US8320949B2 - Wireless load balancing across bands - Google Patents
Wireless load balancing across bands Download PDFInfo
- Publication number
- US8320949B2 US8320949B2 US13/272,859 US201113272859A US8320949B2 US 8320949 B2 US8320949 B2 US 8320949B2 US 201113272859 A US201113272859 A US 201113272859A US 8320949 B2 US8320949 B2 US 8320949B2
- Authority
- US
- United States
- Prior art keywords
- wireless
- band
- network
- wireless band
- wireless device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 claims abstract description 40
- 238000004891 communication Methods 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 9
- 239000000523 sample Substances 0.000 abstract description 23
- 230000015654 memory Effects 0.000 description 18
- 238000001228 spectrum Methods 0.000 description 8
- 230000008685 targeting Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 5
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/12—Avoiding congestion; Recovering from congestion
- H04L47/125—Avoiding congestion; Recovering from congestion by balancing the load, e.g. traffic engineering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0231—Traffic management, e.g. flow control or congestion control based on communication conditions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
- H04W28/082—Load balancing or load distribution among bearers or channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/08—Load balancing or load distribution
- H04W28/09—Management thereof
- H04W28/0958—Management thereof based on metrics or performance parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/02—Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
- H04W8/04—Registration at HLR or HSS [Home Subscriber Server]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0289—Congestion control
Definitions
- 802.11 wireless networks operate in two frequency bands. 802.11b/g in the 2.4 GHz spectrum and 802.11a in the 5 GHz spectrum. 802.11 wireless clients in most laptops and other devices are shipped with 802.11b/g band as the default band. Indeed, the majority of 802.11 devices are either only in the 802.11b/g band or are preferentially in the 802.11b/g band. In a specific instance at a trade show, it was noted that about 95% of devices at the trade show got onto the 802.11b/g band even though perhaps half of the devices were 802.11a-capable. Over-utilization of the 802.11b/g band can result in throughput degradation and other problems.
- 802.11a-capable devices it may be beneficial to move “all” 802.11a-capable devices to 802.11a wireless band, and create room in the 802.11b/g band.
- Most 802.11 Wi-fi phones will be in 802.11b/g band for a long time to come. So moving all the capable data services to the preferred band is welcome move for voice services, so that there are more channels available, for Vo-Wifi services.
- 802.11a may actually have a faster data rate and a higher capacity than the 802.11b/g band, making the 802.11a band even more desirable from a throughput standpoint.
- microwaves, cordless phones, and other interfering devices today primarily affect the 2.4 GHz space. So moving normal data services to 802.11a can potentially reduce interference.
- a technique for wireless band load balancing involves providing a wireless infrastructure that creates a target band option and helps migrate clients toward that band.
- An example of a method according to the technique involves, by way of example but not limitation, responding only to probe requests on a first band when a client is detected on the first band and a second band. This method may create a perception, on the part of the client, that a network is only available on the first band.
- a platform that is both 802.11a and 802.11b/g compliant may attempt to connect preferentially to the 802.11b/g band of a wireless network, and be migrated toward the 802.11a band instead.
- a system may include, by way of example but not limitation, a received strength signal indicator (RSSI) module, a targeting module, and a service set identifier (SSID) forwarding module.
- RSSI received strength signal indicator
- SSID service set identifier
- the RSSI module may determine a first signal strength of a platform on a first wireless band and a second signal strength of the platform on a second wireless band.
- the targeting module may determine that the first wireless band is a target band.
- the SSID forwarding module may respond to the platform on the target band.
- the proposed system can offer, among other advantages, load balancing across bands of a wireless network, which can result in increased capacity on all of the bands.
- FIG. 1 depicts a system including a wireless access domain.
- FIG. 2 depicts a computer system for use in the system of FIG. 1 .
- FIG. 3 depicts a conceptual diagram an example of a system including a platform operable on multiple wireless bands.
- FIG. 4 depicts a graphic illustration in which an acceptable signal strength threshold is met for two bands.
- FIG. 5 depicts a flowchart of an example of a method for load balancing a wireless network.
- FIG. 6 depicts a flowchart of an example of a method for wireless load balancing on 5 GHz and 2.4 GHz spectral bands.
- FIG. 7 depicts an example of a wireless band load balancing device.
- FIG. 1 depicts a system 100 including a wireless access domain.
- the system 100 includes a computer system 102 , a network 104 , and a wireless access domain 106 .
- the system 100 may or may not include multiple wireless access domains.
- the computer system 102 may be practically any type of device that is capable of communicating with a communications network, such as, by way of example but not limitation, a workstation.
- the network 104 may be practically any type of communications network, such as, by way of example but not limitation, the Internet.
- Internet refers to a network of networks which uses certain protocols, such as the TCP/IP protocol, and possibly other protocols such as the hypertext transfer protocol (HTTP) for hypertext markup language (HTML) documents that make up the World Wide Web (the web).
- HTTP hypertext transfer protocol
- HTML hypertext markup language
- the computer system 102 may be running a program such as, by way of example but not limitation, ethereal, to decode, by way of example but not limitation, IEEE 802.11 standard packets encapsulated in TZSP that are received from the wireless access domain 106 .
- the computer system 102 is connected to a wireless backbone network (not shown), either directly or indirectly through a wireless network.
- the network 104 provides a Layer 2 path for Layer 3 traffic, preserving IP addresses, sessions, and other wired Layer 3 attributes as users roam throughout the wireless access domain 106 .
- the network may or may not include a wireless backbone network, or be connected directly or indirectly to a wireless backbone network. Communications between the computer system 102 and the wireless access domain 106 are, therefore, Layer 3 traffic tunneled through Layer 2.
- Layer 3 traffic tunneled through Layer 2.
- users stay connected with the same IP address and keep the same security and Quality of Service (QoS) policies from the wired network while they roam the wireless side. Since Layer 3 attributes are maintained, mobile devices that are connected to the wireless access domain 106 can retain persistent identities.
- QoS Quality of Service
- Layer 3 is known as the “Network Layer” because it provides switching and routing technologies, creating logical paths, known as virtual circuits, for transmitting data from node to node. Routing and forwarding are functions of this layer, as well as addressing, internetworking, error handling, congestion control and packet sequencing.
- Layer 2 is known as the “Data Link Layer” because at Layer 2 data packets are encoded and decoded into bits; and Layer 2 furnishes transmission protocol knowledge and management and handles errors in the physical layer, flow control and frame synchronization.
- the data link layer is divided into two sublayers: The Media Access Control (MAC) layer and the Logical Link Control (LLC) layer.
- the MAC sublayer controls how a computer on the network gains access to the data and permission to transmit it.
- the LLC layer controls frame synchronization, flow control, and error checking.
- the wireless access domain 106 may be referred to as, by way of example but not limitation, a Local Area Network (LAN), virtual LAN (VLAN), and/or wireless LAN (WLAN).
- the wireless access domain 106 gives each user a persistent identity that can be tracked and managed, no matter where they roam.
- the wireless access domain 106 may have one or more associated snoop filters.
- the wireless access domain 106 may include one or more radios.
- the wireless access domain 106 includes access areas 108 - 1 to 108 -N (hereinafter collectively referred to as access areas 108 ).
- the access areas 108 have characteristics that depend upon, among other things, a radio profile.
- a radio profile is a group of parameters such as, by way of example but not limitation, beacon interval, fragmentation threshold, and security policies.
- the parameters may be configurable in common across a set of radios in one or more access areas 108 .
- a few parameters, such as the radio name and channel number must be set separately for each radio.
- An example of the implementation of a wireless access domain provided by way of example but not limitation, includes a Trapeze Networks “identity-aware” Mobility DomainTM.
- Wireless exchange switches 110 - 1 to 110 -N (hereinafter collectively referred to as wireless exchange switches 110 ), networks 112 - 1 to 112 -N (hereinafter collectively referred to as networks 112 ), and access points 114 - 1 to 114 -N (hereinafter collectively referred to as access points 114 ).
- the wireless exchange switches 110 swap topology data and client information that details each user's identity, location, authentication state, VLAN membership, permissions, roaming history, bandwidth consumption, and/or other attributes assigned by, by way of example but not limitation, an Authentication, Authorization, and Accounting (AAA) backend (not shown).
- AAA Authentication, Authorization, and Accounting
- the wireless exchange switches 110 provide forwarding, queuing, tunneling, and/or some security services for the information the wireless exchange switches 110 receive from their associated access points 114 . In another embodiment, the wireless exchange switches 110 coordinate, provide power to, and/or manage the configuration of the associated access points 114 .
- An implementation of a wireless exchange switch provided by way of example but not limitation, includes a Trapeze Networks Mobility ExchangeTM switch. The Trapeze Networks Mobility ExchangeTM switches may, in another implementation, be coordinated by means of the Trapeze Access Point Access (TAPA) protocol.
- TAPA Trapeze Access Point Access
- the networks 112 are simply wired connections from the wireless exchange switches 110 to the access points 114 .
- the networks 112 may or may not be part of a larger network.
- the networks 112 provides a Layer 2 path for Layer 3 traffic, preserving IP addresses, sessions, and other wired Layer 3 attributes as users roam throughout the wireless access domain 106 .
- Layer 3 traffic by tunneling Layer 3 traffic at Layer 2, users stay connected with the same IP address and keep the same security and Quality of Service (QoS) policies from the wired network while they roam the wireless side.
- QoS Quality of Service
- the access points 114 are hardware units that act as a communication hub by linking wireless mobile 802.11 stations such as PCs to a wired backbone network.
- the access points 114 connect users to other users within the network and, in another embodiment, can serve as the point of interconnection between a WLAN and a fixed wire network.
- the number of users and size of a network help to determine how many access points are desirable for a given implementation.
- An implementation of an access point provided by way of example but not limitation, includes a Trapeze Networks Mobility SystemTM Mobility PointTM (MPTM) access point.
- MPTM Trapeze Networks Mobility SystemTM Mobility PointTM
- the access points 114 are stations that transmit and receive data (and may therefore be referred to as transceivers) using one or more radio transmitters.
- an access point may have two associated radios, one which is configured for IEEE 802.11a standard transmissions, and the other which is configured for IEEE 802.11b standard transmissions.
- an access point transmits and receives information as radio frequency (RF) signals to and from a wireless client over a 10/100BASE-T Ethernet connection.
- the access points 114 transmit and receive information to and from their associated wireless exchange switches 110 . Connection to a second wireless exchange switch provides redundancy.
- a station may be referred to as a device with a media access control (MAC) address and a physical layer (PHY) interface to the wireless medium that comply with the IEEE 802.11 standard.
- the access points 114 are stations.
- a wireless client 116 and a wireless client 118 which, in the example of FIG. 1 , are depicted for illustrative purposes in the access area 108 - 1 , may be implemented as stations.
- a station may comply with a different standard than IEEE 802.11, and may have different interfaces to a wireless or other medium.
- the wireless client 116 and the wireless client 118 are connected to the wireless network through the access point 114 - 1 .
- the wireless connections of the wireless client 116 and the wireless client 118 are different.
- the wireless client 116 may be connected to the wireless network over an 802.11a band
- the wireless client 118 may be connected to the wireless network over an 802.11b/g band.
- FIG. 1 is not intended to reflect a physical system but rather serve as a conceptual drawing, the wireless client 118 is assumed to be physically further from the access point 114 - 1 than the wireless client 116 .
- the system 100 may incorporate received strength signal indicator (RSSI) tracking to make clients that are physically far from any access point to associate in the 802.11b/g band even if the clients are heard on the 802.11a band.
- RSSI received strength signal indicator
- the physically distant clients may associated in the 802.11b/g band if they are not heard as good on the 802.11a band. This may prevent clients that have weaker 802.11a implementations and that are physically on the outer fringes of wireless networks to still be able to connect to the network and use the network effectively.
- RSSI tracking is but one example of how to keep clients that are physically distant from an access point to associate in, for example, the 802.11b/g band.
- FIG. 2 depicts a computer system 200 for use in the system 100 ( FIG. 1 ).
- the computer system 200 may be a conventional computer system that can be used as a client computer system, such as a wireless client or a workstation, or a server computer system.
- the computer system 200 includes a computer 202 , I/O devices 204 , and a display device 206 .
- the computer 202 includes a processor 208 , a communications interface 210 , memory 212 , display controller 214 , non-volatile storage 216 , and I/O controller 218 .
- the computer 202 may be coupled to or include the I/O devices 204 and display device 206 .
- the computer 202 interfaces to external systems through the communications interface 210 , which may include a modem or network interface. It will be appreciated that the communications interface 210 can be considered to be part of the computer system 200 or a part of the computer 202 .
- the communications interface 210 can be an analog modem, ISDN modem, cable modem, token ring interface, satellite transmission interface (e.g. “direct PC”), or other interfaces for coupling a computer system to other computer systems.
- the processor 208 may be, for example, a conventional microprocessor such as an Intel Pentium microprocessor or Motorola power PC microprocessor.
- the memory 212 is coupled to the processor 208 by a bus 220 .
- the memory 212 can be Dynamic Random Access Memory (DRAM) and can also include Static RAM (SRAM).
- the bus 220 couples the processor 208 to the memory 212 , also to the non-volatile storage 216 , to the display controller 214 , and to the I/O controller 218 .
- the I/O devices 204 can include a keyboard, disk drives, printers, a scanner, and other input and output devices, including a mouse or other pointing device.
- the display controller 214 may control in the conventional manner a display on the display device 206 , which can be, for example, a cathode ray tube (CRT) or liquid crystal display (LCD).
- the display controller 214 and the I/O controller 218 can be implemented with conventional well known technology.
- the non-volatile storage 216 is often a magnetic hard disk, an optical disk, or another form of storage for large amounts of data. Some of this data is often written, by a direct memory access process, into memory 212 during execution of software in the computer 202 .
- machine-readable medium or “computer-readable medium” includes any type of storage device that is accessible by the processor 208 and also encompasses a carrier wave that encodes a data signal.
- the computer system 200 is one example of many possible computer systems which have different architectures.
- personal computers based on an Intel microprocessor often have multiple buses, one of which can be an I/O bus for the peripherals and one that directly connects the processor 208 and the memory 212 (often referred to as a memory bus).
- the buses are connected together through bridge components that perform any necessary translation due to differing bus protocols.
- Network computers are another type of computer system that can be used in conjunction with the teachings provided herein.
- Network computers do not usually include a hard disk or other mass storage, and the executable programs are loaded from a network connection into the memory 212 for execution by the processor 208 .
- a Web TV system which is known in the art, is also considered to be a computer system, but it may lack some of the features shown in FIG. 2 , such as certain input or output devices.
- a typical computer system will usually include at least a processor, memory, and a bus coupling the memory to the processor.
- the computer system 200 is controlled by operating system software which includes a file management system, such as a disk operating system, which is part of the operating system software.
- a file management system such as a disk operating system
- One example of operating system software with its associated file management system software is the family of operating systems known as Windows® from Microsoft Corporation of Redmond, Wash., and their associated file management systems.
- Another example of operating system software with its associated file management system software is the Linux operating system and its associated file management system.
- the file management system is typically stored in the non-volatile storage 216 and causes the processor 208 to execute the various acts required by the operating system to input and output data and to store data in memory, including storing files on the non-volatile storage 216 .
- the present invention also relates to apparatus for performing the operations herein.
- This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer.
- a computer program may be stored in a computer readable storage medium, such as, but is not limited to, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
- FIG. 3 depicts a conceptual diagram an example of a system 300 including a platform operable on multiple wireless bands.
- the system 300 includes a wireless access point 302 , a single-band platform 304 , a moveable platform 306 , and a plurality of platforms 308 - 1 to 308 -N (referred to collectively as platforms 308 ).
- the moveable platform 306 is depicted in 5 dashed boxes 306 - 1 to 306 - 5 . As will be described, the moveable platform 306 is so depicted in order to explain changes over time.
- the single-band platform 304 is connected to a wireless network through the wireless access point 302 .
- the single-band platform 304 may, depending upon the embodiment, implementation, or device, be capable of connecting only on a single band such as, by way of example but not limitation, the 802.11b/g band.
- the single-band platform 304 may be sending and/or receiving data that would operate most effectively on a single band of a multi-band network. For example, VoIP is preferentially performed on the 802.11b/g band, as opposed to the 802.11a band.
- the characterization of the single-band platform 304 may be a self-imposed characterization (e.g., the single-band platform 304 only attempts to connect over a preferred band).
- the platform 306 is depicted as changing over time (platform 306 - 1 to 306 - 5 ).
- the platform 306 is connected to the wireless network over a first band.
- the first band may be a preferred band (e.g., some devices that are multi-band capable preferentially attempt to connect over the 802.11b/g band).
- the first band may have a stronger associated signal.
- FIG. 4 depicts a graphic illustration 400 in which an acceptable signal strength threshold is met for two bands.
- the first band 402 has a wider radius of coverage from a central point 406 , which may be an access point, compared to the radius of coverage of a second band 404 .
- the first band 402 may be an 802.11b/g band and the second band 404 may be an 802.11a band.
- 802.11b/g typically has a larger radius of coverage compared to 802.11a for reasons, such as data rate associated with the bands, that are known to one of skill in the art.
- first band 402 and the second band 404 could have different coverage based on other factors including, but not limited to, interference in one of the bands, an environment that relatively favors one band, a weaker transmitter or receiver on one of the bands (either on the platform or at the wireless access point), or some other factor.
- the platform 306 remains connected via the first band, but signals are sent over a second band. It may be noted that the signals may have been sent during the time period associated with 306 - 1 as well, but a distinction is drawn for illustrative purposes only.
- the access point 302 (or some device higher up, such as a switch or a server) determines whether a connection should be made via the first band or the second band.
- the determination may be based on, for example, whether it is desirable to keep the first band as clear as possible of traffic so that the single-band platform 304 can connect via the first band, the amount of traffic on the first and second bands from the platforms 308 , the RSSI of the platform 306 is higher on the first band or the second band, or other factors, or a combination of factors.
- the time period associated with 306 - 2 lasts for a predetermined period of time, although the period of time may be dynamic (e.g., quicker when RSSI changes rapidly or quicker if traffic is exceptionally heavy on one band or the other) or arbitrary.
- a SSID service set identifier
- the platforms 308 are connected to the wireless network over the first band if possible, and over the second band if far away or if the platform is single-band only. It should be noted that this is not necessarily a bad thing. For example, if the second band is 802.11b/g and the first band is 802.11a, measurements of throughput have shown that devices today tend toward the 802.11b/g band and some devices are not capable of accessing the 802.11a band. It is estimated that even if the migration is performed toward 802.11a when signal strength is good, throughput may be maintained, in many instances, at a reasonable level.
- the access point 302 entertains the option of enabling the platform 306 to switch from the first band back to the second band.
- the platform at the time period associated with 306 - 4 may have poor signal quality on the first band.
- the access point 302 (or some other device) may consider multiple factors when deciding whether switching back to the second band is appropriate.
- the access point 302 may be able to determine that the platform 306 is on the fringe of the radius of coverage of the first band by comparing RSSI values to a range of acceptable values. If the platform 306 drops below an acceptable RSSI threshold, the access point 302 can, potentially seamlessly, enable probe responses on the second band.
- the RSSI threshold may be a static or dynamic value.
- the RSSI threshold may be the highest RSSI value other than the current band. In such an embodiment, the RSSI value could remain relatively steady over time, but the RSSI threshold could rise, causing the RSSI value to become unacceptable.
- the platform 306 is back on the second band.
- VoIP wireless devices will continue to dominate the 802.11b/g band.
- this technique can migrate non-VoIP devices away from the 802.11b/g band, freeing up the band for VoIP.
- it may be desirable to allow access by non-VoIP devices under certain circumstances e.g., the devices do not exceed an acceptable RSSI threshold on the other band or bands) that have just been described with reference to FIG. 3 .
- the techniques have been described with respect to two bands, 802.11a and 802.11b/g, where 802.11a is the target band to which devices are migrated, the techniques could be used in conjunction with a third (fourth, etc.) band.
- devices may be migrated toward a target band of the more than two bands.
- devices may be unable to migrate toward the target band (e.g., because the devices are not capable of operating on the target band) or migration toward the target band is undesirable (e.g., because of signal strength, data rate, and/or other factors).
- the techniques have been described with respect to two bands, 802.11a and 802.11b/g, the techniques could be used in conjunction with a different standard (or two or more protocols). For protocols other than 802.11, the technique is readily applicable.
- one of the factors used in load balancing may be access point occupancy.
- access points may have overlapping areas of coverage. If it is determined that a first access point is busier than a second access point, the system may preferentially migrate the platform from the first access point to the second access point.
- the target band is adjustable. For example, if it is determined that a band other than the target band would be more advantageous as a target band, then the other band can be set as the target band. As before, certain characteristics of non-target bands may override the preference (e.g., if signal strength does not exceed an acceptable RSSI threshold, or if the data is of a particular type).
- FIG. 5 depicts a flowchart 500 of an example of a method for load balancing a wireless network.
- This method and other methods are depicted as serially arranged modules. However, modules of the methods may be reordered, or arranged for parallel execution as appropriate.
- FIG. 5 is intended to illustrate a first example of operation of a system such as that depicted in FIG. 3 , using the techniques described herein.
- the flowchart is arranged such that, in general, modules associated with a platform are on the left-hand side and modules associated with an access point are on the right-hand side. This organization is for illustrative purposes only.
- the flowchart 500 starts at module 502 where a first probe request is sent from the platform on a first band, and a second probe request is sent from the platform on a second band. Implicit in module 502 is that the platform is capable of sending probe requests on at least two bands. However, the platform may be capable of operating on more than two bands, and may therefore send probe requests on more than two bands.
- the flowchart 500 continues to module 504 where the first probe request is received at the access point on the first band, and the second probe request is received at the access point on the second band.
- Implicit in module 504 is that the access point is capable of sending probe request on at least two bands.
- the platform may be capable of operating on more than two bands, and may or may not receive probe requests on more than two bands.
- an access point could be configured to operate on only one band. In such a case, multiple access points capable of operation on multiple bands could be used together to gain at least some of the advantages associated with this technique.
- the flowchart 500 continues to module 506 where the access point determines the target band.
- the target band may be determined in a number of ways. For example, a human or software agent may arbitrarily (or for reasons not considered by the system) select a target band. As another example, the target band may be selected using network traffic considerations such as congestion on one or more bands, available bandwidth on one or more of the bands, high or low throughput on one or more of the bands, etc. As another example, the target band may be selected on a platform-by-platform basis, such as based upon signal strengths associated with a platform on the various bands.
- the flowchart 500 continues to decision point 508 where it is determined whether to target the first band. It should be noted that the example of FIG. 5 describes only a first and second band, but the target band could be chosen from any number of bands. If it is determined that the first band is the target band ( 508 —Yes), then the flowchart continues to module 510 where the access point responds to the first probe request on the first band, and refuses to respond to the second probe request on the second band. If, on the other hand, it is determined that the second band is the target band ( 508 —No), then the flowchart continues to module 512 where the access point refuses to respond to the first probe request on the first band, and responds to the second probe request on the second band.
- the flowchart 500 continues to module 514 where the response to probe request is received at the platform on the target band.
- the target band may be either the first band or the second band. It should be noted that since the platform only received a response to probe request on the target band, and not the other band, from the perspective of the platform, only the target band is currently available.
- the flowchart 500 continues to module 516 where a connection is established on the target band.
- the connection may be established between the platform and the access point by any known or convenient protocol, procedure, or means.
- the flowchart 500 continues to decision point 518 where it is determined whether to select a new target band. The determination may be based on factors similar to those described with respect to module 506 . By way of example but not limitation, it may be desirable to select a new target band if a detected signal strength on the target band drops below an acceptable signal strength threshold, or if the signal strength on the target band is lower than on a non-target band by a certain margin. If it is determined that an attempt to select a new target band should be made ( 518 —Yes), then the flowchart 500 returns to the beginning (module 502 ) and proceeds as described above.
- FIG. 6 depicts a flowchart 600 of an example of a method for wireless load balancing on 5 GHz (which may or may not include an 802.11b/g band) and 2.4 GHz (which may or may not include an 802.11a band) spectrum bands.
- the flowchart 600 begins at module 602 where an approximately 5 GHz spectrum band is set as a target band.
- the setting of the target band may be based upon any known or convenient load balancing considerations including but not limited to traffic characteristics on the various bands, platform characteristics, access point characteristics, or other characteristics.
- the target band can be changed at a later time.
- the flowchart 600 continues to decision point 604 where it is determined whether a detected signal on the target band is higher than an RSSI threshold. If not ( 604 —No), the flowchart 600 repeats decision point 604 until this condition is true, if ever. If, on the other hand, it is determined that the detected signal on the target band is higher than the RSSI threshold ( 604 —Yes), then the flowchart 600 continues to module 606 where a client associated with the detected signal strength is migrated from the 2.4 GHz spectrum band to the target band. In an embodiment that includes multiple other bands (besides the 2.4 GHz spectrum band), the migration may be carried out for clients on those other bands. In another embodiment, all clients that are compatible with the target band may be migrated from the 2.4 GHz spectrum band to the target band if the respective detected signal strengths exceed the RSSI threshold.
- the flowchart 600 continues to decision point 608 where it is determined whether a detected signal on the target band has dropped below the RSSI threshold. If not ( 608 —No), then the flowchart 600 repeats decision point 608 until this condition is true, if ever. If, on the other hand, it is determined that the detected signal on the target band has dropped below the RSSI threshold ( 608 —Yes), then the flowchart 600 continues to module 610 where the client is switched back to the 2.4 GHz spectrum band. At this point, the flowchart 600 ends. Of course, depending upon the embodiment and/or implementation, the client could presumably switch between bands any number of times.
- the method may further include disabling the migrating and switching based upon network traffic characteristics. For example, congestion on one or more bands may result in an override of the signal strength-dependent migration.
- FIG. 7 depicts an example of a wireless band load balancing device 700 .
- the device 700 may be, by way of example but not limitation, a wireless access point.
- the device 700 includes a processor 702 , memory 704 , and radios 706 - 1 to 706 -N (referred to collectively as radios 706 ), coupled to a bus 708 .
- the bus architecture is optional, and is selected for ease of illustration, but any applicable known or convenient architecture would suffice.
- the memory 704 which may include volatile and/or non-volatile storage, or software, firmware, and/or hardware components, includes an RSSI module 712 , a targeting module 714 , and an SSID forwarding module 716 . While the modules 712 , 714 , and 716 are depicted as residing locally on the device 700 , one, some, or all of the modules could instead be located on another remote device, such as a switch, a server, or some other computer.
- the radios 706 are intended to represent radios on different bands. However, a single radio could be used to cover multiple bands, or multiple radios could cover a single band, depending upon implementation. For illustrative purposes only, it is assumed that the radios 706 are associated with different bands.
- the radios 706 receive signals from platforms (not shown).
- the signals are evaluated by the RSSI module to determine the strength of the signals. It may be noted that since the RSSI module typically receives a subset of all signals sent by the platforms, so the RSSI value associated with a signal is an estimation of actual average signals strength. In general, the larger the sample, the greater the accuracy.
- Each signal has an RSSI value. For example, if a platform has signals sampled on each of the bands, each of the signals have an RSSI value. If multiple signals associated with a platform are sampled on a single band, the RSSI value may be an average of the signals.
- the targeting module 714 determines which band is a targeted band.
- the determination may be made by assignment, consideration of traffic characteristics, using RSSI values on a platform-by-platform basis, or by some other means or combination. For example, if the targeting module 714 determines the target band based on RSSI values for a platform on the various bands, the targeting module 714 may select the band with the highest associated RSSI values as the target band. As another example, the targeting module 714 may require that certain bands have a higher associated RSSI value by a margin. As another example, RSSI values may be weighted depending upon traffic characteristics of the associated bands.
- the SSID forwarding module 716 sends a message, through the associated radio, to the relevant platform.
- the SSID forwarding module 716 may respond to probe requests from a platform on the target band.
- the SSID forwarding module 716 refuses to response to probe requests on non-target bands.
- the platform will believe it has only a single choice—the target band.
- the RSSI module may determine that RSSI values are higher on a first band initially, the first band becoming the target band, but that RSSI values are higher on a second band later, and change the target band to the second band in response.
- a wireless network refers to any type of wireless network, including but not limited to a structured network or an ad hoc network.
- Data on a wireless network is often encrypted. However, data may also be sent in the clear, if desired.
- a rogue device With encrypted data, a rogue device will have a very difficult time learning any information (such as passwords, etc.) from clients before countermeasures are taken to deal with the rogue. The rogue may be able to confuse the client, and perhaps obtain some encrypted data, but the risk is minimal (even less than for some wired networks).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/272,859 US8320949B2 (en) | 2006-06-01 | 2011-10-13 | Wireless load balancing across bands |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/445,750 US7577453B2 (en) | 2006-06-01 | 2006-06-01 | Wireless load balancing across bands |
US12/491,201 US8064939B2 (en) | 2006-06-01 | 2009-06-24 | Wireless load balancing |
US13/272,859 US8320949B2 (en) | 2006-06-01 | 2011-10-13 | Wireless load balancing across bands |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/491,201 Division US8064939B2 (en) | 2006-06-01 | 2009-06-24 | Wireless load balancing |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120034943A1 US20120034943A1 (en) | 2012-02-09 |
US8320949B2 true US8320949B2 (en) | 2012-11-27 |
Family
ID=38790920
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/445,750 Active 2027-12-18 US7577453B2 (en) | 2006-06-01 | 2006-06-01 | Wireless load balancing across bands |
US12/491,201 Active 2026-06-06 US8064939B2 (en) | 2006-06-01 | 2009-06-24 | Wireless load balancing |
US13/272,859 Active US8320949B2 (en) | 2006-06-01 | 2011-10-13 | Wireless load balancing across bands |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/445,750 Active 2027-12-18 US7577453B2 (en) | 2006-06-01 | 2006-06-01 | Wireless load balancing across bands |
US12/491,201 Active 2026-06-06 US8064939B2 (en) | 2006-06-01 | 2009-06-24 | Wireless load balancing |
Country Status (1)
Country | Link |
---|---|
US (3) | US7577453B2 (en) |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120317284A1 (en) * | 2009-01-28 | 2012-12-13 | Headwater Partners I Llc | Adaptive Ambient Services |
US20130040703A1 (en) * | 2009-01-28 | 2013-02-14 | Headwater Partner I, LLC | Device Assisted Ambient Services |
US20130182846A1 (en) * | 2011-04-15 | 2013-07-18 | Panasonic Corporation | Wireless communication apparatus for setting frequency band for wireless communications using encryption key information to predetermined frequency band |
US8494518B1 (en) * | 2010-05-12 | 2013-07-23 | Sprint Spectrum L.P. | Interfrequency access handoff in home carrier network |
US8548428B2 (en) | 2009-01-28 | 2013-10-01 | Headwater Partners I Llc | Device group partitions and settlement platform |
US8589541B2 (en) | 2009-01-28 | 2013-11-19 | Headwater Partners I Llc | Device-assisted services for protecting network capacity |
US8606911B2 (en) | 2009-03-02 | 2013-12-10 | Headwater Partners I Llc | Flow tagging for service policy implementation |
US8626115B2 (en) | 2009-01-28 | 2014-01-07 | Headwater Partners I Llc | Wireless network service interfaces |
US8630630B2 (en) | 2009-01-28 | 2014-01-14 | Headwater Partners I Llc | Enhanced roaming services and converged carrier networks with device assisted services and a proxy |
US8634805B2 (en) | 2009-01-28 | 2014-01-21 | Headwater Partners I Llc | Device assisted CDR creation aggregation, mediation and billing |
US8634821B2 (en) | 2009-01-28 | 2014-01-21 | Headwater Partners I Llc | Device assisted services install |
US8635335B2 (en) | 2009-01-28 | 2014-01-21 | Headwater Partners I Llc | System and method for wireless network offloading |
US8725123B2 (en) | 2008-06-05 | 2014-05-13 | Headwater Partners I Llc | Communications device with secure data path processing agents |
