US9203239B2 - System and method for improving grid efficiency utilizing statistical distribution control - Google Patents
System and method for improving grid efficiency utilizing statistical distribution control Download PDFInfo
- Publication number
- US9203239B2 US9203239B2 US13/481,375 US201213481375A US9203239B2 US 9203239 B2 US9203239 B2 US 9203239B2 US 201213481375 A US201213481375 A US 201213481375A US 9203239 B2 US9203239 B2 US 9203239B2
- Authority
- US
- United States
- Prior art keywords
- energy
- appliance
- electric
- operation mode
- stored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000009826 distribution Methods 0.000 title claims description 44
- 238000003860 storage Methods 0.000 claims abstract description 63
- 238000004146 energy storage Methods 0.000 claims abstract description 51
- 230000000694 effects Effects 0.000 claims abstract description 16
- 230000005611 electricity Effects 0.000 claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 230000001186 cumulative effect Effects 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 22
- 230000001603 reducing effect Effects 0.000 claims description 19
- 230000004044 response Effects 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 13
- 230000003466 anti-cipated effect Effects 0.000 claims description 9
- 238000005265 energy consumption Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000000977 initiatory effect Effects 0.000 claims 9
- 230000001960 triggered effect Effects 0.000 claims 6
- 239000013589 supplement Substances 0.000 claims 1
- 230000009467 reduction Effects 0.000 abstract description 15
- 239000003507 refrigerant Substances 0.000 description 27
- 230000005540 biological transmission Effects 0.000 description 17
- 238000004891 communication Methods 0.000 description 17
- 238000007726 management method Methods 0.000 description 15
- 238000010248 power generation Methods 0.000 description 15
- 230000002354 daily effect Effects 0.000 description 14
- 239000007788 liquid Substances 0.000 description 14
- 230000008901 benefit Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 9
- 238000005457 optimization Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 238000004378 air conditioning Methods 0.000 description 4
- 230000002596 correlated effect Effects 0.000 description 4
- 230000001627 detrimental effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 230000001932 seasonal effect Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000012782 phase change material Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001502 supplementing effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000001955 cumulated effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 230000037211 monthly cycles Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001739 rebound effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Images
Classifications
-
- H02J3/005—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/12—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- H02J2003/003—
-
- H02J2003/143—
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/12—The local stationary network supplying a household or a building
- H02J2310/14—The load or loads being home appliances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y02B70/3266—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/242—Home appliances
-
- Y10T307/359—
-
- Y10T307/549—
Definitions
- EPG electric power grid
- An embodiment of the present invention may therefore comprise: an electric controller capable of independently operating an electric appliance comprising: the controller that controls a standard operation mode and an alternate operation mode of the appliance, the controller that provides information for the timing of the standard operation mode and the alternate operation mode of the appliance by execution of operational commands for the appliance, the controller that acts in statistical coordination with additional controllers on a plurality of the appliances that collectively provide a desired load offset to improve anticipated electric power grid conditions.
- An embodiment of the present invention may also comprise: an electric appliance capable of operating using standard line voltage AC electricity supplied by an electric power grid in a standard operation mode, capable of storing the AC electricity in another form of energy in a charging mode, and operating using the energy stored with the appliance in an alternate operation mode comprising: an energy storage module that converts the AC electric energy to another form of energy and stores another form of energy to create stored energy in the charging mode, the appliance that utilizes the stored energy to operate the appliance in the alternate operation mode to perform approximately the same function as the standard operation mode, thereby reducing an end-user's demand for the electric energy during the alternate operation mode; a controller that independently controls the standard operation mode, the charging mode and the alternate operation mode of the appliance, the controller that contains information for the timing of the standard operation mode, the charging mode and the alternate operation mode of the appliance by execution of operational commands for the appliance, the controller that acts in statistical coordination with additional controllers on a plurality of appliances that collectively provide a desired load offset to improve anticipated electric power grid conditions.
- an electric appliance capable of operating using standard line
- An embodiment of the present invention may also comprise: an electric appliance capable of operating using standard line voltage AC electricity in a standard operation mode and operating using energy stored with the appliance in an alternate operation mode comprising: a thermal energy storage module that converts electric energy to thermal energy and stores the thermal energy in a charging mode, the appliance that utilizes the stored thermal energy to change the temperature within or outside of the appliance in the alternate operation mode thereby reducing an end-user's demand for the electric energy during the alternate operation mode; a controller that independently controls operation of the thermal energy storage unit and controls the conversion of the electric energy to the thermal energy and supply of the heating or the cooling of the appliance based upon execution of operational commands, the controller that contains information for the timing of the operational commands and that acts in statistical coordination with additional controllers on a plurality of appliances that collectively provide a desired load offset to improve anticipated electric power grid conditions.
- An embodiment of the present invention may also comprise: a method of controlling an electric appliance comprising: controlling the operation of the electric appliance with a controller associated with the electric appliance; executing operational commands for switching modes of operation of the electrical appliance based upon information within the controller or directly assessed locally by the controller, between a standard operation mode and an alternate operation mode of the electric appliance, the alternate operation mode that reduces the demand for electricity from the electric appliance; timing the standard operation mode and the alternate operation mode based upon trigger points relating to electric power grid conditions; providing a desired load offset to improve electrical power grid conditions with the cumulative net effect of a plurality of individual storage appliances operating in statistical coordination to collectively reduce daily peak load of electric power grid conditions.
- An embodiment of the present invention may also comprise: a method of improving the efficiency, reliability and capacity of an electric power grid containing a multitude of standard electric appliances capable of operating using AC electricity in a standard operation mode comprising: providing a plurality of stored electric appliances within a power distribution network of the electric power grid, the stored electric appliances capable of operating in the standard operation mode, capable of storing the AC electricity in another form of energy in a charging mode, and capable of operating using the energy stored in the charging mode in a stored operation mode; supplying AC power to the multitude of standard electric appliances and the plurality of stored electric appliances; operating the multitude of standard electric appliances in a standard operation mode with the AC electricity; operating at least a portion of the plurality of stored electric appliances in a standard operation mode with the AC electricity; charging at least a portion of the plurality of stored electric appliances in a charging mode by converting the AC electric energy to another form of energy and storing another form of energy with an energy storage module associated with the stored electric appliances to create stored energy; operating at least a portion of the plurality of the stored appliances in
- FIG. 1 illustrates an embodiment of a dwelling where a plurality of appliances are controlled so as to shift electric load away from periods of peak demand of an electric power grid.
- FIG. 2 illustrates a configuration of an embodiment of an air conditioner with integrated TES that is controlled so as to shift electric load away from periods of peak demand of an electric power grid.
- FIG. 3 illustrates a configuration of an embodiment of a refrigerator with integrated TES that is controlled so as to shift electric load away from periods of peak demand of an electric power grid.
- FIG. 4 illustrates a configuration of an embodiment of a hot water heater with integrated TES that is controlled so as to shift electric load away from periods of peak demand of an electric power grid.
- FIG. 5 illustrates another embodiment of a dwelling where a plurality of appliances are controlled so as to shift electric load away from periods of peak demand of an electric power grid to the end-user of the appliance.
- FIG. 6 is an exemplary graphical depiction of a typical electric utility load profile with an overlay of the same load profile with the influence of electrical offset appliances.
- FIG. 7 illustrates an exemplary graphical depiction of a typical electric utility load profile with an overlay of the same load profile with the influence of electrical offset appliances.
- FIG. 1 illustrates an embodiment of a system for improving grid efficiency utilizing energy storage whereby a number of energy storage units located in proximity to an end-user, convert electric energy to thermal energy in one time period, store this thermal energy for an amount of time, and later supply the stored thermal energy to the end-user thereby reducing the end-user's demand for grid supplied electric energy during this second time period.
- This embodiment illustrates a dwelling where a plurality of stored electric appliances 115 are controlled so as to shift load away from periods of peak demand of an electric power grid without disruption of service to the end-user of the appliance.
- This dwelling may be a residence, an office, an industrial structure, a school, a manufacturing facility, a retail store, a restaurant or any type of dwelling where power is drawn from the EPG.
- A/C air conditioning
- A/C demand is highly correlated with ambient temperature, as one might expect, but peak load is also governed by other assets and factors, many of which are also temperature dependent; power generation, transmission, distribution, and compressor assets all work less efficiently as temperature rises.
- the net effect is that grid demand is highly correlated with ambient temperature, although the specific nature of that correlation may change by region and season.
- the control of the on-peak offset also must consider the response of the asset after the demand management event ends.
- Some assets have a “recovery” response, also known as kick-back or rebound, during which time the asset uses more energy than it would have otherwise. This recovery, if not managed, tends to counter the demand management goals for the larger on-peak period, working in opposition to other coincident demand reducing actions.
- Storage at the asset can solve this problem by shifting the rebound time period all the way into the off-peak period, even offering an additional opportunity to optimize the timing of the rebound, along with the timing of the re-charge operating mode.
- a controller controls the operation of the energy storage unit (in this example, a thermal energy storage unit) and controls the conversion of the electric energy to thermal energy and the supply of heating or cooling to the end-user from the TES unit, based upon optimizing electrical power grid performance.
- An EPG is a term used for an electricity network which may support all or some of the following four distinct operations: electricity generation; electric power transmission; electricity distribution; and, electricity control.
- an EPG is a network, and should not be taken to imply a particular physical layout or breadth.
- An EPG may be used to refer to an entire continent's electrical network, a regional transmission network, or may be used to describe a subnetwork, such as a local utility's transmission grid or distribution grid.
- electricity in a remote location might be provided by a simple distribution grid linking a central generator to a plurality of residential homes.
- an EPG and the methods of moving electricity around are much more complex.
- the central power generation power generating plants
- the electric power that is generated is stepped up to a higher voltage, at which it connects to a transmission network.
- the transmission network 104 will move the power long distances until it reaches its wholesale customer at the local distribution network 106 .
- the power Upon arrival at the substation 108 , the power will be stepped down in voltage from a transmission level voltage to a distribution level voltage.
- the substation 108 As it exits the substation 108 , it enters the distribution wiring 107 . Finally, upon arrival at the service location, the power is stepped down again from the distribution voltage to the required service voltage(s) with a local transformer. The power is delivered to the dwelling/customer 114 where it is measured with an individual meter 112 . As electricity demand from the multitude of end users fluctuates, the ability for the EPG to respond with increased and decreased power input introduces a variety of power management issues.
- Power management is the process of balancing the supply of electricity on the EPG with the electrical load from the customer by adjusting or controlling the load as well as the power station output. This can be achieved by direct intervention of the utility in real time, by bringing generation sources on and off line, the use of frequency sensitive relays triggering circuit breakers, by time clocks, or by using special tariffs to influence consumer behavior. Since electrical energy cannot be stored in bulk, it must be generated, shipped to the point where it is needed, and nearly immediately consumed. Consequently, for the generation and distribution of electrical power, power management is a subject that is continually on the minds of the electrical network operators (also known as transmission system operators).
- a system may be developed to provide optimized EPG performance.
- the disclosed embodiments offer the advantage of using power from electric utility companies during low demand, and for off-peak hours (usually at night) when these companies use their most efficient equipment.
- high efficiency electric generators typically stream-driven, produce a kilowatt-hour (KWH) for approximately 8,900 BTU.
- KWH kilowatt-hour
- a peak hour high capacity electrical generator such as a gas turbine
- the transmission lines also run cooler at night resulting in higher efficiency of energy usage.
- operating the system at night affords a higher efficiency by lowering the temperature of the condensing unit.
