | Abbott Diabetes Care Inc. | Background interference mitigation for high sensitivity ketone sensing by accumulation mode sensing sensing at low working electrode potential |
US20250064355A1 (en) | 2023-08-25 | 2025-02-27 | Abbott Diabetes Care Inc. | Analyte monitoring systems and methods for monitoring multiple analytes |
WO2025050007A1 (en) | 2023-09-01 | 2025-03-06 | Abbott Diabetes Care Inc. | Sensor for detecting glucose and lactate and methods for determining aerobic and anaerobic thresholds |
US20250152057A1 (en) | 2023-09-01 | 2025-05-15 | Abbott Diabetes Care Inc. | Sensor having dual lactate-responsive active areas and methods for determining variance |
Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0125867A2 (en) | 1983-05-05 | 1984-11-21 | MediSense, Inc. | Assay systems using enzymes requiring NAD(P) as cofactor |
US4490464A (en) | 1981-04-08 | 1984-12-25 | Gorton Lo G | Electrode for the electrochemical regeneration of coenzyme, a method of making said electrode, and the use thereof |
US4654127A (en) | 1984-04-11 | 1987-03-31 | Sentech Medical Corporation | Self-calibrating single-use sensing device for clinical chemistry and method of use |
GB2188728A (en) | 1986-04-07 | 1987-10-07 | Cranfield Inst Of Technology T | Specific binding assays |
US4946562A (en) | 1987-01-29 | 1990-08-07 | Medtest Systems, Inc. | Apparatus and methods for sensing fluid components |
US5096669A (en) | 1988-09-15 | 1992-03-17 | I-Stat Corporation | Disposable sensing device for real time fluid analysis |
US5120420A (en) | 1988-03-31 | 1992-06-09 | Matsushita Electric Industrial Co., Ltd. | Biosensor and a process for preparation thereof |
US5126034A (en) | 1988-07-21 | 1992-06-30 | Medisense, Inc. | Bioelectrochemical electrodes |
US5212622A (en) | 1989-11-03 | 1993-05-18 | Specialized Conductives Pty. Ltd. | Large surface area electrodes |
US5266179A (en) | 1990-07-20 | 1993-11-30 | Matsushita Electric Industrial Co., Ltd. | Quantitative analysis method and its system using a disposable sensor |
JPH07209243A (en) | 1994-01-24 | 1995-08-11 | Matsushita Electric Ind Co Ltd | Fabrication of biosensor |
JPH07248310A (en) | 1994-03-10 | 1995-09-26 | Agency Of Ind Science & Technol | Enzyme-electrode and measuring instrument therewith |
JPH0894573A (en) | 1994-09-20 | 1996-04-12 | Toppan Printing Co Ltd | Enzyme electrode |
US5512159A (en) | 1992-01-21 | 1996-04-30 | Matsushita Electric Industrial Co. Ltd. | Biosensor |
EP0732406A1 (en) | 1995-03-17 | 1996-09-18 | Matsushita Electric Industrial Co., Ltd. | A method and a device for quantifying a substrate in a sample liquid using a biosensor |
JPH08334489A (en) | 1995-06-07 | 1996-12-17 | Kdk Corp | Enzyme electrode, its manufacture, and method of use |
US5628890A (en) | 1995-09-27 | 1997-05-13 | Medisense, Inc. | Electrochemical sensor |
JPH09145665A (en) | 1995-11-24 | 1997-06-06 | Mitsubishi Pencil Co Ltd | Oxygen sensor |
US5651869A (en) * | 1995-02-28 | 1997-07-29 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
EP0794429A1 (en) | 1996-03-07 | 1997-09-10 | Matsushita Electric Industrial Co., Ltd. | Cholesterol sensor |
US5705045A (en) | 1995-08-29 | 1998-01-06 | Lg Electronics Inc. | Multi-biosensor for GPT and got activity |
US20020092612A1 (en) * | 2000-03-28 | 2002-07-18 | Davies Oliver William Hardwicke | Rapid response glucose sensor |
US20040031682A1 (en) * | 2001-11-16 | 2004-02-19 | Wilsey Christopher D. | Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times |
-
1998
- 1998-10-16 US US09/529,617 patent/US6736957B1/en not_active Expired - Lifetime
-
2004
- 2004-04-26 US US10/832,408 patent/US7504019B2/en not_active Expired - Fee Related
-
2007
- 2007-09-04 US US11/849,790 patent/US8012341B2/en not_active Expired - Fee Related
-
2008
- 2008-09-30 US US12/242,774 patent/US7998337B2/en not_active Expired - Fee Related
- 2008-09-30 US US12/242,744 patent/US8241485B2/en not_active Expired - Fee Related
- 2008-09-30 US US12/242,760 patent/US8221612B2/en not_active Expired - Fee Related
-
2012
- 2012-07-30 US US13/561,933 patent/US8414760B2/en not_active Expired - Fee Related
Patent Citations (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4490464A (en) | 1981-04-08 | 1984-12-25 | Gorton Lo G | Electrode for the electrochemical regeneration of coenzyme, a method of making said electrode, and the use thereof |
EP0125867A2 (en) | 1983-05-05 | 1984-11-21 | MediSense, Inc. | Assay systems using enzymes requiring NAD(P) as cofactor |
US4758323A (en) | 1983-05-05 | 1988-07-19 | Genetics International, Inc. | Assay systems using more than one enzyme |
US4654127A (en) | 1984-04-11 | 1987-03-31 | Sentech Medical Corporation | Self-calibrating single-use sensing device for clinical chemistry and method of use |
GB2188728A (en) | 1986-04-07 | 1987-10-07 | Cranfield Inst Of Technology T | Specific binding assays |
US4946562A (en) | 1987-01-29 | 1990-08-07 | Medtest Systems, Inc. | Apparatus and methods for sensing fluid components |
US5120420B1 (en) | 1988-03-31 | 1999-11-09 | Matsushita Electric Ind Co Ltd | Biosensor and a process for preparation thereof |
US5120420A (en) | 1988-03-31 | 1992-06-09 | Matsushita Electric Industrial Co., Ltd. | Biosensor and a process for preparation thereof |
US5126034A (en) | 1988-07-21 | 1992-06-30 | Medisense, Inc. | Bioelectrochemical electrodes |
US5096669A (en) | 1988-09-15 | 1992-03-17 | I-Stat Corporation | Disposable sensing device for real time fluid analysis |
US5212622A (en) | 1989-11-03 | 1993-05-18 | Specialized Conductives Pty. Ltd. | Large surface area electrodes |
US5266179A (en) | 1990-07-20 | 1993-11-30 | Matsushita Electric Industrial Co., Ltd. | Quantitative analysis method and its system using a disposable sensor |
US5512159A (en) | 1992-01-21 | 1996-04-30 | Matsushita Electric Industrial Co. Ltd. | Biosensor |
JPH07209243A (en) | 1994-01-24 | 1995-08-11 | Matsushita Electric Ind Co Ltd | Fabrication of biosensor |
JPH07248310A (en) | 1994-03-10 | 1995-09-26 | Agency Of Ind Science & Technol | Enzyme-electrode and measuring instrument therewith |
JPH0894573A (en) | 1994-09-20 | 1996-04-12 | Toppan Printing Co Ltd | Enzyme electrode |
US5651869A (en) * | 1995-02-28 | 1997-07-29 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
EP0732406A1 (en) | 1995-03-17 | 1996-09-18 | Matsushita Electric Industrial Co., Ltd. | A method and a device for quantifying a substrate in a sample liquid using a biosensor |
US5582697A (en) * | 1995-03-17 | 1996-12-10 | Matsushita Electric Industrial Co., Ltd. | Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same |
JPH08334489A (en) | 1995-06-07 | 1996-12-17 | Kdk Corp | Enzyme electrode, its manufacture, and method of use |
US5705045A (en) | 1995-08-29 | 1998-01-06 | Lg Electronics Inc. | Multi-biosensor for GPT and got activity |
US5628890A (en) | 1995-09-27 | 1997-05-13 | Medisense, Inc. | Electrochemical sensor |
JPH09145665A (en) | 1995-11-24 | 1997-06-06 | Mitsubishi Pencil Co Ltd | Oxygen sensor |
EP0794429A1 (en) | 1996-03-07 | 1997-09-10 | Matsushita Electric Industrial Co., Ltd. | Cholesterol sensor |
US20020092612A1 (en) * | 2000-03-28 | 2002-07-18 | Davies Oliver William Hardwicke | Rapid response glucose sensor |
US20040031682A1 (en) * | 2001-11-16 | 2004-02-19 | Wilsey Christopher D. | Method for determining the concentration of an analyte in a liquid sample using small volume samples and fast test times |
Non-Patent Citations (17)
Title |
---|
Bard and Faulkner, Electrochemical Methods, Fundamentals and Applications, John Wiley & Sons, 1980, pp. 22-26. |
Batchelor, et al., "Amperometric Assay for the Ketone Body 3-Hydroxybutrate", Anal. Chim. Acta., 221, 1989, pp. 289-294. |
Carlson, et al., "Mechanism of the Oxidation of NADH by Quinones. Energetic of One-Electron and Hydride Routes", Journal of American Chemical Society, vol. 107, pp. 479-485 (1985). |
Eckert, et al., "Chemical Properties of Phenanthrolinequinones and the Mechanism of Amine Oxidation by o-Wuinones of Medium Redox Potentials", Journal of American Chemical Society, vol. 105, pp. 4431-4441 (1983). |
Eckert, et al., "Some electrochemical and chemical properties of methoxatin and analogous quinoquinones", Proc. Natl. Acad. Sci. USA, vol. 79; pp. 2533-2536 (1982). |
European Search Report for EP Application No. 10182725.1, dated May 31, 2011. |
Geng, et al. "Amperometric biosensors based on dehydrogenase/NAD and heterocyclic quinones", Biosensors and Bioelectronics, vol. 11, No. 12, pp. 1267-1275 (1996). |
Gillard, et al., "Optically Active Co-ordination Compounds. Part XX. Reactions of 1, 10-Phenanthroline co-ordinated to Cobalt (III)", Journal of the Chemical Society, A., pp. 1447-1451 (1970). |
Goss, et al., "Spectral, Electrochemical, and Electrocatalytic Properties of 1, 10-Phenanthroline-5,6-dione Complexes of Transition Metals", Inorganic Chemistry, vol. 24, pp. 4263-4267 (1985). |
Hedenmo et al, Analyst, 1996, vol. 121, pp. 1891-1895. |
Hilt et al, Chemistry A European Journal, vol. 3, pp. 79-88, 1997. |
Itoh et al., Chemistry Letters, vol. 8, pp. 1583-1586, 1992. |
Mullins, et al., "Preparation of some new intercalating europium(III) sensitizers", J. Chem. Soc., Perkin Trans. vol. 1, pp. 75-81 (1996). |
Surrey, "Pyocyanine", Organic Synthesis, vol. 3, Ed. E.C. Horning, Wiley, New York, pp. 753-756. |
Wikipedia entry for beta-hydroxybutyrate, date unknown. (892 Form, May 27, 2010, Re: U.S. Appl. No. 11/849,790). |
Wu et al, Analytical Chemistry 1996, 68, pp. 3688-3696. |
Yosioka, Yakugaku Zasshi, "Studies of Phenazines. III. Wohl-Aue Reactions of m-Nitroanisole and m-Anisidine", vol. 73, pp. 23-25 (1953). |
Also Published As
Publication number | Publication date |
---|---|
US8414760B2 (en) | 2013-04-09 |
US20090090624A1 (en) | 2009-04-09 |
US20070289881A1 (en) | 2007-12-20 |
US20090166223A1 (en) | 2009-07-02 |
US8241485B2 (en) | 2012-08-14 |
US20130031780A1 (en) | 2013-02-07 |
US6736957B1 (en) | 2004-05-18 |
US20090090625A1 (en) | 2009-04-09 |
US20040197935A1 (en) | 2004-10-07 |
US7998337B2 (en) | 2011-08-16 |
US8012341B2 (en) | 2011-09-06 |
US7504019B2 (en) | 2009-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8221612B2 (en) | Biosensor electrode mediators for regeneration of cofactors | |
AU743468C (en) | Biosensor electrode mediators for regeneration of cofactors | |
US8500990B2 (en) | Electrochemical biosensors based on NAD(P)-dependent dehydrogenase enzymes | |
EP1398386B1 (en) | Mediator stabilized reagent compositions and methods for their use in electrochemical analyte detection assays | |
EP2089531B1 (en) | Biosensor system having enhanced stability and hematocrit performance | |
EP1828759B1 (en) | Biosensors comprising ruthenium containing mediators and method of using the same | |
KR101258714B1 (en) | An electrochemical system, an electrochemical sensor strip for determining the concentration of an anylyte in a sample, and a method for using the same | |
EP1801229B1 (en) | Biosensor electrode | |
US20240398294A1 (en) | Disposable electrochemical biosensor based on NAD(P)-dependent dehydrogenase and diaphorase | |
MXPA00003683A (en) | Biosensor electrode mediators for regeneration of cofactors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT LABORATORIES, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FORROW, NIGEL J.;SANGHERA, GURDIAL S.;WATKIN, JARED L.;AND OTHERS;REEL/FRAME:022215/0430;SIGNING DATES FROM 20000317 TO 20000410 Owner name: ABBOTT LABORATORIES, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FORROW, NIGEL J.;SANGHERA, GURDIAL S.;WATKIN, JARED L.;AND OTHERS;SIGNING DATES FROM 20000317 TO 20000410;REEL/FRAME:022215/0430 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: ABBOTT DIABETES CARE INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT LABORATORIES;REEL/FRAME:033604/0133 Effective date: 20140818 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200717 |