US8745191B2 (en) | 2009-01-28 | 2014-06-03 | Headwater Partners I Llc | System and method for providing user notifications |
US20140201370A1 (en) * | 2013-01-14 | 2014-07-17 | Comcast Cable Communications, Llc | Efficient Allocation Of Network Resources |
US8793758B2 (en) | 2009-01-28 | 2014-07-29 | Headwater Partners I Llc | Security, fraud detection, and fraud mitigation in device-assisted services systems |
US8832777B2 (en) | 2009-03-02 | 2014-09-09 | Headwater Partners I Llc | Adapting network policies based on device service processor configuration |
US8893009B2 (en) | 2009-01-28 | 2014-11-18 | Headwater Partners I Llc | End user device that secures an association of application to service policy with an application certificate check |
US8898293B2 (en) | 2009-01-28 | 2014-11-25 | Headwater Partners I Llc | Service offer set publishing to device agent with on-device service selection |
US8924543B2 (en) | 2009-01-28 | 2014-12-30 | Headwater Partners I Llc | Service design center for device assisted services |
US8924469B2 (en) | 2008-06-05 | 2014-12-30 | Headwater Partners I Llc | Enterprise access control and accounting allocation for access networks |
US9094311B2 (en) | 2009-01-28 | 2015-07-28 | Headwater Partners I, Llc | Techniques for attribution of mobile device data traffic to initiating end-user application |
US9154826B2 (en) | 2011-04-06 | 2015-10-06 | Headwater Partners Ii Llc | Distributing content and service launch objects to mobile devices |
US9198042B2 (en) | 2009-01-28 | 2015-11-24 | Headwater Partners I Llc | Security techniques for device assisted services |
US9226210B1 (en) | 2013-07-22 | 2015-12-29 | Sprint Spectrum L.P. | Use of fallback carrier load to manage fallback communication setup latency |
US9247450B2 (en) | 2009-01-28 | 2016-01-26 | Headwater Partners I Llc | Quality of service for device assisted services |
US9253663B2 (en) | 2009-01-28 | 2016-02-02 | Headwater Partners I Llc | Controlling mobile device communications on a roaming network based on device state |
US9351193B2 (en) | 2009-01-28 | 2016-05-24 | Headwater Partners I Llc | Intermediate networking devices |
US9392462B2 (en) | 2009-01-28 | 2016-07-12 | Headwater Partners I Llc | Mobile end-user device with agent limiting wireless data communication for specified background applications based on a stored policy |
US9557889B2 (en) | 2009-01-28 | 2017-01-31 | Headwater Partners I Llc | Service plan design, user interfaces, application programming interfaces, and device management |
US9565707B2 (en) | 2009-01-28 | 2017-02-07 | Headwater Partners I Llc | Wireless end-user device with wireless data attribution to multiple personas |
US9572019B2 (en) | 2009-01-28 | 2017-02-14 | Headwater Partners LLC | Service selection set published to device agent with on-device service selection |
US9571559B2 (en) | 2009-01-28 | 2017-02-14 | Headwater Partners I Llc | Enhanced curfew and protection associated with a device group |
US9578182B2 (en) | 2009-01-28 | 2017-02-21 | Headwater Partners I Llc | Mobile device and service management |
US9609510B2 (en) | 2009-01-28 | 2017-03-28 | Headwater Research Llc | Automated credential porting for mobile devices |
US9647918B2 (en) | 2009-01-28 | 2017-05-09 | Headwater Research Llc | Mobile device and method attributing media services network usage to requesting application |
US9706061B2 (en) | 2009-01-28 | 2017-07-11 | Headwater Partners I Llc | Service design center for device assisted services |
US9755842B2 (en) | 2009-01-28 | 2017-09-05 | Headwater Research Llc | Managing service user discovery and service launch object placement on a device |
US9843967B1 (en) | 2013-07-22 | 2017-12-12 | Sprint Spectrum L.P. | Use of fallback coverage area load to manage fallback communication setup |
US9858559B2 (en) | 2009-01-28 | 2018-01-02 | Headwater Research Llc | Network service plan design |
US9954975B2 (en) | 2009-01-28 | 2018-04-24 | Headwater Research Llc | Enhanced curfew and protection associated with a device group |
US9955332B2 (en) | 2009-01-28 | 2018-04-24 | Headwater Research Llc | Method for child wireless device activation to subscriber account of a master wireless device |
US9980146B2 (en) | 2009-01-28 | 2018-05-22 | Headwater Research Llc | Communications device with secure data path processing agents |
US10057775B2 (en) | 2009-01-28 | 2018-08-21 | Headwater Research Llc | Virtualized policy and charging system |
US10064055B2 (en) | 2009-01-28 | 2018-08-28 | Headwater Research Llc | Security, fraud detection, and fraud mitigation in device-assisted services systems |
US10200541B2 (en) | 2009-01-28 | 2019-02-05 | Headwater Research Llc | Wireless end-user device with divided user space/kernel space traffic policy system |
US10237757B2 (en) | 2009-01-28 | 2019-03-19 | Headwater Research Llc | System and method for wireless network offloading |
US10248996B2 (en) | 2009-01-28 | 2019-04-02 | Headwater Research Llc | Method for operating a wireless end-user device mobile payment agent |
US10264138B2 (en) | 2009-01-28 | 2019-04-16 | Headwater Research Llc | Mobile device and service management |
US10326800B2 (en) | 2009-01-28 | 2019-06-18 | Headwater Research Llc | Wireless network service interfaces |
US10492102B2 (en) | 2009-01-28 | 2019-11-26 | Headwater Research Llc | Intermediate networking devices |
US10588030B2 (en) | 2015-08-05 | 2020-03-10 | Hewlett Packard Enterprise Development Lp | Switching frequency band of radio of access point |
US10715342B2 (en) | 2009-01-28 | 2020-07-14 | Headwater Research Llc | Managing service user discovery and service launch object placement on a device |
US10779177B2 (en) | 2009-01-28 | 2020-09-15 | Headwater Research Llc | Device group partitions and settlement platform |
US10783581B2 (en) | 2009-01-28 | 2020-09-22 | Headwater Research Llc | Wireless end-user device providing ambient or sponsored services |
US10798252B2 (en) | 2009-01-28 | 2020-10-06 | Headwater Research Llc | System and method for providing user notifications |
US10841839B2 (en) | 2009-01-28 | 2020-11-17 | Headwater Research Llc | Security, fraud detection, and fraud mitigation in device-assisted services systems |
US11129049B2 (en) | 2018-12-05 | 2021-09-21 | Systems And Software Enterprises, Llc | Methods and apparatus for radio transmitters management and resource optimization in multi-band wireless networks |
US11218854B2 (en) | 2009-01-28 | 2022-01-04 | Headwater Research Llc | Service plan design, user interfaces, application programming interfaces, and device management |
US11412366B2 (en) | 2009-01-28 | 2022-08-09 | Headwater Research Llc | Enhanced roaming services and converged carrier networks with device assisted services and a proxy |
US11818644B2 (en) | 2021-03-17 | 2023-11-14 | Dell Products, Lp | Dock-assisted system and method of diversifying dual-band simultaneous communications |
US11973804B2 (en) | 2009-01-28 | 2024-04-30 | Headwater Research Llc | Network service plan design |
US11985155B2 (en) | 2009-01-28 | 2024-05-14 | Headwater Research Llc | Communications device with secure data path processing agents |
US12137004B2 (en) | 2009-01-28 | 2024-11-05 | Headwater Research Llc | Device group partitions and settlement platform |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090252097A1 (en) * | 2008-04-08 | 2009-10-08 | Aruba Networks, Inc. | Band steering for multi-band wireless clients |
US8699418B2 (en) * | 2008-04-08 | 2014-04-15 | Aruba Networks, Inc. | Band steering for multi-band wireless clients |
US9432848B2 (en) | 2004-03-23 | 2016-08-30 | Aruba Networks, Inc. | Band steering for multi-band wireless clients |
CA2600830A1 (en) * | 2005-03-15 | 2006-09-21 | Trapeze Networks, Inc. | System and method for distributing keys in a wireless network |
JP4718227B2 (en) * | 2005-04-14 | 2011-07-06 | 株式会社日立製作所 | RADIO COMMUNICATION SYSTEM, RADIO RELAY APPARATUS AND RADIO COMMUNICATION TERMINAL COMPRISING THE SAME, AND COMMUNICATION LOAD ADJUSTING METHOD FOR RADIO RELAY APPARATUS |
US7551619B2 (en) | 2005-10-13 | 2009-06-23 | Trapeze Networks, Inc. | Identity-based networking |
US8638762B2 (en) | 2005-10-13 | 2014-01-28 | Trapeze Networks, Inc. | System and method for network integrity |
WO2007044986A2 (en) | 2005-10-13 | 2007-04-19 | Trapeze Networks, Inc. | System and method for remote monitoring in a wireless network |
US7573859B2 (en) | 2005-10-13 | 2009-08-11 | Trapeze Networks, Inc. | System and method for remote monitoring in a wireless network |
US7724703B2 (en) | 2005-10-13 | 2010-05-25 | Belden, Inc. | System and method for wireless network monitoring |
US7558266B2 (en) | 2006-05-03 | 2009-07-07 | Trapeze Networks, Inc. | System and method for restricting network access using forwarding databases |
US8966018B2 (en) | 2006-05-19 | 2015-02-24 | Trapeze Networks, Inc. | Automated network device configuration and network deployment |
US7577453B2 (en) | 2006-06-01 | 2009-08-18 | Trapeze Networks, Inc. | Wireless load balancing across bands |
US8818322B2 (en) | 2006-06-09 | 2014-08-26 | Trapeze Networks, Inc. | Untethered access point mesh system and method |
US9191799B2 (en) | 2006-06-09 | 2015-11-17 | Juniper Networks, Inc. | Sharing data between wireless switches system and method |
US7912982B2 (en) | 2006-06-09 | 2011-03-22 | Trapeze Networks, Inc. | Wireless routing selection system and method |
US9258702B2 (en) | 2006-06-09 | 2016-02-09 | Trapeze Networks, Inc. | AP-local dynamic switching |
US8340110B2 (en) | 2006-09-15 | 2012-12-25 | Trapeze Networks, Inc. | Quality of service provisioning for wireless networks |
US8072952B2 (en) | 2006-10-16 | 2011-12-06 | Juniper Networks, Inc. | Load balancing |
US7873061B2 (en) | 2006-12-28 | 2011-01-18 | Trapeze Networks, Inc. | System and method for aggregation and queuing in a wireless network |
WO2008083339A2 (en) | 2006-12-28 | 2008-07-10 | Trapeze Networks, Inc. | Application-aware wireless network system and method |
WO2008126278A1 (en) * | 2007-03-30 | 2008-10-23 | Fujitsu Microelectronics Limited | Data transfer method |
US8902904B2 (en) | 2007-09-07 | 2014-12-02 | Trapeze Networks, Inc. | Network assignment based on priority |
US8509128B2 (en) | 2007-09-18 | 2013-08-13 | Trapeze Networks, Inc. | High level instruction convergence function |
CN101796768B (en) * | 2007-09-28 | 2013-07-10 | 三洋电机株式会社 | Communication system, base station device, and terminal device |
US9288297B2 (en) * | 2007-10-31 | 2016-03-15 | Qualcomm Incorporated | Method and apparatus to display signal strength |
US8238942B2 (en) | 2007-11-21 | 2012-08-07 | Trapeze Networks, Inc. | Wireless station location detection |
US8150357B2 (en) | 2008-03-28 | 2012-04-03 | Trapeze Networks, Inc. | Smoothing filter for irregular update intervals |
US8474023B2 (en) | 2008-05-30 | 2013-06-25 | Juniper Networks, Inc. | Proactive credential caching |
US8978105B2 (en) | 2008-07-25 | 2015-03-10 | Trapeze Networks, Inc. | Affirming network relationships and resource access via related networks |
US8238298B2 (en) | 2008-08-29 | 2012-08-07 | Trapeze Networks, Inc. | Picking an optimal channel for an access point in a wireless network |
US8391224B2 (en) * | 2009-03-03 | 2013-03-05 | Avaya Inc. | Proactive load distribution for 802.111-based wireless LANs |
US8385197B2 (en) * | 2009-03-03 | 2013-02-26 | Avaya Inc. | Practical measurement-based session admission control for Wi-Fi LAN systems |
US8619602B2 (en) * | 2009-08-31 | 2013-12-31 | Cisco Technology, Inc. | Capacity/available bandwidth estimation with packet dispersion |
US8849289B2 (en) | 2009-09-23 | 2014-09-30 | Samsung Electronics Co., Ltd. | Method and apparatus for band transfer in multiband communication system |
US10034300B2 (en) * | 2010-06-10 | 2018-07-24 | Cisco Technology, Inc | Load based probe response scheduling |
US8542836B2 (en) | 2010-12-01 | 2013-09-24 | Juniper Networks, Inc. | System, apparatus and methods for highly scalable continuous roaming within a wireless network |
JP5379177B2 (en) * | 2011-02-10 | 2013-12-25 | 株式会社日立製作所 | Distributed antenna system, base station apparatus, and radio resource control method |
US20120230189A1 (en) * | 2011-03-08 | 2012-09-13 | Medium Access Systems Private Limited | System and method of transferring Wi-Fi clients between SSIDs |
US8687512B2 (en) | 2011-04-29 | 2014-04-01 | Aruba Networks, Inc. | Signal strength aware band steering |
US9578515B2 (en) * | 2011-05-13 | 2017-02-21 | Qualcomm Incorporated | Methods and apparatuses for frequency spectrum sharing |
CN102256337B (en) * | 2011-07-08 | 2015-04-15 | 杭州华三通信技术有限公司 | Message processing method and equipment in wireless local area network (WLAN) |
KR101339682B1 (en) * | 2012-01-26 | 2013-12-10 | 주식회사 다산네트웍스 | Intelligent association blocking band steering method and system thereof |
WO2013116564A1 (en) * | 2012-01-31 | 2013-08-08 | Aruba Networks, Inc. | Band steering for multi-band wireless clients |
CN102547860B (en) * | 2012-03-02 | 2015-07-22 | 中兴通讯股份有限公司 | Load balancing method and system for multi-band network |
US10129751B2 (en) | 2012-05-25 | 2018-11-13 | Comcast Cable Communications, Llc | Wireless gateway supporting public and private networks |
CN103582068B (en) * | 2012-07-30 | 2017-12-08 | 中兴通讯股份有限公司 | A kind of radio switch-in method and system |
US9055608B2 (en) * | 2012-08-31 | 2015-06-09 | Verizon Patent And Licensing Inc. | Frequency band admission |
CN102843302B (en) * | 2012-09-17 | 2015-02-25 | 福建星网锐捷网络有限公司 | Terminal access method and device |
US9420490B2 (en) * | 2013-03-08 | 2016-08-16 | Qualcomm Incorporated | Systems and methods for seamless data stream transfer during band switch between wireless stations |
CN103648129A (en) * | 2013-12-04 | 2014-03-19 | 上海交通大学无锡研究院 | Heterogeneous-network switching method based on load balancing and QoS |
US9467972B2 (en) | 2013-12-30 | 2016-10-11 | Motorola Solutions, Inc. | Multicast wireless communication system |
US10219284B2 (en) * | 2014-03-31 | 2019-02-26 | Fujitsu Connected Technologies Limited | Multi-band resource scheduling for wireless device tethering |
US9408181B2 (en) * | 2014-04-22 | 2016-08-02 | Aruba Networks, Inc. | Automatic calibration of probe request received signal strength indication (RSSI) threshold to control associations |
US10582419B2 (en) * | 2014-07-22 | 2020-03-03 | Time Warner Cable Enterprises Llc | Wireless spectrum usage and load-balancing |
US9992775B2 (en) * | 2015-01-30 | 2018-06-05 | Qualcomm Incorporated | Band preference in wireless networks |
US9706438B1 (en) * | 2015-02-10 | 2017-07-11 | Amdocs Software Systems Limited | System, method, and computer program for congestion relief in a communication network |
EP3545709B1 (en) | 2016-11-23 | 2022-03-09 | Harman Becker Automotive Systems GmbH | Band steering wi-fi direct client connections to dual band wi-fi direct autonomous group owner |
CN107592370A (en) * | 2017-10-31 | 2018-01-16 | 郑州云海信息技术有限公司 | A kind of network load balancing method and device |
US10499282B1 (en) * | 2018-09-28 | 2019-12-03 | Cypress Semiconductor Corporation | Efficient method to load-balance wireless networks with multi-band interface controllers |
US10869246B2 (en) | 2018-12-20 | 2020-12-15 | Arris Enterprises Llc | Method and system for proactive steering in a wireless network |
Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5339316A (en) | 1992-11-13 | 1994-08-16 | Ncr Corporation | Wireless local area network system |
US5371783A (en) | 1991-05-29 | 1994-12-06 | Video Technology Engineering, Ltd. | Method for continually monitoring the status of a radio frequency link |
US5488569A (en) | 1993-12-20 | 1996-01-30 | At&T Corp. | Application-oriented telecommunication system interface |
US5774460A (en) | 1993-08-05 | 1998-06-30 | Krone Aktiengesellschaft | Local ISDN radio transmission system |
US5887259A (en) | 1994-02-24 | 1999-03-23 | Gte Mobile Communications Service Corporation | Multiple mode personal wireless communications system |
US6041240A (en) | 1994-01-05 | 2000-03-21 | Thomson Consumer Electronics Inc. | Clear channel selection system for a cordless telephone |
US6101539A (en) | 1998-10-02 | 2000-08-08 | Kennelly; Richard J. | Dynamic presentation of management objectives based on administrator privileges |
US6118771A (en) | 1996-03-14 | 2000-09-12 | Kabushiki Kaisha Toshiba | System and method for controlling communication |
US6262988B1 (en) | 1998-03-11 | 2001-07-17 | Cisco Technology, Inc. | Method and system for subnetting in a switched IP network |
US20010024953A1 (en) | 2000-02-24 | 2001-09-27 | Peter Balogh | Method and equipment for supporting mobility in a telecommunication system |
US6304596B1 (en) | 1997-05-09 | 2001-10-16 | Broadcom Homenetworking, Inc. | Method and apparatus for reducing signal processing requirements for transmitting packet-based data with a modem |
US20020060995A1 (en) | 2000-07-07 | 2002-05-23 | Koninklijke Philips Electronics N.V. | Dynamic channel selection scheme for IEEE 802.11 WLANs |
US20020176437A1 (en) | 2001-05-08 | 2002-11-28 | Patrick Busch | Wireless LAN with channel swapping between DFS access points |
US20030055959A1 (en) | 2001-08-27 | 2003-03-20 | Kazuhiko Sato | Method and system for managing computer network and non-network activities |
US20030134642A1 (en) | 2001-11-19 | 2003-07-17 | At&T Corp. | WLAN having load balancing by access point admission/termination |
US20030135762A1 (en) | 2002-01-09 | 2003-07-17 | Peel Wireless, Inc. | Wireless networks security system |
US6614787B1 (en) | 1999-03-30 | 2003-09-02 | 3Com Corporation | System and method for efficiently handling multicast packets by aggregating VLAN context |
US6624762B1 (en) | 2002-04-11 | 2003-09-23 | Unisys Corporation | Hardware-based, LZW data compression co-processor |
US20030227934A1 (en) | 2002-06-11 | 2003-12-11 | White Eric D. | System and method for multicast media access using broadcast transmissions with multiple acknowledgements in an Ad-Hoc communications network |