- the disclosed thermal energy storage systems are used as an example of one of many energy storage systems that may be utilized to operate at high efficiency and provide an overall system of Statistical Distribution Control (SDC) that shifts power usage without significant total energy losses.
- SDC Statistical Distribution Control
- FIG. 1 illustrates an embodiment of a grid level power generation and distribution system with on-site energy storage (thermal) and power input to a single user controlled by the utility or a third party manager.
- electricity from the central power generation 102 is delivered to the end-user 114 via the utility managed power transmission network 104 and the utility managed power distribution network 106 .
- the power is delivered through the power meter 112 at the end-users site, after being stepped down at the substation 108 and transformer 110 .
- a variety of electric devices (appliances) that may utilize energy storage are individually locally controlled with a TES controller 148 .
- a cold-based TES appliance 116 such as an air conditioner unit 130 , a refrigerator/freezer 132 , a deep storage freezer 134 , a refrigerated vending machine 136 , a water cooler 138 , or any other device utilizing cooling below ambient temperature, is connected to the source electricity 150 and draws power from the grid as needed.
- FIG. 1 depicts a variety of heat-based electric devices (appliances) that may utilize energy storage (in this embodiment TES 146 ) are individually controlled with a TES controller 148 .
- heat-based TES appliances 116 such as an oven 140 , a water heater 142 , a furnace or space heater 144 , a clothes dryer 152 or any other device utilizing heating above ambient temperature, is connected to the source electricity 150 and draws power from the grid as needed.
- Each appliance 116 , 118 is equipped with TES 146 , which is used to provide energy storage to the end-user 114 by supplementing, and/or replacing the cooling or heating supplied to the appliance by real time grid power.
- the appliance is located within, or in proximity to, the end-user 114 and is supplied with power from the dwelling by on-site power supply lines, although either or both of these devices may receive power from any other source, such as the central power generation 102 , distributed energy resources, site generation or the like.
- a variety of means may be used to predict a load curve for a region. This prediction can be based on historical data and applied as a static “rule” year over year, or it can be adjusted with arbitrary frequency, using environmental sensor data and calculation methods that are site-based or remote.
- the load curve and peak demand are a function of many variables, but a primary contributor is ambient temperature, as it drives A/C usage, as well as the efficiency of generation, transmission, and distribution assets.
- the alignment of peak demand for electricity, with temperature is inherent, and largely predictable, especially by region and season.
- Peak values in the daily load curve drive the greatest inefficiency in the EPG.
- numerous technologies are being deployed to address this variability (e.g., “Smart Grid”, renewables, storage, real-time pricing, and introduction of new building codes [California Title 24, TDV approach, etc.] and the like)
- Smart Grid renewables, storage, real-time pricing, and introduction of new building codes [California Title 24, TDV approach, etc.] and the like)
- the Smart Grid is unique among these technologies as it represents a layer of intelligence, designed in part to improve overall efficiency through the optimized use of connected assets.
- These may include generation assets, end-use load assets (such as refrigerators, hybrid cars, or televisions), storage assets (such as batteries, water heaters, or thermal storage devices), or demand response for load curtailment.
- end-use load assets such as refrigerators, hybrid cars, or televisions
- storage assets such as batteries, water heaters, or thermal storage devices
- FIG. 1 provides a novel approach to addressing the above issues with SDC by delivering a productive autonomous behavior of end-user 114 assets (e.g., cooling based TES appliances 116 and heating based TES appliances 118 ).
- assets e.g., cooling based TES appliances 116 and heating based TES appliances 118 .
- ambient temperature is the primary predictor of summer energy demand for utility forecasting
- the aforementioned shape of KW and KWH converge, due to diversity factor, and the ability to address the peak energy problem by flattening the curve through any means (Smart Grid and active control not being inherently required).
- Seasonal and regional average electricity loads are a strong predictor for daily load variations.
- Appliances such as described in the embodiment of FIG. 1 , incorporate energy storage with a control methodology that takes advantage of these facts in a novel manner.
- a grand system may be realized, which substantially improves the efficiency of the grid without impact to the end-user, and without the complexity and cost overhead realized with real-time communications or Smart Grid.
- An offset electric load curve shape which is simply the inverted wave form, is easily predicted based upon historical data.
- a control strategy for a particular geographic region of interest may be introduced with autonomous controllers 148 , each with a specific and minute contribution of “off time” to the overall optimization effect. That time may be identified by a 24-hour clock, with the contribution from each asset being relatively very small to the overall desired offset load shape. That time may also be identified as a time offset (e.g., in seconds before or after) relative to some reference point.
- each asset e.g., appliances 130 - 144
- the open-loop distribution of start times relative to a clock or some reference point causes the net cumulative offset contribution to approximate the desired offset load curve.
- the KW contribution for each asset is essentially irrelevant, as the aggregated upstream impact is averaged out as KWH.
- the nature of each contribution being small also makes the duration, magnitude and shape irrelevant, as these all average out over a large deployment of assets. For example, if the afternoon peak is predicted for 2:00 PM, then the greatest number of appliance offset start times (downtime or minimized AC Power draw) would be assigned to 2:00 PM, with fewer starting 1:59 or 2:02, fewer still 1.54 or 2:05, and fewer still 12:03 or 3:42, etc. . . .
- This “downtime” or offset may be set by a fixed schedule that may be incorporated into a lookup table programmed into a small microprocessor within the controller 148 or the times may be set by a schedule that varies by day of the week, month, season or other factor relevant to the performance of the EPG.
- the offset start times may also be established relative to a reference point that can be determined locally by each asset but without requiring a communications link. This would allow the shape of the curve to be set once, for example, at a factory or distribution point, while the individual assets adjust by continually estimating the reference point. This feature eliminates the need for a synchronized clock or communication.
- the time settings might be set relative to the expected summer afternoon peak time; using the values from above, the offset to an example reference point of 2:00 PM may be ⁇ 1, +2, ⁇ 6, +5, ⁇ 117, +102 minutes respectively.
- the reference point of 2:00 PM could be preset or determined by the asset by using a local variable that serves as a course estimate or proxy for afternoon peak load.
- the controller 148 could monitor ambient temperature, and by applying a low pass filter to what it determines is daily peak time as detected locally, its reference clock could be allowed to have a low inherent accuracy, but with a constant or regular self-correcting aspect.
- the “peak ambient reference+3 minutes” might be the asset's setting, and the time of peak ambient is based on the individual asset's own determination of when peak will be, based upon a preset, real-time or historically determined variable.
- Other reference points could be used, such as the coolest time of the 24 hour day, the hottest time of the 24 hour day, a ratio of hottest to coolest time of the 24 hour day, a perceptible change in input electricity condition (e.g., voltage, power, frequency, power factor of the electrical energy supply to the building, or the like) or any other variable accessible to the controller 148 .
- the power factor for example, shows a cyclic lag/lead that can be measured, and is highly correlated with the load on the grid on a daily basis.
- Seasonal adjustments can also be defined is such a way where the pattern of coldest time of a day, as an example, can be used to pinpoint latitude and time of day, and improved further when used in conjunction with other measurements.
- seasonal adjustments may include alteration of the offset times, to create a wider or narrower response around the reference point.
- a midsummer value of +6 minutes might reduce to +4 minutes in a shoulder month.
- variables including location or climate zone changes, may be managed with an input from the end-user 114 , for instance, with the simple input of a zip code or area code, or be inferred from the behavior of available local environmental sensors.
- the reference point can also be communicated via a world clock RF signal, or comparable means.
- the reference point could also be determined by a second apparatus, as an example, a temperature sensor mounted outside a house, yet in communication with the appliance's controller by any method. This design would still be consistent with the scope of the invention that does not require smart grid communications.
- the reference point may also be explicitly enunciated periodically by an external or remote signal, smart grid or otherwise.
- the load offset shape would still be statistically distributed by the grid controller in the appliance, but around a reference point (as distinguished from a triggering signal) provided by an external or remote means.
- An embodiment which incorporates each of these techniques used in conjunction, allows the manufacturer of an asset to prescribe a statistically determined offset to a locally determined daily reference point, where that reference point stands as a proxy for peak load or other grid attribute of interest, and the statistics of the distribution are designed to allow the cumulative contribution of all assets to create a desired offset load shape. This provides benefit for both on-peak (nominally to reduce load) and for off-peak (nominally to increase load).
- control methodology for SDC can be effectively used to level the load on the electric grid, without the need for smart grid infrastructure, communications, local programming, local control systems or additional overhead. Additional features of the smart grid, communications, or local control systems can be added to provide fine tuning on daily load forecast curves, synchronizing clocks, etc. However, these are aspects not required for functionality.
- the controller 148 provides local impact of the asset's load offset, which may be both short in duration, and low in magnitude, which facilitates little or no negative impact to the end-user 114 energy bill. The impact is predominantly grid-related, and the optimization (power distribution curve shape) may be prescribed for optimization by the local utility.
- the weather for a particular region where a central power generation 102 facility is operating may be well known, easily predicted and unlikely to change significantly over time.
- Historical weather patterns and EPG load curves for a particular zip code may be preprogrammed into the TES controller 148 for periodic switching to a stored energy state, when electrical power grid has historically been under stress due to the utilization of commercial and residential demand between the hours of noon and 6:00 PM.
- a plurality of TES controllers 148 begins to systematically switch the TES appliances 116 - 118 to a lower power draw state, thereby reducing electricity demand assist and offsetting this potentially detrimental situation.
- This controller 148 located on the downstream side of the power meter, facilitates the utilization of the stored energy and manages the optimal timing for producing and delivering the stored energy to the end-user 114 .
- Peak demand can be reduced significantly on the central power generation 102 in a way that the end-user 114 does not realize an interruption or change in service at the point of consumption of the energy.
- This model demonstrates a utility driven, disaggregated, distributed energy storage system, where the distributed energy resource is designed to behave as an offset to the predictable daily electrical demand profile, and then generate a multitude of independent responses to this demand in order to optimize the performance of the entire system of generation, transmission, distribution of power.
- the cooling based TES appliances 116 of FIG. 1 typically draw electric power in a 1 hour period of time according to the following: central air conditioner 130 ⁇ 3.5 KW; refrigerator/freezer 132 ⁇ 0.5 KW; deep storage freezer 134 ⁇ 0.4 KW; vending machine 136 ⁇ 0.4 KW, water cooler 138 ⁇ 0.2 KW; for a total cooling power consumption of 5 KW per hour.
- 1 typically draw electric power in a 1 hour period of time, according to the following: conventional oven 140 ⁇ 2 KW; hot water heater 142 ⁇ 3.5 KW; furnace/heater ⁇ 10 KW; and, clothes dryer ⁇ 4 KW; for a total heating power consumption of 19.5 KW per hour.
- a battery having well-defined storage attributes, can still be configured at any point (at manufacture, at distribution, at installation, etc) to subscribe to the statistical control means described by this application, thereby adding these traditional assets to serve as contributing elements of the solution.
- FIG. 2 illustrates a configuration of an embodiment of an air conditioner with integrated TES that is controlled so as to shift electric load away from periods of peak demand of an electric power grid.
- the cooling based TES appliance 116 (in this case an air conditioner 130 ) receives source energy 150 at the end-user 114 site and provides cooling for the dwelling.
- the air conditioner 130 When in operation, the air conditioner 130 would typically draw electric energy at the rate of 3-5 KW and would see highest demand for use in the 2:00-6:00 PM time range (hottest time of day).
- the air conditioner unit 130 may be a conventional condensing unit that utilizes a compressor 202 and a condenser 203 to produce high-pressure liquid refrigerant delivered through a high-pressure liquid supply line 112 to the refrigeration management unit 104 .
