US8411922B2 - Reducing noise in images acquired with a scanning beam device - Google Patents
Reducing noise in images acquired with a scanning beam device Download PDFInfo
- Publication number
- US8411922B2 US8411922B2 US11/998,491 US99849107A US8411922B2 US 8411922 B2 US8411922 B2 US 8411922B2 US 99849107 A US99849107 A US 99849107A US 8411922 B2 US8411922 B2 US 8411922B2
- Authority
- US
- United States
- Prior art keywords
- noise
- scan
- image
- light
- groups
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 claims abstract description 28
- 238000001914 filtration Methods 0.000 claims description 7
- 238000012935 Averaging Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims 3
- 239000013307 optical fiber Substances 0.000 description 31
- 239000000835 fiber Substances 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000005286 illumination Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00172—Optical arrangements with means for scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0064—Body surface scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0082—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
- A61B5/0084—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
- G02B26/10—Scanning systems
- G02B26/103—Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0068—Confocal scanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/44—Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
- A61B5/441—Skin evaluation, e.g. for skin disorder diagnosis
Definitions
- Embodiments of the invention relate to scanning beam image acquisition.
- embodiments of the invention relate to reducing noise in images acquired through scanning beam image acquisition.
- Scanning beam devices are known in the arts.
- One type of scanning beam device is a scanning fiber device.
- the scanning fiber device may include a single, cantilevered optical fiber that may be vibrated and scanned in one or two dimensions.
- the scanning beam device may be used to acquire an image of a target area.
- the images acquired have image noise or non-optimal image quality. It is often desirable to reduce the noise and/or improve the quality of the acquired images.
- FIG. 1 is a block diagram of an example scanning beam system, according to embodiments of the invention.
- FIG. 2 is a cross-sectional side view of a particular example of a scanning fiber device, according to embodiments of the invention.
- FIG. 3 shows an example pair of actuator drive signals that are operable to be applied to the electrodes of a scanning fiber device similar to that show in FIG. 2 in order to scan a cantilevered optical fiber in a spiral scan, according to embodiments of the invention.
- FIG. 4 is a graph of example resonant gain characteristics of a cantilevered optical fiber operated in a first mode of resonance.
- FIG. 5 conceptually illustrates that oversampling may occur near the center of a spiral scan if a cantilevered optical fiber is scanned at a variable velocity (e.g., a constant frequency) and backscattered light is sampled at a substantially constant rate, according to embodiments of the invention.
- a variable velocity e.g., a constant frequency
- FIG. 6 is a block flow diagram of a method of improving quality of images acquired with a scanning beam device, according to embodiments of the invention.
- FIG. 7 is a Bode plot illustrating example frequency response characteristics of a low-pass filter, according to one or more embodiments of the invention.
- FIG. 8 is a block diagram of a base station having a noise reduction unit, according to embodiments of the invention.
- FIG. 1 is a block diagram of an example scanning beam system 100 , according to embodiments of the invention.
- the scanning beam system may take the form of a scanning beam or scanning fiber endoscope, boroscope, microscope, other type of scope, bar code reader, or other scanning beam or scanning fiber image acquisition device known in the art.
- an endoscope represents a device to be inserted into a patient to acquire images within a body cavity, lumen, or otherwise acquire images within the patient.
- suitable types of endoscopes include, but are not limited to, bronchoscopes, colonoscopes, gastroscopes, duodenoscopes, sigmoidoscopes, thorascopes, ureteroscopes, sinuscopes, boroscopes, and thorascopes, to name a few examples.
- the scanning beam system has a two-part form factor that includes a base station 102 and a scanning beam device 120 , although such a two-part form factor is not required.
- the scanning beam device is electrically and optically coupled with the base station through one or more cables 126 .
- the base station has an interface 108 to allow a corresponding connector or coupler 122 of the scanning beam device to be connected or coupled.
- Coupled may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but may still co-operate or interact with each other, for example, through one or more intervening components.
- the base station includes a light source 104 .
- the light source is optically coupled with the interface to provide light to the scanning beam device through the interface.
- the one or more cables may include one or more light paths 128 to receive and convey the light.
- suitable light sources include, but are not limited to, lasers, laser diodes, vertical cavity surface-emitting lasers (VCSELs), light-emitting diodes (LEDs), and combinations thereof.
- the light source may include a red light source, a blue light source, a green light source, a red-green-blue (RGB) light source, a white light source, an infrared light source, an ultraviolet light source, or a combination thereof.
- the light source may also include a high intensity therapeutic laser light source.
- the light source may emit a continuous stream of light, modulated light, or a stream of light pulses.
- the base station also includes an actuator driver 106 .
- the actuator driver is electrically coupled with the interface to provide voltages or other electrical signals, referred to herein as actuator drive signals, to the scanning beam device through the interface.
- the one or more cables may include one or more actuator drive signal paths 124 to receive and convey the actuator drive signals.
- the actuator driver may be implemented in hardware (for example a circuit), software (for example a routine or program), or a combination of hardware and software.
- the actuator driver may include one or more lookup tables or other data structures stored in a memory that may provide actuator drive signal values. The actuator drive signal values may potentially be adjusted based on calibration, such as, for example, as described in U.S.
- the actuator driver may include a computer, processor, application specific integrated circuit (ASIC), or other circuit to generate the actuator drive signal values in real time.
- the values may be digital and may be provided to a digital-to-analog converter of the actuator driver.
- One or more amplifiers of the actuator driver may amplify the analog versions of the actuator drive signals.
- the scanning beam device 120 includes an actuator 132 and a scanning optical element 134 .
- the actuator may receive the actuator drive signals.
- the actuator may vibrate, or otherwise actuate or move the scanning optical element based on, and responsive to, the received actuator drive signals.
- the actuator drive signals may be operable to cause the actuator to actuate the scanning optical element according to a two-dimensional scan. Examples of suitable two-dimensional scans include, but are not limited to, spiral scans, propeller scans, Lissajous scans, circular scans, oval scans, raster scans, and the like.
- the scanning optical element may receive the light from the light source.
- the actuated scanning optical element may scan a beam of the light through one or more lenses 138 to scan a focused beam 140 or illumination spot over a surface 142 in a scan.
- a spiral scan 144 is shown and a dot shows a position of the focused beam or illumination spot at a particular point in time.
- the invention is not limited to spiral scans.
- a suitable scanning optical element is a single cantilevered free-end portion of an optical fiber.
- One example of a suitable actuator for the cantilevered free-end portion of the optical fiber is a piezoelectric tube through which the optical fiber is inserted.
- Other actuator tubes may instead be used.
- Light may be emitted from a distal end or tip 136 of the cantilevered optical fiber while the free-end portion of the cantilevered optical fiber is vibrated or moved in a scan.
- the scanning beam device may include a mirror or other reflective device, and a Micro-Electro-Mechanical System (MEMS) or other actuator to move the reflective device to scan the beam.
- MEMS Micro-Electro-Mechanical System
- Still other scanning beam devices may include galvanometers, multiple optical elements moved relative to each other, and the like, and combinations thereof.
- the scanning beam system may be used to generate an image. Generating the image may include acquiring the image of a surface. In acquiring the image of the surface, the scanning beam device may scan the beam or illumination spot through the optional lens system and over the surface in the scan. Light that is backscattered from the surface may be collected and detected at different points in time during the scan. The image may be generated by representing different pixels or other positions in the image with light detected at different corresponding points in time during the scan.
- one or more optical fibers, or other backscattered light paths 130 may optionally be included to collect and convey backscattered light from the scanning beam device back to one or more optional photodetectors 110 of the base station.
- the scanning beam device may optionally include one or more photodetectors, for example proximate a distal tip thereof, to detect the backscattered light. The backscattered light detected by these photodetectors may be conveyed back to the base station.
- the base station may include an image generation unit 112 .
- the image generation unit may receive electrical signals representing the detected light.
- the image generation unit may generate an image of the surface by representing different pixels or other positions in the image with light detected at different corresponding points in time during the scan.
- the base station may optionally include a display 114 to display the images. Alternatively, the display may be externally coupled with the base station.
- the images acquired have image noise or non-optimal image quality.
- the noise may result from electrical noise associated with the various circuits in the system (e.g., those circuits used to implement one or more of the actuator driver, the image generation unit, etc.).
- Another common source of noise is shot noise.
- the shot noise may represent noise due to the statistical fluctuations in the arrival times of photons of backscattered light that are detected by the photodetectors. These are just a few illustrative examples.
- the image noise may be reduced in order to help improve image quality.
- the base station may include, but are not limited to, a power source, a user interface, a memory, and the like.
- the base station may include supporting components like clocks, amplifiers, digital-to-analog converters, analog-to-digital converters, and the like.
- FIG. 2 is a cross-sectional side view of a particular example of a scanning fiber device 220 , according to embodiments of the invention.
- This particular scanning fiber device is well suited for use as an endoscope or other relatively small device, although in other implementations the design and/or operation may vary considerably.
- the scanning fiber device includes a housing 246 .
- the housing may be relatively small and hermetically sealed.
- the housing may be generally tubular, have a diameter that is about 5 millimeters (mm) or less, and have a length that is about 20 mm or less. In some embodiments, the diameter may be about 1.5 mm or less, and the length may be about 12 mm or less.
- the housing typically includes one or more lenses 238 . Examples of suitable lenses include those manufactured by Pentax Corporation, although other lenses may optionally be used.
- one or more optical fibers 230 may optionally be included around the outside of the housing to collect and convey backscattered light from a beam or illumination spot back to one or more photodetectors, for example located in a base station.
- one or more photodetectors may be included at or near a distal tip of the scanning fiber device.
- a piezoelectric tube 232 representing one possible type of actuator, is included in the housing.
- the piezoelectric tube may include a PZT 5A material, although this is not required.
- Suitable piezoelectric tubes are commercially available from several sources including, but not limited to: Morgan Technical Ceramics Sales, of Fairfield, N.J.; Sensor Technology Ltd., of Collingwood, Ontario, Canada; and PI (Physik Instrumente) L.P., of Auburn, Mass.
- the piezoelectric tube may be inserted through a tightly fitting generally cylindrical opening of an attachment collar 248 .
- the attachment collar may be used to attach the piezoelectric tube to the housing. Other configurations are also possible.
- a portion of an optical fiber 228 is inserted through a generally cylindrical opening in the piezoelectric tube.
- a cantilevered free end portion 234 of the optical fiber extends beyond an end of the piezoelectric tube within the housing, and may be attached to the end of the piezoelectric tube, for example, with an adhesive. Other configurations are also possible.
- the cantilevered optical fiber is flexible and may be actuated by the piezoelectric tube. Dashed lines are used to show alternate positions of the cantilevered optical fiber during movement.
- the piezoelectric tube has electrodes 250 thereon. Wires or other electrically conductive paths 224 are electrically coupled with the electrodes to convey actuator drive signals to the electrodes. As shown, in one example embodiment of the invention, the piezoelectric tube may have four, quadrant metal electrodes on an outer surface thereof. Four electrically conductive paths may respectively be soldered to, or otherwise electrically coupled with, the four electrodes. In one or more embodiments, an optional ground electrode may be included on an inside surface of the piezoelectric tube.
- the electrodes may apply electric fields to the piezoelectric tube.
- the electric fields may cause the piezoelectric tube to actuate the optical fiber.
- the four quadrant electrodes, or even only two electrodes, may be capable of moving the cantilevered optical fiber in a two-dimensional scan.
- actuator drive signals may be applied to the electrodes.
- FIG. 3 shows an example pair of actuator drive signals 323 , 325 that are operable to be applied to the electrodes of a scanning fiber device similar to that show in FIG. 2 in order to scan a cantilevered optical fiber in a spiral scan 344 , according to embodiments of the invention.
- the pair of drive signals includes a vertical actuator drive signal 323 and a horizontal actuator drive signal 325 .
- the actuator drive signals are sinusoidal and have a repeating pattern of peaks. The number of peaks per unit time is the frequency of the signal.
- the illustrated actuator drive signals have equal and constant frequencies.
- the heights of the peaks are the amplitudes of the actuator drive signals.
- the amplitudes may correspond to the voltages of an actuator drive signals. Notice that the amplitudes of the actuator drive signals increase over time.
- the diameter of the spiral scan may increase as the amplitudes of the actuator drive signals increase. The maximum diameter generally coincides with the maximum amplitudes.
- the horizontal and vertical actuator drive signals are about 90° out-of-phase, due to the sine and cosine. In a real system the phase difference may differ from 90° out-of-phase and this different may be adjusted with the phase shift, ⁇ .
- the frequency of the actuator drive signals and/or the frequency of actuation of the cantilevered optical fiber may be based on the gain characteristics of the cantilevered optical fiber around the resonant frequency.
- FIG. 4 is a graph of example gain characteristics of a cantilevered optical fiber around the resonant frequency while operated in a first mode of resonance. Frequency of vibration of the cantilevered optical fiber is plotted on the horizontal axis versus displacement or deflection of the free distal end of the cantilevered optical fiber on the vertical axis.
- the displacement increases around, and peaks at, a mechanical or vibratory resonant frequency. This is due to an increase in the gain around the resonant frequency of the cantilevered optical fiber.
- the displacement has a relatively Gaussian dependency on frequency, with the greatest displacement occurring at the resonant frequency. In practice, there may be significant deviation from such a Gaussian dependency.
- the optical fiber may be vibrated at various frequencies, in one or more embodiments, the optical fiber may be vibrated at or around, for example within a Q-factor of, its resonant frequency, or harmonics of the resonant frequency.
- the Q-factor is the ratio of the height of the resonant gain curve to the width of the curve. Due to the increased gain around the resonant frequency, vibrating the optical fiber at or around the resonant frequency may help to reduce the amount of energy, or magnitude of the actuator drive signal, needed to achieve a given displacement, or perform a given scan.
- the beam of light may be scanned over the surface with a variable velocity.
- the velocity of the cantilevered optical fiber may be significantly less near the center of the spiral (where the “circumference” traveled per revolution is smaller) than toward the outer diameters of the spiral (where the “circumference” traveled per revolution is larger). That is, the velocity of the fiber and/or beam may increase with increasing distance from the center of the spiral scan. Recall that the actuator drive signals of FIG. 3 had constant frequency.
- the light that is backscattered from the surface may be sampled and detected at a substantially constant rate. If the backscattered light is detected at a substantially constant rate, then the backscattered light may be detected at significantly more points per unit length in the low velocity portions of the scan (e.g., near the center of the spiral) than in the high velocity portions of the scan (e.g., toward the outer diameters of the spiral).
- FIG. 5 conceptually illustrates that oversampling may occur near the center of a spiral scan if a cantilevered optical fiber is scanned at a variable velocity (e.g., a constant frequency) and backscattered light is sampled at a substantially constant rate, according to embodiments of the invention.
- dots are used to conceptually represent positions at evenly spaced points in time where backscattered light is sampled or detected. Notice that there are more dots or sampling positions per unit length of the spiral near the center than toward the outer diameters of the spiral. For ease of illustration, only a few dots are shown to illustrate the concept.
- the number of sampling positions per unit length at or near the center may be tens or hundreds of times more than the number of sampling positions per unit length in the outer diameters, although this may depend upon the sampling rate, the size of the spiral, and/or other factors.
- the sampling rate at which the backscattered light is detected may be selected to achieve a desired image resolution during the highest velocity portions of the scan. Accordingly, in the highest velocity portions of the scan (e.g., the maximum diameter of the spiral), each position or point in time at which light is detected may have a one-to-one correspondence with a pixel or other discrete position in the image. In contrast, in the lower velocity portions of the scan (e.g., near the center of the spiral), a group of multiple different positions or points in time at which light is detected may correspond to the same pixel in the image. The image resolution simply may not be high enough to represent all of the oversampled positions or points in time at which light was detected during the lower velocity portions of the scan. Accordingly, rather than a one-to-one relationship between the positions or points at which the light is detected, a multiple- or many-to-one relationship may exist. In other words, a group of positions or points at which light was detected may correspond to the same pixel.
- these oversampled points or positions may be simply discarded, since they cannot each be represented in the image. However, discarding all of these oversampled points or positions essentially wastes measurement information. Furthermore, each of the points or positions, taken individually, may tend to have a certain amount of inaccuracy or noise. As previously discussed, such inaccuracy or noise may tend to reduce the quality of images acquired with the scanning beam system.
- FIG. 6 is a block flow diagram of a method 660 of improving quality of images acquired with a scanning beam device, according to embodiments of the invention.
- the method allows for improved image quality by utilizing extra or oversampled points of detected light to reduce noise and aliasing.
- the method includes scanning a beam of light over a surface in a scan with a variable velocity, at block 661 . This may be performed as previously described.
- Light reflected or backscattered from the surface may be detected at different points in time during the scan, at block 662 . This may be performed as previously described. As used herein, detecting the backscattered light is intended to encompass the possibility that ambient light or other light that has not necessarily been backscattered may be included in the light detected along with the backscattered light, although the amount of such ambient light should generally be relatively small.
- light may be detected at a substantially constant rate throughout the scan, although this is not required.
- detected at a “substantially constant rate” means detected at a rate that changes by less than 10%. Often the rate changes by less than 5%. In such a case, light may be detected at more points or positions per unit region of the image in lower velocity regions of the image than in higher velocity regions of the image.
- reduced-noise representations of groups of the detected light that each correspond to a different position in an image of the surface may be generated.
- the reduced-noise representation of a group may have a higher probability of representing the actual or true value of the detected light if there was no noise than any of the individual values of the detected light within the group.
- the reduced-noise representations may be generated for groups having a plurality of different sizes. That is, the groups may have light detected at different numbers of points in time. As used herein, a “group” includes light detected at two or more different points in time during the scan. In some cases, a group may include light detected at tens, hundreds, or more different points in time.
- the reduced-noise representations when the beam is scanned with a variable velocity, and when the light is detected at a substantially constant rate, the reduced-noise representations may be generated for relatively larger groups when the velocity is relatively lower, whereas the reduced-noise representations may be generated for relatively smaller groups when the velocity is relatively higher.
- relatively larger groups may correspond to the same pixel or image position (e.g., where the beam is expected to be or determined to be through calibration) toward the center of the spiral, whereas relatively smaller groups may correspond to the same pixel or image position toward the outer circumference of the spiral.
- relatively larger groups may correspond to the same pixel toward outer edges of the raster scan where the velocity is lower, whereas relatively smaller groups may correspond to the same pixel toward the center of the raster scan where the velocity is higher.
- relatively larger groups may correspond to pixels traversed relatively more frequently during the scan, whereas relatively smaller groups may correspond to pixels traversed less frequently.
- the beam may pass through the center twice for each loop, and there may be multiple or many loops during the scan.
- pixels near the center may be traversed or passed over by the beam multiple times.
- relatively larger groups may correspond to pixels near the center that are passed over frequently, whereas relatively smaller groups may correspond to pixels away from the center that are passed over less frequently.
- the beam may be moving faster near the center of the scan than toward the extremities of the scan. Accordingly, in some cases, the fact that the beam passes over the same point near the center multiple times may result in relatively larger groups corresponding to the same pixel in relatively higher velocity portions of the scan, whereas relatively smaller groups correspond to the same pixel in relatively lower velocity portions of the scan.
- the image of the surface may be generated by representing the different pixels or other positions in the image with the reduced-noise representations of the corresponding groups, at block 664 .
- the reduced-noise representations of the different groups may be placed or represented at the expected or ideal pixels or positions of the beam for the respective groups.
- the reduced-noise representations of the different groups may be placed or represented at calibrated pixels or positions for the respective groups. Further details on the later approach are discussed in United States Patent Application 20060072843, entitled “REMAPPING METHODS TO REDUCE DISTORTIONS IN IMAGES”, by Richard S. Johnston.
- a single value may be calculated, computed, processed, or otherwise generated, for each of the groups.
- the single value may “summarize” potentially unequal values of the detected light within each corresponding group. “Summarizing” the potentially unequal values may represent the general significance of or bring out what is common among the potentially unequal values while deemphasizing or reducing the noise or differences among the values.
- the single value may be computed or otherwise generated in software (e.g., instructions), hardware (e.g., a circuit), firmware (e.g., software embedded on hardware), or a combination thereof.
- An arithmetic mean is sometimes referred to simply as a mean or average.
- the arithmetic mean or average may be generated by adding several values of the detected light within a group together and dividing the sum by the number of values added together. Either the addition may be performed first, followed by the division, or alternatively the division may be performed first on each value, followed by the addition.
- the average may reduce relatively more noise for the relatively larger groups, while reducing relatively less noise for the relatively smaller groups. That is, different amounts of averaging or noise reduction may be performed on different regions or portions of the image.
- arithmetic mean or average is not required.
- summarizing metrics include, but are not limited to, weighted averages, moving averages, other types of averages, other types of means, medians, middle points between extremes, relatively central points, intermediate values, modes, and the like, and combinations thereof. These are just a few illustrative examples. Other examples will be apparent to those skilled in the art, and having the benefit of the present disclosure.
- Another approach for generating the reduced-noise representation of the detected light within each of the groups may include filtering the detected light within each of the groups.
- Noise often lies in the relatively high frequency range of the signal spectrum, at frequencies higher than those of the underlying measurements of interest. Accordingly, filtering or removing these high or highest frequencies may help to reduce noise.
- the detected light within each group may be passed through a low-pass filter.
- the low-pass filter may be operable to pass frequencies of the input detected light samples below a cutoff frequency, and attenuate (i.e., remove or at least reduce) frequencies of the input detected light samples above the cutoff frequency. Accordingly, such a low-pass filter may help to reduce noise by reducing or attenuating these relatively high frequencies, while passing the lower frequencies.
- the cutoff frequency may be based on the data line rate or pixel traversal rate.
- FIG. 7 is a Bode plot illustrating example frequency response characteristics of a low-pass filter, according to one or more embodiments of the invention. Frequency is plotted on the horizontal axis on a logarithmic scale, whereas gain is plotted on the vertical axis.
- a cutoff frequency is shown.
- the plot has a substantially horizontal line for frequencies below the cutoff frequency. This indicates that the low-pass filter passes input frequencies lower than the cutoff frequency.
- the plot has a diagonal downward line for frequencies above the cutoff frequency. This indicates that the low-pass filter reduces or attenuates input frequencies higher than the cutoff frequency.
- suitable low-pass filters include, but are not limited to, averaging filters, moving average filters, weighted moving average filters, exponentially weighted moving average filters (also known as first-order low-pass filters), second-order low-pass filters, third-order low pass filters, higher than third-order low-pass filters, Butterworth filters, Chebyshev filters, Bessel filters, Gaussian filters, Blackman filters, elliptic filters, equal ripple filters, finite impulse response (FIR) filters, and infinite impulse response (IIR) filters. Many of these filters effectively perform some sort of averaging of the input data to generate the output.
- averaging filters such as moving average filters, weighted moving average filters, exponentially weighted moving average filters (also known as first-order low-pass filters), second-order low-pass filters, third-order low pass filters, higher than third-order low-pass filters, Butterworth filters, Chebyshev filters, Bessel filters, Gaussian filters, Blackman filters, elliptic filters, equal ripple filters, finite impulse response (FIR
- the low-pass filter may include a variable cutoff low-pass filter.
- the cutoff frequency may be varied based, at least in part, on the number of points or positions of detected light used to generate a single filtered output value. A larger number of points or positions generally allows a lower cutoff frequency.
- the cutoff frequency may be decreased for groups that include detected light for relatively more points or positions in time, whereas the cutoff frequency may be increased for groups that include detected light for relatively fewer points or positions in time. The relatively more points or positions in time allow relatively more noise reduction to be achieved by removing even more of the higher noisy frequencies.
- the cutoff frequency may be decreased during the slow velocity regions or other portions of the scan, whereas the cutoff frequency may be increased during the higher velocity regions or other portions of the scan.
- the cutoff frequency may be decreased or relatively lower toward the center of the spiral scan, and may increase or be relatively higher as the diameter of the spiral scan increases. Notice that the cutoff frequency may depend in part on image position.
- band-pass filters may attenuate both frequencies lower and higher than a band-pass frequency range of interest where the measurements lie.
- a reduced-noise representation of a group of detected light may be based on only a subset (less than all) of the detected light within the group.
- the points or positions used may be the chronologically first points or positions within the group.
- the points or positions used may be the chronologically last points or positions within the group.
- the points or positions used may be approximately equally spaced throughout the total number of points or positions within the group.
- the points or positions used may be those closest to the image pixel or position where the reduced noise representation is to be represented. Alternatively, all points or positions may optionally be used, if desired. Other approaches are also possible.
- FIG. 8 is a block diagram of a base station 802 , according to embodiments of the invention.
- the base station includes an interface 808 to allow a scanning beam device to be coupled.
- the base station also includes a light source 804 optically coupled with the interface to provide light to the scanning beam device through the interface.
- the base station further includes an actuator driver 806 electrically coupled with the interface to provide actuator drive signals to the scanning beam device through the interface.
- the base station includes a noise-reduction unit 880 .
- the noise-reduction unit may generate reduced-noise representations of groups of light detected at different points in time during a scan of a beam of light over the surface by the scanning beam device.
- the noise-reduction unit may be implemented in hardware (for example a FPGA or other circuit), software (for example instructions on a machine-readable medium), firmware, or a combination of two or more of hardware, software, and firmware.
- the noise-reduction unit may include a filter.
- the filter will be a hardware electrical filter. Both digital filters and analog filters are suitable, although digital filters tend to be more practical to implement, and will accordingly often be favored, especially in the case of a variable cutoff filter.
- the base station may also include an analog-to-digital converter (ADC).
- ADC analog-to-digital converter
- the digital filter may be coupled between the output of the ADC and the input of the image generation unit.
- the analog filter may be coupled between the output of the photodetector and the input of the ADC.
- the filter may optionally be implemented in software.
- the base station may include one or more optional photodetectors 810 optically coupled between the interface and the noise-reduction unit.
- the noise-reduction unit may be coupled with, or otherwise in communication with, the photodetector(s) to receive light detected at different points or positions during the scan.
- the photodetector(s) may optionally be included in the scanning beam device, or elsewhere.
- the noise-reduction unit may be electrically coupled with, or otherwise in communication with, the interface to receive the signals representing the light detected at different points or positions during the scan from the interface.
- the base station also includes an image generation unit 812 .
- the image generation unit may generate an image of the surface by representing different positions in the image with reduced-noise representations of corresponding groups.
- the base station may include an optional image position calibration unit 882 .
- the image position calibration unit may be coupled with, or otherwise in communication with, the image generation unit to provide calibrated pixels or positions for respective groups of detected light.
- the image position calibration unit may also be coupled with, or otherwise in communication with, the noise reduction unit.
- the image position calibration unit may be implemented in hardware, software, firmware, or a combination.
- the base station may include an optional display 814 .
- an external display may optionally be connected or coupled with the base station.
- the display may be coupled or in communication to receive and display the generated image from the image generation unit.
- the noise reduction unit may optionally be combined with a portion of the actuator driver and/or a portion of the image generation unit.
- One or more embodiments of the invention may be provided as a program product or other article of manufacture that may include a machine-accessible and/or machine-readable medium.
- the medium may have stored thereon instructions that if executed by a machine may result in and/or cause the machine to perform one or more of the operations or methods disclosed herein.
- Suitable machines include, but are not limited to, circuits, processors, base stations, endoscope base stations, scanning beam systems, medical equipment, and other machines capable of executing instructions, to name just a few examples, to name just a few examples.
- the medium may include, a mechanism that provides, for example stores, information in a form that is accessible by the machine.
- the medium may optionally include recordable and/or non-recordable mediums, such as, for example, optical storage medium, optical disk, CD-ROM, magnetic disk, magneto-optical disk, read only memory (ROM), programmable ROM (PROM), erasable-and-programmable ROM (EPROM), electrically-erasable-and-programmable ROM (EEPROM), random access memory (RAM), static-RAM (SRAM), dynamic-RAM (DRAM), Flash memory, and combinations thereof.
- ROM read only memory
- PROM programmable ROM
- EPROM erasable-and-programmable ROM
- EEPROM electrically-erasable-and-programmable ROM
- RAM random access memory
- SRAM static-RAM
- DRAM dynamic-RAM
- Flash memory and combinations thereof.
- any element that does not explicitly state “means for” performing a specified function, or “step for” performing a specified function, is not to be interpreted as a “means” or “step” clause as specified in 35 U.S.C. Section 112, Paragraph 6.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Endoscopes (AREA)
Abstract
Description
Claims (20)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/998,491 US8411922B2 (en) | 2007-11-30 | 2007-11-30 | Reducing noise in images acquired with a scanning beam device |
EP07867641A EP2214553A1 (en) | 2007-11-30 | 2007-12-06 | Reducing noise in images acquired with a scanning beam devices |
PCT/US2007/024953 WO2009070151A1 (en) | 2007-11-30 | 2007-12-06 | Reducing noise in images acquired with a scanning beam devices |
JP2010535937A JP2011505190A (en) | 2007-11-30 | 2007-12-06 | Noise reduction in images acquired by scanning beam devices. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/998,491 US8411922B2 (en) | 2007-11-30 | 2007-11-30 | Reducing noise in images acquired with a scanning beam device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090141997A1 US20090141997A1 (en) | 2009-06-04 |
US8411922B2 true US8411922B2 (en) | 2013-04-02 |
Family
ID=40675792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/998,491 Active 2031-03-03 US8411922B2 (en) | 2007-11-30 | 2007-11-30 | Reducing noise in images acquired with a scanning beam device |
Country Status (4)
Country | Link |
---|---|
US (1) | US8411922B2 (en) |
EP (1) | EP2214553A1 (en) |
JP (1) | JP2011505190A (en) |
WO (1) | WO2009070151A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105588850A (en) * | 2016-02-26 | 2016-05-18 | 上海奕瑞光电子科技有限公司 | Calibration method for automatically matching multi-mode flat panel detector |
US9501683B1 (en) | 2015-08-05 | 2016-11-22 | Datalogic Automation, Inc. | Multi-frame super-resolution barcode imager |
US9775501B2 (en) | 2011-11-09 | 2017-10-03 | Olympus Corporation | Endoscope and endoscope apparatus having piezoelectric element which swings a free end of an optical element through a joining member |
US10341593B2 (en) | 2013-03-15 | 2019-07-02 | DePuy Synthes Products, Inc. | Comprehensive fixed pattern noise cancellation |
US10341588B2 (en) | 2013-03-15 | 2019-07-02 | DePuy Synthes Products, Inc. | Noise aware edge enhancement |
US10915857B2 (en) * | 2010-06-30 | 2021-02-09 | International Business Machines Corporation | Supply chain management using mobile devices |
US11047671B1 (en) | 2020-01-30 | 2021-06-29 | Veravanti Inc. | Forward looking RGB/optical coherence tomography duplex imager |
US11317812B2 (en) * | 2017-12-19 | 2022-05-03 | Hitachi, Ltd. | Optical scanning device, catheter device, and distance measuring device |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7667826B2 (en) * | 2008-02-29 | 2010-02-23 | The Boeing Company | System and method for motion based velocity discrimination for doppler velocimeters |
JP2010253156A (en) * | 2009-04-28 | 2010-11-11 | Fujifilm Corp | Endoscope system, endoscope, and endoscope driving method |
JP2010253155A (en) * | 2009-04-28 | 2010-11-11 | Fujifilm Corp | Endoscope system, endoscope, and endoscope driving method |
JP2010284369A (en) * | 2009-06-12 | 2010-12-24 | Fujifilm Corp | Endoscope system, endoscope, and endoscope driving method |
US8505823B2 (en) | 2010-06-30 | 2013-08-13 | International Business Machine Corporation | Noise removal from color barcode images |
JP2013007667A (en) * | 2011-06-24 | 2013-01-10 | Ulvac Japan Ltd | Measurement accuracy improvement method in stylus type step profiler for surface shape measurement and device |
US9002105B2 (en) * | 2013-03-06 | 2015-04-07 | Xerox Corporation | Automated contour detection methods, systems and processor-readable media |
JP6210837B2 (en) * | 2013-10-23 | 2017-10-11 | オリンパス株式会社 | Light exit probe for scanning endoscope |
WO2016075997A1 (en) | 2014-11-12 | 2016-05-19 | オリンパス株式会社 | Scanning endoscope |
JP6582801B2 (en) * | 2015-09-24 | 2019-10-02 | 富士ゼロックス株式会社 | Image reading apparatus and image forming apparatus |
US10471159B1 (en) | 2016-02-12 | 2019-11-12 | Masimo Corporation | Diagnosis, removal, or mechanical damaging of tumor using plasmonic nanobubbles |
US20180372874A1 (en) * | 2017-06-26 | 2018-12-27 | GM Global Technology Operations LLC | Apparatus for mechanical scanning scheme for lidar illuminator |
US12066426B1 (en) | 2019-01-16 | 2024-08-20 | Masimo Corporation | Pulsed micro-chip laser for malaria detection |
US12207901B1 (en) | 2019-08-16 | 2025-01-28 | Masimo Corporation | Optical detection of transient vapor nanobubbles in a microfluidic device |
Citations (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3470320A (en) | 1962-09-13 | 1969-09-30 | Ibm | Fibre deflection means |
US3644725A (en) | 1969-09-11 | 1972-02-22 | Robert L Lochridge Jr | Light display apparatus |
US4206495A (en) | 1978-04-24 | 1980-06-03 | Mccaslin Robert E | Optical fiber light display |
US4234788A (en) | 1979-04-06 | 1980-11-18 | General Dynamics Corporation, Pomona Division | Electrostatic fiber optic scanning device |
US4264208A (en) | 1978-10-25 | 1981-04-28 | Semperit Aktiengesellschaft | Method and apparatus for measuring the surface of an object |
GB2057709B (en) | 1979-09-10 | 1983-10-12 | Siemens Ag | Light-beam shifting apparatus |
US4710619A (en) | 1984-12-21 | 1987-12-01 | Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung | Apparatus for generating a signal providing information regarding a radiating source, especially an infrared source |
US4743283A (en) | 1987-01-13 | 1988-05-10 | Itt Corporation | Alternating current arc for lensing system and method of using same |
US4768513A (en) | 1986-04-21 | 1988-09-06 | Agency Of Industrial Science And Technology | Method and device for measuring and processing light |
US4770185A (en) | 1983-02-14 | 1988-09-13 | The Board Of Regents Of The University Of Washington | Method and apparatus for endoscopic blood flow detection by the use of ultrasonic energy |
US4782228A (en) | 1987-01-16 | 1988-11-01 | Honeywell Inc. | High efficiency optical scanner with multiplexing means |
US4821117A (en) | 1986-11-12 | 1989-04-11 | Kabushiki Kaisha Toshiba | Endoscopic system for producing fluorescent and visible images |
US4831370A (en) | 1988-01-05 | 1989-05-16 | Honeywell Inc. | Vibrating fiber optic display having a resonant ribbon driver |
US4872458A (en) | 1986-09-16 | 1989-10-10 | Olympus Optical Co., Ltd. | Thermotherapy apparatus |
US4948219A (en) | 1987-03-20 | 1990-08-14 | Fujitsu Limited | Method of connecting optical fibers and connection aids and fiber holders employed therewith, and optical waveguide modules employing same |
US4963018A (en) | 1986-11-10 | 1990-10-16 | Sira Limited | Ranging apparatus |
US5081350A (en) | 1989-09-22 | 1992-01-14 | Fuji Photo Film Co., Ltd. | Scanning microscope and scanning mechanism for the same |
US5172685A (en) | 1988-05-27 | 1992-12-22 | The University Of Connecticut | Endoscope and video laser camera system therefor |
US5178130A (en) | 1990-04-04 | 1993-01-12 | Olympus Optical Co., Ltd. | Parent-and-son type endoscope system for making a synchronized field sequential system illumination |
US5185835A (en) | 1991-03-14 | 1993-02-09 | Corning Incorporated | Fiber attachment means for integrated optical component |
US5315383A (en) | 1992-02-27 | 1994-05-24 | Olympus Optical Co., Ltd. | Endoscope system |
US5360968A (en) | 1992-01-17 | 1994-11-01 | Eastman Kodak Company | "Consensus sync" data-sampling systems and methods |
US5454807A (en) | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
US5455669A (en) | 1992-12-08 | 1995-10-03 | Erwin Sick Gmbh Optik-Elektronik | Laser range finding apparatus |
US5459570A (en) | 1991-04-29 | 1995-10-17 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements |
US5557444A (en) | 1994-10-26 | 1996-09-17 | University Of Washington | Miniature optical scanner for a two axis scanning system |
US5596339A (en) | 1992-10-22 | 1997-01-21 | University Of Washington | Virtual retinal display with fiber optic point source |
US5627922A (en) | 1992-09-04 | 1997-05-06 | Regents Of The University Of Michigan | Micro optical fiber light source and sensor and method of fabrication thereof |
US5664043A (en) | 1995-07-21 | 1997-09-02 | Northern Telecom Limited | Hermetic optical fibre feed-through |
US5694237A (en) | 1996-09-25 | 1997-12-02 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US5695491A (en) | 1994-11-22 | 1997-12-09 | Washington Research Foundation | Endoscopic accessory and containment system |
US5701132A (en) | 1996-03-29 | 1997-12-23 | University Of Washington | Virtual retinal display with expanded exit pupil |
US5784098A (en) | 1995-08-28 | 1998-07-21 | Olympus Optical Co., Ltd. | Apparatus for measuring three-dimensional configurations |
US5822486A (en) | 1995-11-02 | 1998-10-13 | General Scanning, Inc. | Scanned remote imaging method and system and method of determining optimum design characteristics of a filter for use therein |
US5822073A (en) | 1995-10-25 | 1998-10-13 | University Of Washington | Optical lightpipe sensor based on surface plasmon resonance |
US5887009A (en) | 1997-05-22 | 1999-03-23 | Optical Biopsy Technologies, Inc. | Confocal optical scanning system employing a fiber laser |
US5894122A (en) | 1996-03-13 | 1999-04-13 | Seiko Instruments Inc. | Scanning near field optical microscope |
US5903397A (en) | 1998-05-04 | 1999-05-11 | University Of Washington | Display with multi-surface eyepiece |
US5913591A (en) | 1998-01-20 | 1999-06-22 | University Of Washington | Augmented imaging using a silhouette to improve contrast |
US5939709A (en) | 1997-06-19 | 1999-08-17 | Ghislain; Lucien P. | Scanning probe optical microscope using a solid immersion lens |
US5982528A (en) | 1998-01-20 | 1999-11-09 | University Of Washington | Optical scanner having piezoelectric drive |
US5982555A (en) | 1998-01-20 | 1999-11-09 | University Of Washington | Virtual retinal display with eye tracking |
US5995264A (en) | 1998-01-20 | 1999-11-30 | University Of Washington | Counter balanced optical scanner |
US6046720A (en) | 1997-05-07 | 2000-04-04 | University Of Washington | Point source scanning apparatus and method |
US6049407A (en) | 1997-05-05 | 2000-04-11 | University Of Washington | Piezoelectric scanner |
US6069698A (en) | 1997-08-28 | 2000-05-30 | Olympus Optical Co., Ltd. | Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object |
US6097353A (en) | 1998-01-20 | 2000-08-01 | University Of Washington | Augmented retinal display with view tracking and data positioning |
US6154321A (en) | 1998-01-20 | 2000-11-28 | University Of Washington | Virtual retinal display with eye tracking |
US6191761B1 (en) | 1998-11-09 | 2001-02-20 | University Of Washington | Method and apparatus for determining optical distance |
US6204832B1 (en) | 1997-05-07 | 2001-03-20 | University Of Washington | Image display with lens array scanning relative to light source array |
US6263234B1 (en) | 1996-10-01 | 2001-07-17 | Leica Microsystems Heidelberg Gmbh | Confocal surface-measuring device |
US6281862B1 (en) | 1998-11-09 | 2001-08-28 | University Of Washington | Scanned beam display with adjustable accommodation |
US6291819B1 (en) | 1999-09-09 | 2001-09-18 | International Business Machines Corporation | Method of calibrating an electron beam system for lithography |
US6294775B1 (en) | 1999-06-08 | 2001-09-25 | University Of Washington | Miniature image acquistion system using a scanning resonant waveguide |
US6317548B1 (en) | 1999-03-11 | 2001-11-13 | Hughes Electronics Corporation | Temperature and optical length control of optical fibers and optical waveguide devices |
US20010051761A1 (en) | 2000-03-30 | 2001-12-13 | Rasool Khadem | Apparatus and method for calibrating an endoscope |
US20010055462A1 (en) | 2000-06-19 | 2001-12-27 | Seibel Eric J. | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
US20020010384A1 (en) | 2000-03-30 | 2002-01-24 | Ramin Shahidi | Apparatus and method for calibrating an endoscope |
US20020062061A1 (en) | 1997-09-24 | 2002-05-23 | Olympus Optical Co., Ltd. | Fluorescent imaging device |
US20020064341A1 (en) | 2000-11-27 | 2002-05-30 | Fauver Mark E. | Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition |
US6411838B1 (en) | 1998-12-23 | 2002-06-25 | Medispectra, Inc. | Systems and methods for optical examination of samples |
US20020080359A1 (en) | 2000-10-13 | 2002-06-27 | Winfried Denk | System and method for optical scanning |
US20020093563A1 (en) | 1998-04-20 | 2002-07-18 | Xillix Technologies Corp. | Imaging system with automatic gain control for reflectance and fluorescence endoscopy |
US6441359B1 (en) | 1998-10-20 | 2002-08-27 | The Board Of Trustees Of The Leland Stanford Junior University | Near field optical scanning system employing microfabricated solid immersion lens |
US20020131549A1 (en) * | 2001-03-13 | 2002-09-19 | Shiro Oikawa | Radiographic apparatus |
US20020139920A1 (en) | 1999-06-08 | 2002-10-03 | University Of Washington | Image acquisition with depth enhancement |
US20030004412A1 (en) | 1999-02-04 | 2003-01-02 | Izatt Joseph A. | Optical imaging device |
US20030010826A1 (en) | 1990-05-08 | 2003-01-16 | Paul Dvorkis | High speed scanning arrangements |
US20030010825A1 (en) | 2000-04-18 | 2003-01-16 | Mark Schmidt | Point of sale (POS) based bar code reading system with integrated internet-enabled customer-kiosk terminal |
US20030048540A1 (en) | 2001-08-03 | 2003-03-13 | Olympus Optical Co., Ltd. | Optical imaging apparatus |
US6581445B1 (en) | 2000-06-29 | 2003-06-24 | Sandia Corporation | Distributed fiber optic moisture intrusion sensing system |
US20030169966A1 (en) | 2002-03-08 | 2003-09-11 | Takashi Tokizaki | Optical fiber light source |
US6627903B1 (en) | 2000-09-11 | 2003-09-30 | Nikon Corporation | Methods and devices for calibrating a charged-particle-beam microlithography apparatus, and microelectronic-device fabrication methods comprising same |
US20030202361A1 (en) | 2002-03-07 | 2003-10-30 | Peregrine Vision, Inc. | Light source for fiber optics |
US20040061072A1 (en) | 2002-09-30 | 2004-04-01 | Swinburne University Of Technology | Apparatus |
US20040085543A1 (en) * | 2001-05-09 | 2004-05-06 | Olympus Optical Co., Ltd. | Optical imaging system and optical imaging detection method |
WO2004040267A1 (en) | 2002-10-30 | 2004-05-13 | Optiscan Pty Ltd | Scanning method and apparatus |
US6747753B1 (en) | 1998-03-27 | 2004-06-08 | Canon Kabushiki Kaisha | Image processing apparatus, control method of image processing apparatus, and storage medium storing therein control program for image processing apparatus |
US20040122328A1 (en) | 2000-06-19 | 2004-06-24 | University Of Washington | Integrated optical scanning image acquisition and display |
US20040153030A1 (en) | 1993-06-15 | 2004-08-05 | Pavel Novak | Instrument that can be inserted into the human body |
US20040212851A1 (en) | 2003-04-22 | 2004-10-28 | Brother Kogyo Kabushiki Kaisha | Image reading device |
US20040254474A1 (en) | 2001-05-07 | 2004-12-16 | Eric Seibel | Optical fiber scanner for performing multimodal optical imaging |
US6845190B1 (en) | 2000-11-27 | 2005-01-18 | University Of Washington | Control of an optical fiber scanner |
US20050020926A1 (en) | 2003-06-23 | 2005-01-27 | Wiklof Christopher A. | Scanning endoscope |
US20050025368A1 (en) | 2003-06-26 | 2005-02-03 | Arkady Glukhovsky | Device, method, and system for reduced transmission imaging |
US6867753B2 (en) | 2002-10-28 | 2005-03-15 | University Of Washington | Virtual image registration in augmented display field |
US20050085721A1 (en) | 2002-04-19 | 2005-04-21 | University Of Washington | System and method for processing specimens and images for optical tomography |
US20050085708A1 (en) | 2002-04-19 | 2005-04-21 | University Of Washington | System and method for preparation of cells for 3D image acquisition |
GB2378259B (en) | 2001-07-02 | 2005-08-03 | Jds Uniphase Corp | Long period Fiber bragg grating fabrication method |
US20050174610A1 (en) | 2004-02-06 | 2005-08-11 | Canon Kabushiki Kaisha | Image scanning device and its control method |
US20050182295A1 (en) | 2003-12-12 | 2005-08-18 | University Of Washington | Catheterscope 3D guidance and interface system |
US6959130B2 (en) | 2003-01-24 | 2005-10-25 | University Of Washington | Optical beam scanning system for compact image display or image acquisition |
US20050238277A1 (en) | 2004-03-01 | 2005-10-27 | Wei-Chih Wang | Polymer based electro-optic scanner for image acquisition and display |
US20060072843A1 (en) | 2004-10-01 | 2006-04-06 | University Of Washington | Remapping methods to reduce distortions in images |
US20060072874A1 (en) | 2004-10-01 | 2006-04-06 | University Of Washington | Configuration memory for a scanning beam device |
US20060072189A1 (en) | 2004-10-06 | 2006-04-06 | Dimarzio Charles A | Confocal reflectance microscope system with dual rotating wedge scanner assembly |
WO2006041459A1 (en) | 2004-10-01 | 2006-04-20 | University Of Washington | Configuration memory for a scanning beam device |
WO2006041452A1 (en) | 2004-10-01 | 2006-04-20 | University Of Washington | Remapping methods to reduce distortions in images |
US20060138238A1 (en) | 2004-12-23 | 2006-06-29 | University Of Washington | Methods of driving a scanning beam device to achieve high frame rates |
WO2006071216A1 (en) | 2004-12-23 | 2006-07-06 | University Of Washington | Methods of driving a scanning beam device to achieve high frame rates |
US20060186325A1 (en) | 2005-02-23 | 2006-08-24 | University Of Washington | Scanning beam device with detector assembly |
US20060195014A1 (en) | 2005-02-28 | 2006-08-31 | University Of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
WO2006104489A1 (en) | 2005-03-29 | 2006-10-05 | University Of Washington | Methods and systems for creating sequential color images |
US20060226231A1 (en) | 2005-03-29 | 2006-10-12 | University Of Washington | Methods and systems for creating sequential color images |
WO2006106853A1 (en) | 2005-03-31 | 2006-10-12 | Olympus Medical Systems Corp. | Light source device and image pickup device |
US20060287647A1 (en) | 2001-06-15 | 2006-12-21 | Monteris Medical, Inc. | Hyperthermia treatment and probe therefor |
WO2007018494A1 (en) | 2005-07-21 | 2007-02-15 | University Of Washington | Methods and systems for counterbalancing a scanning beam device |
US7184150B2 (en) | 2003-03-24 | 2007-02-27 | D4D Technologies, Llc | Laser digitizer system for dental applications |
US20070081168A1 (en) | 2005-08-23 | 2007-04-12 | University Of Washington - Uw Techtransfer | Distance determination in a scanned beam image capture device |
US20070135693A1 (en) | 2005-12-14 | 2007-06-14 | Paul Melman | Interferometric Method and Instrument for Measurement and Monitoring Blood Glucose Through Measurement of Tissue Refractive Index |
US20070156021A1 (en) | 2005-09-14 | 2007-07-05 | Bradford Morse | Remote imaging apparatus having an adaptive lens |
US7277819B2 (en) | 2005-10-31 | 2007-10-02 | Eastman Kodak Company | Measuring layer thickness or composition changes |
US20070273930A1 (en) | 2003-12-31 | 2007-11-29 | Berier Frederic | Method and system for super-resolution of confocal images acquired through an image guide, and device used for implementing such a method |
WO2008033168A1 (en) | 2006-09-13 | 2008-03-20 | University Of Washington | Temperature adjustment in scanning beam devices |
US20080144998A1 (en) | 2006-12-15 | 2008-06-19 | University Of Washington | Attaching optical fibers to actuator tubes with beads acting as spacers and adhesives |
US20080161648A1 (en) | 2007-01-02 | 2008-07-03 | University Of Washington | Endoscope with optical fiber and fiber optics system |
EP1077360B1 (en) | 1998-03-06 | 2009-09-16 | Imalux Corporation . | Optical coherent tomography apparatus and fiberoptic lateral scanner |
US7608842B2 (en) | 2007-04-26 | 2009-10-27 | University Of Washington | Driving scanning fiber devices with variable frequency drive signals |
US20100225907A1 (en) * | 2006-07-31 | 2010-09-09 | Hitachi High-Technologies Corporation | Surface inspection with variable digital filtering |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6356544B1 (en) * | 1999-05-03 | 2002-03-12 | Fujitsu Network Communications, Inc. | SONET add/drop multiplexer with packet over SONET capability |
US6900894B2 (en) * | 2000-11-16 | 2005-05-31 | Process Diagnostics, Inc. | Apparatus and method for measuring dose and energy of ion implantation by employing reflective optics |
ES2276055T3 (en) * | 2002-04-23 | 2007-06-16 | Teleflex Gfi Control Systems L.P. | PRESSURE RELIEF DEVICE. |
US9055867B2 (en) * | 2005-05-12 | 2015-06-16 | Caliber Imaging & Diagnostics, Inc. | Confocal scanning microscope having optical and scanning systems which provide a handheld imaging head |
-
2007
- 2007-11-30 US US11/998,491 patent/US8411922B2/en active Active
- 2007-12-06 JP JP2010535937A patent/JP2011505190A/en active Pending
- 2007-12-06 EP EP07867641A patent/EP2214553A1/en not_active Withdrawn
- 2007-12-06 WO PCT/US2007/024953 patent/WO2009070151A1/en active Application Filing
Patent Citations (162)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3470320A (en) | 1962-09-13 | 1969-09-30 | Ibm | Fibre deflection means |
US3644725A (en) | 1969-09-11 | 1972-02-22 | Robert L Lochridge Jr | Light display apparatus |
US4206495A (en) | 1978-04-24 | 1980-06-03 | Mccaslin Robert E | Optical fiber light display |
US4264208A (en) | 1978-10-25 | 1981-04-28 | Semperit Aktiengesellschaft | Method and apparatus for measuring the surface of an object |
US4234788A (en) | 1979-04-06 | 1980-11-18 | General Dynamics Corporation, Pomona Division | Electrostatic fiber optic scanning device |
GB2057709B (en) | 1979-09-10 | 1983-10-12 | Siemens Ag | Light-beam shifting apparatus |
US4770185A (en) | 1983-02-14 | 1988-09-13 | The Board Of Regents Of The University Of Washington | Method and apparatus for endoscopic blood flow detection by the use of ultrasonic energy |
US4710619A (en) | 1984-12-21 | 1987-12-01 | Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung | Apparatus for generating a signal providing information regarding a radiating source, especially an infrared source |
US4768513A (en) | 1986-04-21 | 1988-09-06 | Agency Of Industrial Science And Technology | Method and device for measuring and processing light |
US4872458A (en) | 1986-09-16 | 1989-10-10 | Olympus Optical Co., Ltd. | Thermotherapy apparatus |
US4963018A (en) | 1986-11-10 | 1990-10-16 | Sira Limited | Ranging apparatus |
US4821117A (en) | 1986-11-12 | 1989-04-11 | Kabushiki Kaisha Toshiba | Endoscopic system for producing fluorescent and visible images |
US4743283A (en) | 1987-01-13 | 1988-05-10 | Itt Corporation | Alternating current arc for lensing system and method of using same |
US4782228A (en) | 1987-01-16 | 1988-11-01 | Honeywell Inc. | High efficiency optical scanner with multiplexing means |
US4948219A (en) | 1987-03-20 | 1990-08-14 | Fujitsu Limited | Method of connecting optical fibers and connection aids and fiber holders employed therewith, and optical waveguide modules employing same |
US4831370A (en) | 1988-01-05 | 1989-05-16 | Honeywell Inc. | Vibrating fiber optic display having a resonant ribbon driver |
US5172685A (en) | 1988-05-27 | 1992-12-22 | The University Of Connecticut | Endoscope and video laser camera system therefor |
US5081350A (en) | 1989-09-22 | 1992-01-14 | Fuji Photo Film Co., Ltd. | Scanning microscope and scanning mechanism for the same |
US5178130A (en) | 1990-04-04 | 1993-01-12 | Olympus Optical Co., Ltd. | Parent-and-son type endoscope system for making a synchronized field sequential system illumination |
US20030010826A1 (en) | 1990-05-08 | 2003-01-16 | Paul Dvorkis | High speed scanning arrangements |
US5185835A (en) | 1991-03-14 | 1993-02-09 | Corning Incorporated | Fiber attachment means for integrated optical component |
US5459570A (en) | 1991-04-29 | 1995-10-17 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements |
US5360968A (en) | 1992-01-17 | 1994-11-01 | Eastman Kodak Company | "Consensus sync" data-sampling systems and methods |
US5315383A (en) | 1992-02-27 | 1994-05-24 | Olympus Optical Co., Ltd. | Endoscope system |
US5627922A (en) | 1992-09-04 | 1997-05-06 | Regents Of The University Of Michigan | Micro optical fiber light source and sensor and method of fabrication thereof |
US5596339A (en) | 1992-10-22 | 1997-01-21 | University Of Washington | Virtual retinal display with fiber optic point source |
US5455669A (en) | 1992-12-08 | 1995-10-03 | Erwin Sick Gmbh Optik-Elektronik | Laser range finding apparatus |
US5454807A (en) | 1993-05-14 | 1995-10-03 | Boston Scientific Corporation | Medical treatment of deeply seated tissue using optical radiation |
US20040153030A1 (en) | 1993-06-15 | 2004-08-05 | Pavel Novak | Instrument that can be inserted into the human body |
US5751465A (en) | 1994-10-26 | 1998-05-12 | University Of Washington | Miniature optical scanner for a two axis scanning system |
US6288816B1 (en) | 1994-10-26 | 2001-09-11 | University Of Washington | Miniature optical scanner for a two axis scanning system |
US5557444A (en) | 1994-10-26 | 1996-09-17 | University Of Washington | Miniature optical scanner for a two axis scanning system |
US5695491A (en) | 1994-11-22 | 1997-12-09 | Washington Research Foundation | Endoscopic accessory and containment system |
US5664043A (en) | 1995-07-21 | 1997-09-02 | Northern Telecom Limited | Hermetic optical fibre feed-through |
US5784098A (en) | 1995-08-28 | 1998-07-21 | Olympus Optical Co., Ltd. | Apparatus for measuring three-dimensional configurations |
US5991048A (en) | 1995-10-25 | 1999-11-23 | University Of Washington | Surface plasmon resonance light pipe sensor |
US5822073A (en) | 1995-10-25 | 1998-10-13 | University Of Washington | Optical lightpipe sensor based on surface plasmon resonance |
US5822486A (en) | 1995-11-02 | 1998-10-13 | General Scanning, Inc. | Scanned remote imaging method and system and method of determining optimum design characteristics of a filter for use therein |
US5894122A (en) | 1996-03-13 | 1999-04-13 | Seiko Instruments Inc. | Scanning near field optical microscope |
US5969871A (en) | 1996-03-29 | 1999-10-19 | University Of Washington | Virtual retinal display with lens array for expanding exit pupil |
US6157352A (en) | 1996-03-29 | 2000-12-05 | University Of Washington | Virtual retinal display with expanded exit pupil |
US6700552B2 (en) | 1996-03-29 | 2004-03-02 | University Of Washington | Scanning display with expanded exit pupil |
US5701132A (en) | 1996-03-29 | 1997-12-23 | University Of Washington | Virtual retinal display with expanded exit pupil |
US6061163A (en) | 1996-09-25 | 2000-05-09 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US6243186B1 (en) | 1996-09-25 | 2001-06-05 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US5694237A (en) | 1996-09-25 | 1997-12-02 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US6069725A (en) | 1996-09-25 | 2000-05-30 | University Of Washington | Position detection of mechanical resonant scanner mirror |
US6263234B1 (en) | 1996-10-01 | 2001-07-17 | Leica Microsystems Heidelberg Gmbh | Confocal surface-measuring device |
US6049407A (en) | 1997-05-05 | 2000-04-11 | University Of Washington | Piezoelectric scanner |
US6204832B1 (en) | 1997-05-07 | 2001-03-20 | University Of Washington | Image display with lens array scanning relative to light source array |
US6046720A (en) | 1997-05-07 | 2000-04-04 | University Of Washington | Point source scanning apparatus and method |
US5887009A (en) | 1997-05-22 | 1999-03-23 | Optical Biopsy Technologies, Inc. | Confocal optical scanning system employing a fiber laser |
US5939709A (en) | 1997-06-19 | 1999-08-17 | Ghislain; Lucien P. | Scanning probe optical microscope using a solid immersion lens |
US6069698A (en) | 1997-08-28 | 2000-05-30 | Olympus Optical Co., Ltd. | Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object |
US20020062061A1 (en) | 1997-09-24 | 2002-05-23 | Olympus Optical Co., Ltd. | Fluorescent imaging device |
US5982555A (en) | 1998-01-20 | 1999-11-09 | University Of Washington | Virtual retinal display with eye tracking |
US6369953B2 (en) | 1998-01-20 | 2002-04-09 | University Of Washington | Virtual retinal display with eye tracking |
US6220711B1 (en) | 1998-01-20 | 2001-04-24 | University Of Washington | Augmented imaging using a silhouette to improve contrast |
US6166841A (en) | 1998-01-20 | 2000-12-26 | University Of Washington | Counter balanced optical scanner |
US6257727B1 (en) | 1998-01-20 | 2001-07-10 | University Of Washington | Augmented imaging using silhouette to improve contrast |
US6154321A (en) | 1998-01-20 | 2000-11-28 | University Of Washington | Virtual retinal display with eye tracking |
US6535183B2 (en) | 1998-01-20 | 2003-03-18 | University Of Washington | Augmented retinal display with view tracking and data positioning |
US6285505B1 (en) | 1998-01-20 | 2001-09-04 | University Of Washington | Virtual retinal display with eye tracking |
US6097353A (en) | 1998-01-20 | 2000-08-01 | University Of Washington | Augmented retinal display with view tracking and data positioning |
US5913591A (en) | 1998-01-20 | 1999-06-22 | University Of Washington | Augmented imaging using a silhouette to improve contrast |
US5982528A (en) | 1998-01-20 | 1999-11-09 | University Of Washington | Optical scanner having piezoelectric drive |
US20020097498A1 (en) | 1998-01-20 | 2002-07-25 | University Of Washington | Virtual retinal display with eye tracking |
US6560028B2 (en) | 1998-01-20 | 2003-05-06 | University Of Washington | Virtual retinal display with eye tracking |
US5995264A (en) | 1998-01-20 | 1999-11-30 | University Of Washington | Counter balanced optical scanner |
EP1077360B1 (en) | 1998-03-06 | 2009-09-16 | Imalux Corporation . | Optical coherent tomography apparatus and fiberoptic lateral scanner |
US6747753B1 (en) | 1998-03-27 | 2004-06-08 | Canon Kabushiki Kaisha | Image processing apparatus, control method of image processing apparatus, and storage medium storing therein control program for image processing apparatus |
US20020093563A1 (en) | 1998-04-20 | 2002-07-18 | Xillix Technologies Corp. | Imaging system with automatic gain control for reflectance and fluorescence endoscopy |
US5903397A (en) | 1998-05-04 | 1999-05-11 | University Of Washington | Display with multi-surface eyepiece |
US6441359B1 (en) | 1998-10-20 | 2002-08-27 | The Board Of Trustees Of The Leland Stanford Junior University | Near field optical scanning system employing microfabricated solid immersion lens |
US7230583B2 (en) | 1998-11-09 | 2007-06-12 | University Of Washington | Scanned beam display with focal length adjustment |
US6734835B2 (en) | 1998-11-09 | 2004-05-11 | University Of Washington | Patent scanned beam display with adjustable light intensity |
US6388641B2 (en) | 1998-11-09 | 2002-05-14 | University Of Washington | Scanned beam display with adjustable accommodation |
US20020093467A1 (en) | 1998-11-09 | 2002-07-18 | University Of Washington | Scanned beam display with adjustable accommodation |
US6538625B2 (en) | 1998-11-09 | 2003-03-25 | University Of Washington | Scanned beam display with adjustable accommodation |
US20030142042A1 (en) | 1998-11-09 | 2003-07-31 | University Of Washington | Patent scanned beam display with adjustable light intensity |
US6977631B2 (en) | 1998-11-09 | 2005-12-20 | University Of Washington | Optical scanning system with variable focus lens |
US6281862B1 (en) | 1998-11-09 | 2001-08-28 | University Of Washington | Scanned beam display with adjustable accommodation |
US6492962B2 (en) | 1998-11-09 | 2002-12-10 | University Of Washington | Optical scanning system with variable focus lens |
US20060077121A1 (en) | 1998-11-09 | 2006-04-13 | University Of Washington | Optical scanning system with variable focus lens |
US6191761B1 (en) | 1998-11-09 | 2001-02-20 | University Of Washington | Method and apparatus for determining optical distance |
US20040196213A1 (en) | 1998-11-09 | 2004-10-07 | University Of Washington | Scanned beam display with focal length adjustment |
US20030016187A1 (en) | 1998-11-09 | 2003-01-23 | University Of Washington | Optical scanning system with variable focus lens |
US6411838B1 (en) | 1998-12-23 | 2002-06-25 | Medispectra, Inc. | Systems and methods for optical examination of samples |
US20030004412A1 (en) | 1999-02-04 | 2003-01-02 | Izatt Joseph A. | Optical imaging device |
US6317548B1 (en) | 1999-03-11 | 2001-11-13 | Hughes Electronics Corporation | Temperature and optical length control of optical fibers and optical waveguide devices |
US20020139920A1 (en) | 1999-06-08 | 2002-10-03 | University Of Washington | Image acquisition with depth enhancement |
US6563105B2 (en) | 1999-06-08 | 2003-05-13 | University Of Washington | Image acquisition with depth enhancement |
US6294775B1 (en) | 1999-06-08 | 2001-09-25 | University Of Washington | Miniature image acquistion system using a scanning resonant waveguide |
US6291819B1 (en) | 1999-09-09 | 2001-09-18 | International Business Machines Corporation | Method of calibrating an electron beam system for lithography |
US20010051761A1 (en) | 2000-03-30 | 2001-12-13 | Rasool Khadem | Apparatus and method for calibrating an endoscope |
US20020010384A1 (en) | 2000-03-30 | 2002-01-24 | Ramin Shahidi | Apparatus and method for calibrating an endoscope |
US20030010825A1 (en) | 2000-04-18 | 2003-01-16 | Mark Schmidt | Point of sale (POS) based bar code reading system with integrated internet-enabled customer-kiosk terminal |
US20040122328A1 (en) | 2000-06-19 | 2004-06-24 | University Of Washington | Integrated optical scanning image acquisition and display |
US20010055462A1 (en) | 2000-06-19 | 2001-12-27 | Seibel Eric J. | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
US6975898B2 (en) | 2000-06-19 | 2005-12-13 | University Of Washington | Medical imaging, diagnosis, and therapy using a scanning single optical fiber system |
US6581445B1 (en) | 2000-06-29 | 2003-06-24 | Sandia Corporation | Distributed fiber optic moisture intrusion sensing system |
US6627903B1 (en) | 2000-09-11 | 2003-09-30 | Nikon Corporation | Methods and devices for calibrating a charged-particle-beam microlithography apparatus, and microelectronic-device fabrication methods comprising same |
US20020080359A1 (en) | 2000-10-13 | 2002-06-27 | Winfried Denk | System and method for optical scanning |
US6856712B2 (en) | 2000-11-27 | 2005-02-15 | University Of Washington | Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition |
US20020064341A1 (en) | 2000-11-27 | 2002-05-30 | Fauver Mark E. | Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition |
US6845190B1 (en) | 2000-11-27 | 2005-01-18 | University Of Washington | Control of an optical fiber scanner |
US20020131549A1 (en) * | 2001-03-13 | 2002-09-19 | Shiro Oikawa | Radiographic apparatus |
US20040254474A1 (en) | 2001-05-07 | 2004-12-16 | Eric Seibel | Optical fiber scanner for performing multimodal optical imaging |
US20040085543A1 (en) * | 2001-05-09 | 2004-05-06 | Olympus Optical Co., Ltd. | Optical imaging system and optical imaging detection method |
EP1360927B1 (en) | 2001-05-09 | 2010-09-01 | Olympus Corporation | Optical imaging device and optical imaging detecting method |
US20060287647A1 (en) | 2001-06-15 | 2006-12-21 | Monteris Medical, Inc. | Hyperthermia treatment and probe therefor |
GB2378259B (en) | 2001-07-02 | 2005-08-03 | Jds Uniphase Corp | Long period Fiber bragg grating fabrication method |
US20030048540A1 (en) | 2001-08-03 | 2003-03-13 | Olympus Optical Co., Ltd. | Optical imaging apparatus |
US20030202361A1 (en) | 2002-03-07 | 2003-10-30 | Peregrine Vision, Inc. | Light source for fiber optics |
US6850673B2 (en) | 2002-03-07 | 2005-02-01 | Johnston, Ii Richard Fendall | Light source for fiber optics |
US20030169966A1 (en) | 2002-03-08 | 2003-09-11 | Takashi Tokizaki | Optical fiber light source |
US20050085721A1 (en) | 2002-04-19 | 2005-04-21 | University Of Washington | System and method for processing specimens and images for optical tomography |
US20050085708A1 (en) | 2002-04-19 | 2005-04-21 | University Of Washington | System and method for preparation of cells for 3D image acquisition |
US20040061072A1 (en) | 2002-09-30 | 2004-04-01 | Swinburne University Of Technology | Apparatus |
US6867753B2 (en) | 2002-10-28 | 2005-03-15 | University Of Washington | Virtual image registration in augmented display field |
WO2004040267A1 (en) | 2002-10-30 | 2004-05-13 | Optiscan Pty Ltd | Scanning method and apparatus |
US7123790B2 (en) | 2002-10-30 | 2006-10-17 | Optiscan Pty. Ltd. | Scanning method and apparatus |
US6959130B2 (en) | 2003-01-24 | 2005-10-25 | University Of Washington | Optical beam scanning system for compact image display or image acquisition |
US7068878B2 (en) | 2003-01-24 | 2006-06-27 | University Of Washington | Optical beam scanning system for compact image display or image acquisition |
US7184150B2 (en) | 2003-03-24 | 2007-02-27 | D4D Technologies, Llc | Laser digitizer system for dental applications |
US20040212851A1 (en) | 2003-04-22 | 2004-10-28 | Brother Kogyo Kabushiki Kaisha | Image reading device |
US20050020926A1 (en) | 2003-06-23 | 2005-01-27 | Wiklof Christopher A. | Scanning endoscope |
US20050025368A1 (en) | 2003-06-26 | 2005-02-03 | Arkady Glukhovsky | Device, method, and system for reduced transmission imaging |
US20050182295A1 (en) | 2003-12-12 | 2005-08-18 | University Of Washington | Catheterscope 3D guidance and interface system |
US20060149134A1 (en) | 2003-12-12 | 2006-07-06 | University Of Washington | Catheterscope 3D guidance and interface system |
US20070273930A1 (en) | 2003-12-31 | 2007-11-29 | Berier Frederic | Method and system for super-resolution of confocal images acquired through an image guide, and device used for implementing such a method |
US20050174610A1 (en) | 2004-02-06 | 2005-08-11 | Canon Kabushiki Kaisha | Image scanning device and its control method |
US20050238277A1 (en) | 2004-03-01 | 2005-10-27 | Wei-Chih Wang | Polymer based electro-optic scanner for image acquisition and display |
US20060072874A1 (en) | 2004-10-01 | 2006-04-06 | University Of Washington | Configuration memory for a scanning beam device |
WO2006041452A1 (en) | 2004-10-01 | 2006-04-20 | University Of Washington | Remapping methods to reduce distortions in images |
US20060072843A1 (en) | 2004-10-01 | 2006-04-06 | University Of Washington | Remapping methods to reduce distortions in images |
WO2006041459A1 (en) | 2004-10-01 | 2006-04-20 | University Of Washington | Configuration memory for a scanning beam device |
US20060072189A1 (en) | 2004-10-06 | 2006-04-06 | Dimarzio Charles A | Confocal reflectance microscope system with dual rotating wedge scanner assembly |
US7159782B2 (en) | 2004-12-23 | 2007-01-09 | University Of Washington | Methods of driving a scanning beam device to achieve high frame rates |
US7252236B2 (en) | 2004-12-23 | 2007-08-07 | University Of Washington | Methods of driving a scanning beam device to achieve high frame rates |
WO2006071216A1 (en) | 2004-12-23 | 2006-07-06 | University Of Washington | Methods of driving a scanning beam device to achieve high frame rates |
US20060138238A1 (en) | 2004-12-23 | 2006-06-29 | University Of Washington | Methods of driving a scanning beam device to achieve high frame rates |
US20070091426A1 (en) | 2004-12-23 | 2007-04-26 | University Of Washington | Methods of driving a scanning beam device to achieve high frame rates |
WO2006096155A1 (en) | 2005-02-23 | 2006-09-14 | University Of Washington | Scanning beam device with detector assembly |
US7189961B2 (en) | 2005-02-23 | 2007-03-13 | University Of Washington | Scanning beam device with detector assembly |
US20070129601A1 (en) | 2005-02-23 | 2007-06-07 | University Of Washington | Scanning beam device with detector assembly |
US20060186325A1 (en) | 2005-02-23 | 2006-08-24 | University Of Washington | Scanning beam device with detector assembly |
US20060195014A1 (en) | 2005-02-28 | 2006-08-31 | University Of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
WO2006104489A1 (en) | 2005-03-29 | 2006-10-05 | University Of Washington | Methods and systems for creating sequential color images |
US20060226231A1 (en) | 2005-03-29 | 2006-10-12 | University Of Washington | Methods and systems for creating sequential color images |
EP1864606A1 (en) | 2005-03-31 | 2007-12-12 | Olympus Medical Systems Corp. | Light source device and image pickup device |
WO2006106853A1 (en) | 2005-03-31 | 2006-10-12 | Olympus Medical Systems Corp. | Light source device and image pickup device |
WO2007018494A1 (en) | 2005-07-21 | 2007-02-15 | University Of Washington | Methods and systems for counterbalancing a scanning beam device |
US20070081168A1 (en) | 2005-08-23 | 2007-04-12 | University Of Washington - Uw Techtransfer | Distance determination in a scanned beam image capture device |
US20070156021A1 (en) | 2005-09-14 | 2007-07-05 | Bradford Morse | Remote imaging apparatus having an adaptive lens |
US7277819B2 (en) | 2005-10-31 | 2007-10-02 | Eastman Kodak Company | Measuring layer thickness or composition changes |
US20070135693A1 (en) | 2005-12-14 | 2007-06-14 | Paul Melman | Interferometric Method and Instrument for Measurement and Monitoring Blood Glucose Through Measurement of Tissue Refractive Index |
US20100225907A1 (en) * | 2006-07-31 | 2010-09-09 | Hitachi High-Technologies Corporation | Surface inspection with variable digital filtering |
WO2008033168A1 (en) | 2006-09-13 | 2008-03-20 | University Of Washington | Temperature adjustment in scanning beam devices |
US20080144998A1 (en) | 2006-12-15 | 2008-06-19 | University Of Washington | Attaching optical fibers to actuator tubes with beads acting as spacers and adhesives |
US20080161648A1 (en) | 2007-01-02 | 2008-07-03 | University Of Washington | Endoscope with optical fiber and fiber optics system |
US7608842B2 (en) | 2007-04-26 | 2009-10-27 | University Of Washington | Driving scanning fiber devices with variable frequency drive signals |
Non-Patent Citations (30)
Title |
---|
"Communication Pursuant to Article 94(3) EPC from the EPO,", EP Application No. 07 867 641.8-1265, Mailing date Jul. 15, 2011, 6 pages. |
"Moving Average Filters", Chapter 15 from: The Scientist and Engineer' Guide to Digital Signal Processing, Steven W. Smith, Retrieved from the Internet at http://www.analog.com.static/imported-files/tech-docs/dsp-book Ch15.pdf. on Nov. 29, 2007. pp. 277-284. |
"PCT Search Report and Written Opinion", PCT/US2007/024953, (Sep. 23, 2008), 1-15. |
"PCT/US2007/009598 International Search Report", (Jan. 3, 2008), 3 pages. |
Aloisi et al., "Electronic Linearization of Piezoelectric Actuators and Noise Budget in Scanning Probe Microscopy", Review of Scientific Instruments, vol. 77, No. 7, Jul. 5, 2006, pp. 073701-1 through 073701-6. |
Barhoum, Erek S., et al., "Optical modeling of an ultrathin scanning fiber endoscope, a preliminary study of confocal versus non-confocal detection", Optics Express, vol. 13, No. 19, (Sep. 8, 2005), pp. 7548-7562. |
Brown, Christopher , et al., "A Novel Design for a Scanning Fiberoptic Endoscope", Human Interface Technology Laboratory, University of Washington, Seattle, WA 98195, Presented at SPIE's Regional Meeting on Optoelectronics, Photonics, and Imaging, (Nov. 1-2, 1999), 1 page. |
Brown, Christopher M., et al., "Mechanical Design and Analysis for a Scanning Fiber Endoscope", Proceedings of 2001 ASME Int'l Mechanical Engineering Congress and Exposition, BED-vol. 51, (Nov. 11-16, 2001), 165-166. |
Brown, Christopher M., et al., "Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope", Optical Engineering, vol. 45, XP002469237, (Apr. 2006), pp. 1-10. |
Chen, Tailian , et al., "Experiment of Coalescence of Dual Bubbles on Micro Heaters", Department of Mechanical Engineering, University of Florida, Gainesville, FL 32611-6300. USA., Printed from the Internet Aug. 13, 2006, 1-10. |
Fauver, Mark , et al., "Microfabrication of fiber optic scanners", (2002) In Proceedings of Optical Scanning II, Proc. SPIE, vol. 4773, pp. 102-110., 9 pages. |
Johnston, Richard S., et al., "Scanning fiber endoscope prototype performance", Optical Fibers and Sensors for Medical Applications II, Proc. SPIE, vol. 4616, (Oct. 13, 2004), 173-179. |
Seibel, Eric , et al., "Unique Features of Optical Scanning, Single Fiber Endopscopy", Lasers in Surgery and Medicine 30, (2002), 177-183. |
Seibel, Eric , et al., "Unique Features of Scanning Fiber Optical Endoscopy", 2000 Annual Fall Meeting Abstracts T4.57, (2000), 1. |
Seibel, Eric J., et al., "A full-color scanning fiber endoscope", Optical Fibers and Sensors for Medical Diagnosis and Treatment Applications. Ed. I Gannot. Proc. SPIE vol. 6083, (2006), 9-16. |
Seibel, Eric J., et al., "Microfabricated optical fiber with microlens that produces large field-of-view, video rate, optical beam scanning for microendoscopy applications", Optical Fibers and Sensors for Medical Applications III, Proceedings of SPIE vol. 4957, (2003), 46-55. |
Seibel, Eric J., et al., "Modeling optical fiber dynamics for increased efficiencies in scanning fiber applications", Optical Fibers and Sensors for Medical Applications V, proceedings of SPIE vol. 5691, (2005), 42-53. |
Seibel, Eric J., et al., "P-37: Optical fiber scanning as a microdisplay source for a wearable low vision aid", Society for Information Display SID 2002, Boston, MA, (May 19-24, 2002), 1-4. |
Seibel, Eric J., et al., "Prototype scanning fiber endoscope", Optical Fibers and Sensors for Medical Applications II, Proc. of SPIE, vol. 4616, (2002), 1-7. |
Seibel, Eric J., et al., "Single fiber flexible endoscope: general design for small size, high resolution, and wide field of view", Human Interface Technology Laboratory, University of Washington, Seattle, WA, Proceedings of the SPIE, Biomonitoring and Endoscopy Technologies 4158, (2001), 11 pages. |
Seibel, Eric J., et al., "Ultrathin laser scanning bronchoscope and guidance system for the peripheral lung", 11th World Conference on Lung Cancer, (2005), p. 178. |
Smithwick, Quinn Y., et al., "A Nonlinear State-Space Model of Resonating Single Fiber Scanning for Tracking Control: Theory and Experiment", Transactions of the ASME, vol. 126, (Mar. 2004), 88-101. |
Smithwick, Quinn Y., et al., "Control Aspects of the Single Fiber Scanning Endoscope", (2001) SPIE Optical Fibers and Sensors for Medical Applications, 4253, 176-188., 15 pages. |
Smithwick, Quinn Y., et al., "Depth Enhancement using a Scanning Fiber Optical Endoscope", Department of Aeronautics, Human Interface Technology Laboratory, University of Washington, Seattle, Washington, Optical Biopsy IV, Proc. SPIE 4613, (2002), 12 pages. |
Smithwick, Quinn Y., et la., "54.3: Modeling and Control of the Resonant Fiber Scanner for Laser Scanning Display or Acquisition", Department of Aeronautics and Astronautics, University of Washington, Seattle, WA SID 03 Digest, (2003), 1455-1457. |
Smithwick, Y. J., et al., "An error space controller for a resonating fiber scanner: simulation and implementation", Journal of Dynamic Systems, Measurement and Control, Fairfiled, N.J., U.S., vol. 128, No. 4, XP009095153, ISSN: 0022-0434, (Dec. 2006), pp. 899-913. |
Tuttle, Brandon W., et al., "Delivery of therapeutic laser light using a singlemode fiber for a scanning fiber endoscope system", Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications VI, Proc. of SPIE vol. 6083 (2006), 608307-1 to608307-12. |
Wang, Wei-Chih , et al., "Development of an Optical Waveguide Cantilever Scanner", Opto-Ireland 2002: Optics and Photonics Technologies and Applications, Proceedings of SPIE vol. 4876 (2003), 72-83. |
Wang, Wei-Chih , et al., "Micromachined optical waveguide cantilever as a resonant optical scanner", Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, Sensors and Actuators A 102, (2002), 165-175. |
Wikipedia page: Finite impulse response, Retrieved from the Internet at http://en.wikipedia.org/wiki/Finite-impulse-response on Sep. 3, 2011, 6 pages. |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10915857B2 (en) * | 2010-06-30 | 2021-02-09 | International Business Machines Corporation | Supply chain management using mobile devices |
US10915861B2 (en) * | 2010-06-30 | 2021-02-09 | International Business Machines Corporation | Supply chain management using mobile devices |
US11681979B2 (en) | 2010-06-30 | 2023-06-20 | International Business Machines Corporation | Supply chain management using mobile devices |
US9775501B2 (en) | 2011-11-09 | 2017-10-03 | Olympus Corporation | Endoscope and endoscope apparatus having piezoelectric element which swings a free end of an optical element through a joining member |
US11425322B2 (en) | 2013-03-15 | 2022-08-23 | DePuy Synthes Products, Inc. | Comprehensive fixed pattern noise cancellation |
US11805333B2 (en) | 2013-03-15 | 2023-10-31 | DePuy Synthes Products, Inc. | Noise aware edge enhancement |
US10341593B2 (en) | 2013-03-15 | 2019-07-02 | DePuy Synthes Products, Inc. | Comprehensive fixed pattern noise cancellation |
US10341588B2 (en) | 2013-03-15 | 2019-07-02 | DePuy Synthes Products, Inc. | Noise aware edge enhancement |
US10972690B2 (en) | 2013-03-15 | 2021-04-06 | DePuy Synthes Products, Inc. | Comprehensive fixed pattern noise cancellation |
US11115610B2 (en) | 2013-03-15 | 2021-09-07 | DePuy Synthes Products, Inc. | Noise aware edge enhancement |
US9501683B1 (en) | 2015-08-05 | 2016-11-22 | Datalogic Automation, Inc. | Multi-frame super-resolution barcode imager |
US9916489B2 (en) | 2015-08-05 | 2018-03-13 | Datalogic Automation, Inc. | Multi-frame super-resolution barcode imager |
CN105588850B (en) * | 2016-02-26 | 2018-09-07 | 上海奕瑞光电子科技股份有限公司 | A kind of flat panel detector calibration method of the multi-mode of Auto-matching |
CN105588850A (en) * | 2016-02-26 | 2016-05-18 | 上海奕瑞光电子科技有限公司 | Calibration method for automatically matching multi-mode flat panel detector |
US11317812B2 (en) * | 2017-12-19 | 2022-05-03 | Hitachi, Ltd. | Optical scanning device, catheter device, and distance measuring device |
US11530910B2 (en) | 2020-01-30 | 2022-12-20 | Veravanti Inc. | Forward looking RGB/optical coherence tomography duplex imager |
US11047671B1 (en) | 2020-01-30 | 2021-06-29 | Veravanti Inc. | Forward looking RGB/optical coherence tomography duplex imager |
Also Published As
Publication number | Publication date |
---|---|
US20090141997A1 (en) | 2009-06-04 |
EP2214553A1 (en) | 2010-08-11 |
JP2011505190A (en) | 2011-02-24 |
WO2009070151A1 (en) | 2009-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8411922B2 (en) | Reducing noise in images acquired with a scanning beam device | |
US7608842B2 (en) | Driving scanning fiber devices with variable frequency drive signals | |
US8437587B2 (en) | Actuating an optical fiber with a piezoelectric actuator and detecting voltages generated by the piezoelectric actuator | |
US8212884B2 (en) | Scanning beam device having different image acquisition modes | |
AU2003273437B2 (en) | Method and apparatus for fibred high-resolution fluorescence imaging, in particular confocal imaging | |
US7583872B2 (en) | Compact scanning fiber device | |
US20090177042A1 (en) | Color image acquisition with scanning laser beam devices | |
US7522813B1 (en) | Reducing distortion in scanning fiber devices | |
US7129472B1 (en) | Optical scanning probe system | |
WO2015125976A1 (en) | Method for calculating optical scanning locus, and optical scanning device | |
JP2010520778A (en) | Side-view scope and imaging method thereof | |
US20170090181A1 (en) | Optical scanning endoscope apparatus | |
JP6218546B2 (en) | Optical scanning method, optical scanning device, and optical scanning observation device | |
EP3941328B1 (en) | Ultra-compact microsystems-based single axis confocal endomicroscope | |
JPWO2016151627A1 (en) | Scanning observation apparatus and image display method of scanning observation apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: UNIVERSITY OF WASHINGTON, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, CAMERON M.;REEL/FRAME:020240/0545 Effective date: 20071127 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FEPP | Fee payment procedure |
Free format text: 7.5 YR SURCHARGE - LATE PMT W/IN 6 MO, SMALL ENTITY (ORIGINAL EVENT CODE: M2555); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |