US8502835B1 - System and method for simulating placement of a virtual object relative to real world objects - Google Patents
System and method for simulating placement of a virtual object relative to real world objects Download PDFInfo
- Publication number
- US8502835B1 US8502835B1 US12/875,049 US87504910A US8502835B1 US 8502835 B1 US8502835 B1 US 8502835B1 US 87504910 A US87504910 A US 87504910A US 8502835 B1 US8502835 B1 US 8502835B1
- Authority
- US
- United States
- Prior art keywords
- mobile computing
- computing device
- real world
- database
- objects
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 45
- 230000009471 action Effects 0.000 claims abstract description 98
- 238000009877 rendering Methods 0.000 claims description 22
- 230000003190 augmentative effect Effects 0.000 claims description 21
- 238000004891 communication Methods 0.000 claims description 10
- 239000003550 marker Substances 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims 8
- 230000001143 conditioned effect Effects 0.000 claims 1
- 230000003750 conditioning effect Effects 0.000 claims 1
- 238000012163 sequencing technique Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 101100456831 Caenorhabditis elegans sams-5 gene Proteins 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 101710121996 Hexon protein p72 Proteins 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/12—Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels
Definitions
- the invention relates in general to augmented reality provisioning and, specifically, to a system and method for simulating placement of a virtual object relative to real world objects.
- An augmented virtual reality combines real world attributes, such as physical position or user movement, with computer-generated, often visual, data. Together, the real world attributes and the computer-generated data form a user experience occurring in a virtualized space as influenced by real world inputs, typically co-occurring in real time, and actions, often performed by the user.
- augmented realities are presented visually through graphical user interfaces, which can also be supplemented with auditory cues, tactile feedback, and other computer-generated outputs.
- the user is immersed into a virtual reality by feeding sensory data via the computer-generated data that changes in response to user actions or other real world inputs, such as noises, movement, lighting conditions, time of day, or radio or cellular signals.
- mobile platforms such as portable media players, personal data assistants (PDA), and mobile telephones
- PDA personal data assistants
- mobile telephones have grown to enable on-the-go generation of augmented realities. Users are no longer tied to desktop environments and the physical constraints imposed by having to remain in a relatively stationary position.
- these platforms are increasingly being equipped with input capabilities extending beyond the immediate user interface. For instance, mobile telephones often incorporate built-in cameras and global positioning system (GPS) receivers, the latter of which enables the device to determine the user's physical location.
- GPS global positioning system
- portable media players are beginning to incorporate motion sensors that sense directional device orientation.
- Each processed augmented reality object is supplied to a video mixer for overlaying in the environmental image, which is supplied to a monitor or screen, so a user can see an augmented reality image with superimposition of the real environment and the augmented reality object.
- Bischoff can only simulate virtual object superimposition for an environment within physical range of the video and depth imaging equipment.
- U.S. Patent Publication No. US 2008/0293488, published Nov. 27, 2008 to Cheng et al. discloses an electronic game utilizing two-dimensional photographs.
- a three-dimensional path for a virtual object is determined relative to a topological model of the physical terrain for a physical course, such as a golf course.
- a plurality of areas of the physical course are captured by the photographic images.
- a sequence of one or more of the photographic images having a view of the physical course areas on or about the virtual object's path are selected to provide players the experience of playing on a real course.
- Cheng simulates the path of the virtual object while moving forward through the physical course, rather than as blocked by real world objects present in the path.
- U.S. Patent Publication No. US 2008/0252527, published Oct. 16, 2008 to Garcia discloses a method and apparatus for acquiring local position and overlaying information.
- the local relative positions of other objects are acquired by detecting wireless signals indicating the presence of radio frequency beacons within an area of influence and further acquiring positioning by integrating sensor data, such as vectors of movement of each object, local object information, and device orientation.
- Local relative position acquisition is provided by feeding sensor data into a positioning and filtering algorithm and each object is assigned a relative coordinate with the area of influence.
- Directional objects can be programmed through a direction routing table, which describes the compass direction from a given location. However, object overlap is not computed.
- U.S. Patent Publication No. US 2009/0129630 published May 21, 2009 to Gloudemans et al. discloses three-dimensional textured objects for virtual viewpoint animations.
- An image of an event is obtained from a camera and an object in the image is automatically detected.
- a three-dimensional model of the object is combined with a textured three-dimensional model of the event to depict a virtual viewpoint, which differs from the viewpoint of the camera used to view the event.
- the virtual viewpoint including any overlap of the three-dimensional textured objects, is limited by the physical range of the camera.
- a system and method for simulating placement of a virtual object relative to real world objects is provided.
- a mobile computing platform that is capable of self-position sensing identifies a physical identification tag, which is combined with physical location information.
- Platform-performable actions such as displaying of graphical objects, playing of auditory cues, or generating tactile feedback, are stored in an onboard actions database.
- Each action is associated with a predetermined identification tag and one or more physical locations, such as defined by geolocational data.
- Models of real world objects are stored in an onboard locations database. Each model is associated with geolocational coordinates.
- the identification tag and physical location information are evaluated against the actions database. When a matching action is identified and includes a virtual object, the physical location information of the virtual object is evaluated against the locations database for overlap with any of the real world objects. If applicable, position and overlap are rendered and the corresponding action is performed by the platform.
- One embodiment provides a computer-implemented method for virtually placing a virtual object in the real world based on physical location and tagging.
- a set of virtual objects are maintained in an actions database on a mobile computing device. Each virtual object includes an action associated with an identifier and coordinates for one or more physical locations.
- a set of real world object models is maintained in an objects database on the mobile computing device. Each real world object model includes a three-dimensional model.
- a physical location of the mobile computing device is tracked.
- An identification tag within range of the mobile computing device is identified. The mobile computing device's physical location and the identification tag are respectively evaluated against the coordinates and the identifiers for the virtual objects in the actions database.
- the action associated with the correspondingly matched virtual object is completed.
- the matched virtual object requires rendering, the matched virtual object is evaluated against the real world object models in the objects database and the virtual object is rendered in light of any such real world object models located within a vicinity of the mobile computing device. The action is performed using the mobile computing device.
- a further embodiment provides a computer-implemented method for virtually placing a virtual object in the real world through a network based on physical location and tagging.
- a set of virtual objects is maintained in an actions database on a centralized server. Each virtual object includes an action associated with an identifier and coordinates for one or more physical locations.
- a set of real world object models is maintained in an objects database on the centralized server. Each real world object model includes a three-dimensional model.
- a mobile computing device is interfaced with the centralized server over a data communications network. The virtual objects and the real world object models are provided to the mobile computing device. A physical location of the mobile computing device is tracked. An identification tag within range of the mobile computing device is identified.
- the mobile computing device's physical location and the identification tag are respectively evaluated against the coordinates and the identifiers for the virtual objects in the actions database. For each coordinates and identifiers matched to the physical location and the identification tag, the action associated with the correspondingly matched virtual object is completed. Where the matched virtual object requires rendering, the matched virtual object is evaluated against the real world object models in the objects database and the virtual object is rendered in light of any such real world object models located within a vicinity of the mobile computing device. The action is performed using the mobile computing device.
- a still further embodiment provides a computer-implemented method for performing an augmented reality scenario with virtual placement of a virtual object in the real world.
- a scenario is defined.
- An identifier is placed at a plurality of physical locations.
- At least one action to be performed at each of the physical locations at which one such identifier has been placed is specified.
- At least one each real world object model comprising a three-dimensional model is specified.
- Virtual objects that include each of the actions associated with the identifier and coordinates for the physical location of the action are defined. All of the virtual objects are assembled into an actions database. All of the real world object models are assembled into an objects database.
- the scenario is performed through a mobile computing device.
- a physical location of the mobile computing device is tracked.
- An identification tag within range of the mobile computing device is identified.
- Ahe mobile computing device's physical location and the identification tag are respectively evaluated against the coordinates and the identifiers for the virtual objects in the actions database. For each coordinates and identifiers matched to the physical location and the identification tag, the action associated with the correspondingly matched virtual object is completed. Where the matched virtual object requires rendering, the matched virtual object is evaluated against the real world object models in the objects database and the virtual object is rendered in light of any such real world object models located within a vicinity of the mobile computing device. The action is performed using the mobile computing device.
- FIG. 1 is a functional block diagram showing a system for simulating placement of a virtual object relative to real world objects in accordance with one embodiment.
- FIG. 2 is a block diagram showing, by way of example, action records as stored in the actions databases of FIG. 1 .
- FIGS. 3A and 3B are diagrams respectively showing, by way of example, a virtual object and the virtual object as rendered relative to a real world object.
- FIG. 4 is a process flow diagram showing a method for simulating placement of a virtual object relative to real world objects in accordance with one embodiment.
- FIG. 5 is a process flow diagram showing a routine for evaluating a virtual object for use in the method of FIG. 4 .
- FIG. 1 is a functional block diagram showing a system for simulating placement of a virtual object relative to real world objects in accordance with one embodiment.
- the system 10 operates in accordance with a sequence of process steps, as further described below beginning with reference to FIG. 4 .
- MCP mobile computing platform
- PDA personal data assistant
- MCPs mobile telephone
- apps application program
- the MCP 12 executes an application program (“app”) 13 , which can be implemented through software, firmware, or hardware for execution locally on the MCP 12 .
- the application 13 includes a downloadable cartridge written as an executable script that defines triggerable events, such as described in commonly-assigned U.S. Pat. No. 6,691,032 to Irish et al., the disclosure of which is incorporated by reference.
- Other forms of application programs are possible.
- the application 13 receives two dynamically-determined input parameters, physical location information (“loc”) 14 and an identification tag 18 .
- the physical location information 14 and identification tag 18 are paired and compared to data stored in an onboard actions database 15 .
- the actions database 15 stores predetermined associations between pairings of physical locations and identification tags and actions that contribute to a three-dimensional augmented reality user experience, as further described below with reference to FIG. 2 . If a match between the physical location information 14 and identification tag 18 pairing and one of the predetermined associations in the database is made, the corresponding action is checked for any virtual object renderings, which are each compared to data stored in an onboard locations database 23 .
- the locations database 23 stores models of real world objects, as further described below with reference to FIGS. 3A and 3B . If applicable, position and overlap of the virtual object are rendered in relation to each real world object affected using their corresponding model and the corresponding action is performed by the MCP 12 .
- the MCP 12 is capable of self-position sensing in generating the physical location information 14 using, for instance, a GPS receiver, or with reference to a stationary data marker or beacon 27 , such as a radio frequency signal.
- a GPS receiver or with reference to a stationary data marker or beacon 27 , such as a radio frequency signal.
- a stationary data marker or beacon 27 such as a radio frequency signal.
- GPS receivers interpret signals received from an orbiting constellation of GPS satellites 11 , which transmit locational signals that are triangulated into geolocational data, while a stationary data maker or beacon 27 transmits the geolocational data for its own position.
- the MCP 12 determines its own location from geolocational data, minimally consisting of latitude and longitude or similar coordinates.
- GPS satellite-originated geolocational data is determined from either a standalone GPS receiver attached via a conventional cable to the MCP 12 or GPS receiver components incorporated into the MCP 12 itself.
- stationary data marker or beacon-originated geolocational data is determined from a wireless receiver, which includes beacons broadcast via radio, cellular telephone, wireless fidelity (“Wi-Fi”), Bluetooth, or other types of wireless communication signals.
- the MCP 12 receives the physical location information 14 via manual user input through the MCP's user interface.
- the MCP 12 also is capable of identifying identification tags 18 , 29 , as respectively found on a physical object 19 , which can include a movable physical item, or stationary place 29 .
- the identification tags 18 , 29 can be embedded, placed upon, or otherwise attached to or associated with the physical object 19 or stationary place 29 .
- the identification tags 18 , 29 can be passive, that is, physically visible, such as a bar code, grid, image tag, or number sequence, or active, such as provided through wireless communications, such as a transmitted radio frequency identification (RFID) tag.
- RFID radio frequency identification
- the MCP 12 includes recognition software or hardware to identify or decode each identification tag 18 , 29 .
- Each identification tag 18 , 29 can be unique or the same as other identification tags, as the combination of an identification tag 18 , 29 and the physical location information 14 will generally be sufficient to distinctively identify the physical object 19 or stationary place 29 .
- the MCP 12 receives the data for the identification tag 18 , 29 via manual user input through the MCP's user interface.
- the MCP 12 is also network-capable and can interface with other devices over a network 16 , for instance, an internetwork, such as the Internet, or other distributed data communications channel, including open or proprietary wired, wireless, satellite, or other forms of data communication.
- a network 16 for instance, an internetwork, such as the Internet, or other distributed data communications channel, including open or proprietary wired, wireless, satellite, or other forms of data communication.
- an actions database 22 can be provided remotely through an actions database manager 21 executing on an actions server 20 accessible via the network 16 .
- an locations database 26 can be provided remotely through a locations database manager 25 executing on a locations server 24 accessible via the network 16 . Either or both of the actions database 22 and the locations database 26 can respectively be either in addition to or in lieu of the actions database 15 and the locations database 23 maintained locally by each MCP 12 .
- the individual computer systems include general purpose, programmed digital computing devices consisting of a central processing unit (CPU), random access memory (RAM), non-volatile secondary storage, such as a hard drive or CD ROM drive, network or wireless interfaces, and peripheral devices, including user interfacing means, such as a keyboard and display.
- CPU central processing unit
- RAM random access memory
- non-volatile secondary storage such as a hard drive or CD ROM drive
- network or wireless interfaces such as a keyboard and display
- peripheral devices including user interfacing means, such as a keyboard and display.
- Mobile computing platforms include comparable components adapted to portable use and, where applicable, particularized applications, such as digital media playback or mobile communications.
- program code including software programs, and data is loaded into the RAM for execution and processing by the CPU and results are generated for display, output, transmittal, or storage.
- FIG. 2 is a block diagram showing, by way of example, action records 30 as stored in the actions databases 15 , 22 of FIG. 1 .
- the actions database is columnarly-organized into action 31 , identification tag 32 , and physical location 33 entries. Other columns are possible.
- Each individual record 34 associates an action entry 31 with a pairing of identification tag 32 and physical location 33 entries.
- Each action entry 34 can specify a virtual object that will be rendered through a display provided on or visualization hardware interconnected with the MCP 12 , such as described in commonly-assigned U.S. Patent application, entitled “System and Method for Providing a Virtual Object based on Physical Location and Tagging,” Ser. No. 12/852,366, filed Aug. 6, 2010, pending, the disclosure of which is incorporated by reference.
- the rendering of the virtual object contributes to a three-dimensional augmented reality user experience.
- action entries 34 can include displayed text, visualized images or scenes, auditory sounds, tactile feedback, and the like, as supportable through the capabilities of the MCP 12 or in conjunction with an affiliated device or hardware that is functionally coupled to the MCP 12 , such as virtual reality display goggles, LCD projectors headphones, speakers, or haptic technologies, as well as the server 20 .
- FIGS. 3A and 3B are diagrams respectively showing, by way of example, a virtual object 41 as rendered relative to a real world object 46 .
- a change to the virtual reality rendering occurs by virtue of execution of an action whenever an identification tag 18 on a physical object 19 or stationary place 28 and the physical location information 14 coincide with an identification tag and physical location entries pairing in the actions database.
- a virtual object 41 here, a grail, is rendered in an augmented virtual reality 40 based on an identification tag 18 placed on a physical object 19 .
- the virtual object 41 exists without any other encumbrance to the rendered visualization within the augmented virtual reality 40 .
- physical real world objects may be present in the immediate real world environment that block, obscure, or otherwise interfere with clear viewing of the virtual object 41 .
- the virtual object 41 is rendered relative to a real world object 46 , here, a building, that exists in the immediate physical environment 45 of the user.
- the real world object 46 is physically between the user and the physical object 19 , which triggered rendering of the virtual object 41 , the view of the rendered virtual object 41 is effectively blocked by the real world object 46 .
- Each real world object 46 is represented in the actions database as a three-dimensional model.
- Each real world object 46 represents a stationary object, such as a building, bridge, monument, wall, or other structure; a fixture, such as a telephone pole, traffic light, or manhole cover; or other physical object that exists independently of the user and the augmented virtual reality in the real world.
- the real world objects 46 are described as three-dimensional models that are generated using a three-dimensional modeling program, such as SketchUp application, licensed by Google Inc., Mountain View, Calif., although other three-dimensional modeling programs could also be used.
- the SketchUp application allows end users to create three-dimensional models, which can be uploaded into an online database, known as the Google 3D Warehouse, for retrieval and viewing by other users.
- the three-dimensional models can be specified using the .kmz or other standardized file formats. Additionally, the three-dimensional models can be integrated into the Google Earth Website, also licensed by Google, Inc., which presents each model as geolocationally positioned in an online representation of the earth that includes increasing levels of detail, from country borders, to cities, to streets and natural terrain, and finally to individual buildings and other structures and land features.
- Google Earth Website also licensed by Google, Inc.
- the combined records in each actions database and locations database can be part of a virtual reality storyline or theme, or be provided as discrete sets of actions untied to a particular scenario. Each identification number can be used one or more times in association with different actions and physical locations.
- the physical location entries 33 includes geolocational or other locational data representations. The physical location 33 entries can be in a format distinct yet translatable from the format used to express physical location information 14 of the MCP 12 .
- the models uploaded into the Google 3D Warehouse can include geolocational information that specifies the physical position of the corresponding real world object modeled, which, in turn, can be provided with each record in the locations database for those physical objects present in the scenario.
- Each MCP 12 enables a user to use a physical location or position determined using a GPS receiver or similar means to trigger an action when a tag-identified physical object is encountered and recognized, and any virtual object generated through the action is rendered correctly in relation to real world objects situated within the immediacy of the user.
- FIG. 4 is a process flow diagram showing a method 50 for simulating placement of a virtual object relative to real world objects in accordance with one embodiment. The method 50 is executed by the MCP 12 and, where applicable, by affiliated hardware or devices functionally coupled to the MCP 12 .
- a user operates the MCP 12 in a machine portable, that is, non-stationary, manner.
- the user can be in motion, for example, during activities including a treasure hunt game, guided tour, or walk, or may be momentarily still, such as stopped to pick up an object. Other types of activities are possible.
- the activities can occur on foot or by means of conveyance, for instance, during travel by vehicle, airplane, train, or boat.
- the user can encounter one or more identification tags 18 or similar data markers during the activity, which are read and identified by the MCP 12 (step 51 ).
- the identification tag 18 can be manually input by the user through the MCP's user interface.
- the MCP 12 self-identifies its own location (step 52 ) using, for instance, GPS signals received from the GPS satellites to obtain geolocational data describing the physical location information 14 .
- the physical location information 14 can be manually input by the user through the MCP's user interface.
- the MCP 12 pairs the identification tag 18 and the physical location information 14 , which are collectively evaluated against the associations of pairings of physical location 33 and identification tag 32 entries in the actions database (step 53 ). If a matching of the collected and the stored locational and tag information is made (step 54 ), one or more associated action 31 entries are retrieved.
- each virtual object is evaluated against the locations database (step 56 ), which ensures correct rendering of the virtual object in light of any real world objects located within the immediate vicinity of the user, as further described below with reference to FIG. 5 .
- the corresponding action is performed (step 57 ). Additionally, actions associated with predetermined geolocational data and data markers that fall within a particular boundary of the received geolocational data can also be identified. A single action, or a sequence of actions, may be performed. The method 50 is repeated for each identification tag 18 encountered.
- FIG. 5 is a process flow diagram showing a routine 60 for evaluating a virtual object for use in the method 50 of FIG. 4 .
- the geolocational coordinates of the virtual object 41 is determined (step 61 ).
- Information regarding any real world objects 46 located in the immediate vicinity of the MCP 12 is obtained (step 62 ), such as by defining a physical perimeter surrounding the user and identifying those physical objects stored in the locations database that fall within the perimeter.
- Each of the real world objects 46 are then processed (steps 63 - 67 ), as follows (step 63 ).
- the geolocational coordinates of the real world object 46 are determined (step 64 ), for instance, by retrieving geolocational data stored with the real world object record in the locations database, or by performing an automated online search. If the virtual object 41 overlaps the real world object 46 (step 65 ), the position and overlap of the virtual object 41 and the real world object 46 are determined, and the rendering is adjusted as appropriate. For instance, a building or wall may completely obstruct a clear view of a virtual object and only the obstruction would be rendered, not the virtual object. Processing continues for each remaining real world object (step 67 ), after which the routine returns.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Computer Graphics (AREA)
- Library & Information Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Processing Or Creating Images (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
Claims (24)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/875,049 US8502835B1 (en) | 2009-09-02 | 2010-09-02 | System and method for simulating placement of a virtual object relative to real world objects |
US13/959,671 US8803917B2 (en) | 2009-09-02 | 2013-08-05 | Computer-implemented system and method for a virtual object rendering based on real world locations and tags |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US23936109P | 2009-09-02 | 2009-09-02 | |
US12/875,049 US8502835B1 (en) | 2009-09-02 | 2010-09-02 | System and method for simulating placement of a virtual object relative to real world objects |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/959,671 Continuation US8803917B2 (en) | 2009-09-02 | 2013-08-05 | Computer-implemented system and method for a virtual object rendering based on real world locations and tags |
Publications (1)
Publication Number | Publication Date |
---|---|
US8502835B1 true US8502835B1 (en) | 2013-08-06 |
Family
ID=48876388
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/875,049 Active 2031-07-06 US8502835B1 (en) | 2009-09-02 | 2010-09-02 | System and method for simulating placement of a virtual object relative to real world objects |
US13/959,671 Active US8803917B2 (en) | 2009-09-02 | 2013-08-05 | Computer-implemented system and method for a virtual object rendering based on real world locations and tags |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/959,671 Active US8803917B2 (en) | 2009-09-02 | 2013-08-05 | Computer-implemented system and method for a virtual object rendering based on real world locations and tags |
Country Status (1)
Country | Link |
---|---|
US (2) | US8502835B1 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120162207A1 (en) * | 2010-12-23 | 2012-06-28 | Kt Corporation | System and terminal device for sharing moving virtual images and method thereof |
US20130278633A1 (en) * | 2012-04-20 | 2013-10-24 | Samsung Electronics Co., Ltd. | Method and system for generating augmented reality scene |
US20140015858A1 (en) * | 2012-07-13 | 2014-01-16 | ClearWorld Media | Augmented reality system |
US20140198096A1 (en) * | 2013-01-11 | 2014-07-17 | Disney Enterprises, Inc. | Mobile tele-immersive gameplay |
US20140267792A1 (en) * | 2013-03-15 | 2014-09-18 | daqri, inc. | Contextual local image recognition dataset |
US20150050994A1 (en) * | 2013-08-16 | 2015-02-19 | Disney Enterprises, Inc. | Light communication between user devices and physical objects |
US20150054823A1 (en) * | 2013-08-21 | 2015-02-26 | Nantmobile, Llc | Chroma key content management systems and methods |
WO2015034535A1 (en) * | 2013-09-09 | 2015-03-12 | Empire Technology Development, Llc | Augmented reality alteration detector |
EP3007136A1 (en) * | 2014-10-09 | 2016-04-13 | Huawei Technologies Co., Ltd. | Apparatus and method for generating an augmented reality representation of an acquired image |
US20160148429A1 (en) * | 2014-11-21 | 2016-05-26 | Rockwell Collins, Inc. | Depth and Chroma Information Based Coalescence of Real World and Virtual World Images |
US20160155271A1 (en) * | 2012-02-28 | 2016-06-02 | Blackberry Limited | Method and device for providing augmented reality output |
US20160328885A1 (en) * | 2011-04-08 | 2016-11-10 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
CN108245894A (en) * | 2017-12-29 | 2018-07-06 | 网易(杭州)网络有限公司 | Information processing method and device, storage medium, electronic equipment |
CN108245885A (en) * | 2017-12-29 | 2018-07-06 | 网易(杭州)网络有限公司 | Information processing method, device, mobile terminal and storage medium |
CN108355353A (en) * | 2017-12-29 | 2018-08-03 | 网易(杭州)网络有限公司 | Information processing method and device, storage medium, electronic equipment |
US10140317B2 (en) | 2013-10-17 | 2018-11-27 | Nant Holdings Ip, Llc | Wide area augmented reality location-based services |
US20180374354A1 (en) * | 2017-06-21 | 2018-12-27 | International Business Machines Corporation | Management of mobile objects |
CN109091869A (en) * | 2018-08-10 | 2018-12-28 | 腾讯科技(深圳)有限公司 | Method of controlling operation, device, computer equipment and the storage medium of virtual objects |
US10229523B2 (en) | 2013-09-09 | 2019-03-12 | Empire Technology Development Llc | Augmented reality alteration detector |
US10339738B2 (en) * | 2016-02-16 | 2019-07-02 | Ademco Inc. | Systems and methods of access control in security systems with augmented reality |
US10543415B2 (en) | 2014-06-20 | 2020-01-28 | Sumitomo Rubber Industries, Ltd. | Recommendation engine |
US10589173B2 (en) | 2017-11-17 | 2020-03-17 | International Business Machines Corporation | Contextual and differentiated augmented-reality worlds |
US10742478B2 (en) | 2015-07-07 | 2020-08-11 | International Business Machines Corporation | Management of events and moving objects |
US10818093B2 (en) | 2018-05-25 | 2020-10-27 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
US10984600B2 (en) | 2018-05-25 | 2021-04-20 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
US11024096B2 (en) * | 2019-04-29 | 2021-06-01 | The Board Of Trustees Of The Leland Stanford Junior University | 3D-perceptually accurate manual alignment of virtual content with the real world with an augmented reality device |
US20220189127A1 (en) * | 2019-04-16 | 2022-06-16 | Nippon Telegraph And Telephone Corporation | Information processing system, information processing terminal device, server device, information processing method and program thereof |
US11386785B2 (en) | 2017-06-21 | 2022-07-12 | International Business Machines Corporation | Management of mobile objects |
US11392658B2 (en) | 2019-02-06 | 2022-07-19 | Blind Insites, Llc. | Methods and systems for wireless acquisition and presentation of local spatial information |
US11460858B2 (en) * | 2019-01-29 | 2022-10-04 | Toyota Jidosha Kabushiki Kaisha | Information processing device to generate a navigation command for a vehicle |
US11501224B2 (en) | 2018-01-24 | 2022-11-15 | Andersen Corporation | Project management system with client interaction |
US20230171570A1 (en) * | 2021-11-29 | 2023-06-01 | Here Global B.V. | Indoor localization based on detection of building-perimeter features |
US11854329B2 (en) | 2019-05-24 | 2023-12-26 | Ademco Inc. | Systems and methods for authorizing transmission of commands and signals to an access control device or a control panel device |
US12118581B2 (en) | 2011-11-21 | 2024-10-15 | Nant Holdings Ip, Llc | Location-based transaction fraud mitigation methods and systems |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9129644B2 (en) * | 2009-06-23 | 2015-09-08 | Disney Enterprises, Inc. | System and method for rendering in accordance with location of virtual objects in real-time |
JP6255706B2 (en) * | 2013-04-22 | 2018-01-10 | 富士通株式会社 | Display control apparatus, display control method, display control program, and information providing system |
US9898844B2 (en) * | 2013-12-31 | 2018-02-20 | Daqri, Llc | Augmented reality content adapted to changes in real world space geometry |
JP6244954B2 (en) | 2014-02-06 | 2017-12-13 | 富士通株式会社 | Terminal apparatus, information processing apparatus, display control method, and display control program |
JP6217437B2 (en) * | 2014-02-14 | 2017-10-25 | 富士通株式会社 | Terminal apparatus, information processing apparatus, display control method, and display control program |
US9610491B2 (en) | 2014-07-11 | 2017-04-04 | ProSports Technologies, LLC | Playbook processor |
US9305441B1 (en) | 2014-07-11 | 2016-04-05 | ProSports Technologies, LLC | Sensor experience shirt |
US9724588B1 (en) | 2014-07-11 | 2017-08-08 | ProSports Technologies, LLC | Player hit system |
US9398213B1 (en) | 2014-07-11 | 2016-07-19 | ProSports Technologies, LLC | Smart field goal detector |
US10264175B2 (en) | 2014-09-09 | 2019-04-16 | ProSports Technologies, LLC | Facial recognition for event venue cameras |
US10347047B2 (en) * | 2015-11-25 | 2019-07-09 | Google Llc | Trigger regions |
WO2018185828A1 (en) * | 2017-04-04 | 2018-10-11 | ガンホー・オンライン・エンターテイメント株式会社 | Terminal device, server device, program and method |
IT201700058961A1 (en) | 2017-05-30 | 2018-11-30 | Artglass S R L | METHOD AND SYSTEM OF FRUITION OF AN EDITORIAL CONTENT IN A PREFERABLY CULTURAL, ARTISTIC OR LANDSCAPE OR NATURALISTIC OR EXHIBITION OR EXHIBITION SITE |
US20190139307A1 (en) * | 2017-11-09 | 2019-05-09 | Motorola Mobility Llc | Modifying a Simulated Reality Display Based on Object Detection |
US11330251B2 (en) | 2019-01-16 | 2022-05-10 | International Business Machines Corporation | Defining a holographic object allowance area and movement path |
CN110716646A (en) * | 2019-10-15 | 2020-01-21 | 北京市商汤科技开发有限公司 | Augmented reality data presentation method, device, equipment and storage medium |
US11727587B2 (en) * | 2019-11-12 | 2023-08-15 | Geomagical Labs, Inc. | Method and system for scene image modification |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6691032B1 (en) * | 2002-09-09 | 2004-02-10 | Groundspeak, Inc. | System and method for executing user-definable events triggered through geolocational data describing zones of influence |
US20040103374A1 (en) | 2002-11-20 | 2004-05-27 | Nec Corporation | Function extension type browser, browser component, program and recording medium |
US6961629B2 (en) | 2001-06-01 | 2005-11-01 | Seiko Epson Corporation | Output service providing system that updates information based on positional information, terminal, and method of providing output service |
US6988010B2 (en) | 2001-06-01 | 2006-01-17 | Seiko Epson Corporation | System and methods for providing a portable object management terminal |
US20070035563A1 (en) | 2005-08-12 | 2007-02-15 | The Board Of Trustees Of Michigan State University | Augmented reality spatial interaction and navigational system |
US20070180979A1 (en) | 2006-02-03 | 2007-08-09 | Outland Research, Llc | Portable Music Player with Synchronized Transmissive Visual Overlays |
US7366987B2 (en) | 2001-06-01 | 2008-04-29 | Seiko Epson Corporation | Interrupt processing in display control |
US20080150965A1 (en) | 2005-03-02 | 2008-06-26 | Kuka Roboter Gmbh | Method and Device For Determining Optical Overlaps With Ar Objects |
US20080252527A1 (en) | 2007-04-03 | 2008-10-16 | Juan Carlos Garcia | Method and apparatus for acquiring local position and overlaying information |
US7453471B2 (en) | 2001-02-09 | 2008-11-18 | Seiko Epson Corporation | Service providing system, management terminal, mobile member, service providing program, and service providing method |
US20080293488A1 (en) | 2007-05-21 | 2008-11-27 | World Golf Tour, Inc. | Electronic game utilizing photographs |
WO2009040093A1 (en) * | 2007-09-25 | 2009-04-02 | Metaio Gmbh | Method and device for illustrating a virtual object in a real environment |
US20090129630A1 (en) | 2007-11-16 | 2009-05-21 | Sportvision, Inc. | 3d textured objects for virtual viewpoint animations |
US20100066750A1 (en) * | 2008-09-16 | 2010-03-18 | Motorola, Inc. | Mobile virtual and augmented reality system |
US20100185529A1 (en) * | 2009-01-21 | 2010-07-22 | Casey Chesnut | Augmented reality method and system for designing environments and buying/selling goods |
US7890582B2 (en) | 2004-07-20 | 2011-02-15 | Sk Communications Corp. | System and method for providing the regional community service based on mobile blog in mobile terminal |
-
2010
- 2010-09-02 US US12/875,049 patent/US8502835B1/en active Active
-
2013
- 2013-08-05 US US13/959,671 patent/US8803917B2/en active Active
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7453471B2 (en) | 2001-02-09 | 2008-11-18 | Seiko Epson Corporation | Service providing system, management terminal, mobile member, service providing program, and service providing method |
US6961629B2 (en) | 2001-06-01 | 2005-11-01 | Seiko Epson Corporation | Output service providing system that updates information based on positional information, terminal, and method of providing output service |
US6988010B2 (en) | 2001-06-01 | 2006-01-17 | Seiko Epson Corporation | System and methods for providing a portable object management terminal |
US7366987B2 (en) | 2001-06-01 | 2008-04-29 | Seiko Epson Corporation | Interrupt processing in display control |
US6691032B1 (en) * | 2002-09-09 | 2004-02-10 | Groundspeak, Inc. | System and method for executing user-definable events triggered through geolocational data describing zones of influence |
US20040103374A1 (en) | 2002-11-20 | 2004-05-27 | Nec Corporation | Function extension type browser, browser component, program and recording medium |
US7890582B2 (en) | 2004-07-20 | 2011-02-15 | Sk Communications Corp. | System and method for providing the regional community service based on mobile blog in mobile terminal |
US20080150965A1 (en) | 2005-03-02 | 2008-06-26 | Kuka Roboter Gmbh | Method and Device For Determining Optical Overlaps With Ar Objects |
US20070035563A1 (en) | 2005-08-12 | 2007-02-15 | The Board Of Trustees Of Michigan State University | Augmented reality spatial interaction and navigational system |
US20070180979A1 (en) | 2006-02-03 | 2007-08-09 | Outland Research, Llc | Portable Music Player with Synchronized Transmissive Visual Overlays |
US20080252527A1 (en) | 2007-04-03 | 2008-10-16 | Juan Carlos Garcia | Method and apparatus for acquiring local position and overlaying information |
US20080293488A1 (en) | 2007-05-21 | 2008-11-27 | World Golf Tour, Inc. | Electronic game utilizing photographs |
WO2009040093A1 (en) * | 2007-09-25 | 2009-04-02 | Metaio Gmbh | Method and device for illustrating a virtual object in a real environment |
US20100287511A1 (en) * | 2007-09-25 | 2010-11-11 | Metaio Gmbh | Method and device for illustrating a virtual object in a real environment |
US20090129630A1 (en) | 2007-11-16 | 2009-05-21 | Sportvision, Inc. | 3d textured objects for virtual viewpoint animations |
US20100066750A1 (en) * | 2008-09-16 | 2010-03-18 | Motorola, Inc. | Mobile virtual and augmented reality system |
US20100185529A1 (en) * | 2009-01-21 | 2010-07-22 | Casey Chesnut | Augmented reality method and system for designing environments and buying/selling goods |
Non-Patent Citations (4)
Title |
---|
Jonsson et al., "The Art of Game-Mastering Pervasive Games", Dec. 2008, ACM, International Conference on Advances in Computer Entertainment Technology, pp. 224-231. * |
Macvean et al., "Save Me-Integrating RFID, GPS, and a HMD into a Location-Aware Game", Jul. 2005, http://www.macs.hw.ac.uk/~apm8/University-Site/files/SICSAPosterFinal.pdf. * |
Macvean et al., "Save Me—Integrating RFID, GPS, and a HMD into a Location-Aware Game", Jul. 2005, http://www.macs.hw.ac.uk/˜apm8/University—Site/files/SICSAPosterFinal.pdf. * |
Thomas et al., "First Person Indoor/Outdoor Augmented Reality Application: ARQuake", Feb. 2002, Springer-Verlag, Personal and Ubiquitous Computing, vol. 6, Issue 1, pp. 75-86. * |
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10147231B2 (en) * | 2010-12-23 | 2018-12-04 | Kt Corporation | System and terminal device for sharing moving virtual images and method thereof |
US20120162207A1 (en) * | 2010-12-23 | 2012-06-28 | Kt Corporation | System and terminal device for sharing moving virtual images and method thereof |
US12182953B2 (en) | 2011-04-08 | 2024-12-31 | Nant Holdings Ip, Llc | Augmented reality object management system |
US11107289B2 (en) | 2011-04-08 | 2021-08-31 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US10403051B2 (en) * | 2011-04-08 | 2019-09-03 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US11514652B2 (en) | 2011-04-08 | 2022-11-29 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US11967034B2 (en) | 2011-04-08 | 2024-04-23 | Nant Holdings Ip, Llc | Augmented reality object management system |
US11854153B2 (en) | 2011-04-08 | 2023-12-26 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US10726632B2 (en) | 2011-04-08 | 2020-07-28 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US9824501B2 (en) * | 2011-04-08 | 2017-11-21 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US10127733B2 (en) * | 2011-04-08 | 2018-11-13 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US11869160B2 (en) | 2011-04-08 | 2024-01-09 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US20160328885A1 (en) * | 2011-04-08 | 2016-11-10 | Nant Holdings Ip, Llc | Interference based augmented reality hosting platforms |
US12118581B2 (en) | 2011-11-21 | 2024-10-15 | Nant Holdings Ip, Llc | Location-based transaction fraud mitigation methods and systems |
US20160155271A1 (en) * | 2012-02-28 | 2016-06-02 | Blackberry Limited | Method and device for providing augmented reality output |
US10062212B2 (en) * | 2012-02-28 | 2018-08-28 | Blackberry Limited | Method and device for providing augmented reality output |
US20130278633A1 (en) * | 2012-04-20 | 2013-10-24 | Samsung Electronics Co., Ltd. | Method and system for generating augmented reality scene |
US20140015858A1 (en) * | 2012-07-13 | 2014-01-16 | ClearWorld Media | Augmented reality system |
US20140198096A1 (en) * | 2013-01-11 | 2014-07-17 | Disney Enterprises, Inc. | Mobile tele-immersive gameplay |
US9588730B2 (en) * | 2013-01-11 | 2017-03-07 | Disney Enterprises, Inc. | Mobile tele-immersive gameplay |
US9898872B2 (en) * | 2013-01-11 | 2018-02-20 | Disney Enterprises, Inc. | Mobile tele-immersive gameplay |
US20170178411A1 (en) * | 2013-01-11 | 2017-06-22 | Disney Enterprises, Inc. | Mobile tele-immersive gameplay |
US9070217B2 (en) * | 2013-03-15 | 2015-06-30 | Daqri, Llc | Contextual local image recognition dataset |
US9613462B2 (en) | 2013-03-15 | 2017-04-04 | Daqri, Llc | Contextual local image recognition dataset |
US11024087B2 (en) | 2013-03-15 | 2021-06-01 | Rpx Corporation | Contextual local image recognition dataset |
US20140267792A1 (en) * | 2013-03-15 | 2014-09-18 | daqri, inc. | Contextual local image recognition dataset |
US11710279B2 (en) | 2013-03-15 | 2023-07-25 | Rpx Corporation | Contextual local image recognition dataset |
US10210663B2 (en) | 2013-03-15 | 2019-02-19 | Daqri, Llc | Contextual local image recognition dataset |
US9370714B2 (en) * | 2013-08-16 | 2016-06-21 | Disney Enterprises, Inc. | Light communication between user devices and physical objects |
US20150050994A1 (en) * | 2013-08-16 | 2015-02-19 | Disney Enterprises, Inc. | Light communication between user devices and physical objects |
US10008047B2 (en) | 2013-08-21 | 2018-06-26 | Nantmobile, Llc | Chroma key content management systems and methods |
US11495001B2 (en) | 2013-08-21 | 2022-11-08 | Nantmobile, Llc | Chroma key content management systems and methods |
US12223610B2 (en) | 2013-08-21 | 2025-02-11 | Nantmobile, Llc | Chroma key content management systems and methods |
US10733808B2 (en) | 2013-08-21 | 2020-08-04 | Nantmobile, Llc | Chroma key content management systems and methods |
US20150054823A1 (en) * | 2013-08-21 | 2015-02-26 | Nantmobile, Llc | Chroma key content management systems and methods |
US10255730B2 (en) * | 2013-08-21 | 2019-04-09 | Nantmobile, Llc | Chroma key content management systems and methods |
US9761053B2 (en) * | 2013-08-21 | 2017-09-12 | Nantmobile, Llc | Chroma key content management systems and methods |
US12229910B2 (en) | 2013-08-21 | 2025-02-18 | Nantmobile, Llc | Chroma key content management systems and methods |
US10019847B2 (en) | 2013-08-21 | 2018-07-10 | Nantmobile, Llc | Chroma key content management systems and methods |
WO2015034535A1 (en) * | 2013-09-09 | 2015-03-12 | Empire Technology Development, Llc | Augmented reality alteration detector |
US9626773B2 (en) | 2013-09-09 | 2017-04-18 | Empire Technology Development Llc | Augmented reality alteration detector |
US10229523B2 (en) | 2013-09-09 | 2019-03-12 | Empire Technology Development Llc | Augmented reality alteration detector |
US10140317B2 (en) | 2013-10-17 | 2018-11-27 | Nant Holdings Ip, Llc | Wide area augmented reality location-based services |
US11392636B2 (en) | 2013-10-17 | 2022-07-19 | Nant Holdings Ip, Llc | Augmented reality position-based service, methods, and systems |
US12008719B2 (en) | 2013-10-17 | 2024-06-11 | Nant Holdings Ip, Llc | Wide area augmented reality location-based services |
US10664518B2 (en) | 2013-10-17 | 2020-05-26 | Nant Holdings Ip, Llc | Wide area augmented reality location-based services |
US10543415B2 (en) | 2014-06-20 | 2020-01-28 | Sumitomo Rubber Industries, Ltd. | Recommendation engine |
US10850178B2 (en) | 2014-06-20 | 2020-12-01 | Sumitomo Rubber Industries, Ltd. | Recommendation engine |
EP3007136A1 (en) * | 2014-10-09 | 2016-04-13 | Huawei Technologies Co., Ltd. | Apparatus and method for generating an augmented reality representation of an acquired image |
EP3748586A3 (en) * | 2014-10-09 | 2020-12-23 | Huawei Technologies Co., Ltd. | Apparatus and method for generating an augmented reality representation of an acquired image |
EP3486875A3 (en) * | 2014-10-09 | 2019-06-12 | Huawei Technologies Co., Ltd. | Apparatus and method for generating an augmented reality representation of an acquired image |
US20160148429A1 (en) * | 2014-11-21 | 2016-05-26 | Rockwell Collins, Inc. | Depth and Chroma Information Based Coalescence of Real World and Virtual World Images |
US10235806B2 (en) * | 2014-11-21 | 2019-03-19 | Rockwell Collins, Inc. | Depth and chroma information based coalescence of real world and virtual world images |
US10742479B2 (en) | 2015-07-07 | 2020-08-11 | International Business Machines Corporation | Management of events and moving objects |
US10742478B2 (en) | 2015-07-07 | 2020-08-11 | International Business Machines Corporation | Management of events and moving objects |
US10749734B2 (en) | 2015-07-07 | 2020-08-18 | International Business Machines Corporation | Management of events and moving objects |
US10339738B2 (en) * | 2016-02-16 | 2019-07-02 | Ademco Inc. | Systems and methods of access control in security systems with augmented reality |
US10504368B2 (en) * | 2017-06-21 | 2019-12-10 | International Business Machines Corporation | Management of mobile objects |
US20180374354A1 (en) * | 2017-06-21 | 2018-12-27 | International Business Machines Corporation | Management of mobile objects |
US11315428B2 (en) * | 2017-06-21 | 2022-04-26 | International Business Machines Corporation | Management of mobile objects |
US11386785B2 (en) | 2017-06-21 | 2022-07-12 | International Business Machines Corporation | Management of mobile objects |
US10953329B2 (en) | 2017-11-17 | 2021-03-23 | International Business Machines Corporation | Contextual and differentiated augmented-reality worlds |
US10589173B2 (en) | 2017-11-17 | 2020-03-17 | International Business Machines Corporation | Contextual and differentiated augmented-reality worlds |
CN108245885A (en) * | 2017-12-29 | 2018-07-06 | 网易(杭州)网络有限公司 | Information processing method, device, mobile terminal and storage medium |
CN108245894A (en) * | 2017-12-29 | 2018-07-06 | 网易(杭州)网络有限公司 | Information processing method and device, storage medium, electronic equipment |
CN108355353A (en) * | 2017-12-29 | 2018-08-03 | 网易(杭州)网络有限公司 | Information processing method and device, storage medium, electronic equipment |
US11351456B2 (en) | 2017-12-29 | 2022-06-07 | Netease (Hangzhou) Network Co., Ltd. | Information processing method and apparatus, mobile terminal, and storage medium |
CN108355353B (en) * | 2017-12-29 | 2019-10-29 | 网易(杭州)网络有限公司 | Information processing method and device, storage medium, electronic equipment |
US11883741B2 (en) | 2017-12-29 | 2024-01-30 | Netease (Hangzhou) Network Co., Ltd. | Information processing method and apparatus, mobile terminal, and storage medium |
US11020665B2 (en) | 2017-12-29 | 2021-06-01 | Netease (Hangzhou) Network Co., Ltd. | Information processing method and apparatus, storage medium, and electronic device for custom model editing |
US11501224B2 (en) | 2018-01-24 | 2022-11-15 | Andersen Corporation | Project management system with client interaction |
US11494994B2 (en) | 2018-05-25 | 2022-11-08 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
US12051166B2 (en) | 2018-05-25 | 2024-07-30 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
US10818093B2 (en) | 2018-05-25 | 2020-10-27 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
US10984600B2 (en) | 2018-05-25 | 2021-04-20 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
US11605205B2 (en) | 2018-05-25 | 2023-03-14 | Tiff's Treats Holdings, Inc. | Apparatus, method, and system for presentation of multimedia content including augmented reality content |
CN109091869A (en) * | 2018-08-10 | 2018-12-28 | 腾讯科技(深圳)有限公司 | Method of controlling operation, device, computer equipment and the storage medium of virtual objects |
US11460858B2 (en) * | 2019-01-29 | 2022-10-04 | Toyota Jidosha Kabushiki Kaisha | Information processing device to generate a navigation command for a vehicle |
US11392658B2 (en) | 2019-02-06 | 2022-07-19 | Blind Insites, Llc. | Methods and systems for wireless acquisition and presentation of local spatial information |
US11721078B2 (en) * | 2019-04-16 | 2023-08-08 | Nippon Telegraph And Telephone Corporation | Information processing system, information processing terminal device, server device, information processing method and program thereof |
US20220189127A1 (en) * | 2019-04-16 | 2022-06-16 | Nippon Telegraph And Telephone Corporation | Information processing system, information processing terminal device, server device, information processing method and program thereof |
US11024096B2 (en) * | 2019-04-29 | 2021-06-01 | The Board Of Trustees Of The Leland Stanford Junior University | 3D-perceptually accurate manual alignment of virtual content with the real world with an augmented reality device |
US11854329B2 (en) | 2019-05-24 | 2023-12-26 | Ademco Inc. | Systems and methods for authorizing transmission of commands and signals to an access control device or a control panel device |
US12114238B2 (en) * | 2021-11-29 | 2024-10-08 | Here Global B.V. | Indoor localization based on detection of building-perimeter features |
US20230171570A1 (en) * | 2021-11-29 | 2023-06-01 | Here Global B.V. | Indoor localization based on detection of building-perimeter features |
Also Published As
Publication number | Publication date |
---|---|
US8803917B2 (en) | 2014-08-12 |
US20130314407A1 (en) | 2013-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8502835B1 (en) | System and method for simulating placement of a virtual object relative to real world objects | |
US10255726B2 (en) | Systems and methods for augmented reality representations of networks | |
AU2022256192B2 (en) | Multi-sync ensemble model for device localization | |
US8730312B2 (en) | Systems and methods for augmented reality | |
US10275945B2 (en) | Measuring dimension of object through visual odometry | |
US8994645B1 (en) | System and method for providing a virtual object based on physical location and tagging | |
CN102388406B (en) | Portable electronic device recording is used to produce three-dimensional model | |
JP5582548B2 (en) | Display method of virtual information in real environment image | |
US10636185B2 (en) | Information processing apparatus and information processing method for guiding a user to a vicinity of a viewpoint | |
CN105555373B (en) | Augmented reality equipment, methods and procedures | |
US9147284B2 (en) | System and method for generating a computer model to display a position of a person | |
US11365974B2 (en) | Navigation system | |
US20230360339A1 (en) | Determining Traversable Space from Single Images | |
JP6985777B1 (en) | Educational service provision methods and equipment using satellite images of artificial intelligence infrastructure | |
JPWO2007077613A1 (en) | Navigation information display system, navigation information display method, and program therefor | |
US20110214085A1 (en) | Method of user display associated with displaying registered images | |
CN111788606A (en) | Position estimation device, tracker, position estimation method and program | |
JP5363971B2 (en) | Landscape reproduction system | |
TWI764366B (en) | Interactive method and system based on optical communication device | |
US20240338861A1 (en) | Recording medium and information processing device | |
Thomas et al. | 3D modeling for mobile augmented reality in unprepared environment | |
WO2020185115A1 (en) | Method and system for real-time data collection for a mixed reality device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GROUNDSPEAK, INC., WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEEHAN, PATRICK CARSON;REEL/FRAME:024975/0231 Effective date: 20100902 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 12 |