- the refrigeration management unit 104 is connected to an energy storage unit 146 typically comprising an insulated tank with ice-making coils (primary heat exchanger 216 ) and is filled with a phase change liquid such as water or other eutectic material.
- the condenser and compressor 152 , the refrigeration management unit 104 and the TES 146 act in concert (statistical coordination) to provide efficient cooling to the load heat exchanger 210 (indoor cooling coil assembly) and thereby perform the functions of the principal modes of operation of the system.
- the compressor 202 produces high-pressure liquid refrigerant delivered through a high-pressure liquid supply line 112 to the expansion device 206 in the refrigeration management unit 104 .
- the high-pressure liquid supply line 112 feeds a universal refrigerant management vessel (URMV) 214 , which supplies liquid refrigerant to a liquid refrigerant pump 120 and directly to the load unit 108 when valve 222 is actuated.
- URMV universal refrigerant management vessel
- a liquid refrigerant pump 120 supplies the evaporator coils of the load heat exchanger 210 with liquid refrigerant.
- Low-pressure refrigerant returns from the evaporator coils of the load heat exchanger 210 , via wet suction return, back to the URMV 146 and to the primary exchanger 216 , composed of ice freezing/discharging coils.
- the low-pressure vapor exits from the top of the URMV 214 and returns to the compressor through a dry suction return line.
- the insulated tank in this example, contains dual-purpose ice freezing/discharging coils as the primary heat exchanger 216 (nominally geometrically designed helical coils), arranged for gravity circulation and drainage of liquid refrigerant, and is connected to an upper header assembly at the top, and to a lower header assembly at the bottom.
- the upper header assembly extends outward through the insulated tank to the refrigeration management unit 104 .
- the coils act as an evaporator, and the TES material 220 (in this example water) solidifies in the insulated tank during one time period (non-peak EPG, i.e., night).
- the primary heat exchanger 216 and header assemblies are connected to the low-pressure side of the refrigerant circuitry and are arranged for gravity or pumped circulation and drainage of liquid refrigerant.
- peak EPG demand i.e., mid to late afternoon
- warm vapor phase refrigerant circulates through the ice freezing/discharging coils and melts the ice, providing a refrigerant condensing function.
- the coils act as an evaporator, forming ice and storing energy during one time period.
- refrigerant circulates through the coils and melts the ice, providing a refrigerant condensing function.
- This energy storage and discharge methodology is known as ice-on-coil, inside-melt.
- the system is controlled by the TES controller 148 , which uses preprogrammed time periods, which are easily predicted to serve useful time periods, and unlikely to change significantly over time.
- Operating patterns may be preprogrammed into the TES controller 148 for periodic switching to the stored energy state when the EPG has historically been under stress due to the utilization of commercial and residential demand between the hours of noon and 6:00 PM. In this manner, the TES controllers 148 switch to a lower power draw state thereby reducing electricity demand to assist in offsetting potentially detrimental excessive load on the EPG.
- This controller 148 connected to the compressor 202 , the liquid refrigerant pump 120 and the valve 222 , manage the optimal timing for producing and delivering the stored energy to the end-user 114 without removing or reducing the performance of the appliance 116 . In this way, the end-user 114 does not realize an interruption or change in power at the point of consumption of the energy.
- This model demonstrates a single appliance application of a utility driven, disaggregated, distributed energy storage system where the distributed energy resource is designed to behave as an offset to the predictable daily electrical demand profile, and then generate a multitude of independent responses to this demand in order to optimize the performance of the entire system of generation, transmission, distribution of power.
- this asset has a large enough storage capacity (or demand management impact duration) as to be able to serve the entire predicted on-peak period.
- Much smaller assets cannot individually provide such service, yet can act in a statistically arranged deployment with other such devices to provide any arbitrary load shape desired.
- the normal power draw from a typical unitary air conditioner is shifted from 3.5-5 KW (under full condenser 203 and compressor 202 operation) to around 300 W, when just the pump 120 and air handler (not shown) are in operation.
- a net reduction of 3.2-4.7 KW is realized with a single appliance 116 .
- the time of this reduction may last anywhere from 1-4 hours depending on the capacity of the TES 146 . Alone, this reduction is negligible to the overall performance of the EPG, but the net cumulative effect of tens of thousands of these appliances 116 , can provide a significant reduction (e.g., hundreds of MW) in the power draw of a community or utility district.
- the disclosed embodiment provides an efficient refrigeration apparatus that provides refrigerant-based thermal energy storage and cooling.
- the system When connected to a condensing unit, the system has the ability to store energy capacity during one time period and provide cooling from the stored energy during a second time period.
- the system requires minimal energy to operate during either time period, and only a fraction of the energy required to operate the system during the first time period is required to operate the system during the second time period using an optional refrigerant pump.
- FIG. 3 illustrates a configuration of an embodiment of a refrigerator with integrated TES that is controlled, so as to shift electric load away from periods of peak demand of an electric power grid.
- the TES refrigerator utilizes an integrated TES 146 unit with TES media 320 used to store thermal energy in the form of a cold single phase or phase change material.
- a compressor 302 being supplied with source electricity 150 at the end-user 114 site, compresses and condenses a refrigerant with condenser 303 and then uses the expansion device 306 to expand the refrigerant in the evaporator 310 (operation mode) or in the TES (charge mode) through the operation of valve 324 .
- the TES refrigerator appliance 132 may be used in discharge mode, by using the cooling stored in the TES media 320 to condense the refrigerant and cycle it through the evaporator 310 using valve 322 and driven by refrigerant pump 320 .
- the TES controller 148 connected to the compressor 302 , liquid refrigerant pump 320 , the valves 322 and 326 , manage the optimal timing for producing and delivering the stored energy to the end-user 114 without removing or reducing the performance of the appliance 132 . In this way, the end-user 114 does not realize an interruption or change in power at the point of consumption of the energy.
- FIG. 4 illustrates a configuration of an embodiment of a hot water heater with integrated TES that is controlled, so as to shift electric load away from periods of peak demand of an electric power grid.
- FIG. 4 shows an embodiment of a heating based appliance 116 with integrated TES that is controlled so as to shift electric load away from periods of peak demand of an electric power grid.
- the TES hot water heater 142 utilizes an integrated TES 146 unit with TES media 420 used to store thermal energy in the form of a hot, single phase or phase change material.
- a heater 411 being supplied with source electricity 150 at the end-user 114 site, heats the hot water 415 in tank 409 , as in a conventional hot water heater, but also utilizes heater 411 to heat a heat transfer material to the TES 146 via valve 422 and pump 120 and returns via valve 424 .
- the TES water heater appliance 142 may be used in discharge mode by using the heat stored in the TES media 420 .
- the heater 411 transfers heat to the TES media 420 .
- the heat is transferred from the TES media 420 to the heat exchanger 410 via valve 424 .
- the heat exchanger 410 transfers heat from the heat transfer material to the hot water and is recirculated back to the TES 146 via valve 422 and pump 120 .
- the TES controller 148 connected to the heater 411 , pump 120 and the valves 422 and 424 , manage the optimal timing for producing and delivering the stored energy to the end-user 114 , without removing or reducing the performance of the appliance 142 . In this way, the end-user 114 does not realize an interruption or change in power at the point of consumption of the energy.
- FIG. 5 illustrates another embodiment of an optimized dwelling where a plurality of appliances are controlled so as to shift electric load away from periods of peak demand of an electric power grid without disruption of service to the end-user of the appliance.
- FIG. 5 an embodiment of a grid level power generation and distribution system with on-site energy storage (battery) and power input to a single user is depicted.
- electricity from the central power generation 102 is delivered to the end-user 114 via the utility managed power transmission network 104 and the utility managed power distribution network 106 .
- the power is delivered through the power meter 112 at the end-users site after being stepped down at the substation 108 and transformer 110 .
- a variety of electric devices that may utilize energy storage (in this embodiment a battery 546 ), are individually controlled with a controller 548 .
- cold-based appliances 516 such as an air conditioner unit 530 , a refrigerator/freezer 532 , a deep storage freezer 534 , a refrigerated vending machine 536 , a water cooler 538 , or any other device utilizing cooling below ambient temperature, is connected to the source electricity 150 and draws power from the grid as needed.
- FIG. 5 depicts a variety of heat-based electric devices (appliances) that may utilize energy storage (in this embodiment battery 546 storage) and are individually controlled with a controller 548 .
- the cumulative effect of these devices may or may not mimic the overall desired “inverted” load shape, intended to be achieved by a deployment of a large number of such appliances; yet when viewed in sufficient numbers, that desired load shape will emerge.
- heat-based appliances 516 such as an oven 540 , a water heater 542 , a furnace or space heater 544 , a clothes dryer 552 or any other device utilizing heating above ambient temperature, is connected to the source electricity 150 and draws power from the grid as needed.
- Each appliance 516 , 518 is equipped with a battery 546 , which is used to provide energy storage to the end-user 114 by supplementing and or replacing the cooling or heating supplied to the appliance by real time grid power.
- the appliance is located within, or in proximity to, the end-user 114 and are supplied with power from the dwelling by on-site power supply lines, although either or both of these devices may receive power from any other source such as the central power generation 102 , distributed energy resources, site generation or the like.
- a plurality of controllers 548 begins to systematically switch the appliances 516 - 518 to a lower power draw state, thereby reducing electricity demand and assist in offsetting this potentially detrimental situation.
- This controller 548 located on the downstream side of the power meter, facilitates the utilization of the stored energy, and managing the optimal timing for producing and delivering the stored energy to the end-user 114 , peak demand can be reduced significantly on the central power generation 102 , in a way that the end-user 114 does not realize an interruption or change in power at the point of consumption of the energy.
- This model demonstrates a utility driven, disaggregated distributed energy storage system where the distributed energy resource is designed to behave as an offset to the predictable daily electrical demand profile, and then generate a multitude of independent responses or this demand in order to optimize the performance of the entire system of generation, transmission, distribution of power.
- all the battery storage appliances will incorporate conventional and well known methods for ways in which to handle the battery charging and discharging, as well as either the conversion back to alternating current, or have dual power AC/DC heaters/coolers.
- any type of electric storage battery 546 may be utilized in the scope of the disclosed embodiments, such as lead-acid, nickel-cadmium, lithium or the like.
- Additional means of energy storage such as chemical or mechanical (e.g., flywheel, compressed gas or the like), may also be utilized within the scope of the disclosed embodiments.
- batteries 546 or TES 146 may additionally be charged by electricity other than that generated by the central power generation 102 .
- solar or wind generated power may be input into the storage means 146 , 546 to charge (or discharge) the appliance in a manner which further decreases (or increases) the draw on the EPG.
- a small photovoltaic cell 560 may be placed on the outside of the end-user 114 dwelling that generates a small (e.g., 100 W) trickle charge, which would charge a battery or TES throughout the day and allow the appliance 116 , 118 , 516 , 518 to power down and offset for a short period of time, possibly as little as a few minutes. This is because the cumulative aggregation of tens of thousands or millions of appliances allows tremendous variability in the type, amount, and duration of the offset, while still providing a substantial benefit that is statistically averaged to maximize EGP performance on a grand scale.
- FIG. 6 is an exemplary graphical depiction of a typical electric utility load profile with an overlay of the same load profile with the influence of electrical offset appliances.
- a typical electric utility load profile is depicted for a single 24-hour time period. This load follows a typical sine wave, which is driven by activity and temperature with the peak power demand being in the 2:00-6:00 PM range.
- the embodiments of the present application reduce peak energy demand by shifting a portion of the energy usage of energy storage appliances to off-peak and storing energy at night or during periods of low EPG activity when electricity generation is cleaner, more efficient, and less expensive. This allows the plurality of appliances to deliver that energy during the peak of the day to provide a reduction of demand by the end-user 114 .
- the energy demand from storage appliances may be a 95-100% reduction from the nominal appliance draw. When aggregated and deployed at scale, the cumulative effect is substantial, improves the efficiency and reliability, thereby enabling a cleaner, smarter and more sustainable power grid.
- the net cumulative reduction in electricity demand for a 200 MW deployment of storage appliances may be controlled to match the easily predicted peak demand load profile.
- the peak load curve for the EPG is significantly reduced at its most critical and vulnerable time shown as the appliance storage discharge offset 604 , and this load is shifted to a period when generation is least stressed and when electricity is often in surplus shown as the appliance storage charge offset 602 .
- the net effect of this technology normalizes the extreme fluctuations by both reducing demand during the peak, and also by transferring this load to the valley. This allows the central power generation 102 to maintain a steadier, more predictable output to the EPG with lower cost, lower emission generation assets.
- This technology particularly benefits regions where wind energy is primarily driven at night. Utilities benefit from a distributed resource that helps offset the need for peak generation, relieves transmission congestion, firms up renewable sources of energy and reduces emissions.
- the end-user 114 (businesses, residences and buildings where the controlled storage units are installed) benefits from lower daytime energy consumption, increased efficiency, lower energy costs, a smaller environmental footprint, and improved comfort.
- FIG. 7 is an exemplary graphical depiction of the peak load portion of the electric utility load profile shown in FIG. 6 , including the overlay of the same load profile with the influence of electrical offset appliances.
- This figure highlights the cumulative reduction of peak load (appliance storage discharge offset 604 ) by a plurality of controlled storage appliances and graphically displays the individual controlled appliance units acting in concert statistically to produce an offset curve that effectively improves anticipated electric power grid conditions thereby accomplishing control by statistical distribution (statistical distribution control).
- the cumulative storage discharge offset 606 is divided into time periods of approximately 15 minutes.
- the period which a particular appliance is utilizing storage to power down may be any time increment and is typically dependent upon the type and function of the appliance.
- a TES water cooler 136 or hot water heater 142 may only have a duty cycle that is 15 minutes per hour, and thus, these units may participate only in a single cumulative storage discharge offset 606 or have time lapses between the active offsets.
- a hot water heater 142 with a typical duty cycle of 15 minutes on and 45 minutes off per hour may utilize storage to offset the on-cycle.
- the hot water heater 142 may show up within the first cumulative storage discharge offset 606 as well as possibly the 5 th , 9 th , 13 th , 17 th , 21 st , 25 th , 29 th and 33 rd offset periods, if the appliance has enough storage capacity. In this manner, a single appliance may have multiple instances of controlled grid influence.
- TES air conditioner 130 may utilize offset storage for multiple consecutive cumulative storage discharge offset 606 periods.
- a TES air conditioner 130 such as depicted in FIG. 2 , may be capable of offsetting a 100% duty cycle for a period of 3-6 hours.
- a single TES air conditioner 130 could offset each and every cumulative storage discharge offset 606 period depicted in FIG. 7 , which start in this example at approximately 12:00 PM, and continue until approximately 8:15 PM.
- the offset initiates with preprogrammed controllers within the end-user 114 site beginning to shift power of the appliance from normal utility electricity to stored energy.
- a total of 1,878,000 units within 36 cumulative storage discharge offset 606 periods are utilized to shift approximately 200 MW of peak electric power from the EPG.
- 4000 of the 1,878,000 units (0.21%)
- initiate a preprogrammed shift to stored energy which has been stored at periods of low EPG demand during the previous 24-hours.
- 8000 units (0.42%) initiate or continue shifting to stored energy, and so on, until at approximately 4:30 PM, nearly 100K appliances (5.3% of all controlled appliances) are being powered with stored energy.
- the individual appliances are controlled by the controller 148 , 548 to act in statistical coordination to produce an offset curve that effectively improves anticipated electric power grid conditions.
- the controller 148 , 548 By involving a very large number of end-users 114 , a statistically significant number of appliance units can significantly affect electric power grid conditions.
- the offset timing does not demand high accuracy, thereby allowing for preprogramming at the factory or elsewhere. Additional processes to increase accuracy may be implemented with the controller 148 , 548 , such as utilizing a universal clock signal (i.e., NIST radio station WWVB), average outdoor temperature maximum at the location of the appliance, manual end-user 114 location entry (e.g., zip code, area code address, state etc. . . . ), AC line condition (voltage, current, frequency etc. . . . ) or any other information that would assist the controller 148 , 548 in increasing the accuracy of that particular appliance's small part in the overall big picture of EPG optimization.
- a universal clock signal i.e., NIST radio station WWVB
- average outdoor temperature maximum at the location of the appliance e.g., zip code, area code address, state etc. . . .
- AC line condition voltage, current, frequency etc. . . .
- a variety of appliance manufacturers could incorporate energy storage into their products with a reasonably priced and straightforward controller 148 , 548 , that, when combined as a plurality of appliances, would reduce electric system peak demands and future capacity requirements for the utilities, while providing a significant cost savings to the utility through avoidance of generating unit additions or purchased power.
- a plurality of controlled storage appliance units, operating within an electric system will produce measurable impacts on the electric utility load shape, clipping peak period loads, filling off-peak valleys and resulting in savings in electric system operating costs, since electric system losses are higher during peak load periods and are lower during off-peak periods.
- the disclosed embodiments counteract this effect by reducing energy requirements during high loss, on-peak periods and using energy during low-loss, off-peak periods, with the net effect being a reduction in total electric system losses and the system will reduce ancillary service requirements of the electric utility or balancing authority, improving electric system power factor and in turn reducing reactive power requirements. Therefore, appliances and their associated controllers and settings could be used to address not only peak demand, but other grid parameters of interest as well. Furthermore, the solution, being independent of any on-line communications, also improves homeland and grid security by not being part of a communication network.
- adding the desired statistical distributed load shape to the intelligence of the distributed controller allows each controller (or all such controllers) to pick a different start time relative to the reference point, with appropriate statistical distribution, on a daily basis. This improves the robustness of the solution, improving the likelihood that the desired load shape is met, on average, for a maximum amount of time, without oversight intervention.
- different assets, classes of assets, or application of assets may have different statistical distribution curves. For example, this would allow residential appliances, that are unlikely to run during the overall peak, to address the residential peak, which has a unique load shape.
- These load shapes can be defined in coordination with one another, and modified over time without sacrificing the benefits of the installed base.
- controller and control algorithm herein described as statistical distribution control, may be applied to any asset.
- Plug-in Electric Vehicle (PEV) 560 charging while its natural shape may not match the peak load shape or its desired inverse, can still be interrupted or enabled according to the shape desired, in small quantities, thus contributing favorably to the goals and asset base of SDC nonetheless.
- PEV Plug-in Electric Vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Economics (AREA)
- Human Resources & Organizations (AREA)
- Power Engineering (AREA)
- Strategic Management (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Theoretical Computer Science (AREA)
- Marketing (AREA)
- General Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Game Theory and Decision Science (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
-
- “It is the policy of the United States to support the modernization of the Nation's electricity transmission and distribution system to maintain a reliable and secure electricity infrastructure that can meet future demand growth and to achieve each of the following, which together characterize a Smart Grid:
- (1) Increased use of digital information and controls technology to improve reliability, security, and efficiency of the electric grid.
- (2) Dynamic optimization of grid operations and resources, with full cyber-security.
- (3) Deployment and integration of distributed resources and generation, including renewable resources.
- (4) Development and incorporation of demand response, demand-side resources, and energy-efficiency resources.
- (5) Deployment of “smart” technologies (real-time, automated, interactive technologies that optimize the physical operation of appliances and consumer devices) for metering, communications concerning grid operations and status, and distribution automation.
- (6) Integration of “smart” appliances and consumer devices.
- (7) Deployment and integration of advanced electricity storage and peak-shaving technologies, including plug-in electric and hybrid electric vehicles, and thermal-storage air conditioning.
- (8) Provision to consumers of timely information and control options.
- (9) Development of standards for communication and interoperability of appliances and equipment connected to the electric grid, including the infrastructure serving the grid.
- (10) Identification and lowering of unreasonable or unnecessary barriers to adoption of smart grid technologies, practices, and services.”
-
- i. The level of infrastructure required to build out is enormous and will take time.
- ii. The control algorithms for real-time control of potentially millions of assets is difficult, due to bandwidth, lack of predictable behavior on end-use, managing end-use restrictions or constraints, and an overwhelming amount of data, to name a few.
- iii. The potential contribution from small devices is too small to warrant communication overhead, yet these smaller assets represent the bulk of energy usage.
- iv. The potential individual contribution from small devices cannot individually match or adhere to the longer timeframe of influence required to address on-peak or off-peak grid issues.
Claims (42)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/481,375 US9203239B2 (en) | 2011-05-26 | 2012-05-25 | System and method for improving grid efficiency utilizing statistical distribution control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161490308P | 2011-05-26 | 2011-05-26 | |
US13/481,375 US9203239B2 (en) | 2011-05-26 | 2012-05-25 | System and method for improving grid efficiency utilizing statistical distribution control |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130134780A1 US20130134780A1 (en) | 2013-05-30 |
US9203239B2 true US9203239B2 (en) | 2015-12-01 |
Family
ID=47217787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/481,375 Expired - Fee Related US9203239B2 (en) | 2011-05-26 | 2012-05-25 | System and method for improving grid efficiency utilizing statistical distribution control |
Country Status (4)
Country | Link |
---|---|
US (1) | US9203239B2 (en) |
EP (1) | EP2715478A4 (en) |
JP (1) | JP2014535253A (en) |
WO (1) | WO2012162646A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140309800A1 (en) * | 2011-08-02 | 2014-10-16 | Synaptic Power Inc. | System and a method of controlling a plurality of devices |
US10935948B2 (en) | 2011-08-02 | 2021-03-02 | Synaptic Power Inc. | System and method for managing interactions between a plurality of devices |
US11196258B2 (en) | 2018-08-03 | 2021-12-07 | Sacramento Municipal Utility District | Energy control and storage system for controlling power based on a load shape |
US20230023089A1 (en) * | 2011-07-25 | 2023-01-26 | Clean Power Research, L.L.C. | System and method for seasonal energy consumption determination using verified energy loads with the aid of a digital computer |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012106709A2 (en) | 2011-02-04 | 2012-08-09 | Myenersave, Inc. | Systems and methods for improving the accuracy of appliance level disaggregation in non-intrusive appliance load monitoring techniques |
CN103748620A (en) | 2011-04-22 | 2014-04-23 | 艾克潘尔基公司 | Systems and methods for analyzing energy usage |
DE102011077660A1 (en) * | 2011-06-16 | 2012-12-20 | Meiko Maschinenbau Gmbh & Co. Kg | Cleaning device with energy storage |
US20140200725A1 (en) * | 2011-09-12 | 2014-07-17 | Koninklijke Philips N.V. | Device and method for disaggregating a periodic input signal pattern |
CA2856887C (en) | 2011-11-28 | 2021-06-15 | Expanergy, Llc | Energy search engine with autonomous control |
WO2013134455A1 (en) * | 2012-03-07 | 2013-09-12 | Siemens Corporation | Online heurisitc algorithm for combined cooling heating and power plant optimization |
GB2500618B (en) * | 2012-03-26 | 2015-07-15 | Basic Holdings | Storage heaters |
AU2013251524B2 (en) | 2012-04-25 | 2016-05-12 | Bidgely Inc. | Energy disaggregation techniques for low resolution whole-house energy consumption data |
US9406094B2 (en) * | 2012-08-14 | 2016-08-02 | Stem Inc. | Method and apparatus for delivering power using external data |
US9569804B2 (en) * | 2012-08-27 | 2017-02-14 | Gridium, Inc. | Systems and methods for energy consumption and energy demand management |
KR20140088829A (en) * | 2013-01-03 | 2014-07-11 | 한양대학교 에리카산학협력단 | Smart grid system and method of distributing resources in the same |
DE102013004333A1 (en) * | 2013-03-14 | 2014-09-18 | CUT! Energy GmbH | Method for changing the power flow in an electrical energy supply network |
DE102013004334A1 (en) * | 2013-03-14 | 2014-09-18 | CUT! Energy GmbH | Method for changing the power flow in an electrical energy supply network |
EP2852023B1 (en) * | 2013-09-18 | 2016-11-02 | Alcatel Lucent | Methods of controlling or at least partly controlling energy consumption and energy provision in different hierachical levels of a power grid |
US9401610B2 (en) | 2013-09-19 | 2016-07-26 | Honda Motor Co., Ltd. | System and method for electric vehicle battery charging |
US9846886B2 (en) * | 2013-11-07 | 2017-12-19 | Palo Alto Research Center Incorporated | Strategic modeling for economic optimization of grid-tied energy assets |
WO2015109207A1 (en) | 2014-01-17 | 2015-07-23 | Stc. Unm | Systems and methods for integrating distributed energy resources |
US9953285B2 (en) * | 2014-01-22 | 2018-04-24 | Fujitsu Limited | Residential and small and medium business demand response |
US9917447B2 (en) | 2014-03-13 | 2018-03-13 | Enphase Energy, Inc. | Systems and methods for synchronizing an appliance load to a local power generating capability |
WO2015175362A1 (en) * | 2014-05-10 | 2015-11-19 | Scuderi Group, Inc. | Power generation systems and methods |
US20150364919A1 (en) * | 2014-06-12 | 2015-12-17 | Cupertino Electric Inc. | Method and System for Interfacing Inverter-Based Power Generator to Electric Power Grid |
US9948101B2 (en) * | 2014-07-03 | 2018-04-17 | Green Charge Networks Llc | Passive peak reduction systems and methods |
CN104578120B (en) * | 2014-12-11 | 2017-02-22 | 国家电网公司 | Optimal configuration method for distributed energy storage system |
US10349240B2 (en) * | 2015-06-01 | 2019-07-09 | Huawei Technologies Co., Ltd. | Method and apparatus for dynamically controlling customer traffic in a network under demand-based charging |
US10374965B2 (en) | 2015-06-01 | 2019-08-06 | Huawei Technologies Co., Ltd. | Systems and methods for managing network traffic with a network operator |
US10200543B2 (en) | 2015-06-01 | 2019-02-05 | Huawei Technologies Co., Ltd. | Method and apparatus for customer service management for a wireless communication network |
WO2016201392A1 (en) * | 2015-06-12 | 2016-12-15 | Enphase Energy, Inc. | Method and apparatus for control of intelligent loads in microgrids |
US10948937B2 (en) * | 2015-09-21 | 2021-03-16 | Peak Power, Inc. | Systems and methods for creating load peaks and valleys |
US20170089601A1 (en) * | 2015-09-30 | 2017-03-30 | Nec Laboratories America, Inc. | Mixed integer optimization based sequencing of a system of chillers |
US10999652B2 (en) | 2017-05-24 | 2021-05-04 | Engie Storage Services Na Llc | Energy-based curtailment systems and methods |
JP7252906B2 (en) * | 2017-05-25 | 2023-04-05 | オリガミ エナジー リミテッド | Power distribution control by resource assimilation and optimization |
US10658841B2 (en) | 2017-07-14 | 2020-05-19 | Engie Storage Services Na Llc | Clustered power generator architecture |
GB2594034B (en) | 2017-07-28 | 2022-09-14 | Univ Florida State Res Found | Optimal control technology for distributed energy resources |
WO2019050554A1 (en) * | 2017-09-11 | 2019-03-14 | Trinity Marine Products, Inc. | Ice battery vessel and cold energy storage |
US11384994B2 (en) * | 2017-09-25 | 2022-07-12 | Nostromo Ltd. | Thermal energy storage array |
CN109003002A (en) * | 2018-08-14 | 2018-12-14 | 中国南方电网有限责任公司超高压输电公司 | A kind of construction method of the technology evaluation criterion system of energy-saving power transmission network |
CN109146320B (en) * | 2018-09-12 | 2021-06-04 | 河海大学 | Virtual power plant optimal scheduling method considering power distribution network safety |
BR112021005516A2 (en) * | 2018-09-25 | 2021-06-22 | Nostromo Ltd. | container and thermal storage system, and method for heat exchange |
JP7067497B2 (en) * | 2019-01-23 | 2022-05-16 | トヨタ自動車株式会社 | Information processing equipment, vehicle management system, and information processing method |
US12266934B2 (en) | 2019-07-03 | 2025-04-01 | Eaton Intelligent Power Limited | Demand response of loads having thermal reserves |
CN110956329B (en) * | 2019-12-02 | 2023-04-25 | 国网浙江省电力有限公司绍兴供电公司 | A Load Forecasting Method Based on Distributed Photovoltaic and Electric Vehicle Spatiotemporal Distribution |
CN110880775B (en) * | 2019-12-10 | 2021-04-02 | 国电南瑞科技股份有限公司 | Game model-based frequency-stabilized load shedding strategy optimization method and device |
CN112818536A (en) * | 2021-01-28 | 2021-05-18 | 江西江铃集团新能源汽车有限公司 | Power system efficiency evaluation method and device, storage medium and electric vehicle |
CN113541175A (en) * | 2021-07-14 | 2021-10-22 | 福建星云电子股份有限公司 | Electricity supplementing method and system for electricity changing station based on peak clipping and valley filling |
CN114022046B (en) * | 2021-11-30 | 2023-04-18 | 国网四川省电力公司电力科学研究院 | Comprehensive energy system optimization scheduling method considering traffic balance |
CN115000848A (en) * | 2022-05-12 | 2022-09-02 | 宜兴市宜能实业有限公司 | Distributed energy system and energy scheduling method |
Citations (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1969187A (en) | 1932-02-19 | 1934-08-07 | Clifton E Schutt | Heat balancing system |
US2512576A (en) | 1947-10-29 | 1950-06-20 | Mojonnier Bros Co Inc | Refrigerating method and apparatus |
US2661576A (en) | 1946-12-24 | 1953-12-08 | Sylvania Electric Prod | Machine for holding and sealing coaxially supported parts |
US2737027A (en) | 1950-11-04 | 1956-03-06 | Air conditioning structure | |
DE1015019B (en) | 1953-06-11 | 1957-09-05 | Ideal Standard | Cooling system for direct evaporation with storage |
US3156101A (en) | 1963-03-04 | 1964-11-10 | Tranter Mfg Inc | Truck refrigeration system |
US3746084A (en) | 1970-04-16 | 1973-07-17 | J Ostbo | Heat-exchanger comprising a plurality of helically wound pipe elements |
US4073306A (en) | 1977-01-27 | 1978-02-14 | Yarway Corporation | Steam trap |
US4129014A (en) | 1977-07-22 | 1978-12-12 | Chubb Talbot A | Refrigeration storage and cooling tank |
US4176525A (en) | 1977-12-21 | 1979-12-04 | Wylain, Inc. | Combined environmental and refrigeration system |
US4274849A (en) | 1974-11-21 | 1981-06-23 | Campagnie Francaise d'Etudes et de Construction Technip | Method and plant for liquefying a gas with low boiling temperature |
US4280335A (en) | 1979-06-12 | 1981-07-28 | Tyler Refrigeration Corporation | Icebank refrigerating and cooling systems for supermarkets |
US4291757A (en) | 1980-05-28 | 1981-09-29 | Westinghouse Electric Corp. | Multiple heat pump and heat balancing system for multi-stage material processing |
US4294078A (en) | 1977-04-26 | 1981-10-13 | Calmac Manufacturing Corporation | Method and system for the compact storage of heat and coolness by phase change materials |
US4313309A (en) | 1979-11-23 | 1982-02-02 | Lehman Jr Robert D | Two-stage refrigerator |
US4403645A (en) | 1978-07-12 | 1983-09-13 | Calmac Manufacturing Corporation | Compact storage of seat and coolness by phase change materials while preventing stratification |
JPS58217133A (en) | 1982-06-11 | 1983-12-17 | Yazaki Corp | heat pump system |
US4484449A (en) | 1983-02-15 | 1984-11-27 | Ernest Muench | Low temperature fail-safe cascade cooling apparatus |
JPS6036835A (en) | 1983-08-08 | 1985-02-26 | Furukawa Electric Co Ltd:The | Ice storing type air conditioning and cooling system |
US4565069A (en) | 1984-11-05 | 1986-01-21 | Maccracken Calvin D | Method of cyclic air conditioning with cogeneration of ice |
US4609036A (en) | 1985-08-07 | 1986-09-02 | The Dow Chemical Company | Bulk heat or cold storage device for thermal energy storage compounds |
US4608836A (en) | 1986-02-10 | 1986-09-02 | Calmac Manufacturing Corporation | Multi-mode off-peak storage heat pump |
US4619317A (en) | 1983-06-08 | 1986-10-28 | Hoechst Aktiengesellschaft | Heat exchanger |
US4656839A (en) | 1984-01-06 | 1987-04-14 | Imperial Chemical Industries Plc | Heat pumps |
US4735064A (en) | 1986-11-17 | 1988-04-05 | Fischer Harry C | Energy storage container and system |
US4745767A (en) | 1984-07-26 | 1988-05-24 | Sanyo Electric Co., Ltd. | System for controlling flow rate of refrigerant |
US4893476A (en) | 1988-08-12 | 1990-01-16 | Phenix Heat Pump Systems, Inc. | Three function heat pump system with one way receiver |
US4916916A (en) | 1988-11-14 | 1990-04-17 | Fischer Harry C | Energy storage apparatus and method |
US4921100A (en) | 1989-09-20 | 1990-05-01 | Chrysler Corporation | Rack latch assembly |
US4940079A (en) | 1988-08-11 | 1990-07-10 | Phenix Heat Pump Systems, Inc. | Optimal control system for refrigeration-coupled thermal energy storage |
US4964279A (en) | 1989-06-07 | 1990-10-23 | Baltimore Aircoil Company | Cooling system with supplemental thermal storage |
US5005368A (en) | 1990-02-07 | 1991-04-09 | Calmac Manufacturing Corporation | Coolness storage air conditioner appliance |
US5036904A (en) | 1989-12-04 | 1991-08-06 | Chiyoda Corporation | Latent heat storage tank |
US5079929A (en) | 1979-07-31 | 1992-01-14 | Alsenz Richard H | Multi-stage refrigeration apparatus and method |
US5109920A (en) | 1987-05-25 | 1992-05-05 | Ice-Cel Pty. Limited | Method of manufacturing heat exchangers |
US5211029A (en) | 1991-05-28 | 1993-05-18 | Lennox Industries Inc. | Combined multi-modal air conditioning apparatus and negative energy storage system |
US5237832A (en) | 1992-06-11 | 1993-08-24 | Alston Gerald A | Combined marine refrigerating and air conditioning system using thermal storage |
US5241829A (en) | 1989-11-02 | 1993-09-07 | Osaka Prefecture Government | Method of operating heat pump |
US5255526A (en) | 1992-03-18 | 1993-10-26 | Fischer Harry C | Multi-mode air conditioning unit with energy storage system |
US5307642A (en) | 1993-01-21 | 1994-05-03 | Lennox Industries Inc. | Refrigerant management control and method for a thermal energy storage system |
US5323618A (en) | 1992-03-19 | 1994-06-28 | Mitsubishi Denki Kabushiki Kaisha | Heat storage type air conditioning apparatus |
US5335508A (en) | 1991-08-19 | 1994-08-09 | Tippmann Edward J | Refrigeration system |
US5366153A (en) | 1993-01-06 | 1994-11-22 | Consolidated Natural Gas Service Company, Inc. | Heat pump system with refrigerant isolation and heat storage |
US5383339A (en) | 1992-12-10 | 1995-01-24 | Baltimore Aircoil Company, Inc. | Supplemental cooling system for coupling to refrigerant-cooled apparatus |
US5423378A (en) | 1994-03-07 | 1995-06-13 | Dunham-Bush | Heat exchanger element and heat exchanger using same |
US5467812A (en) | 1994-08-19 | 1995-11-21 | Lennox Industries Inc. | Air conditioning system with thermal energy storage and load leveling capacity |
JPH0814628B2 (en) | 1986-10-22 | 1996-02-14 | ウーテーアー・エス・アー・フアブリック・デボーシュ | Watch side band |
JPH08226682A (en) | 1995-02-17 | 1996-09-03 | Chubu Electric Power Co Inc | Ice heat storage type air conditioner |
US5598720A (en) | 1995-08-02 | 1997-02-04 | Calmac Manufacturing Corporation | Air bubble heat transfer enhancement system coolness storage apparatus |
US5598716A (en) | 1994-07-18 | 1997-02-04 | Ebara Corporation | Ice thermal storage refrigerator unit |
US5647225A (en) | 1995-06-14 | 1997-07-15 | Fischer; Harry C. | Multi-mode high efficiency air conditioning system |
US5678626A (en) | 1994-08-19 | 1997-10-21 | Lennox Industries Inc. | Air conditioning system with thermal energy storage and load leveling capacity |
US5682752A (en) | 1995-07-11 | 1997-11-04 | Lennox Industries Inc. | Refrigerant management control and method for a thermal energy storage system |
EP0641978B1 (en) | 1993-09-04 | 1998-01-07 | Star Refrigeration Ltd. | Refrigeration apparatus and method |
US5715202A (en) | 1994-12-22 | 1998-02-03 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US5720178A (en) | 1996-07-15 | 1998-02-24 | Calmac Manufacturing Corporation | Refrigeration system with isolation of vapor component from compressor |
US5740679A (en) | 1995-01-13 | 1998-04-21 | Daikin Industries, Ltd. | Binary refrigerating apparatus |
US5755104A (en) | 1995-12-28 | 1998-05-26 | Store Heat And Produce Energy, Inc. | Heating and cooling systems incorporating thermal storage, and defrost cycles for same |
JPH10339483A (en) | 1997-06-06 | 1998-12-22 | Daikin Ind Ltd | Thermal storage device |
DE29823175U1 (en) | 1998-12-29 | 1999-06-10 | Dietzsch, Michael, Prof. Dr.-Ing., 09126 Chemnitz | Climate room |
US5927101A (en) | 1998-02-12 | 1999-07-27 | Samsung Electronics Co., Ltd. | Air conditioner having a low-resistance oil separation unit |
US5992160A (en) | 1998-05-11 | 1999-11-30 | Carrier Corporation | Make-up air energy recovery ventilator |
US6112543A (en) | 1998-08-27 | 2000-09-05 | Behr Gmbh & Co. | Device for cooling an interior compartment of a motor vehicle |
US6131401A (en) | 1997-04-08 | 2000-10-17 | Daikin Industries, Ltd. | Refrigerating system |
US6131398A (en) | 1995-11-07 | 2000-10-17 | Alfa Laval Agri Ab | Apparatus and method for cooling a product |
US6158499A (en) | 1998-12-23 | 2000-12-12 | Fafco, Inc. | Method and apparatus for thermal energy storage |
DE19831127A1 (en) | 1998-07-11 | 2001-03-15 | Baelz Gmbh Helmut | Prediction-controlled air conditioning system has communications device connected to regulator for specifying demand value, accepting future weather conditions information signals |
US6212898B1 (en) | 1997-06-03 | 2001-04-10 | Daikin Industries, Ltd. | Refrigeration system |
US6237358B1 (en) | 1998-12-25 | 2001-05-29 | Daikin Industries, Ltd. | Refrigeration system |
US6247522B1 (en) | 1998-11-04 | 2001-06-19 | Baltimore Aircoil Company, Inc. | Heat exchange members for thermal storage apparatus |
US6250098B1 (en) | 2000-02-08 | 2001-06-26 | Chung-Ping Huang | Support frame for an ice-storing tank for an air conditioner with an ice-storing mode |
US6260376B1 (en) | 1998-12-23 | 2001-07-17 | Valeo Klimasysteme Gmbh | Air conditioning installation for a motor vehicle with a cold reservoir |
US6298683B1 (en) | 1998-12-25 | 2001-10-09 | Daikin Industries, Ltd. | Refrigerating device |
US6327871B1 (en) | 2000-04-14 | 2001-12-11 | Alexander P. Rafalovich | Refrigerator with thermal storage |
US6370908B1 (en) | 1996-11-05 | 2002-04-16 | Tes Technology, Inc. | Dual evaporator refrigeration unit and thermal energy storage unit therefore |
DE10057834A1 (en) | 2000-11-22 | 2002-06-06 | Ingo Brauns | Method for controlling energy consumption of a heating and/or cooling system determines a control value using an energy consumption value normalized to the difference between the internal temperature and external temperature |
US20020124583A1 (en) | 2001-03-12 | 2002-09-12 | Isao Satoh | Dynamic type ice cold storage method and system |
US6460355B1 (en) | 1999-08-31 | 2002-10-08 | Guy T. Trieskey | Environmental test chamber fast cool down and heat up system |
US6474089B1 (en) | 2001-10-01 | 2002-11-05 | Sih-Li Chen | Natural air-conditioning system for a car |
US20020162342A1 (en) | 2001-05-01 | 2002-11-07 | Kuo-Liang Weng | Method for controlling air conditioner/heater by thermal storage |
US20040007011A1 (en) | 2002-07-09 | 2004-01-15 | Masaaki Tanaka | Cooling system with adsorption refrigerator |
EP1441193A1 (en) | 2003-01-21 | 2004-07-28 | Takata Corporation | Initiator and gas generator |
US20040221589A1 (en) | 2003-05-09 | 2004-11-11 | Serge Dube | Energy storage with refrigeration systems and method |
WO2005001345A1 (en) | 2003-06-25 | 2005-01-06 | Star Refrigeration Limited | Improved cooling system |
USD501490S1 (en) | 2003-12-16 | 2005-02-01 | Ice Energy, Llc | Thermal energy storage module |
US20050081557A1 (en) | 2003-10-15 | 2005-04-21 | Mcrell Michael W. | High efficiency refrigerant based energy storage and cooling system |
US6895773B2 (en) | 2000-05-15 | 2005-05-24 | Peugeot Citroen Automobiles Sa | Heat pump apparatus for regulating motor vehicle temperature |
US20050132734A1 (en) | 2003-10-15 | 2005-06-23 | Ramachandran Narayanamurthy | Refrigeration apparatus |
US20050262870A1 (en) | 2004-05-25 | 2005-12-01 | Ramachandran Narayanamurthy | Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability |
WO2006023716A1 (en) | 2004-08-18 | 2006-03-02 | Ice Energy, Inc | Thermal energy storage and cooling system with secondary refrigerant isolation |
US20060199051A1 (en) * | 2005-03-07 | 2006-09-07 | Dingrong Bai | Combined heat and power system |
US7152413B1 (en) | 2005-12-08 | 2006-12-26 | Anderson R David | Thermal energy transfer unit and method |
US7210308B2 (en) | 2000-04-21 | 2007-05-01 | Matsushita Refrigeration Company | Refrigerator |
US20070095093A1 (en) | 2003-10-15 | 2007-05-03 | Ice Energy, Llc | Refrigeration apparatus |
US20080034760A1 (en) | 2006-08-10 | 2008-02-14 | Ice Energy, Inc. | Thermal energy storage and cooling system with isolated external melt cooling |
US7363772B2 (en) | 2004-08-18 | 2008-04-29 | Ice Energy, Inc. | Thermal energy storage and cooling system with secondary refrigerant isolation |
US7388348B2 (en) | 2005-07-15 | 2008-06-17 | Mattichak Alan D | Portable solar energy system |
US20080141699A1 (en) | 2006-12-14 | 2008-06-19 | Alexander Pinkus Rafalovich | Ice producing apparatus and method |
US7421846B2 (en) | 2004-08-18 | 2008-09-09 | Ice Energy, Inc. | Thermal energy storage and cooling system with gravity fed secondary refrigerant isolation |
US20090133412A1 (en) | 2007-11-28 | 2009-05-28 | Ice Energy, Inc. | Thermal energy storage and cooling system with multiple cooling loops utilizing a common evaporator coil |
US7543455B1 (en) | 2008-06-06 | 2009-06-09 | Chengjun Julian Chen | Solar-powered refrigerator using a mixture of glycerin, alcohol and water to store energy |
US7690212B2 (en) | 2004-04-22 | 2010-04-06 | Ice Energy, Inc. | Mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system |
US20100170286A1 (en) | 2007-06-22 | 2010-07-08 | High Technology Partecipation S.A. | Refrigerator for fresh products with temperature leveling means |
US20100179704A1 (en) | 2009-01-14 | 2010-07-15 | Integral Analytics, Inc. | Optimization of microgrid energy use and distribution |
US7783390B2 (en) * | 2005-06-06 | 2010-08-24 | Gridpoint, Inc. | Method for deferring demand for electrical energy |
US7836721B2 (en) | 2004-07-23 | 2010-11-23 | Suntory Holdings Limited | Cooling system |
US20110011119A1 (en) | 2009-07-15 | 2011-01-20 | Whirlpool Corporation | High efficiency refrigerator |
US8015836B2 (en) | 2007-03-27 | 2011-09-13 | Mitsubishi Electric Corporation | Heat pump system |
US20120221164A1 (en) * | 2009-11-12 | 2012-08-30 | Panasonic Corporation | Power controller for electric devices, and telephone |
US20130013121A1 (en) * | 2011-02-24 | 2013-01-10 | Henze Gregor P | Integration of commercial building operations with electric system operations and markets |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4142837B2 (en) * | 1999-12-22 | 2008-09-03 | 株式会社電制 | Power use device and power control method |
US7149605B2 (en) * | 2003-06-13 | 2006-12-12 | Battelle Memorial Institute | Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices |
US7010363B2 (en) * | 2003-06-13 | 2006-03-07 | Battelle Memorial Institute | Electrical appliance energy consumption control methods and electrical energy consumption systems |
US8234876B2 (en) * | 2003-10-15 | 2012-08-07 | Ice Energy, Inc. | Utility managed virtual power plant utilizing aggregated thermal energy storage |
JP5483409B2 (en) * | 2009-07-15 | 2014-05-07 | 四国電力株式会社 | Current carrying load leveling method and apparatus |
-
2012
- 2012-05-25 EP EP12789764.3A patent/EP2715478A4/en not_active Withdrawn
- 2012-05-25 US US13/481,375 patent/US9203239B2/en not_active Expired - Fee Related
- 2012-05-25 JP JP2014512158A patent/JP2014535253A/en active Pending
- 2012-05-25 WO PCT/US2012/039669 patent/WO2012162646A1/en unknown
Patent Citations (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1969187A (en) | 1932-02-19 | 1934-08-07 | Clifton E Schutt | Heat balancing system |
US2661576A (en) | 1946-12-24 | 1953-12-08 | Sylvania Electric Prod | Machine for holding and sealing coaxially supported parts |
US2512576A (en) | 1947-10-29 | 1950-06-20 | Mojonnier Bros Co Inc | Refrigerating method and apparatus |
US2737027A (en) | 1950-11-04 | 1956-03-06 | Air conditioning structure | |
DE1015019B (en) | 1953-06-11 | 1957-09-05 | Ideal Standard | Cooling system for direct evaporation with storage |
US3156101A (en) | 1963-03-04 | 1964-11-10 | Tranter Mfg Inc | Truck refrigeration system |
US3746084A (en) | 1970-04-16 | 1973-07-17 | J Ostbo | Heat-exchanger comprising a plurality of helically wound pipe elements |
US4274849A (en) | 1974-11-21 | 1981-06-23 | Campagnie Francaise d'Etudes et de Construction Technip | Method and plant for liquefying a gas with low boiling temperature |
US4073306A (en) | 1977-01-27 | 1978-02-14 | Yarway Corporation | Steam trap |
US4294078A (en) | 1977-04-26 | 1981-10-13 | Calmac Manufacturing Corporation | Method and system for the compact storage of heat and coolness by phase change materials |
US4129014A (en) | 1977-07-22 | 1978-12-12 | Chubb Talbot A | Refrigeration storage and cooling tank |
US4176525A (en) | 1977-12-21 | 1979-12-04 | Wylain, Inc. | Combined environmental and refrigeration system |
US4403645A (en) | 1978-07-12 | 1983-09-13 | Calmac Manufacturing Corporation | Compact storage of seat and coolness by phase change materials while preventing stratification |
US4280335A (en) | 1979-06-12 | 1981-07-28 | Tyler Refrigeration Corporation | Icebank refrigerating and cooling systems for supermarkets |
US5079929A (en) | 1979-07-31 | 1992-01-14 | Alsenz Richard H | Multi-stage refrigeration apparatus and method |
US4313309A (en) | 1979-11-23 | 1982-02-02 | Lehman Jr Robert D | Two-stage refrigerator |
US4291757A (en) | 1980-05-28 | 1981-09-29 | Westinghouse Electric Corp. | Multiple heat pump and heat balancing system for multi-stage material processing |
JPS58217133A (en) | 1982-06-11 | 1983-12-17 | Yazaki Corp | heat pump system |
US4484449A (en) | 1983-02-15 | 1984-11-27 | Ernest Muench | Low temperature fail-safe cascade cooling apparatus |
US4619317A (en) | 1983-06-08 | 1986-10-28 | Hoechst Aktiengesellschaft | Heat exchanger |
JPS6036835A (en) | 1983-08-08 | 1985-02-26 | Furukawa Electric Co Ltd:The | Ice storing type air conditioning and cooling system |
US4656839A (en) | 1984-01-06 | 1987-04-14 | Imperial Chemical Industries Plc | Heat pumps |
US4745767A (en) | 1984-07-26 | 1988-05-24 | Sanyo Electric Co., Ltd. | System for controlling flow rate of refrigerant |
US4565069A (en) | 1984-11-05 | 1986-01-21 | Maccracken Calvin D | Method of cyclic air conditioning with cogeneration of ice |
US4609036A (en) | 1985-08-07 | 1986-09-02 | The Dow Chemical Company | Bulk heat or cold storage device for thermal energy storage compounds |
US4608836A (en) | 1986-02-10 | 1986-09-02 | Calmac Manufacturing Corporation | Multi-mode off-peak storage heat pump |
JPH0814628B2 (en) | 1986-10-22 | 1996-02-14 | ウーテーアー・エス・アー・フアブリック・デボーシュ | Watch side band |
US4735064A (en) | 1986-11-17 | 1988-04-05 | Fischer Harry C | Energy storage container and system |
US5109920A (en) | 1987-05-25 | 1992-05-05 | Ice-Cel Pty. Limited | Method of manufacturing heat exchangers |
US4940079A (en) | 1988-08-11 | 1990-07-10 | Phenix Heat Pump Systems, Inc. | Optimal control system for refrigeration-coupled thermal energy storage |
US4893476A (en) | 1988-08-12 | 1990-01-16 | Phenix Heat Pump Systems, Inc. | Three function heat pump system with one way receiver |
US4916916A (en) | 1988-11-14 | 1990-04-17 | Fischer Harry C | Energy storage apparatus and method |
US4964279A (en) | 1989-06-07 | 1990-10-23 | Baltimore Aircoil Company | Cooling system with supplemental thermal storage |
US4921100A (en) | 1989-09-20 | 1990-05-01 | Chrysler Corporation | Rack latch assembly |
US5241829A (en) | 1989-11-02 | 1993-09-07 | Osaka Prefecture Government | Method of operating heat pump |
US5036904A (en) | 1989-12-04 | 1991-08-06 | Chiyoda Corporation | Latent heat storage tank |
US5005368A (en) | 1990-02-07 | 1991-04-09 | Calmac Manufacturing Corporation | Coolness storage air conditioner appliance |
US5211029A (en) | 1991-05-28 | 1993-05-18 | Lennox Industries Inc. | Combined multi-modal air conditioning apparatus and negative energy storage system |
US5335508A (en) | 1991-08-19 | 1994-08-09 | Tippmann Edward J | Refrigeration system |
US5255526A (en) | 1992-03-18 | 1993-10-26 | Fischer Harry C | Multi-mode air conditioning unit with energy storage system |
US5323618A (en) | 1992-03-19 | 1994-06-28 | Mitsubishi Denki Kabushiki Kaisha | Heat storage type air conditioning apparatus |
US5237832A (en) | 1992-06-11 | 1993-08-24 | Alston Gerald A | Combined marine refrigerating and air conditioning system using thermal storage |
US5383339A (en) | 1992-12-10 | 1995-01-24 | Baltimore Aircoil Company, Inc. | Supplemental cooling system for coupling to refrigerant-cooled apparatus |
US5366153A (en) | 1993-01-06 | 1994-11-22 | Consolidated Natural Gas Service Company, Inc. | Heat pump system with refrigerant isolation and heat storage |
US5307642A (en) | 1993-01-21 | 1994-05-03 | Lennox Industries Inc. | Refrigerant management control and method for a thermal energy storage system |
EP0641978B1 (en) | 1993-09-04 | 1998-01-07 | Star Refrigeration Ltd. | Refrigeration apparatus and method |
US5423378A (en) | 1994-03-07 | 1995-06-13 | Dunham-Bush | Heat exchanger element and heat exchanger using same |
US5598716A (en) | 1994-07-18 | 1997-02-04 | Ebara Corporation | Ice thermal storage refrigerator unit |
US5678626A (en) | 1994-08-19 | 1997-10-21 | Lennox Industries Inc. | Air conditioning system with thermal energy storage and load leveling capacity |
US5467812A (en) | 1994-08-19 | 1995-11-21 | Lennox Industries Inc. | Air conditioning system with thermal energy storage and load leveling capacity |
US5715202A (en) | 1994-12-22 | 1998-02-03 | Kabushiki Kaisha Toshiba | Semiconductor memory device |
US5740679A (en) | 1995-01-13 | 1998-04-21 | Daikin Industries, Ltd. | Binary refrigerating apparatus |
JPH08226682A (en) | 1995-02-17 | 1996-09-03 | Chubu Electric Power Co Inc | Ice heat storage type air conditioner |
US5647225A (en) | 1995-06-14 | 1997-07-15 | Fischer; Harry C. | Multi-mode high efficiency air conditioning system |
US5682752A (en) | 1995-07-11 | 1997-11-04 | Lennox Industries Inc. | Refrigerant management control and method for a thermal energy storage system |
US5598720A (en) | 1995-08-02 | 1997-02-04 | Calmac Manufacturing Corporation | Air bubble heat transfer enhancement system coolness storage apparatus |
US6131398A (en) | 1995-11-07 | 2000-10-17 | Alfa Laval Agri Ab | Apparatus and method for cooling a product |
US5755104A (en) | 1995-12-28 | 1998-05-26 | Store Heat And Produce Energy, Inc. | Heating and cooling systems incorporating thermal storage, and defrost cycles for same |
US5720178A (en) | 1996-07-15 | 1998-02-24 | Calmac Manufacturing Corporation | Refrigeration system with isolation of vapor component from compressor |
US6370908B1 (en) | 1996-11-05 | 2002-04-16 | Tes Technology, Inc. | Dual evaporator refrigeration unit and thermal energy storage unit therefore |
US6131401A (en) | 1997-04-08 | 2000-10-17 | Daikin Industries, Ltd. | Refrigerating system |
US6212898B1 (en) | 1997-06-03 | 2001-04-10 | Daikin Industries, Ltd. | Refrigeration system |
JPH10339483A (en) | 1997-06-06 | 1998-12-22 | Daikin Ind Ltd | Thermal storage device |
US5927101A (en) | 1998-02-12 | 1999-07-27 | Samsung Electronics Co., Ltd. | Air conditioner having a low-resistance oil separation unit |
US5992160A (en) | 1998-05-11 | 1999-11-30 | Carrier Corporation | Make-up air energy recovery ventilator |
DE19831127A1 (en) | 1998-07-11 | 2001-03-15 | Baelz Gmbh Helmut | Prediction-controlled air conditioning system has communications device connected to regulator for specifying demand value, accepting future weather conditions information signals |
US6112543A (en) | 1998-08-27 | 2000-09-05 | Behr Gmbh & Co. | Device for cooling an interior compartment of a motor vehicle |
US6247522B1 (en) | 1998-11-04 | 2001-06-19 | Baltimore Aircoil Company, Inc. | Heat exchange members for thermal storage apparatus |
US6158499A (en) | 1998-12-23 | 2000-12-12 | Fafco, Inc. | Method and apparatus for thermal energy storage |
US6260376B1 (en) | 1998-12-23 | 2001-07-17 | Valeo Klimasysteme Gmbh | Air conditioning installation for a motor vehicle with a cold reservoir |
US6237358B1 (en) | 1998-12-25 | 2001-05-29 | Daikin Industries, Ltd. | Refrigeration system |
US6298683B1 (en) | 1998-12-25 | 2001-10-09 | Daikin Industries, Ltd. | Refrigerating device |
DE29823175U1 (en) | 1998-12-29 | 1999-06-10 | Dietzsch, Michael, Prof. Dr.-Ing., 09126 Chemnitz | Climate room |
US6460355B1 (en) | 1999-08-31 | 2002-10-08 | Guy T. Trieskey | Environmental test chamber fast cool down and heat up system |
US6250098B1 (en) | 2000-02-08 | 2001-06-26 | Chung-Ping Huang | Support frame for an ice-storing tank for an air conditioner with an ice-storing mode |
US6327871B1 (en) | 2000-04-14 | 2001-12-11 | Alexander P. Rafalovich | Refrigerator with thermal storage |
US7210308B2 (en) | 2000-04-21 | 2007-05-01 | Matsushita Refrigeration Company | Refrigerator |
US6895773B2 (en) | 2000-05-15 | 2005-05-24 | Peugeot Citroen Automobiles Sa | Heat pump apparatus for regulating motor vehicle temperature |
DE10057834A1 (en) | 2000-11-22 | 2002-06-06 | Ingo Brauns | Method for controlling energy consumption of a heating and/or cooling system determines a control value using an energy consumption value normalized to the difference between the internal temperature and external temperature |
US20020124583A1 (en) | 2001-03-12 | 2002-09-12 | Isao Satoh | Dynamic type ice cold storage method and system |
US20020162342A1 (en) | 2001-05-01 | 2002-11-07 | Kuo-Liang Weng | Method for controlling air conditioner/heater by thermal storage |
US6474089B1 (en) | 2001-10-01 | 2002-11-05 | Sih-Li Chen | Natural air-conditioning system for a car |
US20040007011A1 (en) | 2002-07-09 | 2004-01-15 | Masaaki Tanaka | Cooling system with adsorption refrigerator |
EP1441193A1 (en) | 2003-01-21 | 2004-07-28 | Takata Corporation | Initiator and gas generator |
US20040221589A1 (en) | 2003-05-09 | 2004-11-11 | Serge Dube | Energy storage with refrigeration systems and method |
WO2005001345A1 (en) | 2003-06-25 | 2005-01-06 | Star Refrigeration Limited | Improved cooling system |
US20050081557A1 (en) | 2003-10-15 | 2005-04-21 | Mcrell Michael W. | High efficiency refrigerant based energy storage and cooling system |
WO2005038367A1 (en) | 2003-10-15 | 2005-04-28 | Ice Energy, Inc | High efficiency refrigerant based energy storage and cooling system |
US20050132734A1 (en) | 2003-10-15 | 2005-06-23 | Ramachandran Narayanamurthy | Refrigeration apparatus |
US7162878B2 (en) | 2003-10-15 | 2007-01-16 | Ice Energy, Llc | Refrigeration apparatus |
US7124594B2 (en) | 2003-10-15 | 2006-10-24 | Ice Energy, Inc. | High efficiency refrigerant based energy storage and cooling system |
US20070095093A1 (en) | 2003-10-15 | 2007-05-03 | Ice Energy, Llc | Refrigeration apparatus |
USD501490S1 (en) | 2003-12-16 | 2005-02-01 | Ice Energy, Llc | Thermal energy storage module |
US7690212B2 (en) | 2004-04-22 | 2010-04-06 | Ice Energy, Inc. | Mixed-phase regulator for managing coolant in a refrigerant based high efficiency energy storage and cooling system |
US20050262870A1 (en) | 2004-05-25 | 2005-12-01 | Ramachandran Narayanamurthy | Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability |
WO2005116547A1 (en) | 2004-05-25 | 2005-12-08 | Ice Energy, Inc | Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability |
US7503185B2 (en) | 2004-05-25 | 2009-03-17 | Ice Energy, Inc. | Refrigerant-based thermal energy storage and cooling system with enhanced heat exchange capability |
US7836721B2 (en) | 2004-07-23 | 2010-11-23 | Suntory Holdings Limited | Cooling system |
WO2006023716A1 (en) | 2004-08-18 | 2006-03-02 | Ice Energy, Inc | Thermal energy storage and cooling system with secondary refrigerant isolation |
US7363772B2 (en) | 2004-08-18 | 2008-04-29 | Ice Energy, Inc. | Thermal energy storage and cooling system with secondary refrigerant isolation |
US7793515B2 (en) | 2004-08-18 | 2010-09-14 | Ice Energy, Inc. | Thermal energy storage and cooling system with isolated primary refrigerant loop |
US7421846B2 (en) | 2004-08-18 | 2008-09-09 | Ice Energy, Inc. | Thermal energy storage and cooling system with gravity fed secondary refrigerant isolation |
US20060199051A1 (en) * | 2005-03-07 | 2006-09-07 | Dingrong Bai | Combined heat and power system |
US7783390B2 (en) * | 2005-06-06 | 2010-08-24 | Gridpoint, Inc. | Method for deferring demand for electrical energy |
US7388348B2 (en) | 2005-07-15 | 2008-06-17 | Mattichak Alan D | Portable solar energy system |
US7152413B1 (en) | 2005-12-08 | 2006-12-26 | Anderson R David | Thermal energy transfer unit and method |
US20080034760A1 (en) | 2006-08-10 | 2008-02-14 | Ice Energy, Inc. | Thermal energy storage and cooling system with isolated external melt cooling |
US7610773B2 (en) | 2006-12-14 | 2009-11-03 | General Electric Company | Ice producing apparatus and method |
US20080141699A1 (en) | 2006-12-14 | 2008-06-19 | Alexander Pinkus Rafalovich | Ice producing apparatus and method |
US8015836B2 (en) | 2007-03-27 | 2011-09-13 | Mitsubishi Electric Corporation | Heat pump system |
US20100170286A1 (en) | 2007-06-22 | 2010-07-08 | High Technology Partecipation S.A. | Refrigerator for fresh products with temperature leveling means |
US20090133412A1 (en) | 2007-11-28 | 2009-05-28 | Ice Energy, Inc. | Thermal energy storage and cooling system with multiple cooling loops utilizing a common evaporator coil |
US7543455B1 (en) | 2008-06-06 | 2009-06-09 | Chengjun Julian Chen | Solar-powered refrigerator using a mixture of glycerin, alcohol and water to store energy |
US20100179704A1 (en) | 2009-01-14 | 2010-07-15 | Integral Analytics, Inc. | Optimization of microgrid energy use and distribution |
US20110011119A1 (en) | 2009-07-15 | 2011-01-20 | Whirlpool Corporation | High efficiency refrigerator |
US20120221164A1 (en) * | 2009-11-12 | 2012-08-30 | Panasonic Corporation | Power controller for electric devices, and telephone |
US20130013121A1 (en) * | 2011-02-24 | 2013-01-10 | Henze Gregor P | Integration of commercial building operations with electric system operations and markets |
Non-Patent Citations (13)
Title |
---|
International Search Report for PCT/US2005/018616, International Searching Authority, Oct. 10, 2005, pp. 1-14. |
International Search Report for PCT/US2005/029535, International Searching Authority, May 12, 2005, pp. 1-12. |
International Search Report for PCT/US2005/042409, International Searching Authority, Oct. 5, 2006, pp. 1-17. |
International Search Report for PCT/US2009/045427, International Searching Authority, pp. 1-11. |
International Search Report for PCT/US2009/34087, International Searching Authority, pp. 1-13. |
International Search Report for PCT/US2012/031168, International Searching Authority, pp. 1-18. |
International Search Report, International Searching Authority, Aug. 31, 2012, pp. 1-21. |
Non Final Office Action, U.S. Appl. No. 12/324,369, Dated Mar. 5, 2012, pp. 1-16. |
Notice of Allowance, U.S. Appl. No. 11/208,074, pp. 1-14. |
Notice of Allowance, U.S. Appl. No. 12/100,893, pp. 1-15. |
U.S. Appl. No. 11/138,762, Final Office Action, pp. 1-6. |
U.S. Appl. No. 11/138,762, Non-Final Office Action, pp. 1-15. |
U.S. Appl. No. 11/284,533, Non Final Office Action, pp. 1-11. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230023089A1 (en) * | 2011-07-25 | 2023-01-26 | Clean Power Research, L.L.C. | System and method for seasonal energy consumption determination using verified energy loads with the aid of a digital computer |
US20140309800A1 (en) * | 2011-08-02 | 2014-10-16 | Synaptic Power Inc. | System and a method of controlling a plurality of devices |
US10228667B2 (en) * | 2011-08-02 | 2019-03-12 | Synaptic Power Inc. | System and a method of controlling a plurality of devices |
US10935948B2 (en) | 2011-08-02 | 2021-03-02 | Synaptic Power Inc. | System and method for managing interactions between a plurality of devices |
US11196258B2 (en) | 2018-08-03 | 2021-12-07 | Sacramento Municipal Utility District | Energy control and storage system for controlling power based on a load shape |
US11900488B2 (en) | 2018-08-03 | 2024-02-13 | Sacramento Municipal Utility District | Energy control and storage system for controlling power based on a load shape |
Also Published As
Publication number | Publication date |
---|---|
JP2014535253A (en) | 2014-12-25 |
EP2715478A1 (en) | 2014-04-09 |
US20130134780A1 (en) | 2013-05-30 |
EP2715478A4 (en) | 2014-10-29 |
WO2012162646A1 (en) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9203239B2 (en) | System and method for improving grid efficiency utilizing statistical distribution control | |
Shakeri et al. | An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid | |
US7274975B2 (en) | Optimized energy management system | |
Kiliccote et al. | Characterization of demand response in the commercial, industrial, and residential sectors in the United States | |
Wang et al. | Building power demand response methods toward smart grid | |
Li et al. | Optimal demand response based on utility maximization in power networks | |
US11971185B2 (en) | Method for improving the performance of the energy management in a nearly zero energy building | |
Lu et al. | Control strategies of thermostatically controlled appliances in a competitive electricity market | |
US8103389B2 (en) | Modular energy control system | |
CN110400059B (en) | A method for power control of tie line of integrated energy system | |
Zeng et al. | A regional power grid operation and planning method considering renewable energy generation and load control | |
Taneja et al. | The impact of flexible loads in increasingly renewable grids | |
Gao et al. | Game-theoretic energy management with storage capacity optimization in the smart grids | |
CN110474370B (en) | A collaborative control system and method for air conditioner controllable load and photovoltaic energy storage system | |
Rauf et al. | Variable load demand scheme for hybrid AC/DC nanogrid | |
Elweddad et al. | Designing an energy management system for household consumptions with an off-grid hybrid power system. | |
Huang et al. | Multiple time-scale optimization for the dispatch of integrated energy system based on model predictive control | |
Karthikeyan et al. | Peak load reduction in micro smart grid using non-intrusive load monitoring and hierarchical load scheduling | |
Reihani et al. | Scheduling of price-sensitive residential storage devices and loads with thermal inertia in distribution grid | |
Jeddi et al. | Network impact of multiple HEMUs with PVs and BESS in a low voltage distribution feeder | |
Vukasovic et al. | Modeling optimal deployment of smart home devices and battery system using MILP | |
Zehir et al. | An event-driven energy management system for planned control of thermostatic loads | |
Ashourpouri | Demand Dispatch Control for Balancing Load with Generation | |
Aygun et al. | Optimal Energy Management of Power Grid with Electric Vehicles and Flexible Loads | |
Tamaneewan | Analysis of possible measures for peak demand reduction in a smart grid with high penetration of photovoltaics and electric vehicles in Thailand in a Scenario up to 2040 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ICE ENERGY, INC., COLORADO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARSONNET, BRIAN;REEL/FRAME:028535/0294 Effective date: 20120614 |
|
AS | Assignment |
Owner name: ICE ENERGY TECHNOLOGIES, INC., COLORADO Free format text: CHANGE OF NAME;ASSIGNOR:ICE ENERGY, INC.;REEL/FRAME:031431/0433 Effective date: 20121029 |
|
AS | Assignment |
Owner name: GREENER-ICE SPV, L.L.C., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ICE ENERGY TECHNOLOGIES, INC.;REEL/FRAME:034611/0671 Effective date: 20150102 |
|
AS | Assignment |
Owner name: GREENER-ICE SPV, L.L.C., ARIZONA Free format text: CORRECTIVE ASSIGNMENT TO REMOVE INCORRECT PATENT NUMBERS D538412, D540452, D597642, D602859, AND D629878 PREVIOUSLY RECORDED AT REEL: 034611 FRAME: 0671. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ICE ENERGY TECHNOLOGIES, INC.;REEL/FRAME:035760/0451 Effective date: 20150102 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20191210 |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL. (ORIGINAL EVENT CODE: M2558); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2551); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20231201 |