US20040003285A1 (en) | 2002-06-28 | 2004-01-01 | Robert Whelan | System and method for detecting unauthorized wireless access points |
US6697415B1 (en) | 1996-06-03 | 2004-02-24 | Broadcom Corporation | Spread spectrum transceiver module utilizing multiple mode transmission |
US20040053632A1 (en) | 2002-09-18 | 2004-03-18 | Nikkelen Vincent Johannes Wilhelmus | Distributing shared network access information in a shared network mobile communications system |
US20040062267A1 (en) | 2002-03-06 | 2004-04-01 | Minami John Shigeto | Gigabit Ethernet adapter supporting the iSCSI and IPSEC protocols |
US20040068668A1 (en) | 2002-10-08 | 2004-04-08 | Broadcom Corporation | Enterprise wireless local area network switching system |
US6760324B1 (en) | 1999-09-10 | 2004-07-06 | Array Telecom Corporation | Method, system, and computer program product for providing voice over the internet communication |
US20040165545A1 (en) | 2003-02-21 | 2004-08-26 | Qwest Communications International Inc. | Systems and methods for creating a wireless network |
US20040208570A1 (en) | 2003-04-18 | 2004-10-21 | Reader Scot A. | Wavelength-oriented virtual networks |
US20040221042A1 (en) | 2003-04-30 | 2004-11-04 | Meier Robert C. | Mobile ethernet |
US20040236702A1 (en) | 2003-05-21 | 2004-11-25 | Fink Ian M. | User fraud detection and prevention of access to a distributed network communication system |
US20040255167A1 (en) | 2003-04-28 | 2004-12-16 | Knight James Michael | Method and system for remote network security management |
US6839348B2 (en) | 1999-04-30 | 2005-01-04 | Cisco Technology, Inc. | System and method for distributing multicasts in virtual local area networks |
US20050037818A1 (en) | 2003-05-28 | 2005-02-17 | Nambirajan Seshadri | Providing a universal wireless headset |
US20050054326A1 (en) | 2003-09-09 | 2005-03-10 | Todd Rogers | Method and system for securing and monitoring a wireless network |
US20050059406A1 (en) | 2003-09-17 | 2005-03-17 | Trapeze Networks, Inc. | Wireless LAN measurement feedback |
US20050059405A1 (en) | 2003-09-17 | 2005-03-17 | Trapeze Networks, Inc. | Simulation driven wireless LAN planning |
US20050064873A1 (en) | 2003-09-22 | 2005-03-24 | Jeyhan Karaoguz | Automatic quality of service based resource allocation |
US20050068925A1 (en) | 2002-07-26 | 2005-03-31 | Stephen Palm | Wireless access point setup and management within wireless local area network |
US6879812B2 (en) | 2002-02-08 | 2005-04-12 | Networks Associates Technology Inc. | Portable computing device and associated method for analyzing a wireless local area network |
US20050097618A1 (en) | 2003-11-04 | 2005-05-05 | Universal Electronics Inc. | System and method for saving and recalling state data for media and home appliances |
US20050122977A1 (en) | 2003-12-05 | 2005-06-09 | Microsoft Corporation | Efficient download mechanism for devices with limited local storage |
US6957067B1 (en) | 2002-09-24 | 2005-10-18 | Aruba Networks | System and method for monitoring and enforcing policy within a wireless network |
US20050239461A1 (en) | 2002-06-21 | 2005-10-27 | The Regents Of The Unviersity Of California | Registration of a wlan as a umts routing area for wlan-umts interworking |
US20050240665A1 (en) | 1999-06-11 | 2005-10-27 | Microsoft Corporation | Dynamic self-configuration for ad hoc peer networking |
US20050245269A1 (en) | 2004-04-30 | 2005-11-03 | Intel Corporation | Channel scanning in wireless networks |
US7020438B2 (en) | 2003-01-09 | 2006-03-28 | Nokia Corporation | Selection of access point in a wireless communication system |
US7024394B1 (en) | 2000-07-07 | 2006-04-04 | International Business Machines Corporation | System and method for protecting user logoff from web business transactions |
US20060073827A1 (en) | 2002-12-19 | 2006-04-06 | Nokia Corporation | System and handover mechanism in frequency multilple band environment and equipment therefor |
US20060104224A1 (en) | 2004-10-13 | 2006-05-18 | Gurminder Singh | Wireless access point with fingerprint authentication |
US7062566B2 (en) | 2002-10-24 | 2006-06-13 | 3Com Corporation | System and method for using virtual local area network tags with a virtual private network |
US20060128415A1 (en) | 2004-12-09 | 2006-06-15 | Hideto Horikoshi | Apparatus and method for detecting a wireless access point for wireless network communication |
US7068999B2 (en) | 2002-08-02 | 2006-06-27 | Symbol Technologies, Inc. | System and method for detection of a rogue wireless access point in a wireless communication network |
US20060161983A1 (en) | 2005-01-20 | 2006-07-20 | Cothrell Scott A | Inline intrusion detection |
US20060174336A1 (en) | 2002-09-06 | 2006-08-03 | Jyshyang Chen | VPN and firewall integrated system |
US20060189311A1 (en) | 2005-02-18 | 2006-08-24 | Cromer Daryl C | Apparatus, system, and method for rapid wireless network association |
US7116979B2 (en) | 2003-02-24 | 2006-10-03 | Autocell Laboratories, Inc | Wireless channel selection method and system using scanning for identifying access point |
US20060227725A1 (en) | 2005-04-08 | 2006-10-12 | Huotari Allen J | Network availability status detection device and method |
US20060248331A1 (en) | 2005-03-15 | 2006-11-02 | Dan Harkins | System and method for distributing keys in a wireless network |
US20060245393A1 (en) | 2005-04-27 | 2006-11-02 | Symbol Technologies, Inc. | Method, system and apparatus for layer 3 roaming in wireless local area networks (WLANs) |
US7139579B2 (en) | 2002-10-30 | 2006-11-21 | Kabushika Kaisha Toshiba | Relay and communication system |
US20060276192A1 (en) | 2005-05-18 | 2006-12-07 | Ashutosh Dutta | Seamless handoff across heterogeneous access networks using a handoff controller in a service control point |
US7155518B2 (en) | 2001-01-08 | 2006-12-26 | Interactive People Unplugged Ab | Extranet workgroup formation across multiple mobile virtual private networks |
US20070025265A1 (en) | 2005-07-22 | 2007-02-01 | Porras Phillip A | Method and apparatus for wireless network security |
US20070064718A1 (en) | 2005-09-19 | 2007-03-22 | Ekl Randy L | Method of reliable multicasting |
US20070070937A1 (en) | 2005-09-28 | 2007-03-29 | Mustafa Demirhan | Multi-radio mesh network channel selection and load balancing |
US20070083924A1 (en) | 2005-10-08 | 2007-04-12 | Lu Hongqian K | System and method for multi-stage packet filtering on a networked-enabled device |
US20070091889A1 (en) | 2005-10-25 | 2007-04-26 | Xin Xiao | Method and apparatus for group leader selection in wireless multicast service |
US7221927B2 (en) | 2004-02-13 | 2007-05-22 | Trapeze Networks, Inc. | Station mobility between access points |
US7224970B2 (en) | 2004-10-26 | 2007-05-29 | Motorola, Inc. | Method of scanning for beacon transmissions in a WLAN |
US20070160046A1 (en) | 2005-10-13 | 2007-07-12 | Matta Sudheer P C | System and method for reliable multicast |
US20070183375A1 (en) | 2005-10-13 | 2007-08-09 | Manish Tiwari | System and method for network integrity |
US7263366B2 (en) | 2003-08-06 | 2007-08-28 | Nec Corporation | Channel selection method, and wireless station and wireless terminal employing it |
US7280495B1 (en) | 2000-08-18 | 2007-10-09 | Nortel Networks Limited | Reliable broadcast protocol in a wireless local area network |
US20070260720A1 (en) | 2006-05-03 | 2007-11-08 | Morain Gary E | Mobility domain |
US7317914B2 (en) | 2004-09-24 | 2008-01-08 | Microsoft Corporation | Collaboratively locating disconnected clients and rogue access points in a wireless network |
US20080008117A1 (en) | 2006-07-07 | 2008-01-10 | Skyhook Wireless, Inc. | Method and system for employing a dedicated device for position estimation by a wlan positioning system |
US7324487B2 (en) | 2002-02-12 | 2008-01-29 | Hitachi, Ltd. | Wireless LAN system and method for roaming in a multiple base station |
US7324468B2 (en) | 2003-09-10 | 2008-01-29 | Broadcom Corporation | System and method for medium access control in a power-save network |
US20080056211A1 (en) | 2006-09-01 | 2008-03-06 | Samsung Electronics Co., Ltd. | Method for scanning access points during station's handoff procedure in wireless communication system and station performing the method, and network interface supporting the method and wireless communication system enabling the method |
US20080056200A1 (en) | 2006-08-31 | 2008-03-06 | Spectralink Corporation | Method for determining DFS channel availability in a wireless LAN |
US7359676B2 (en) | 2003-04-21 | 2008-04-15 | Airdefense, Inc. | Systems and methods for adaptively scanning for wireless communications |
US20080096575A1 (en) | 2006-10-16 | 2008-04-24 | Trapeze Networks, Inc. | Load balancing |
US7370362B2 (en) | 2005-03-03 | 2008-05-06 | Cisco Technology, Inc. | Method and apparatus for locating rogue access point switch ports in a wireless network |
US20080107077A1 (en) | 2006-11-03 | 2008-05-08 | James Murphy | Subnet mobility supporting wireless handoff |
US20080114784A1 (en) | 2006-06-09 | 2008-05-15 | James Murphy | Sharing data between wireless switches system and method |
US7376080B1 (en) | 2004-05-11 | 2008-05-20 | Packeteer, Inc. | Packet load shedding |
US20080151844A1 (en) | 2006-12-20 | 2008-06-26 | Manish Tiwari | Wireless access point authentication system and method |
US7406069B2 (en) | 2004-05-13 | 2008-07-29 | Tcm Mobile Llc | Wireless packet communications system and method |
US7421248B1 (en) | 2002-11-12 | 2008-09-02 | Cisco Technology, Inc. | Method and apparatus for adjusting operational parameter of a wireless device bases upon a monitored characteristic |
US7466678B2 (en) | 2003-12-29 | 2008-12-16 | Lenovo (Singapore) Pte. Ltd. | System and method for passive scanning of authorized wireless channels |
US20090031044A1 (en) | 2000-08-22 | 2009-01-29 | Conexant Systems, Inc. | High-Speed MAC Address Search Engine |
US7489648B2 (en) | 2004-03-11 | 2009-02-10 | Cisco Technology, Inc. | Optimizing 802.11 power-save for VLAN |
US7551619B2 (en) | 2005-10-13 | 2009-06-23 | Trapeze Networks, Inc. | Identity-based networking |
US7577453B2 (en) | 2006-06-01 | 2009-08-18 | Trapeze Networks, Inc. | Wireless load balancing across bands |
US20090274060A1 (en) | 2005-10-13 | 2009-11-05 | Trapeze Networks, Inc. | System and method for remote monitoring in a wireless network |
US20090300740A1 (en) | 2008-05-30 | 2009-12-03 | Trapeze Networks, Inc. | Proactive credential caching |
US20100024007A1 (en) | 2008-07-25 | 2010-01-28 | Trapeze Networks, Inc. | Affirming network relationships and resource access via related networks |
US7724703B2 (en) | 2005-10-13 | 2010-05-25 | Belden, Inc. | System and method for wireless network monitoring |
US7724704B2 (en) | 2006-07-17 | 2010-05-25 | Beiden Inc. | Wireless VLAN system and method |
US7865713B2 (en) | 2006-12-28 | 2011-01-04 | Trapeze Networks, Inc. | Application-aware wireless network system and method |
US7912982B2 (en) | 2006-06-09 | 2011-03-22 | Trapeze Networks, Inc. | Wireless routing selection system and method |
US8017970B2 (en) | 2008-03-12 | 2011-09-13 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting element |
Family Cites Families (161)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4176316A (en) | 1953-03-30 | 1979-11-27 | International Telephone & Telegraph Corp. | Secure single sideband communication system using modulated noise subcarrier |
US3641433A (en) | 1969-06-09 | 1972-02-08 | Us Air Force | Transmitted reference synchronization system |
FR2386211A1 (en) | 1977-03-31 | 1978-10-27 | Europ Teletransmission | DIGITAL COMMUNICATION SYSTEM |
US4291409A (en) | 1978-06-20 | 1981-09-22 | The Mitre Corporation | Spread spectrum communications method and apparatus |
CH622661B (en) | 1978-11-30 | Ebauches Bettlach Sa | DEVICE FOR FIXING A WATCHMAKING DIAL ON THE PLATE OF A WATCH MOVEMENT. | |
US4247908A (en) | 1978-12-08 | 1981-01-27 | Motorola, Inc. | Re-linked portable data terminal controller system |
US4730340A (en) | 1980-10-31 | 1988-03-08 | Harris Corp. | Programmable time invariant coherent spread symbol correlator |
US4503533A (en) | 1981-08-20 | 1985-03-05 | Stanford University | Local area communication network utilizing a round robin access scheme with improved channel utilization |
US4500987A (en) | 1981-11-24 | 1985-02-19 | Nippon Electric Co., Ltd. | Loop transmission system |
US4475208A (en) | 1982-01-18 | 1984-10-02 | Ricketts James A | Wired spread spectrum data communication system |
US4736095A (en) | 1982-01-25 | 1988-04-05 | Symbol Technologies, Inc. | Narrow-bodied, single- and twin-windowed portable laser scanning head for reading bar code symbols |
US4758717A (en) | 1982-01-25 | 1988-07-19 | Symbol Technologies, Inc. | Narrow-bodied, single-and twin-windowed portable laser scanning head for reading bar code symbols |
US4409470A (en) | 1982-01-25 | 1983-10-11 | Symbol Technologies, Inc. | Narrow-bodied, single-and twin-windowed portable laser scanning head for reading bar code symbols |
US4460120A (en) | 1982-01-25 | 1984-07-17 | Symbol Technologies, Inc. | Narrow bodied, single- and twin-windowed portable laser scanning head for reading bar code symbols |
US4673805A (en) | 1982-01-25 | 1987-06-16 | Symbol Technologies, Inc. | Narrow-bodied, single- and twin-windowed portable scanning head for reading bar code symbols |
US4494238A (en) | 1982-06-30 | 1985-01-15 | Motorola, Inc. | Multiple channel data link system |
US4550414A (en) | 1983-04-12 | 1985-10-29 | Charles Stark Draper Laboratory, Inc. | Spread spectrum adaptive code tracker |
US4707839A (en) | 1983-09-26 | 1987-11-17 | Harris Corporation | Spread spectrum correlator for recovering CCSK data from a PN spread MSK waveform |
US4644523A (en) | 1984-03-23 | 1987-02-17 | Sangamo Weston, Inc. | System for improving signal-to-noise ratio in a direct sequence spread spectrum signal receiver |
US4562415A (en) | 1984-06-22 | 1985-12-31 | Motorola, Inc. | Universal ultra-precision PSK modulator with time multiplexed modes of varying modulation types |
US4630264A (en) | 1984-09-21 | 1986-12-16 | Wah Benjamin W | Efficient contention-resolution protocol for local multiaccess networks |
US4639914A (en) | 1984-12-06 | 1987-01-27 | At&T Bell Laboratories | Wireless PBX/LAN system with optimum combining |
JPH0693670B2 (en) | 1984-12-29 | 1994-11-16 | 京セラ株式会社 | Spread spectrum communication system |
US4635221A (en) | 1985-01-18 | 1987-01-06 | Allied Corporation | Frequency multiplexed convolver communication system |
US4672658A (en) | 1985-10-16 | 1987-06-09 | At&T Company And At&T Bell Laboratories | Spread spectrum wireless PBX |
US4850009A (en) | 1986-05-12 | 1989-07-18 | Clinicom Incorporated | Portable handheld terminal including optical bar code reader and electromagnetic transceiver means for interactive wireless communication with a base communications station |
IL82561A (en) | 1986-05-27 | 1991-12-15 | Fairchild Weston Systems Inc | Secure communication system for multiple remote units |
US4740792A (en) | 1986-08-27 | 1988-04-26 | Hughes Aircraft Company | Vehicle location system |
US4901307A (en) | 1986-10-17 | 1990-02-13 | Qualcomm, Inc. | Spread spectrum multiple access communication system using satellite or terrestrial repeaters |
US4995053A (en) | 1987-02-11 | 1991-02-19 | Hillier Technologies Limited Partnership | Remote control system, components and methods |
US4789983A (en) | 1987-03-05 | 1988-12-06 | American Telephone And Telegraph Company, At&T Bell Laboratories | Wireless network for wideband indoor communications |
JPH0671241B2 (en) | 1987-09-10 | 1994-09-07 | 株式会社ケンウッド | Initial synchronization method for spread spectrum communication |
US4894842A (en) | 1987-10-15 | 1990-01-16 | The Charles Stark Draper Laboratory, Inc. | Precorrelation digital spread spectrum receiver |
US4872182A (en) | 1988-03-08 | 1989-10-03 | Harris Corporation | Frequency management system for use in multistation H.F. communication network |
FR2629931B1 (en) | 1988-04-08 | 1991-01-25 | Lmt Radio Professionelle | ASYNCHRONOUS DIGITAL CORRELATOR AND DEMODULATORS COMPRISING SUCH A CORRELATOR |
US5483676A (en) | 1988-08-04 | 1996-01-09 | Norand Corporation | Mobile radio data communication system and method |
US5103461A (en) | 1989-06-29 | 1992-04-07 | Symbol Technologies, Inc. | Signal quality measure in packet data communication |
US5029183A (en) | 1989-06-29 | 1991-07-02 | Symbol Technologies, Inc. | Packet data communication network |
US5815811A (en) | 1989-06-29 | 1998-09-29 | Symbol Technologies, Inc. | Preemptive roaming in a cellular local area wireless network |
US5142550A (en) | 1989-06-29 | 1992-08-25 | Symbol Technologies, Inc. | Packet data communication system |
US5157687A (en) | 1989-06-29 | 1992-10-20 | Symbol Technologies, Inc. | Packet data communication network |
US5528621A (en) | 1989-06-29 | 1996-06-18 | Symbol Technologies, Inc. | Packet data communication system |
US5280498A (en) | 1989-06-29 | 1994-01-18 | Symbol Technologies, Inc. | Packet data communication system |
US5668803A (en) | 1989-06-29 | 1997-09-16 | Symbol Technologies, Inc. | Protocol for packet data communication system |
JP2660441B2 (en) | 1989-07-03 | 1997-10-08 | 双葉電子工業 株式会社 | Receiver for spread spectrum communication |
US5109390A (en) | 1989-11-07 | 1992-04-28 | Qualcomm Incorporated | Diversity receiver in a cdma cellular telephone system |
US5187575A (en) * | 1989-12-29 | 1993-02-16 | Massachusetts Institute Of Technology | Source adaptive television system |
US5103459B1 (en) | 1990-06-25 | 1999-07-06 | Qualcomm Inc | System and method for generating signal waveforms in a cdma cellular telephone system |
US5231633A (en) | 1990-07-11 | 1993-07-27 | Codex Corporation | Method for prioritizing, selectively discarding, and multiplexing differing traffic type fast packets |
US5584048A (en) | 1990-08-17 | 1996-12-10 | Motorola, Inc. | Beacon based packet radio standby energy saver |
US5151919A (en) | 1990-12-17 | 1992-09-29 | Ericsson-Ge Mobile Communications Holding Inc. | Cdma subtractive demodulation |
US5187675A (en) | 1991-09-18 | 1993-02-16 | Ericsson-Ge Mobile Communications Holding Inc. | Maximum search circuit |
FI100043B (en) | 1992-01-23 | 1997-08-29 | Nokia Telecommunications Oy | Cellular radio network design method and system |
US5267261A (en) | 1992-03-05 | 1993-11-30 | Qualcomm Incorporated | Mobile station assisted soft handoff in a CDMA cellular communications system |
US5896561A (en) | 1992-04-06 | 1999-04-20 | Intermec Ip Corp. | Communication network having a dormant polling protocol |
US5418812A (en) | 1992-06-26 | 1995-05-23 | Symbol Technologies, Inc. | Radio network initialization method and apparatus |
WO1994003986A1 (en) | 1992-07-31 | 1994-02-17 | Airtouch Communications | Computer-implemented modelling system for wireless communications systems |
US5285494A (en) | 1992-07-31 | 1994-02-08 | Pactel Corporation | Network management system |
US5465401A (en) | 1992-12-15 | 1995-11-07 | Texas Instruments Incorporated | Communication system and methods for enhanced information transfer |
GB9304636D0 (en) | 1993-03-06 | 1993-04-21 | Ncr Int Inc | A method of accessing a communication system |
US5568513A (en) | 1993-05-11 | 1996-10-22 | Ericsson Inc. | Standby power savings with cumulative parity check in mobile phones |
CA2164597A1 (en) | 1993-06-07 | 1994-12-22 | Duncan Hartley Tate | Communication system |
US5491644A (en) | 1993-09-07 | 1996-02-13 | Georgia Tech Research Corporation | Cell engineering tool and methods |
US5598532A (en) | 1993-10-21 | 1997-01-28 | Optimal Networks | Method and apparatus for optimizing computer networks |
US5450615A (en) | 1993-12-22 | 1995-09-12 | At&T Corp. | Prediction of indoor electromagnetic wave propagation for wireless indoor systems |
WO1995022859A1 (en) | 1994-02-17 | 1995-08-24 | Micrilor, Inc. | A high-data-rate wireless local-area network |
US5448569A (en) | 1994-04-12 | 1995-09-05 | International Business Machines Corporation | Handoff monitoring in cellular communication networks using slow frequency hopping |
US5655148A (en) | 1994-05-27 | 1997-08-05 | Microsoft Corporation | Method for automatically configuring devices including a network adapter without manual intervention and without prior configuration information |
US5517495A (en) | 1994-12-06 | 1996-05-14 | At&T Corp. | Fair prioritized scheduling in an input-buffered switch |
US5480615A (en) * | 1994-12-12 | 1996-01-02 | Curry; Jeanette | Germicide diffuser |
US5519762A (en) | 1994-12-21 | 1996-05-21 | At&T Corp. | Adaptive power cycling for a cordless telephone |
US5915214A (en) | 1995-02-23 | 1999-06-22 | Reece; Richard W. | Mobile communication service provider selection system |
US5828960A (en) | 1995-03-31 | 1998-10-27 | Motorola, Inc. | Method for wireless communication system planning |
US5630207A (en) | 1995-06-19 | 1997-05-13 | Lucent Technologies Inc. | Methods and apparatus for bandwidth reduction in a two-way paging system |
JP2771478B2 (en) | 1995-06-20 | 1998-07-02 | 静岡日本電気株式会社 | Wireless selective call receiver with display function |
US5649289A (en) | 1995-07-10 | 1997-07-15 | Motorola, Inc. | Flexible mobility management in a two-way messaging system and method therefor |
JPH0936799A (en) | 1995-07-21 | 1997-02-07 | Toshiba Corp | Radio communication equipment |
US5794128A (en) | 1995-09-20 | 1998-08-11 | The United States Of America As Represented By The Secretary Of The Army | Apparatus and processes for realistic simulation of wireless information transport systems |
US5721733A (en) | 1995-10-13 | 1998-02-24 | General Wireless Communications, Inc. | Wireless network access scheme |
US6580700B1 (en) | 1995-10-27 | 2003-06-17 | Symbol Technologies, Inc. | Data rate algorithms for use in wireless local area networks |
US5920821A (en) | 1995-12-04 | 1999-07-06 | Bell Atlantic Network Services, Inc. | Use of cellular digital packet data (CDPD) communications to convey system identification list data to roaming cellular subscriber stations |
US5987062A (en) | 1995-12-15 | 1999-11-16 | Netwave Technologies, Inc. | Seamless roaming for wireless local area networks |
US5838907A (en) | 1996-02-20 | 1998-11-17 | Compaq Computer Corporation | Configuration manager for network devices and an associated method for providing configuration information thereto |
US5933420A (en) | 1996-04-30 | 1999-08-03 | 3Com Corporation | Method and apparatus for assigning spectrum of a wireless local area network |
US6088591A (en) | 1996-06-28 | 2000-07-11 | Aironet Wireless Communications, Inc. | Cellular system hand-off protocol |
JPH1021599A (en) * | 1996-06-28 | 1998-01-23 | Matsushita Electric Ind Co Ltd | Magnetic field modulation recording and reproducing method using super resolution recording medium |
US5949988A (en) | 1996-07-16 | 1999-09-07 | Lucent Technologies Inc. | Prediction system for RF power distribution |
US5844900A (en) | 1996-09-23 | 1998-12-01 | Proxim, Inc. | Method and apparatus for optimizing a medium access control protocol |
GB2318434B (en) | 1996-10-16 | 2001-08-15 | Ibm | Data processing network |
US5875179A (en) | 1996-10-29 | 1999-02-23 | Proxim, Inc. | Method and apparatus for synchronized communication over wireless backbone architecture |
US6011784A (en) | 1996-12-18 | 2000-01-04 | Motorola, Inc. | Communication system and method using asynchronous and isochronous spectrum for voice and data |
US6078568A (en) | 1997-02-25 | 2000-06-20 | Telefonaktiebolaget Lm Ericsson | Multiple access communication network with dynamic access control |
US6240083B1 (en) | 1997-02-25 | 2001-05-29 | Telefonaktiebolaget L.M. Ericsson | Multiple access communication network with combined contention and reservation mode access |
JPH10261980A (en) | 1997-03-18 | 1998-09-29 | Fujitsu Ltd | Wireless communication network base station device, wireless communication network communication control method, wireless communication network system, and wireless terminal device |
US5987328A (en) | 1997-04-24 | 1999-11-16 | Ephremides; Anthony | Method and device for placement of transmitters in wireless networks |
US5982779A (en) | 1997-05-28 | 1999-11-09 | Lucent Technologies Inc. | Priority access for real-time traffic in contention-based networks |
US6199032B1 (en) | 1997-07-23 | 2001-03-06 | Edx Engineering, Inc. | Presenting an output signal generated by a receiving device in a simulated communication system |
EP0898434B1 (en) | 1997-08-20 | 2004-05-26 | NEC USA, Inc. | ATM switching architecture for a wireless telecommunications network |
US6104700A (en) | 1997-08-29 | 2000-08-15 | Extreme Networks | Policy based quality of service |
US6119009A (en) | 1997-09-18 | 2000-09-12 | Lucent Technologies, Inc. | Method and apparatus for modeling the propagation of wireless signals in buildings |
US5953669A (en) | 1997-12-11 | 1999-09-14 | Motorola, Inc. | Method and apparatus for predicting signal characteristics in a wireless communication system |
US6188694B1 (en) | 1997-12-23 | 2001-02-13 | Cisco Technology, Inc. | Shared spanning tree protocol |
US6356758B1 (en) | 1997-12-31 | 2002-03-12 | Nortel Networks Limited | Wireless tools for data manipulation and visualization |
WO1999033963A1 (en) * | 1997-12-31 | 1999-07-08 | Chiron Corporation | Metastatic cancer regulated gene |
KR100257184B1 (en) | 1998-01-31 | 2000-05-15 | 정장호 | Optic relay system for extending coverage |
US6594238B1 (en) | 1998-06-19 | 2003-07-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for dynamically adapting a connection state in a mobile communications system |
US6725260B1 (en) | 1998-09-11 | 2004-04-20 | L.V. Partners, L.P. | Method and apparatus for configuring configurable equipment with configuration information received from a remote location |
US6160804A (en) | 1998-11-13 | 2000-12-12 | Lucent Technologies Inc. | Mobility management for a multimedia mobile network |
US6336035B1 (en) | 1998-11-19 | 2002-01-01 | Nortel Networks Limited | Tools for wireless network planning |
US6218930B1 (en) | 1999-03-10 | 2001-04-17 | Merlot Communications | Apparatus and method for remotely powering access equipment over a 10/100 switched ethernet network |
US6208841B1 (en) | 1999-05-03 | 2001-03-27 | Qualcomm Incorporated | Environmental simulator for a wireless communication device |
US6285662B1 (en) | 1999-05-14 | 2001-09-04 | Nokia Mobile Phones Limited | Apparatus, and associated method for selecting a size of a contention window for a packet of data system |
US6317599B1 (en) | 1999-05-26 | 2001-11-13 | Wireless Valley Communications, Inc. | Method and system for automated optimization of antenna positioning in 3-D |
US6493679B1 (en) | 1999-05-26 | 2002-12-10 | Wireless Valley Communications, Inc. | Method and system for managing a real time bill of materials |
US6393290B1 (en) | 1999-06-30 | 2002-05-21 | Lucent Technologies Inc. | Cost based model for wireless architecture |
US20040235702A1 (en) * | 1999-07-17 | 2004-11-25 | Huntsman International Llc | Structured surfactant systems |
US6631267B1 (en) | 1999-11-04 | 2003-10-07 | Lucent Technologies Inc. | Road-based evaluation and interpolation of wireless network parameters |
US6587680B1 (en) | 1999-11-23 | 2003-07-01 | Nokia Corporation | Transfer of security association during a mobile terminal handover |
WO2001056231A1 (en) | 2000-01-26 | 2001-08-02 | Vyyo, Ltd. | Quality of service scheduling scheme for a broadband wireless access system |
US6512916B1 (en) | 2000-02-23 | 2003-01-28 | America Connect, Inc. | Method for selecting markets in which to deploy fixed wireless communication systems |
US6659947B1 (en) | 2000-07-13 | 2003-12-09 | Ge Medical Systems Information Technologies, Inc. | Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities |
US7020773B1 (en) | 2000-07-17 | 2006-03-28 | Citrix Systems, Inc. | Strong mutual authentication of devices |
US6404772B1 (en) | 2000-07-27 | 2002-06-11 | Symbol Technologies, Inc. | Voice and data wireless communications network and method |
US6625454B1 (en) | 2000-08-04 | 2003-09-23 | Wireless Valley Communications, Inc. | Method and system for designing or deploying a communications network which considers frequency dependent effects |
US6687498B2 (en) | 2000-08-14 | 2004-02-03 | Vesuvius Inc. | Communique system with noncontiguous communique coverage areas in cellular communication networks |
US6973622B1 (en) | 2000-09-25 | 2005-12-06 | Wireless Valley Communications, Inc. | System and method for design, tracking, measurement, prediction and optimization of data communication networks |
US6937576B1 (en) | 2000-10-17 | 2005-08-30 | Cisco Technology, Inc. | Multiple instance spanning tree protocol |
US6954790B2 (en) | 2000-12-05 | 2005-10-11 | Interactive People Unplugged Ab | Network-based mobile workgroup system |
US6978301B2 (en) | 2000-12-06 | 2005-12-20 | Intelliden | System and method for configuring a network device |
US7133909B2 (en) | 2001-01-12 | 2006-11-07 | Microsoft Corporation | Systems and methods for locating mobile computer users in a wireless network |
US20020101868A1 (en) | 2001-01-30 | 2002-08-01 | David Clear | Vlan tunneling protocol |
US7483411B2 (en) | 2001-06-04 | 2009-01-27 | Nec Corporation | Apparatus for public access mobility LAN and method of operation thereof |
US7231521B2 (en) | 2001-07-05 | 2007-06-12 | Lucent Technologies Inc. | Scheme for authentication and dynamic key exchange |
US7313819B2 (en) | 2001-07-20 | 2007-12-25 | Intel Corporation | Automated establishment of addressability of a network device for a target network environment |
US20030107590A1 (en) | 2001-11-07 | 2003-06-12 | Phillippe Levillain | Policy rule management for QoS provisioning |
US20030174706A1 (en) | 2002-03-15 | 2003-09-18 | Broadcom Corporation | Fastpath implementation for transparent local area network (LAN) services over multiprotocol label switching (MPLS) |
US6839338B1 (en) | 2002-03-20 | 2005-01-04 | Utstarcom Incorporated | Method to provide dynamic internet protocol security policy service |
US7711809B2 (en) | 2002-04-04 | 2010-05-04 | Airmagnet, Inc. | Detecting an unauthorized station in a wireless local area network |
WO2003098880A1 (en) | 2002-05-20 | 2003-11-27 | Fujitsu Limited | Network relaying device, network relaying method, and network relaying program |
US20050193103A1 (en) | 2002-06-18 | 2005-09-01 | John Drabik | Method and apparatus for automatic configuration and management of a virtual private network |
ATE293346T1 (en) | 2002-07-05 | 2005-04-15 | Cit Alcatel | RESOURCES ACCESS CONTROL IN AN ACCESS NETWORK |
US7017186B2 (en) | 2002-07-30 | 2006-03-21 | Steelcloud, Inc. | Intrusion detection system using self-organizing clusters |
EP1389812A1 (en) * | 2002-08-13 | 2004-02-18 | Agilent Technologies Inc | A mounting arrangement for high frequency electro-optical components |
US7680086B2 (en) | 2002-09-09 | 2010-03-16 | Siemens Canada Limited | Wireless local area network with clients having extended freedom of movement |
US7130917B2 (en) | 2002-09-26 | 2006-10-31 | Cisco Technology, Inc. | Quality of service in a gateway |
US7369859B2 (en) | 2003-10-17 | 2008-05-06 | Kineto Wireless, Inc. | Method and system for determining the location of an unlicensed mobile access subscriber |
US20040203752A1 (en) | 2002-11-18 | 2004-10-14 | Toshiba America Information Systems, Inc. | Mobility communications system |
US8139551B2 (en) | 2002-11-19 | 2012-03-20 | Toshiba America Research, Inc. | Quality of service (QoS) assurance system using data transmission control |
AU2004231612C1 (en) | 2002-11-26 | 2010-05-20 | Cisco Technology, Inc. | 802.11 using a compressed reassociation exchange to facilitate fast handoff |
US7295960B2 (en) | 2003-01-22 | 2007-11-13 | Wireless Valley Communications, Inc. | System and method for automated placement or configuration of equipment for obtaining desired network performance objectives |
WO2004095192A2 (en) | 2003-04-21 | 2004-11-04 | Airdefense, Inc. | Systems and methods for securing wireless computer networks |
US20040259555A1 (en) | 2003-04-23 | 2004-12-23 | Rappaport Theodore S. | System and method for predicting network performance and position location using multiple table lookups |
US6925378B2 (en) | 2003-05-12 | 2005-08-02 | Circumnav Networks, Inc. | Enhanced mobile communication device with extended radio, and applications |
US7257107B2 (en) | 2003-07-15 | 2007-08-14 | Highwall Technologies, Llc | Device and method for detecting unauthorized, “rogue” wireless LAN access points |
US20050073980A1 (en) | 2003-09-17 | 2005-04-07 | Trapeze Networks, Inc. | Wireless LAN management |
US7110756B2 (en) | 2003-10-03 | 2006-09-19 | Cognio, Inc. | Automated real-time site survey in a shared frequency band environment |
US20050157730A1 (en) | 2003-10-31 | 2005-07-21 | Grant Robert H. | Configuration management for transparent gateways in heterogeneous storage networks |
CA2545272A1 (en) | 2003-11-04 | 2005-05-19 | Nexthop Technologies, Inc. | Secure, standards-based communications across a wide-area network |
US7002943B2 (en) | 2003-12-08 | 2006-02-21 | Airtight Networks, Inc. | Method and system for monitoring a selected region of an airspace associated with local area networks of computing devices |
EP1756995A4 (en) | 2004-05-21 | 2012-05-30 | Emc Corp | System and method of fraud reduction |
GR1005055B (en) | 2004-08-27 | 2005-12-06 | Atmel Corporation | Method and system for aquality of service mechanism for a wireless network |
-
2006
- 2006-06-01 US US11/445,750 patent/US7577453B2/en active Active
-
2009
- 2009-06-24 US US12/491,201 patent/US8064939B2/en active Active
-
2011
- 2011-10-13 US US13/272,859 patent/US8320949B2/en active Active
Patent Citations (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371783A (en) | 1991-05-29 | 1994-12-06 | Video Technology Engineering, Ltd. | Method for continually monitoring the status of a radio frequency link |
US5339316A (en) | 1992-11-13 | 1994-08-16 | Ncr Corporation | Wireless local area network system |
US5774460A (en) | 1993-08-05 | 1998-06-30 | Krone Aktiengesellschaft | Local ISDN radio transmission system |
US5488569A (en) | 1993-12-20 | 1996-01-30 | At&T Corp. | Application-oriented telecommunication system interface |
US6041240A (en) | 1994-01-05 | 2000-03-21 | Thomson Consumer Electronics Inc. | Clear channel selection system for a cordless telephone |
US5887259A (en) | 1994-02-24 | 1999-03-23 | Gte Mobile Communications Service Corporation | Multiple mode personal wireless communications system |
US6118771A (en) | 1996-03-14 | 2000-09-12 | Kabushiki Kaisha Toshiba | System and method for controlling communication |
US6697415B1 (en) | 1996-06-03 | 2004-02-24 | Broadcom Corporation | Spread spectrum transceiver module utilizing multiple mode transmission |
US6304596B1 (en) | 1997-05-09 | 2001-10-16 | Broadcom Homenetworking, Inc. | Method and apparatus for reducing signal processing requirements for transmitting packet-based data with a modem |
US6262988B1 (en) | 1998-03-11 | 2001-07-17 | Cisco Technology, Inc. | Method and system for subnetting in a switched IP network |
US6101539A (en) | 1998-10-02 | 2000-08-08 | Kennelly; Richard J. | Dynamic presentation of management objectives based on administrator privileges |
US6614787B1 (en) | 1999-03-30 | 2003-09-02 | 3Com Corporation | System and method for efficiently handling multicast packets by aggregating VLAN context |
US6839348B2 (en) | 1999-04-30 | 2005-01-04 | Cisco Technology, Inc. | System and method for distributing multicasts in virtual local area networks |
US20050240665A1 (en) | 1999-06-11 | 2005-10-27 | Microsoft Corporation | Dynamic self-configuration for ad hoc peer networking |
US6760324B1 (en) | 1999-09-10 | 2004-07-06 | Array Telecom Corporation | Method, system, and computer program product for providing voice over the internet communication |
US20010024953A1 (en) | 2000-02-24 | 2001-09-27 | Peter Balogh | Method and equipment for supporting mobility in a telecommunication system |
US7024394B1 (en) | 2000-07-07 | 2006-04-04 | International Business Machines Corporation | System and method for protecting user logoff from web business transactions |
US20020060995A1 (en) | 2000-07-07 | 2002-05-23 | Koninklijke Philips Electronics N.V. | Dynamic channel selection scheme for IEEE 802.11 WLANs |
US7280495B1 (en) | 2000-08-18 | 2007-10-09 | Nortel Networks Limited | Reliable broadcast protocol in a wireless local area network |
US20090031044A1 (en) | 2000-08-22 | 2009-01-29 | Conexant Systems, Inc. | High-Speed MAC Address Search Engine |
US7155518B2 (en) | 2001-01-08 | 2006-12-26 | Interactive People Unplugged Ab | Extranet workgroup formation across multiple mobile virtual private networks |
US20020176437A1 (en) | 2001-05-08 | 2002-11-28 | Patrick Busch | Wireless LAN with channel swapping between DFS access points |
US20030055959A1 (en) | 2001-08-27 | 2003-03-20 | Kazuhiko Sato | Method and system for managing computer network and non-network activities |
US20030134642A1 (en) | 2001-11-19 | 2003-07-17 | At&T Corp. | WLAN having load balancing by access point admission/termination |
US20030135762A1 (en) | 2002-01-09 | 2003-07-17 | Peel Wireless, Inc. | Wireless networks security system |
US6879812B2 (en) | 2002-02-08 | 2005-04-12 | Networks Associates Technology Inc. | Portable computing device and associated method for analyzing a wireless local area network |
US7324487B2 (en) | 2002-02-12 | 2008-01-29 | Hitachi, Ltd. | Wireless LAN system and method for roaming in a multiple base station |
US20040062267A1 (en) | 2002-03-06 | 2004-04-01 | Minami John Shigeto | Gigabit Ethernet adapter supporting the iSCSI and IPSEC protocols |
US6624762B1 (en) | 2002-04-11 | 2003-09-23 | Unisys Corporation | Hardware-based, LZW data compression co-processor |
US20030227934A1 (en) | 2002-06-11 | 2003-12-11 | White Eric D. | System and method for multicast media access using broadcast transmissions with multiple acknowledgements in an Ad-Hoc communications network |
US20050239461A1 (en) | 2002-06-21 | 2005-10-27 | The Regents Of The Unviersity Of California | Registration of a wlan as a umts routing area for wlan-umts interworking |
US20040003285A1 (en) | 2002-06-28 | 2004-01-01 | Robert Whelan | System and method for detecting unauthorized wireless access points |
US20050068925A1 (en) | 2002-07-26 | 2005-03-31 | Stephen Palm | Wireless access point setup and management within wireless local area network |
US7509096B2 (en) | 2002-07-26 | 2009-03-24 | Broadcom Corporation | Wireless access point setup and management within wireless local area network |
US7068999B2 (en) | 2002-08-02 | 2006-06-27 | Symbol Technologies, Inc. | System and method for detection of a rogue wireless access point in a wireless communication network |
US20060174336A1 (en) | 2002-09-06 | 2006-08-03 | Jyshyang Chen | VPN and firewall integrated system |
US20040053632A1 (en) | 2002-09-18 | 2004-03-18 | Nikkelen Vincent Johannes Wilhelmus | Distributing shared network access information in a shared network mobile communications system |
US6957067B1 (en) | 2002-09-24 | 2005-10-18 | Aruba Networks | System and method for monitoring and enforcing policy within a wireless network |
US20040068668A1 (en) | 2002-10-08 | 2004-04-08 | Broadcom Corporation | Enterprise wireless local area network switching system |
US7062566B2 (en) | 2002-10-24 | 2006-06-13 | 3Com Corporation | System and method for using virtual local area network tags with a virtual private network |
US7139579B2 (en) | 2002-10-30 | 2006-11-21 | Kabushika Kaisha Toshiba | Relay and communication system |
US7421248B1 (en) | 2002-11-12 | 2008-09-02 | Cisco Technology, Inc. | Method and apparatus for adjusting operational parameter of a wireless device bases upon a monitored characteristic |
US20060073827A1 (en) | 2002-12-19 | 2006-04-06 | Nokia Corporation | System and handover mechanism in frequency multilple band environment and equipment therefor |
US7020438B2 (en) | 2003-01-09 | 2006-03-28 | Nokia Corporation | Selection of access point in a wireless communication system |
US20040165545A1 (en) | 2003-02-21 | 2004-08-26 | Qwest Communications International Inc. | Systems and methods for creating a wireless network |
US7116979B2 (en) | 2003-02-24 | 2006-10-03 | Autocell Laboratories, Inc | Wireless channel selection method and system using scanning for identifying access point |
US7146166B2 (en) | 2003-02-24 | 2006-12-05 | Autocell Laboratories, Inc | Transmission channel selection program |
US20040208570A1 (en) | 2003-04-18 | 2004-10-21 | Reader Scot A. | Wavelength-oriented virtual networks |
US7359676B2 (en) | 2003-04-21 | 2008-04-15 | Airdefense, Inc. | Systems and methods for adaptively scanning for wireless communications |
US20040255167A1 (en) | 2003-04-28 | 2004-12-16 | Knight James Michael | Method and system for remote network security management |
US20040221042A1 (en) | 2003-04-30 | 2004-11-04 | Meier Robert C. | Mobile ethernet |
US20040236702A1 (en) | 2003-05-21 | 2004-11-25 | Fink Ian M. | User fraud detection and prevention of access to a distributed network communication system |
US20050037818A1 (en) | 2003-05-28 | 2005-02-17 | Nambirajan Seshadri | Providing a universal wireless headset |
US7263366B2 (en) | 2003-08-06 | 2007-08-28 | Nec Corporation | Channel selection method, and wireless station and wireless terminal employing it |
US20050054326A1 (en) | 2003-09-09 | 2005-03-10 | Todd Rogers | Method and system for securing and monitoring a wireless network |
US7324468B2 (en) | 2003-09-10 | 2008-01-29 | Broadcom Corporation | System and method for medium access control in a power-save network |
US20050059406A1 (en) | 2003-09-17 | 2005-03-17 | Trapeze Networks, Inc. | Wireless LAN measurement feedback |
US20050059405A1 (en) | 2003-09-17 | 2005-03-17 | Trapeze Networks, Inc. | Simulation driven wireless LAN planning |
US20050064873A1 (en) | 2003-09-22 | 2005-03-24 | Jeyhan Karaoguz | Automatic quality of service based resource allocation |
US20050097618A1 (en) | 2003-11-04 | 2005-05-05 | Universal Electronics Inc. | System and method for saving and recalling state data for media and home appliances |
US20050122977A1 (en) | 2003-12-05 | 2005-06-09 | Microsoft Corporation | Efficient download mechanism for devices with limited local storage |
US7466678B2 (en) | 2003-12-29 | 2008-12-16 | Lenovo (Singapore) Pte. Ltd. | System and method for passive scanning of authorized wireless channels |
US7221927B2 (en) | 2004-02-13 | 2007-05-22 | Trapeze Networks, Inc. | Station mobility between access points |
US20070189222A1 (en) | 2004-02-13 | 2007-08-16 | Trapeze Networks, Inc. | Station mobility between access points |
US7489648B2 (en) | 2004-03-11 | 2009-02-10 | Cisco Technology, Inc. | Optimizing 802.11 power-save for VLAN |
US20050245269A1 (en) | 2004-04-30 | 2005-11-03 | Intel Corporation | Channel scanning in wireless networks |
US7376080B1 (en) | 2004-05-11 | 2008-05-20 | Packeteer, Inc. | Packet load shedding |
US7406069B2 (en) | 2004-05-13 | 2008-07-29 | Tcm Mobile Llc | Wireless packet communications system and method |
US7317914B2 (en) | 2004-09-24 | 2008-01-08 | Microsoft Corporation | Collaboratively locating disconnected clients and rogue access points in a wireless network |
US20060104224A1 (en) | 2004-10-13 | 2006-05-18 | Gurminder Singh | Wireless access point with fingerprint authentication |
US7224970B2 (en) | 2004-10-26 | 2007-05-29 | Motorola, Inc. | Method of scanning for beacon transmissions in a WLAN |
US20060128415A1 (en) | 2004-12-09 | 2006-06-15 | Hideto Horikoshi | Apparatus and method for detecting a wireless access point for wireless network communication |
US20060161983A1 (en) | 2005-01-20 | 2006-07-20 | Cothrell Scott A | Inline intrusion detection |
US20060189311A1 (en) | 2005-02-18 | 2006-08-24 | Cromer Daryl C | Apparatus, system, and method for rapid wireless network association |
US7370362B2 (en) | 2005-03-03 | 2008-05-06 | Cisco Technology, Inc. | Method and apparatus for locating rogue access point switch ports in a wireless network |
US20090198999A1 (en) | 2005-03-15 | 2009-08-06 | Trapeze Networks, Inc. | System and method for distributing keys in a wireless network |
US20060248331A1 (en) | 2005-03-15 | 2006-11-02 | Dan Harkins | System and method for distributing keys in a wireless network |
US7529925B2 (en) | 2005-03-15 | 2009-05-05 | Trapeze Networks, Inc. | System and method for distributing keys in a wireless network |
US20060227725A1 (en) | 2005-04-08 | 2006-10-12 | Huotari Allen J | Network availability status detection device and method |
US20060245393A1 (en) | 2005-04-27 | 2006-11-02 | Symbol Technologies, Inc. | Method, system and apparatus for layer 3 roaming in wireless local area networks (WLANs) |
US20060276192A1 (en) | 2005-05-18 | 2006-12-07 | Ashutosh Dutta | Seamless handoff across heterogeneous access networks using a handoff controller in a service control point |
US20070025265A1 (en) | 2005-07-22 | 2007-02-01 | Porras Phillip A | Method and apparatus for wireless network security |
US20070064718A1 (en) | 2005-09-19 | 2007-03-22 | Ekl Randy L | Method of reliable multicasting |
US20070070937A1 (en) | 2005-09-28 | 2007-03-29 | Mustafa Demirhan | Multi-radio mesh network channel selection and load balancing |
US20070083924A1 (en) | 2005-10-08 | 2007-04-12 | Lu Hongqian K | System and method for multi-stage packet filtering on a networked-enabled device |
US20090274060A1 (en) | 2005-10-13 | 2009-11-05 | Trapeze Networks, Inc. | System and method for remote monitoring in a wireless network |
US7573859B2 (en) | 2005-10-13 | 2009-08-11 | Trapeze Networks, Inc. | System and method for remote monitoring in a wireless network |
US7551619B2 (en) | 2005-10-13 | 2009-06-23 | Trapeze Networks, Inc. | Identity-based networking |
US20090257437A1 (en) | 2005-10-13 | 2009-10-15 | Trapeze Networks, Inc. | Identity-based networking |
US20070160046A1 (en) | 2005-10-13 | 2007-07-12 | Matta Sudheer P C | System and method for reliable multicast |
US7724703B2 (en) | 2005-10-13 | 2010-05-25 | Belden, Inc. | System and method for wireless network monitoring |
US20070183375A1 (en) | 2005-10-13 | 2007-08-09 | Manish Tiwari | System and method for network integrity |
US20070091889A1 (en) | 2005-10-25 | 2007-04-26 | Xin Xiao | Method and apparatus for group leader selection in wireless multicast service |
US20070260720A1 (en) | 2006-05-03 | 2007-11-08 | Morain Gary E | Mobility domain |
US7577453B2 (en) | 2006-06-01 | 2009-08-18 | Trapeze Networks, Inc. | Wireless load balancing across bands |
US20090323531A1 (en) | 2006-06-01 | 2009-12-31 | Trapeze Networks, Inc. | Wireless load balancing |
US20080114784A1 (en) | 2006-06-09 | 2008-05-15 | James Murphy | Sharing data between wireless switches system and method |
US7912982B2 (en) | 2006-06-09 | 2011-03-22 | Trapeze Networks, Inc. | Wireless routing selection system and method |
US20080008117A1 (en) | 2006-07-07 | 2008-01-10 | Skyhook Wireless, Inc. | Method and system for employing a dedicated device for position estimation by a wlan positioning system |
US7724704B2 (en) | 2006-07-17 | 2010-05-25 | Beiden Inc. | Wireless VLAN system and method |
US20080056200A1 (en) | 2006-08-31 | 2008-03-06 | Spectralink Corporation | Method for determining DFS channel availability in a wireless LAN |
US20080056211A1 (en) | 2006-09-01 | 2008-03-06 | Samsung Electronics Co., Ltd. | Method for scanning access points during station's handoff procedure in wireless communication system and station performing the method, and network interface supporting the method and wireless communication system enabling the method |
US20080096575A1 (en) | 2006-10-16 | 2008-04-24 | Trapeze Networks, Inc. | Load balancing |
US20080107077A1 (en) | 2006-11-03 | 2008-05-08 | James Murphy | Subnet mobility supporting wireless handoff |
US20080151844A1 (en) | 2006-12-20 | 2008-06-26 | Manish Tiwari | Wireless access point authentication system and method |
US7865713B2 (en) | 2006-12-28 | 2011-01-04 | Trapeze Networks, Inc. | Application-aware wireless network system and method |
US8017970B2 (en) | 2008-03-12 | 2011-09-13 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting element |
US20090300740A1 (en) | 2008-05-30 | 2009-12-03 | Trapeze Networks, Inc. | Proactive credential caching |
US20100024007A1 (en) | 2008-07-25 | 2010-01-28 | Trapeze Networks, Inc. | Affirming network relationships and resource access via related networks |
Non-Patent Citations (62)
Title |
---|
Acampa and Winters, IEEE Journal on selected Areas in Communications. SAC-5:796-804 (1987). |
Acampora and Winters IEEE Communications Magazine 25(8):11-20 (1987). |
Bing and Subramanian IEEE 1318-1322 (1997). |
Co-Pending U.S. Appl. No. 12/603,391, filed Oct. 21, 2009. |
Durgin, et al., "Measurements and Models for Radio Path Loss and Penetration Loss in and Around Homes and Trees at 5.85 GHz". IEEE Transactions on Communications, vol. 46, No. 11 Nov. 1998. |
Final Office Action from U.S. Appl. No. 11/330,877 dated Mar. 13, 2009, 23 pages. |
Final Office Action from U.S. Appl. No. 11/331,789 dated Oct. 23, 2008, 16 pages. |
Final Office Action from U.S. Appl. No. 11/351,104 dated Jun. 10, 2009, 44 pages. |
Final Office Action from U.S. Appl. No. 11/377,859 dated Aug. 27, 2008, 21 pages. |
Final Office Action from U.S. Appl. No. 11/417,830 dated May 28, 2009, 23 pages. |
Final Office Action from U.S. Appl. No. 11/592,891 dated Jul. 20, 2009, 26 pages. |
Final Office Action from U.S. Appl. No. 11/595,119 dated Jan. 5, 2010, 28 pages. |
Fortune et al., IEEE Computational Science and Engineering, "Wise Design of Indoor Wireless Systems: Practical Computation and Optimization" pp. 58-68 (1995). |
Freret et at., "Applications of Spread-Spectrum Radio to Wireless Terminal Communications", Conf. Record. Nat'l Telecom. Conf. Nov. 3-Dec. 4, 1980. |
Geier, Jim. Wireless Lans Implementing Interoperable Networks, Chapter 3 (pp. 89-125) Chapter 4 (pp. 129-157) Chapter 5 (pp. 159-189) and Chapter 6 (pp. 193-234), 1999, United States. |
Ho et at., "Antenna Effects on Indoor Obstructed Wireless Channels and a Deterministic Image-Based Wide-Based Propagation Model for In-Building Personal Communications Systems" International Journal of Wireless Information Networks, vol. 1 No. 1 1994. |
International Search Report PCT/US05/004702 dated Aug. 10, 2006, 3 pages. |
International Search Report PCT/US06/09525 dated Sep. 13, 2007, 2 pages. |
International Search Report PCT/US06/40498 dated Dec. 28, 2007, 2 pages. |
International Search Report PCT/US07/089134 dated Apr. 10, 2008, 3 pages. |
International Search Report PCT/US07/14847 dated Apr. 1, 2008, 4 pages. |
Kim et al., "Radio Propogation Measurements and Prediction Using Three-Dimensional Ray Tracing in Urban Environments at 908 MHz and 1.9 GHz", IEEE Transactions on Vehicular Technology, vol. 48, No. 3 May 1999. |
Kleinrock and Scholl, Conference record 1977 ICC vol. 2 of3. Jun. 12-15 Chicago Illinois "Packet Switching in radio Channels: New Conflict-Free Multiple Access Schemes for a Small Number of data Users", (1977). |
LAN/MAN Standards Committee of the IEEE Computer Society, Part 11 :Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Higher Speed Physical Laver Extension in the 2.4 GHz Band IEEE Std. 801.11 b (1999\. |
Non-Final Office Action from U.S. Appl. No. 11/326,966 dated Nov. 14, 2008, 32 pages. |
Non-Final Office Action from U.S. Appl. No. 11/330,877 dated Aug. 6, 2009, 26 pages. |
Non-Final Office Action from U.S. Appl. No. 11/330,877 dated Sep. 11, 2008, 42 pages. |
Non-Final Office Action from U.S. Appl. No. 11/331,789 dated Aug. 5, 2009, 15 pages. |
Non-Final Office Action from U.S. Appl. No. 11/331,789 dated Jun. 13, 2008, 35 pages. |
Non-Final Office Action from U.S. Appl. No. 11/351,104 dated Dec. 2, 2009, 59 pages. |
Non-Final Office Action from U.S. Appl. No. 11/351,104 dated Oct. 28, 2008, 53 pages. |
Non-Final Office Action from U.S. Appl. No. 11/377,859 dated Jan. 8, 2008, 27 pages. |
Non-Final Office Action from U.S. Appl. No. 11/400,165 dated Aug. 19, 2008, 38 pages. |
Non-Final Office Action from U.S. Appl. No. 11/445,750 dated Feb. 17, 2009, 38 pages. |
Non-Final Office Action from U.S. Appl. No. 11/471,830 dated Nov. 14, 2008 30 pages. |
Non-Final Office Action from U.S. Appl. No. 11/487,722 dated Aug. 7, 2009, 45 pages. |
Non-Final Office Action from U.S. Appl. No. 11/592,891 dated Jan. 15, 2009, 43 pages. |
Non-Final Office Action from U.S. Appl. No. 11/595,119 dated Jul. 21, 2009, 43 pages. |
Non-Final Office Action from U.S. Appl. No. 11/784,307 dated Sep. 22, 2009, 19 pages. |
Notice of Allowance from U.S. Appl. No. 10/778,901 dated Feb. 26, 2007, 22 pages. |
Notice of Allowance from U.S. Appl. No. 11/326,966 dated Jun. 11, 2009, 11 pages. |
Notice of Allowance from U.S. Appl. No. 11/331,789 dated Feb. 23, 2010, 20 pages. |
Notice of Allowance from U.S. Appl. No. 11/377,859 dated Feb. 27, 2009, 24 pages. |
Notice of Allowance from U.S. Appl. No. 11/400,165 dated Apr. 23, 2009, 19 pages. |
Notice of Allowance from U.S. Appl. No. 11/445,750 dated Jun. 16, 2009, 28 pages. |
Notice of Allowance from U.S. Appl. No. 11/487,722 dated Mar. 19, 2010, 54 pages. |
Okamoto and Xu, IEEE, Proceedings of the 13th Annual Hawaii International Conference on System Sciences 00.54-63 (1997\. |
Panjawani et al., "Interactive Computation of Coverage Regions for Wireless Communication in Multifloored Indoor Environments", IEEE Journal on Selected Areas in Communications, vol. 14, No. 3 Apr. 1996. |
Perram and Martinez, "Technology Developments for Low-Cost Residential Alarm Systems", Proceedings 1977 Camahan Conference on Crime Countermeasures, Apr. 6-8, 2000.45-50(1977). |
Piazzi et al., Achievable Accuracy of Site-Specific Path-Loss Predictions in Residential Environments. IEEE Transactions on Vehicular Technology, vol. 48 No. 3 May 1999. |
Piazzi et al., Achievable Accuracy of Site-Specific Path-Loss Predictions in Residential Environments• IEEE Transactions on Vehicular Technology, vol. 48 No. 3 May 1999. |
Puttini, R., Percher, J., Me, L., and De Sousa, R. 2004. A Fully distributed IDS for Manet, Proceedings of the Ninth international Symposium on Computers and Communications 2004 vol. 2 (ISCC''04)-vol. 2, Jun. 28-Jul. 1, 2004, ISCC, IEEE Computer Society, Washington, DC, pp. 331-338. |
Seidel et al., Site-Specific Propagation Prediction for Wireless In-Building Personal Communications System Design., IEEE Transactions on Vehicular Technology, vol. 43, No. 4, Nov. 1994. |
Seidel et al., Site-Specific Propagation Prediction for Wireless In-Building Personal Communications System Design•, IEEE Transactions on Vehicular Technology, vol. 43, No. 4, Nov. 1994. |
Skidmore et al., Interactive Coverage Region and System Design Simulation for Wireless Communication Systems in Multi-floored Indoor Environments, SMT Plus., IEEE ICUPC '96 Proceedings (1996t. |
Skidmore et al., Interactive Coverage Region and System Design Simulation for Wireless Communication Systems in Multi-floored Indoor Environments, SMT Plus•, IEEE ICUPC '96 Proceedings (1996t. |
Ullmo et al., "Wireless Propagation in Buildings: A Statistic Scattering Approach", IEEE Transactions on Vehicular Technology, vol. 48, No. 3, May 1999. |
Written Opinion PCT/US05/004702 dated Aug. 10, 2006, 5 pages. |
Written Opinion PCT/US06/09525 dated Sep. 13, 2007, 7 pages. |
Written Opinion PCT/US06/40498 dated Dec. 28, 2007, 5 pages. |
Written Opinion PCT/US07/089134 dated Apr. 10, 2008, 4 pages. |
Written Opinion PCT/US07/14847 dated Apr. 1, 2008, 4 pages. |
Cited By (223)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8725123B2 (en) | 2008-06-05 | 2014-05-13 | Headwater Partners I Llc | Communications device with secure data path processing agents |
US8924469B2 (en) | 2008-06-05 | 2014-12-30 | Headwater Partners I Llc | Enterprise access control and accounting allocation for access networks |
US9578182B2 (en) | 2009-01-28 | 2017-02-21 | Headwater Partners I Llc | Mobile device and service management |
US20130040703A1 (en) * | 2009-01-28 | 2013-02-14 | Headwater Partner I, LLC | Device Assisted Ambient Services |
US9609544B2 (en) | 2009-01-28 | 2017-03-28 | Headwater Research Llc | Device-assisted services for protecting network capacity |
US8516552B2 (en) | 2009-01-28 | 2013-08-20 | Headwater Partners I Llc | Verifiable service policy implementation for intermediate networking devices |
US8527630B2 (en) * | 2009-01-28 | 2013-09-03 | Headwater Partners I Llc | Adaptive ambient services |
US8547872B2 (en) | 2009-01-28 | 2013-10-01 | Headwater Partners I Llc | Verifiable and accurate service usage monitoring for intermediate networking devices |
US8548428B2 (en) | 2009-01-28 | 2013-10-01 | Headwater Partners I Llc | Device group partitions and settlement platform |
US8570908B2 (en) | 2009-01-28 | 2013-10-29 | Headwater Partners I Llc | Automated device provisioning and activation |
US8583781B2 (en) | 2009-01-28 | 2013-11-12 | Headwater Partners I Llc | Simplified service network architecture |
US8588110B2 (en) | 2009-01-28 | 2013-11-19 | Headwater Partners I Llc | Verifiable device assisted service usage billing with integrated accounting, mediation accounting, and multi-account |
US8589541B2 (en) | 2009-01-28 | 2013-11-19 | Headwater Partners I Llc | Device-assisted services for protecting network capacity |
US12200786B2 (en) | 2009-01-28 | 2025-01-14 | Headwater Research Llc | Enterprise access control and accounting allocation for access networks |
US8626115B2 (en) | 2009-01-28 | 2014-01-07 | Headwater Partners I Llc | Wireless network service interfaces |
US8630192B2 (en) | 2009-01-28 | 2014-01-14 | Headwater Partners I Llc | Verifiable and accurate service usage monitoring for intermediate networking devices |
US8630630B2 (en) | 2009-01-28 | 2014-01-14 | Headwater Partners I Llc | Enhanced roaming services and converged carrier networks with device assisted services and a proxy |
US8630611B2 (en) | 2009-01-28 | 2014-01-14 | Headwater Partners I Llc | Automated device provisioning and activation |
US8631102B2 (en) | 2009-01-28 | 2014-01-14 | Headwater Partners I Llc | Automated device provisioning and activation |
US8630617B2 (en) | 2009-01-28 | 2014-01-14 | Headwater Partners I Llc | Device group partitions and settlement platform |
US8634805B2 (en) | 2009-01-28 | 2014-01-21 | Headwater Partners I Llc | Device assisted CDR creation aggregation, mediation and billing |
US8634821B2 (en) | 2009-01-28 | 2014-01-21 | Headwater Partners I Llc | Device assisted services install |
US8635335B2 (en) | 2009-01-28 | 2014-01-21 | Headwater Partners I Llc | System and method for wireless network offloading |
US8635678B2 (en) | 2009-01-28 | 2014-01-21 | Headwater Partners I Llc | Automated device provisioning and activation |
US8639935B2 (en) | 2009-01-28 | 2014-01-28 | Headwater Partners I Llc | Automated device provisioning and activation |
US9609510B2 (en) | 2009-01-28 | 2017-03-28 | Headwater Research Llc | Automated credential porting for mobile devices |
US8639811B2 (en) | 2009-01-28 | 2014-01-28 | Headwater Partners I Llc | Automated device provisioning and activation |
US8667571B2 (en) | 2009-01-28 | 2014-03-04 | Headwater Partners I Llc | Automated device provisioning and activation |
US8666364B2 (en) | 2009-01-28 | 2014-03-04 | Headwater Partners I Llc | Verifiable device assisted service usage billing with integrated accounting, mediation accounting, and multi-account |
US8675507B2 (en) | 2009-01-28 | 2014-03-18 | Headwater Partners I Llc | Service profile management with user preference, adaptive policy, network neutrality and user privacy for intermediate networking devices |
US8688099B2 (en) | 2009-01-28 | 2014-04-01 | Headwater Partners I Llc | Open development system for access service providers |
US8695073B2 (en) | 2009-01-28 | 2014-04-08 | Headwater Partners I Llc | Automated device provisioning and activation |
US8713630B2 (en) | 2009-01-28 | 2014-04-29 | Headwater Partners I Llc | Verifiable service policy implementation for intermediate networking devices |
US20130045710A1 (en) * | 2009-01-28 | 2013-02-21 | Headwater Partners I, Llc | Device Assisted Ambient Services |
US8724554B2 (en) | 2009-01-28 | 2014-05-13 | Headwater Partners I Llc | Open transaction central billing system |
US8737957B2 (en) | 2009-01-28 | 2014-05-27 | Headwater Partners I Llc | Automated device provisioning and activation |
US8745191B2 (en) | 2009-01-28 | 2014-06-03 | Headwater Partners I Llc | System and method for providing user notifications |
US8745220B2 (en) | 2009-01-28 | 2014-06-03 | Headwater Partners I Llc | System and method for providing user notifications |
US12184700B2 (en) | 2009-01-28 | 2024-12-31 | Headwater Research Llc | Automated device provisioning and activation |
US8788661B2 (en) | 2009-01-28 | 2014-07-22 | Headwater Partners I Llc | Device assisted CDR creation, aggregation, mediation and billing |
US8793758B2 (en) | 2009-01-28 | 2014-07-29 | Headwater Partners I Llc | Security, fraud detection, and fraud mitigation in device-assisted services systems |
US8799451B2 (en) | 2009-01-28 | 2014-08-05 | Headwater Partners I Llc | Verifiable service policy implementation for intermediate networking devices |
US8797908B2 (en) | 2009-01-28 | 2014-08-05 | Headwater Partners I Llc | Automated device provisioning and activation |
US12166596B2 (en) | 2009-01-28 | 2024-12-10 | Disney Enterprises, Inc. | Device-assisted services for protecting network capacity |
US8839387B2 (en) | 2009-01-28 | 2014-09-16 | Headwater Partners I Llc | Roaming services network and overlay networks |
US8839388B2 (en) | 2009-01-28 | 2014-09-16 | Headwater Partners I Llc | Automated device provisioning and activation |
US8868455B2 (en) | 2009-01-28 | 2014-10-21 | Headwater Partners I Llc | Adaptive ambient services |
US8886162B2 (en) | 2009-01-28 | 2014-11-11 | Headwater Partners I Llc | Restricting end-user device communications over a wireless access network associated with a cost |
US8893009B2 (en) | 2009-01-28 | 2014-11-18 | Headwater Partners I Llc | End user device that secures an association of application to service policy with an application certificate check |
US8898293B2 (en) | 2009-01-28 | 2014-11-25 | Headwater Partners I Llc | Service offer set publishing to device agent with on-device service selection |
US8898079B2 (en) | 2009-01-28 | 2014-11-25 | Headwater Partners I Llc | Network based ambient services |
US8897743B2 (en) | 2009-01-28 | 2014-11-25 | Headwater Partners I Llc | Verifiable device assisted service usage billing with integrated accounting, mediation accounting, and multi-account |
US8897744B2 (en) * | 2009-01-28 | 2014-11-25 | Headwater Partners I Llc | Device assisted ambient services |
US8903452B2 (en) * | 2009-01-28 | 2014-12-02 | Headwater Partners I Llc | Device assisted ambient services |
US8924543B2 (en) | 2009-01-28 | 2014-12-30 | Headwater Partners I Llc | Service design center for device assisted services |
US8924549B2 (en) | 2009-01-28 | 2014-12-30 | Headwater Partners I Llc | Network based ambient services |
US9609459B2 (en) | 2009-01-28 | 2017-03-28 | Headwater Research Llc | Network tools for analysis, design, testing, and production of services |
US8948025B2 (en) | 2009-01-28 | 2015-02-03 | Headwater Partners I Llc | Remotely configurable device agent for packet routing |
US9014026B2 (en) | 2009-01-28 | 2015-04-21 | Headwater Partners I Llc | Network based service profile management with user preference, adaptive policy, network neutrality, and user privacy |
US9026079B2 (en) | 2009-01-28 | 2015-05-05 | Headwater Partners I Llc | Wireless network service interfaces |
US9037127B2 (en) | 2009-01-28 | 2015-05-19 | Headwater Partners I Llc | Device agent for remote user configuration of wireless network access |
US12143909B2 (en) | 2009-01-28 | 2024-11-12 | Headwater Research Llc | Service plan design, user interfaces, application programming interfaces, and device management |
US9094311B2 (en) | 2009-01-28 | 2015-07-28 | Headwater Partners I, Llc | Techniques for attribution of mobile device data traffic to initiating end-user application |
US9137739B2 (en) | 2009-01-28 | 2015-09-15 | Headwater Partners I Llc | Network based service policy implementation with network neutrality and user privacy |
US9137701B2 (en) | 2009-01-28 | 2015-09-15 | Headwater Partners I Llc | Wireless end-user device with differentiated network access for background and foreground device applications |
US12137004B2 (en) | 2009-01-28 | 2024-11-05 | Headwater Research Llc | Device group partitions and settlement platform |
US9143976B2 (en) | 2009-01-28 | 2015-09-22 | Headwater Partners I Llc | Wireless end-user device with differentiated network access and access status for background and foreground device applications |
US12101434B2 (en) | 2009-01-28 | 2024-09-24 | Headwater Research Llc | Device assisted CDR creation, aggregation, mediation and billing |
US9154428B2 (en) | 2009-01-28 | 2015-10-06 | Headwater Partners I Llc | Wireless end-user device with differentiated network access selectively applied to different applications |
US9173104B2 (en) | 2009-01-28 | 2015-10-27 | Headwater Partners I Llc | Mobile device with device agents to detect a disallowed access to a requested mobile data service and guide a multi-carrier selection and activation sequence |
US9179315B2 (en) | 2009-01-28 | 2015-11-03 | Headwater Partners I Llc | Mobile device with data service monitoring, categorization, and display for different applications and networks |
US9179316B2 (en) | 2009-01-28 | 2015-11-03 | Headwater Partners I Llc | Mobile device with user controls and policy agent to control application access to device location data |
US9179359B2 (en) | 2009-01-28 | 2015-11-03 | Headwater Partners I Llc | Wireless end-user device with differentiated network access status for different device applications |
US9179308B2 (en) | 2009-01-28 | 2015-11-03 | Headwater Partners I Llc | Network tools for analysis, design, testing, and production of services |
US9198075B2 (en) | 2009-01-28 | 2015-11-24 | Headwater Partners I Llc | Wireless end-user device with differential traffic control policy list applicable to one of several wireless modems |
US9198076B2 (en) | 2009-01-28 | 2015-11-24 | Headwater Partners I Llc | Wireless end-user device with power-control-state-based wireless network access policy for background applications |
US9198117B2 (en) | 2009-01-28 | 2015-11-24 | Headwater Partners I Llc | Network system with common secure wireless message service serving multiple applications on multiple wireless devices |
US9198042B2 (en) | 2009-01-28 | 2015-11-24 | Headwater Partners I Llc | Security techniques for device assisted services |
US9198074B2 (en) | 2009-01-28 | 2015-11-24 | Headwater Partners I Llc | Wireless end-user device with differential traffic control policy list and applying foreground classification to roaming wireless data service |
US9204374B2 (en) | 2009-01-28 | 2015-12-01 | Headwater Partners I Llc | Multicarrier over-the-air cellular network activation server |
US9204282B2 (en) | 2009-01-28 | 2015-12-01 | Headwater Partners I Llc | Enhanced roaming services and converged carrier networks with device assisted services and a proxy |
US9215159B2 (en) | 2009-01-28 | 2015-12-15 | Headwater Partners I Llc | Data usage monitoring for media data services used by applications |
US9215613B2 (en) | 2009-01-28 | 2015-12-15 | Headwater Partners I Llc | Wireless end-user device with differential traffic control policy list having limited user control |
US9220027B1 (en) | 2009-01-28 | 2015-12-22 | Headwater Partners I Llc | Wireless end-user device with policy-based controls for WWAN network usage and modem state changes requested by specific applications |
US11985155B2 (en) | 2009-01-28 | 2024-05-14 | Headwater Research Llc | Communications device with secure data path processing agents |
US9225797B2 (en) | 2009-01-28 | 2015-12-29 | Headwater Partners I Llc | System for providing an adaptive wireless ambient service to a mobile device |
US9232403B2 (en) | 2009-01-28 | 2016-01-05 | Headwater Partners I Llc | Mobile device with common secure wireless message service serving multiple applications |
US9247450B2 (en) | 2009-01-28 | 2016-01-26 | Headwater Partners I Llc | Quality of service for device assisted services |
US9253663B2 (en) | 2009-01-28 | 2016-02-02 | Headwater Partners I Llc | Controlling mobile device communications on a roaming network based on device state |
US9258735B2 (en) | 2009-01-28 | 2016-02-09 | Headwater Partners I Llc | Device-assisted services for protecting network capacity |
US9270559B2 (en) | 2009-01-28 | 2016-02-23 | Headwater Partners I Llc | Service policy implementation for an end-user device having a control application or a proxy agent for routing an application traffic flow |
US9271184B2 (en) | 2009-01-28 | 2016-02-23 | Headwater Partners I Llc | Wireless end-user device with per-application data limit and traffic control policy list limiting background application traffic |
US9277433B2 (en) | 2009-01-28 | 2016-03-01 | Headwater Partners I Llc | Wireless end-user device with policy-based aggregation of network activity requested by applications |
US9277445B2 (en) | 2009-01-28 | 2016-03-01 | Headwater Partners I Llc | Wireless end-user device with differential traffic control policy list and applying foreground classification to wireless data service |
US9319913B2 (en) | 2009-01-28 | 2016-04-19 | Headwater Partners I Llc | Wireless end-user device with secure network-provided differential traffic control policy list |
US9351193B2 (en) | 2009-01-28 | 2016-05-24 | Headwater Partners I Llc | Intermediate networking devices |
US9386121B2 (en) | 2009-01-28 | 2016-07-05 | Headwater Partners I Llc | Method for providing an adaptive wireless ambient service to a mobile device |
US9386165B2 (en) | 2009-01-28 | 2016-07-05 | Headwater Partners I Llc | System and method for providing user notifications |
US9392462B2 (en) | 2009-01-28 | 2016-07-12 | Headwater Partners I Llc | Mobile end-user device with agent limiting wireless data communication for specified background applications based on a stored policy |
US9491564B1 (en) | 2009-01-28 | 2016-11-08 | Headwater Partners I Llc | Mobile device and method with secure network messaging for authorized components |
US9491199B2 (en) | 2009-01-28 | 2016-11-08 | Headwater Partners I Llc | Security, fraud detection, and fraud mitigation in device-assisted services systems |
US9521578B2 (en) | 2009-01-28 | 2016-12-13 | Headwater Partners I Llc | Wireless end-user device with application program interface to allow applications to access application-specific aspects of a wireless network access policy |
US9532161B2 (en) | 2009-01-28 | 2016-12-27 | Headwater Partners I Llc | Wireless device with application data flow tagging and network stack-implemented network access policy |
US9532261B2 (en) | 2009-01-28 | 2016-12-27 | Headwater Partners I Llc | System and method for wireless network offloading |
US9544397B2 (en) | 2009-01-28 | 2017-01-10 | Headwater Partners I Llc | Proxy server for providing an adaptive wireless ambient service to a mobile device |
US9557889B2 (en) | 2009-01-28 | 2017-01-31 | Headwater Partners I Llc | Service plan design, user interfaces, application programming interfaces, and device management |
US9565707B2 (en) | 2009-01-28 | 2017-02-07 | Headwater Partners I Llc | Wireless end-user device with wireless data attribution to multiple personas |
US9565543B2 (en) | 2009-01-28 | 2017-02-07 | Headwater Partners I Llc | Device group partitions and settlement platform |
US9572019B2 (en) | 2009-01-28 | 2017-02-14 | Headwater Partners LLC | Service selection set published to device agent with on-device service selection |
US9571559B2 (en) | 2009-01-28 | 2017-02-14 | Headwater Partners I Llc | Enhanced curfew and protection associated with a device group |
US20120317284A1 (en) * | 2009-01-28 | 2012-12-13 | Headwater Partners I Llc | Adaptive Ambient Services |
US9591474B2 (en) | 2009-01-28 | 2017-03-07 | Headwater Partners I Llc | Adapting network policies based on device service processor configuration |
US11973804B2 (en) | 2009-01-28 | 2024-04-30 | Headwater Research Llc | Network service plan design |
US8640198B2 (en) | 2009-01-28 | 2014-01-28 | Headwater Partners I Llc | Automated device provisioning and activation |
US11966464B2 (en) | 2009-01-28 | 2024-04-23 | Headwater Research Llc | Security techniques for device assisted services |
US9615192B2 (en) | 2009-01-28 | 2017-04-04 | Headwater Research Llc | Message link server with plural message delivery triggers |
US9641957B2 (en) | 2009-01-28 | 2017-05-02 | Headwater Research Llc | Automated device provisioning and activation |
US9647918B2 (en) | 2009-01-28 | 2017-05-09 | Headwater Research Llc | Mobile device and method attributing media services network usage to requesting application |
US9674731B2 (en) | 2009-01-28 | 2017-06-06 | Headwater Research Llc | Wireless device applying different background data traffic policies to different device applications |
US9706061B2 (en) | 2009-01-28 | 2017-07-11 | Headwater Partners I Llc | Service design center for device assisted services |
US9705771B2 (en) | 2009-01-28 | 2017-07-11 | Headwater Partners I Llc | Attribution of mobile device data traffic to end-user application based on socket flows |
US9749898B2 (en) | 2009-01-28 | 2017-08-29 | Headwater Research Llc | Wireless end-user device with differential traffic control policy list applicable to one of several wireless modems |
US9749899B2 (en) | 2009-01-28 | 2017-08-29 | Headwater Research Llc | Wireless end-user device with network traffic API to indicate unavailability of roaming wireless connection to background applications |
US9755842B2 (en) | 2009-01-28 | 2017-09-05 | Headwater Research Llc | Managing service user discovery and service launch object placement on a device |
US9769207B2 (en) | 2009-01-28 | 2017-09-19 | Headwater Research Llc | Wireless network service interfaces |
US9819808B2 (en) | 2009-01-28 | 2017-11-14 | Headwater Research Llc | Hierarchical service policies for creating service usage data records for a wireless end-user device |
US11968234B2 (en) | 2009-01-28 | 2024-04-23 | Headwater Research Llc | Wireless network service interfaces |
US9858559B2 (en) | 2009-01-28 | 2018-01-02 | Headwater Research Llc | Network service plan design |
US9866642B2 (en) | 2009-01-28 | 2018-01-09 | Headwater Research Llc | Wireless end-user device with wireless modem power state control policy for background applications |
US9942796B2 (en) | 2009-01-28 | 2018-04-10 | Headwater Research Llc | Quality of service for device assisted services |
US9954975B2 (en) | 2009-01-28 | 2018-04-24 | Headwater Research Llc | Enhanced curfew and protection associated with a device group |
US9955332B2 (en) | 2009-01-28 | 2018-04-24 | Headwater Research Llc | Method for child wireless device activation to subscriber account of a master wireless device |
US9973930B2 (en) | 2009-01-28 | 2018-05-15 | Headwater Research Llc | End user device that secures an association of application to service policy with an application certificate check |
US9980146B2 (en) | 2009-01-28 | 2018-05-22 | Headwater Research Llc | Communications device with secure data path processing agents |
US10028144B2 (en) | 2009-01-28 | 2018-07-17 | Headwater Research Llc | Security techniques for device assisted services |
US10057775B2 (en) | 2009-01-28 | 2018-08-21 | Headwater Research Llc | Virtualized policy and charging system |
US10057141B2 (en) | 2009-01-28 | 2018-08-21 | Headwater Research Llc | Proxy system and method for adaptive ambient services |
US10064033B2 (en) | 2009-01-28 | 2018-08-28 | Headwater Research Llc | Device group partitions and settlement platform |
US10064055B2 (en) | 2009-01-28 | 2018-08-28 | Headwater Research Llc | Security, fraud detection, and fraud mitigation in device-assisted services systems |
US10070305B2 (en) | 2009-01-28 | 2018-09-04 | Headwater Research Llc | Device assisted services install |
US10080250B2 (en) | 2009-01-28 | 2018-09-18 | Headwater Research Llc | Enterprise access control and accounting allocation for access networks |
US10165447B2 (en) | 2009-01-28 | 2018-12-25 | Headwater Research Llc | Network service plan design |
US10171681B2 (en) | 2009-01-28 | 2019-01-01 | Headwater Research Llc | Service design center for device assisted services |
US10171988B2 (en) | 2009-01-28 | 2019-01-01 | Headwater Research Llc | Adapting network policies based on device service processor configuration |
US10171990B2 (en) | 2009-01-28 | 2019-01-01 | Headwater Research Llc | Service selection set publishing to device agent with on-device service selection |
US11923995B2 (en) | 2009-01-28 | 2024-03-05 | Headwater Research Llc | Device-assisted services for protecting network capacity |
US10200541B2 (en) | 2009-01-28 | 2019-02-05 | Headwater Research Llc | Wireless end-user device with divided user space/kernel space traffic policy system |
US10237757B2 (en) | 2009-01-28 | 2019-03-19 | Headwater Research Llc | System and method for wireless network offloading |
US10237146B2 (en) | 2009-01-28 | 2019-03-19 | Headwater Research Llc | Adaptive ambient services |
US10237773B2 (en) | 2009-01-28 | 2019-03-19 | Headwater Research Llc | Device-assisted services for protecting network capacity |
US10248996B2 (en) | 2009-01-28 | 2019-04-02 | Headwater Research Llc | Method for operating a wireless end-user device mobile payment agent |
US10264138B2 (en) | 2009-01-28 | 2019-04-16 | Headwater Research Llc | Mobile device and service management |
US10321320B2 (en) | 2009-01-28 | 2019-06-11 | Headwater Research Llc | Wireless network buffered message system |
US10320990B2 (en) | 2009-01-28 | 2019-06-11 | Headwater Research Llc | Device assisted CDR creation, aggregation, mediation and billing |
US10326800B2 (en) | 2009-01-28 | 2019-06-18 | Headwater Research Llc | Wireless network service interfaces |
US10326675B2 (en) | 2009-01-28 | 2019-06-18 | Headwater Research Llc | Flow tagging for service policy implementation |
US10462627B2 (en) | 2009-01-28 | 2019-10-29 | Headwater Research Llc | Service plan design, user interfaces, application programming interfaces, and device management |
US10492102B2 (en) | 2009-01-28 | 2019-11-26 | Headwater Research Llc | Intermediate networking devices |
US10536983B2 (en) | 2009-01-28 | 2020-01-14 | Headwater Research Llc | Enterprise access control and accounting allocation for access networks |
US10582375B2 (en) | 2009-01-28 | 2020-03-03 | Headwater Research Llc | Device assisted services install |
US11757943B2 (en) | 2009-01-28 | 2023-09-12 | Headwater Research Llc | Automated device provisioning and activation |
US10681179B2 (en) | 2009-01-28 | 2020-06-09 | Headwater Research Llc | Enhanced curfew and protection associated with a device group |
US10694385B2 (en) | 2009-01-28 | 2020-06-23 | Headwater Research Llc | Security techniques for device assisted services |
US10716006B2 (en) | 2009-01-28 | 2020-07-14 | Headwater Research Llc | End user device that secures an association of application to service policy with an application certificate check |
US10715342B2 (en) | 2009-01-28 | 2020-07-14 | Headwater Research Llc | Managing service user discovery and service launch object placement on a device |
US10749700B2 (en) | 2009-01-28 | 2020-08-18 | Headwater Research Llc | Device-assisted services for protecting network capacity |
US10771980B2 (en) | 2009-01-28 | 2020-09-08 | Headwater Research Llc | Communications device with secure data path processing agents |
US10779177B2 (en) | 2009-01-28 | 2020-09-15 | Headwater Research Llc | Device group partitions and settlement platform |
US10783581B2 (en) | 2009-01-28 | 2020-09-22 | Headwater Research Llc | Wireless end-user device providing ambient or sponsored services |
US10791471B2 (en) | 2009-01-28 | 2020-09-29 | Headwater Research Llc | System and method for wireless network offloading |
US10798254B2 (en) | 2009-01-28 | 2020-10-06 | Headwater Research Llc | Service design center for device assisted services |
US10798252B2 (en) | 2009-01-28 | 2020-10-06 | Headwater Research Llc | System and method for providing user notifications |
US10798558B2 (en) | 2009-01-28 | 2020-10-06 | Headwater Research Llc | Adapting network policies based on device service processor configuration |
US10803518B2 (en) | 2009-01-28 | 2020-10-13 | Headwater Research Llc | Virtualized policy and charging system |
US10834577B2 (en) | 2009-01-28 | 2020-11-10 | Headwater Research Llc | Service offer set publishing to device agent with on-device service selection |
US11750477B2 (en) | 2009-01-28 | 2023-09-05 | Headwater Research Llc | Adaptive ambient services |
US10841839B2 (en) | 2009-01-28 | 2020-11-17 | Headwater Research Llc | Security, fraud detection, and fraud mitigation in device-assisted services systems |
US10848330B2 (en) | 2009-01-28 | 2020-11-24 | Headwater Research Llc | Device-assisted services for protecting network capacity |
US10855559B2 (en) | 2009-01-28 | 2020-12-01 | Headwater Research Llc | Adaptive ambient services |
US10869199B2 (en) | 2009-01-28 | 2020-12-15 | Headwater Research Llc | Network service plan design |
US10985977B2 (en) | 2009-01-28 | 2021-04-20 | Headwater Research Llc | Quality of service for device assisted services |
US11039020B2 (en) | 2009-01-28 | 2021-06-15 | Headwater Research Llc | Mobile device and service management |
US11096055B2 (en) | 2009-01-28 | 2021-08-17 | Headwater Research Llc | Automated device provisioning and activation |
US11665186B2 (en) | 2009-01-28 | 2023-05-30 | Headwater Research Llc | Communications device with secure data path processing agents |
US11134102B2 (en) | 2009-01-28 | 2021-09-28 | Headwater Research Llc | Verifiable device assisted service usage monitoring with reporting, synchronization, and notification |
US11190645B2 (en) | 2009-01-28 | 2021-11-30 | Headwater Research Llc | Device assisted CDR creation, aggregation, mediation and billing |
US11190427B2 (en) | 2009-01-28 | 2021-11-30 | Headwater Research Llc | Flow tagging for service policy implementation |
US11190545B2 (en) | 2009-01-28 | 2021-11-30 | Headwater Research Llc | Wireless network service interfaces |
US11219074B2 (en) | 2009-01-28 | 2022-01-04 | Headwater Research Llc | Enterprise access control and accounting allocation for access networks |
US11218854B2 (en) | 2009-01-28 | 2022-01-04 | Headwater Research Llc | Service plan design, user interfaces, application programming interfaces, and device management |
US11228617B2 (en) | 2009-01-28 | 2022-01-18 | Headwater Research Llc | Automated device provisioning and activation |
US11337059B2 (en) | 2009-01-28 | 2022-05-17 | Headwater Research Llc | Device assisted services install |
US11363496B2 (en) | 2009-01-28 | 2022-06-14 | Headwater Research Llc | Intermediate networking devices |
US11405224B2 (en) | 2009-01-28 | 2022-08-02 | Headwater Research Llc | Device-assisted services for protecting network capacity |
US11405429B2 (en) | 2009-01-28 | 2022-08-02 | Headwater Research Llc | Security techniques for device assisted services |
US11412366B2 (en) | 2009-01-28 | 2022-08-09 | Headwater Research Llc | Enhanced roaming services and converged carrier networks with device assisted services and a proxy |
US11425580B2 (en) | 2009-01-28 | 2022-08-23 | Headwater Research Llc | System and method for wireless network offloading |
US11477246B2 (en) | 2009-01-28 | 2022-10-18 | Headwater Research Llc | Network service plan design |
US11494837B2 (en) | 2009-01-28 | 2022-11-08 | Headwater Research Llc | Virtualized policy and charging system |
US11516301B2 (en) | 2009-01-28 | 2022-11-29 | Headwater Research Llc | Enhanced curfew and protection associated with a device group |
US11533642B2 (en) | 2009-01-28 | 2022-12-20 | Headwater Research Llc | Device group partitions and settlement platform |
US11538106B2 (en) | 2009-01-28 | 2022-12-27 | Headwater Research Llc | Wireless end-user device providing ambient or sponsored services |
US11563592B2 (en) | 2009-01-28 | 2023-01-24 | Headwater Research Llc | Managing service user discovery and service launch object placement on a device |
US11570309B2 (en) | 2009-01-28 | 2023-01-31 | Headwater Research Llc | Service design center for device assisted services |
US11582593B2 (en) | 2009-01-28 | 2023-02-14 | Head Water Research Llc | Adapting network policies based on device service processor configuration |
US11589216B2 (en) | 2009-01-28 | 2023-02-21 | Headwater Research Llc | Service selection set publishing to device agent with on-device service selection |
US11665592B2 (en) | 2009-01-28 | 2023-05-30 | Headwater Research Llc | Security, fraud detection, and fraud mitigation in device-assisted services systems |
US8606911B2 (en) | 2009-03-02 | 2013-12-10 | Headwater Partners I Llc | Flow tagging for service policy implementation |
US8832777B2 (en) | 2009-03-02 | 2014-09-09 | Headwater Partners I Llc | Adapting network policies based on device service processor configuration |
US8494518B1 (en) * | 2010-05-12 | 2013-07-23 | Sprint Spectrum L.P. | Interfrequency access handoff in home carrier network |
US9154826B2 (en) | 2011-04-06 | 2015-10-06 | Headwater Partners Ii Llc | Distributing content and service launch objects to mobile devices |
US9065633B2 (en) * | 2011-04-15 | 2015-06-23 | Panasonic Intellectual Property Management Co., Ltd. | Wireless communication apparatus for setting frequency band for wireless communications using encryption key information to predetermined frequency band |
US20130182846A1 (en) * | 2011-04-15 | 2013-07-18 | Panasonic Corporation | Wireless communication apparatus for setting frequency band for wireless communications using encryption key information to predetermined frequency band |
US9137169B2 (en) * | 2013-01-14 | 2015-09-15 | Comcast Cable Communications, Llc | Efficient allocation of network resources |
US20140201370A1 (en) * | 2013-01-14 | 2014-07-17 | Comcast Cable Communications, Llc | Efficient Allocation Of Network Resources |
US10171995B2 (en) | 2013-03-14 | 2019-01-01 | Headwater Research Llc | Automated credential porting for mobile devices |
US10834583B2 (en) | 2013-03-14 | 2020-11-10 | Headwater Research Llc | Automated credential porting for mobile devices |
US11743717B2 (en) | 2013-03-14 | 2023-08-29 | Headwater Research Llc | Automated credential porting for mobile devices |
US9843967B1 (en) | 2013-07-22 | 2017-12-12 | Sprint Spectrum L.P. | Use of fallback coverage area load to manage fallback communication setup |
US9226210B1 (en) | 2013-07-22 | 2015-12-29 | Sprint Spectrum L.P. | Use of fallback carrier load to manage fallback communication setup latency |
US10588030B2 (en) | 2015-08-05 | 2020-03-10 | Hewlett Packard Enterprise Development Lp | Switching frequency band of radio of access point |
US11129049B2 (en) | 2018-12-05 | 2021-09-21 | Systems And Software Enterprises, Llc | Methods and apparatus for radio transmitters management and resource optimization in multi-band wireless networks |
US11818644B2 (en) | 2021-03-17 | 2023-11-14 | Dell Products, Lp | Dock-assisted system and method of diversifying dual-band simultaneous communications |
Also Published As
Publication number | Publication date |
---|---|
US20070281711A1 (en) | 2007-12-06 |
US20090323531A1 (en) | 2009-12-31 |
US8064939B2 (en) | 2011-11-22 |
US20120034943A1 (en) | 2012-02-09 |
US7577453B2 (en) | 2009-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8320949B2 (en) | Wireless load balancing across bands | |
US10158532B1 (en) | Bandwidth management in a customer premises equipment comprising multiple networks | |
US8340110B2 (en) | Quality of service provisioning for wireless networks | |
US9762389B2 (en) | Moderation of network and access point selection in an IEEE 802.11 communication system | |
KR100666943B1 (en) | Method and apparatus for reducing power consumption of composite wireless terminal | |
KR100489683B1 (en) | Apparatus for controlling the load balance in multi-access points and method thereof | |
US8514827B2 (en) | System and network for wireless network monitoring | |
JP4069117B2 (en) | Forced roaming initiated at the access point based on bandwidth | |
JP4886401B2 (en) | How to trigger a handover | |
US8687543B2 (en) | Wireless connection selection and setup | |
US20080107077A1 (en) | Subnet mobility supporting wireless handoff | |
US10070345B2 (en) | Method and corresponding wireless access point for adjusting data rate of secondary users | |
KR20030030993A (en) | Mobile wireless router | |
WO2005060166A1 (en) | Autonomic client reassociation in a wireless local area network | |
US7688779B2 (en) | Handling the use of multiple 802.11n channels in a location where there are a small number of available channels | |
WO2008155444A1 (en) | Radio resource control | |
US11388622B2 (en) | Traffic control device and method in wireless communication system | |
EP1702485B8 (en) | Autonomic reassociation of client in a wireless local area network | |
EP3544363B1 (en) | Techniques for multipath bundling and determining wi-fi connections for multipath bundling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |