US9967603B2 - Video viewer targeting based on preference similarity - Google Patents
Video viewer targeting based on preference similarity Download PDFInfo
- Publication number
- US9967603B2 US9967603B2 US15/348,780 US201615348780A US9967603B2 US 9967603 B2 US9967603 B2 US 9967603B2 US 201615348780 A US201615348780 A US 201615348780A US 9967603 B2 US9967603 B2 US 9967603B2
- Authority
- US
- United States
- Prior art keywords
- video clip
- viewer
- viewers
- corresponding video
- viewing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/251—Learning process for intelligent management, e.g. learning user preferences for recommending movies
- H04N21/252—Processing of multiple end-users' preferences to derive collaborative data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/442—Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
- H04N21/44213—Monitoring of end-user related data
- H04N21/44222—Analytics of user selections, e.g. selection of programs or purchase activity
- H04N21/44224—Monitoring of user activity on external systems, e.g. Internet browsing
- H04N21/44226—Monitoring of user activity on external systems, e.g. Internet browsing on social networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/16—Combinations of two or more digital computers each having at least an arithmetic unit, a program unit and a register, e.g. for a simultaneous processing of several programs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/73—Querying
- G06F16/738—Presentation of query results
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/74—Browsing; Visualisation therefor
- G06F16/743—Browsing; Visualisation therefor a collection of video files or sequences
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/78—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/7867—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using information manually generated, e.g. tags, keywords, comments, title and artist information, manually generated time, location and usage information, user ratings
-
- G06F17/3082—
-
- G06F17/3084—
-
- G06F17/30849—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/266—Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
- H04N21/2662—Controlling the complexity of the video stream, e.g. by scaling the resolution or bitrate of the video stream based on the client capabilities
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/266—Channel or content management, e.g. generation and management of keys and entitlement messages in a conditional access system, merging a VOD unicast channel into a multicast channel
- H04N21/2668—Creating a channel for a dedicated end-user group, e.g. insertion of targeted commercials based on end-user profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/27—Server based end-user applications
- H04N21/278—Content descriptor database or directory service for end-user access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/442—Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
- H04N21/44213—Monitoring of end-user related data
- H04N21/44222—Analytics of user selections, e.g. selection of programs or purchase activity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/478—Supplemental services, e.g. displaying phone caller identification, shopping application
- H04N21/4788—Supplemental services, e.g. displaying phone caller identification, shopping application communicating with other users, e.g. chatting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/60—Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client
- H04N21/65—Transmission of management data between client and server
- H04N21/658—Transmission by the client directed to the server
- H04N21/6582—Data stored in the client, e.g. viewing habits, hardware capabilities, credit card number
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/02—Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
Definitions
- the invention relates to the monitoring of a website and the interaction of a client with a website relative to web content. More particularly, the invention relates to passively monitoring online video viewing behavior to determine viewer preference similarities, and to determine the likelihood that a viewer chooses to view a particular video clip when offered.
- Video clips may be supplied to viewers from any website for information, entertainment, or advertising purposes. Some of these websites may be Web 2.0 websites where a user can create an account, upload, share, contribute, comment, vote, or read personal opinions of other users, all on the same site. When video clips are viewed purely for entertainment purposes, users may be more motivated to rate a particular video clip according to their preferences. However, not all viewers expend the effort to rate a video, even if they feel strongly about it.
- Video sharing and online video services allow individuals or content publishers to upload video clips to Internet websites.
- the website stores the video clip on its server, and provides different types of functions to allow others to view that video clip. These websites may allow commenting and rating of a video clip.
- Many services have options for private sharing and other publication options.
- Video sharing services can be classified into several categories including, user generated video sharing websites, video sharing platform, white label providers, and web based video editing.
- advertisement video clips may also be supplied to online users. Websites that supply such advertisement video clips may or may not provide users a means to rate such clips. In circumstances where the advertisement is embedded as part of an entertainment or informative clip, such as a pre-roll advertisement, offering users a voluntary rating facility for the advertisement portion becomes difficult from a practicality standpoint.
- Page-hit refers to an event in which a server receives a request for a page and then serves up the page.
- a common measure of traffic at a website is the number of page hits, especially in an advertising context, for particular pages or sets of pages.
- Page-hit counts are a rough measure of the traffic of a website.
- Other techniques involve the analyzing of the traffic between a Web server and clients. Such prior art techniques work well when the traffic of interest relates to particular pages, but are generally not informative when traffic by topic is desired because one page may relate to multiple topics.
- Systems have been suggested for embedding script code in web pages for tracking user activity on a web page.
- Another technique for determining the rating of video clips published on online video sites is based on viewership information provided by these sites.
- the sites count the cumulative number of users who view the clip.
- more refined measurements that include, for example, the quantity and characteristics of viewers, as well as detailed information about the duration and repetition of each view, are neither generated by video sharing websites nor by any other prior art technique.
- viewership information is easily manipulated by the use of, for example, scripts, browser refreshes, and other means that skew the results. As a result, ratings measurements that are based on the viewership information are inaccurate at best and often misleading.
- Systems have been suggested for placement of advertising slots within or in proximity to hosted video clips.
- methods are used to track the ad placement and viewing. Such methods require preparation of the video clips for ad placement.
- An embodiment of the invention enables presentation of a video clip to a potential viewer who has a high probability of viewing the clip.
- a database containing viewers of previously offered video clips is analyzed to determine similarities of preferences among viewers. When a new video clip has been watched by one or more viewers in the database, those viewers who have watched the new clip with positive results are compared with others in the database who have not yet seen it. Prospective viewers with similar preferences are identified as high likelihood candidates to watch the new clip when presented. Bids to offer the clip are based on the degree of likelihood.
- a data collection agent is loaded to a player and/or to a web page to collect viewing and behavior information to determine viewer preferences. Viewer behavior may be monitored passively by different disclosed methods.
- FIG. 1 is a block diagram of a network used to describe the various embodiments disclosed in accordance with the invention
- FIG. 2 is a block diagram of the VAS disclosed in accordance with an embodiment of the invention.
- FIGS. 3A-3C show exemplary charts generated by the VAS according to one embodiment of the invention.
- FIG. 4 is a flowchart that describes the operation of the DCA in accordance with an embodiment of the invention.
- FIG. 5 is a flowchart for capturing, processing, creating and recording a preference score for a video clip in accordance with an embodiment of the invention
- FIG. 6 is a block diagram showing possible communication alternatives for sharing a video clip with other persons in accordance with an embodiment of the invention.
- FIG. 7 shows a table containing elements of viewing duration analysis for a sample of video clips and viewers in accordance with an embodiment of the invention
- FIG. 8 is a block diagram illustrating how viewers may be grouped according to videos viewed and similarity of preferences in an example analysis according to the invention.
- FIG. 9 is a flow chart showing how preference similarities are determined and analyzed to determine the likelihood that a viewer chooses to watch a particular video when it is presented in accordance with an embodiment of the invention.
- An embodiment of the invention enables presentation of a video clip to a potential viewer who has a high probability of viewing the clip.
- a database containing viewers of previously offered video clips is analyzed to determine similarities of preferences among viewers. When a new video clip has been watched by one or more viewers in the database, those viewers who have watched the new clip with positive results are compared with others in the database who have not yet seen it. Prospective viewers with similar preferences are identified as high likelihood candidates to watch the new clip when presented. Bids to offer the clip are based on the degree of likelihood.
- a data collection agent is loaded to a player and/or to a web page to collect viewing and behavior information to determine viewer preferences. Viewer behavior may be monitored passively by different disclosed methods.
- a profile is created of those viewers in a database of viewers who are deemed likely to watch a particular video clip when presented. This profile is based on the calculated likelihood for each viewer being over a specific likelihood level defined for the profile. Subsequently, when an opportunity to offer a video clip to a prospective viewer arises, a decision to offer the video may include that prospective viewer being on a list of viewers that matches the profile.
- the likelihood prediction is a critical component in computing the amount to bid, and the decision of how much to bid for presenting the video can vary from viewer to viewer based on a specific likelihood calculation for the particular viewer.
- determining the likelihood that a prospective viewer chooses to view a particular video clip is accomplished by analyzing preference similarities between the particular prospective viewer and other viewers. This analysis determines which other viewers have similarities most closely aligned with the perspective viewer, and when these other viewers have viewed the particular video clip, it can be inferred from a preference analysis according to the invention that the particular perspective viewer has a certain likelihood of choosing to watch the video clip when presented. The stronger the association of preferences between the particular prospective viewer and the other viewers, the higher the likelihood that the particular prospective viewer chooses to watch the video clip if other viewers with similar preferences watched the video clip in a positive manner.
- Watching the video in a positive manner may include, for example and without limitation, watching the entire clip, sharing the clip, or purchasing an item or service after watching the clip, to mention a few.
- a more extensive list of viewership parameters that indicate a positive viewing experience are described herein. While the conventional method for determining user preferences requires a viewer to rate a video clip actively, an effective alternative or supplemental process involves capturing viewership information by passive means and subsequently determining and analyzing user preferences based on captured viewership information.
- Monitoring viewer behavior by passive means is useful because users are not required to spend time rating a video clip, something which they are less likely to do. As such, many more viewers have their viewing behavior captured, and a larger amount of behavior information is collected, recorded, and processed than would be otherwise possible if only actively supplied information is used for this purpose, as suggested by the prior art. Also, by concentrating on rating the user rather than just the video clip, it is more likely to be able to match preference similarities with other viewers because more facets of viewing behavior are available for analysis.
- an embodiment of the invention passively monitors and records various user behaviors when a user/viewer interacts with a network video player, e.g. a web video player, while watching an online video clip.
- a data collection agent (DCA) is loaded to the player and/or to a web page that displays the video clip.
- the DCA passively collects, detailed viewing and behavior information without requiring any specific input or actions on the part of the user. Indications of user preferences are inferred by user actions leading up to viewing the video, while viewing the video, and just after and still related to viewing the video.
- the DCA periodically sends this information to a central server where it is stored in a central database and where it is used to determine preference similarities among different users. Recorded user preference information may also be used to rate a video itself.
- the invention comprises a method and/or an apparatus for monitoring and recording when a user interacts with a video player while watching a video clip online.
- a data collection agent DCA
- the DCA collects detailed viewing information and periodically sends this information to a central server.
- the viewing information is processed by the central server and the central server then generates any of a viewership attention span report, a viewership demographics report, a viewership geographic report, and a viewership sharing report.
- the attention span report and the sharing report provide inferred user preference information that is used to rate a video clip passively without requiring any specific input from the user/viewer.
- the terms watching, viewing, and playing are used as interchangeably.
- a video clip is playing it is assumed that the viewer is viewing or watching the clip. However, the viewer may in fact be watching something else and not the video clip at a particular moment in time. There is no way to know for sure and, thus, the assumption is made.
- FIG. 1 is a block schematic diagram of an arrangement of elements 100 that may be used in connection with the invention.
- These elements 100 include at least a web server 110 for hosting video sharing websites.
- the websites include, but are not limited to, YouTubeTM, MetaCafeTM, YahooTM video, Myspace.comTM, users' blogs, etc.
- a viewership analytics server (VAS) 120 is configured to connect to each web server 110 through a network 130 , for example, but not limited to, a wide area network (WAN), which enables connectivity such as Internet connectivity.
- the VAS 120 executes the tasks related to gathering of viewership information for web servers 110 , analyzing the gathered information, and generating reports on the quantity and characteristics of viewers, as well as providing information about the duration and repetition of each view. These tasks are described in greater detail below.
- the VAS 120 is connected to a database 140 in which the collected and generated viewership data is saved.
- Clients 150 - 1 through 150 -M communicate with web servers 110 through the network 130 .
- a client 150 comprises at least a web browser, such as MicrosoftTM Internet Explorer, that allows the user to view and navigate through web pages downloaded from one or more servers 110 .
- Each client 150 is capable of downloading, playing, and displaying video clips provided by the servers 110 .
- each client 150 is capable of running a video player (not shown), which is typically integrated into a web page.
- the video player may be, but is not limited to, a Flash-based web player, DivX web player, HTML5 player, Microsoft Media Player, etc.
- a data collector agent is loaded to video sharing websites that are hosted on servers 110 to capture information about the interactions of the viewers with web players.
- the DCA may be a script code, e.g. JavaScript, hosted by the VAS 120 and loaded to web pages hosted on servers 110 .
- the DCA may be also in a form of a plug-in installed in the video players provided by video content providers.
- the DCA collects and sends metadata and detailed viewing information to the VAS 120 .
- the metadata comprises at least a video identification (ID), a publisher ID, a website ID that is derived from the uniform resource locator (URL), a length of the video clip being viewed, and the current time.
- the detailed viewing information includes the actions performed on the player and a timestamp.
- the recorded actions may be, for example, playing, pausing, rewinding, forwarding, and so on.
- the timestamp start and end times are expressed, for example, in seconds from the beginning of the video clip. For instance, the pair ⁇ play, 20-35> means that a user viewed the clip for only for 15 seconds starting at the 20.sup.th second from the beginning.
- the pair ⁇ pause, 30> means that the user paused 30 seconds after the beginning of the clip.
- the data gathered by the DCA is used by the VAS 120 .
- these requests are sent to the VAS 120 in the form of a hypertext transfer protocol (HTTP) request.
- HTTP hypertext transfer protocol
- An HTTP request that includes the metadata is sent to the VAS 120 once a web page, including the DCA, has completely uploaded to a client's 150 browser.
- the detailed viewing information, including the pairs of actions and timestamps, is periodically sent to the VAS 120 .
- the VAS 120 extracts the data encapsulated in the received requests and saves the data in the database 140 .
- users e.g. advertisers and content publishers
- This process is similar to that used when a user viewing the content accesses the VAS 120 .
- Advertisers and content publishers can designate which websites, publishers, and video clips to trace.
- the user views generated data from the VAS 120 by logging onto a website.
- FIG. 2 is a block diagram showing the VAS 120 implemented in accordance with one embodiment of the invention.
- the VAS 120 includes an information collection module 210 , an analyzer 220 , and a graphical user interface (GUI) module 230 .
- the collection module 210 communicates with a DCA on a client 150 for the purpose of receiving HTTP requests and responding thereto.
- GUI graphical user interface
- the module 210 generates HTTP responses containing the script code of the DCA.
- the information collection module 210 further receives the HTTP requests, including the data collected by the DCA, extracts the information from the requests, and saves the information in the database 140 .
- This information includes detailed viewing information and content metadata, which is saved together with tracking data including, but not limited to, the Internet protocol (IP) address, as well as the operating system and browser type of the client 150 .
- IP Internet protocol
- the detailed viewing information is saved in an entry associated with the video ID.
- the database 140 includes a table having the following fields: video_ID, website_ID, publisher_ID, date, IP, OS, browser type, and ⁇ action, timestamp> pairs.
- the analyzer 220 processes the information saved in the database 140 to generate viewership-related analytics data, an attention span report, and viewership demographics.
- Viewership-related analytics data includes, but is not limited to, the number of viewers during any period of time, e.g. last three days, last week, last months, etc. for a video clip, for a publisher, or for a group of video clips over different periods of time. This information can be generated for a single website or across a plurality of websites.
- the analyzer 220 first computes the number of viewers in each day, or any other time interval, from the gathered information.
- the process for generating the viewership-related analytics data is further discussed in U.S.
- the analyzer 220 also generates an attention span report that includes detailed information about the duration and repetition of each view.
- This report includes, per each video clip, the total number of viewers, and the number of viewers that viewed the complete video clip. This report is produced by processing the data stored in the database 140 .
- the analyzer 220 produces a viewership-geographic report. This report includes the number of viewers of a video clip in each country around the globe. The report is generated by correlating the number of views with IP addresses of the different viewers.
- a viewership demographics report is generated by analyzer 220 . This report correlates the number of viewers with demographics including race, age, income, educational attainment, employment status, etc. The demographics are retrieved from the users' profiles as saved in the online video websites, if and when available.
- the analyzer 220 can detect fraud attempts. Such attempts are typically performed by browser refreshes or scripting intended to inflate the view count artificially. With this aim, the analyzer 220 maintains a history file of the video IDs that have been viewed in the past during a predefined period of time, e.g. video clips viewed in last two hours, by each IP address. If the analyzer 220 detects multiple views above a threshold from the same IP address within a predefined period time, the analyzer 220 discards the data regarding the subsequent views or any views. The analyzer 220 also validates that the database 140 does not contain timestamp entries with duration longer than the length of the video clip. This check protects against scripting attacks intended to record repeated video views under a single view count.
- a predefined period of time e.g. video clips viewed in last two hours
- the GUI 230 displays the viewership-related analytics data produced by the analyzer 220 as charts or text-based reports.
- the charts are dynamic. That is, the GUI 230 dynamically changes the displayed content of the chart as the user changes the chart's time scale.
- FIGS. 3A-3C show examples of charts of the various reports as generated by the GUI 230 according to several embodiments of the invention.
- FIG. 3A is a chart that shows an attention span report.
- FIG. 3B is a chart representing the viewership by geography.
- FIG. 3C shows charts of viewership demographics, specifically, the age distribution and gender distribution of viewers.
- FIG. 4 is a flowchart 400 that shows the steps for operating the DCA in accordance with one embodiment of the invention.
- the DCA is inserted S 410 on the page and sets a third party cookie in the browser.
- the third party cookie is used to track the video viewing activity of each unique user across all video providers.
- the DCA is inserted on the web page using an HTTP response from the server 110 and contains a script code.
- the DCA generates S 420 an HTTP request that includes metadata and sends the request to the VAS 120 . This request contains the provider site in the URL path and the ID of the video being viewed, the local client's current time, the client time zone offset, and the non-personally identifiable provider user ID.
- the VAS 120 upon receiving this request, extracts the metadata and saves it in database 140 .
- the DCA Once the video clip is internally loaded in the player, the DCA generates S 430 HTTP requests that include the detailed viewing information, for example in the format described above. Thereafter, these HTTP requests are periodically sent S 440 to the VAS 120 .
- the DCA transmits an HTTP request that includes the final data pair that ends at the current viewing time-point.
- the earlier discussion regarding FIG. 1 refers to collecting detailed information about the duration and repetition for viewing a particular video clip.
- the DCA functionality residing in the viewer's computer 150 or supplying website 110 collects this information passively and may include detailed information to enable further analysis of parameters related, for instance, to viewing duration and repetition. For instance, the DCA may passively record whether a viewer watched a particular video clip at all. It may also record what specific portions of a video clip the viewer watched and the sequence in which they watched those portions. Viewers are known to rewind entire videos, rewind portions of a video, or skip around within a particular video, watching different portions in a regular or irregular sequence.
- FIG. 5 is a flowchart 500 that shows the steps for passively collecting and processing behavior or viewership information related to a video clip.
- Viewer actions that reflect their preferences with respect to a particular video clip may occur before they play the clip, given some foreknowledge of the clip content; while they watch the clip; and after they watch the clip.
- step S 510 parameters respective of a viewer's behavior and actions leading up to their playing a video clip are recorded. Examples of such actions include but are not limited to:
- step S 520 parameters respective of a viewer's behavior and actions during their playing of a video clip are recorded. Examples of such actions include but are not limited to:
- step S 530 parameters respective of a viewer's behavior and actions after playing of a video clip are recorded. Examples of such actions include but are not limited to:
- Sharing the video via an embed code Generally, with online video a user can copy a small HTML tag out and paste it into their blog to share the video.
- the system according to the invention tracks the action of copying out that HTML code. Such action may be the operation of a button or simply the act of highlighting the text in a textbox;
- a viewer preference score is created for the video clip based on the particular viewer's behavior and the score is associated with the user as metadata.
- a video clip score is created for the video clip based on the particular viewer's behavior and the score is associated with the video clip as metadata.
- the fact that the viewer watched the pre-roll advertisement may be more valuable for scoring the user than for scoring the video.
- Another example of weighting occurs where an un-mute or full-screen action is considered to be a highly-valuable action, whereas simple viewing duration for a video that plays automatically may not be, as it may simply be playing in the user's browser without their attention.
- step S 560 the viewer preference score and the video clip score are recorded in a database.
- Network 600 in FIG. 6 shows a flow of information within an embodiment of the invention with regard to sharing of information related to video clips between users. Sharing typically occurs by way of a wide-area network 130 normally comprising the Internet or a portion thereof.
- the sharing process is initiated by the terminal belonging to a primary viewer/user 150 who decides that a particular video clip is interesting enough or entertaining enough to share with a friend.
- a terminal or communication device 640 as shown would typically be used by a friend or a group of friends. Many types of communication devices or terminals are known in the art to be used for communication within social networks and include PCs and smart phones.
- the process is initiated when the primary viewer at terminal 150 is supplied a video clip 610 from a webpage 110 .
- This video clip may be supplied automatically without any initiation by the user, or it may be supplied to the user upon some action the user takes to view the video clip.
- the primary viewer decides they wish to share a video clip they may be offered the ability to share by way of webpage 110 , or alternately by providing the link to the particular video clip to a third-party link sharing website 660 .
- website 110 can notify a friend at terminal 640 via email or directly if the friend at terminal 640 is logged into website 110 .
- User 150 may also share the link to a video clip through communication path 650 and a third-party website 660 where link sharing is supported.
- link sharing websites include, but are not limited to, digg, del.icio.us, and reddit.
- Links to video clips can also be shared in a similar manner via social networking sites such as FacebookTM and twitter. Sharing behaviors can be monitored by DCA functions located in the viewer's computer 150 , located on a server at the supplying website 110 , or both. Data gathered by these DCA functions is periodically transferred to VAS 120 for logging, analysis, and reporting.
- the link sharing website may communicate with a friend using terminal 640 via email or directly if terminal 640 is logged into website 660 .
- sharing may also be accomplished via an embed code as previously described for step S 530 of FIG. 5 .
- Passively monitored sharing activity may include at least one or more of the following:
- FIG. 7 shows an exemplary and non-limiting table 700 containing elements of a viewing duration analysis for a sample of video clips.
- Each of video clips A through G have been previously viewed by at least two of the three viewers shown: Joe, Bill, and Jane.
- Joe, Bill, and Jane For this example, it is assumed for the sake of simplicity that a judgment is made based solely on viewing duration analysis.
- the judgment relative to the likelihood of a viewer choosing to view a new video is far more complex and may include any or all of the viewership parameters discussed previously that may be passively captured prior, during, or after the viewing of a video clip, or alternately proactively supplied by a viewer.
- FIG. 8 is a block diagram 800 describing one possible organization of viewers in a database according to the invention.
- diagram 800 of FIG. 8 refers to an organization in keeping with table 700 of FIG. 7 and, in particular, refers to the grouping of viewers in the database with respect to video clip Z.
- Group (1) 810 comprises viewers of previous video clips who have not viewed video clip Z. With respect to FIG. 7 , this group contains Bill and Jane.
- Group (2) 820 comprises viewers who have viewed clip Z in a positive manner. With respect to FIG. 7 , this group contains Joe.
- Group (3) 830 comprises viewers who have not yet viewed video clip Z, however have preference similarities most closely aligned to viewers in Group (2) 820 who have previously viewed clip Z in a positive manner. With respect to FIG. 7 , Group (3) 830 contains Bill. Thus, Bill is deemed to have a high likelihood of choosing to watch video clip Z if and when it is presented to him.
- FIG. 9 shows a flowchart 900 whereby preference similarities are determined and analyzed to determine the likelihood that a viewer chooses to watch a particular video clip when presented.
- a database is constructed based on captured viewership information respective of a first set of video clips.
- the capturing process for viewership information may be active whereby the viewer proactively supplies preference information, or passive whereby viewership information is captured without requiring any action by the viewer in accordance with one or more methods previously described for the invention.
- step 920 the database is analyzed to determine preference similarities among viewers who have previously viewed the first set of video clips.
- step 930 viewer characteristics respective of a second video clip are captured and recorded in the database. Typically, some of the viewers of the second video clip have previously watched the first video clip.
- step 940 viewership characteristics respective of the second video clip are analyzed with respect to the database to produced a list of viewers in the database who are deemed most likely to watch the second video if and when it is offered to them.
- a prospective viewer who has not seen the second video, but has strong preference similarities with someone who has responded in a positive manner to viewing the second video is determined to be a likely candidate to watch the second video when presented.
- the degree of likelihood is computed according to the present invention by analyzing each preference-related parameter of the viewership information, weighting the parameters as appropriate, and developing a likelihood score as a result. Should the second video clip be an advertisement, and should the advertiser be required to place a bid to offer the video to the prospective viewer, the amount of the bid is determined based at least in part on the likelihood score.
- step 950 the second video clip is presented to the prospective viewer who was previously determined to be part of a list or group of viewers likely to choose to watch the second video clip.
- the implementation may include the use of a computer system having a processor and a memory under the control of the processor, the memory storing instructions adapted to enable the processor to carry out operations as described hereinabove.
- the implementation may be realized, in a concrete manner, as a computer program product that includes a tangible computer readable medium holding instructions adapted to enable a computer system to perform the operations as described above.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Signal Processing (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Social Psychology (AREA)
- Computer Hardware Design (AREA)
- Computer Networks & Wireless Communication (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Library & Information Science (AREA)
- Human Computer Interaction (AREA)
- Computing Systems (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
Description
Claims (28)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/348,780 US9967603B2 (en) | 2008-09-17 | 2016-11-10 | Video viewer targeting based on preference similarity |
US15/940,882 US10462504B2 (en) | 2008-09-17 | 2018-03-29 | Targeting videos based on viewer similarity |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/212,556 US8577996B2 (en) | 2007-09-18 | 2008-09-17 | Method and apparatus for tracing users of online video web sites |
US12/904,552 US8549550B2 (en) | 2008-09-17 | 2010-10-14 | Method and apparatus for passively monitoring online video viewing and viewer behavior |
US13/111,705 US9612995B2 (en) | 2008-09-17 | 2011-05-19 | Video viewer targeting based on preference similarity |
US15/348,780 US9967603B2 (en) | 2008-09-17 | 2016-11-10 | Video viewer targeting based on preference similarity |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/111,705 Continuation US9612995B2 (en) | 2008-09-17 | 2011-05-19 | Video viewer targeting based on preference similarity |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/940,882 Continuation US10462504B2 (en) | 2008-09-17 | 2018-03-29 | Targeting videos based on viewer similarity |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170094331A1 US20170094331A1 (en) | 2017-03-30 |
US9967603B2 true US9967603B2 (en) | 2018-05-08 |
Family
ID=44561173
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/111,705 Active 2031-11-18 US9612995B2 (en) | 2008-09-17 | 2011-05-19 | Video viewer targeting based on preference similarity |
US15/348,780 Active US9967603B2 (en) | 2008-09-17 | 2016-11-10 | Video viewer targeting based on preference similarity |
US15/940,882 Active US10462504B2 (en) | 2008-09-17 | 2018-03-29 | Targeting videos based on viewer similarity |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/111,705 Active 2031-11-18 US9612995B2 (en) | 2008-09-17 | 2011-05-19 | Video viewer targeting based on preference similarity |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/940,882 Active US10462504B2 (en) | 2008-09-17 | 2018-03-29 | Targeting videos based on viewer similarity |
Country Status (1)
Country | Link |
---|---|
US (3) | US9612995B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180227615A1 (en) * | 2008-09-17 | 2018-08-09 | Adobe Systems Incorporated | Targeting videos based on viewer similarity |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9065727B1 (en) | 2012-08-31 | 2015-06-23 | Google Inc. | Device identifier similarity models derived from online event signals |
US20070112567A1 (en) | 2005-11-07 | 2007-05-17 | Scanscout, Inc. | Techiques for model optimization for statistical pattern recognition |
AU2007333736B2 (en) | 2006-12-19 | 2012-03-22 | Fox Audience Network, Inc. | Auction for each individual ad impression |
US8831987B2 (en) | 2006-12-19 | 2014-09-09 | The Rubicon Project | Managing bids in a real-time auction for advertisements |
US8554683B2 (en) * | 2006-12-19 | 2013-10-08 | Fox Audience Network, Inc. | Content security for real-time bidding |
US20080228581A1 (en) * | 2007-03-13 | 2008-09-18 | Tadashi Yonezaki | Method and System for a Natural Transition Between Advertisements Associated with Rich Media Content |
US8577996B2 (en) | 2007-09-18 | 2013-11-05 | Tremor Video, Inc. | Method and apparatus for tracing users of online video web sites |
US8549550B2 (en) | 2008-09-17 | 2013-10-01 | Tubemogul, Inc. | Method and apparatus for passively monitoring online video viewing and viewer behavior |
US20090259551A1 (en) * | 2008-04-11 | 2009-10-15 | Tremor Media, Inc. | System and method for inserting advertisements from multiple ad servers via a master component |
JP5724283B2 (en) * | 2010-10-15 | 2015-05-27 | ソニー株式会社 | Information processing apparatus, synchronization method, and program |
US8468559B2 (en) * | 2010-12-13 | 2013-06-18 | Google Inc. | Inferring demographic compositions of television audiences |
US8392526B2 (en) | 2011-03-23 | 2013-03-05 | Color Labs, Inc. | Sharing content among multiple devices |
US8738698B2 (en) * | 2011-04-07 | 2014-05-27 | Facebook, Inc. | Using polling results as discrete metrics for content quality prediction model |
US8560683B2 (en) * | 2011-06-10 | 2013-10-15 | Google Inc. | Video and site analytics |
US8732301B1 (en) | 2011-06-10 | 2014-05-20 | Google Inc. | Video aware pages |
US9326033B2 (en) * | 2011-06-17 | 2016-04-26 | Microsoft Technology Licensing, Llc | Movie discovery system |
US9210208B2 (en) | 2011-06-21 | 2015-12-08 | The Nielsen Company (Us), Llc | Monitoring streaming media content |
US8412772B1 (en) | 2011-09-21 | 2013-04-02 | Color Labs, Inc. | Content sharing via social networking |
US20140282636A1 (en) * | 2011-10-24 | 2014-09-18 | National Ict Australia Limited | Mobile Content Delivery System with Recommendation-Based Pre-Fetching |
US8646023B2 (en) | 2012-01-05 | 2014-02-04 | Dijit Media, Inc. | Authentication and synchronous interaction between a secondary device and a multi-perspective audiovisual data stream broadcast on a primary device geospatially proximate to the secondary device |
US20130282817A1 (en) * | 2012-03-22 | 2013-10-24 | Gerard J. Montgomery | Targeting Media Based on Viewer Attributes and Elements |
US9552124B2 (en) * | 2012-04-27 | 2017-01-24 | Mobitv, Inc. | Character based search and discovery of media content |
US9785639B2 (en) * | 2012-04-27 | 2017-10-10 | Mobitv, Inc. | Search-based navigation of media content |
US9053185B1 (en) | 2012-04-30 | 2015-06-09 | Google Inc. | Generating a representative model for a plurality of models identified by similar feature data |
US8527526B1 (en) | 2012-05-02 | 2013-09-03 | Google Inc. | Selecting a list of network user identifiers based on long-term and short-term history data |
US8914500B1 (en) | 2012-05-21 | 2014-12-16 | Google Inc. | Creating a classifier model to determine whether a network user should be added to a list |
US8886575B1 (en) | 2012-06-27 | 2014-11-11 | Google Inc. | Selecting an algorithm for identifying similar user identifiers based on predicted click-through-rate |
US8874589B1 (en) | 2012-07-16 | 2014-10-28 | Google Inc. | Adjust similar users identification based on performance feedback |
US8782197B1 (en) | 2012-07-17 | 2014-07-15 | Google, Inc. | Determining a model refresh rate |
US10257643B2 (en) | 2012-08-14 | 2019-04-09 | Vinod Khosla | Event prediction through monitoring a mobile device |
US8886799B1 (en) | 2012-08-29 | 2014-11-11 | Google Inc. | Identifying a similar user identifier |
US10229424B1 (en) | 2012-09-10 | 2019-03-12 | Google Llc | Providing online content |
US9753924B2 (en) * | 2012-10-09 | 2017-09-05 | Google Inc. | Selection of clips for sharing streaming content |
US9497276B2 (en) * | 2012-10-17 | 2016-11-15 | Google Inc. | Trackable sharing of on-line video content |
US9265458B2 (en) | 2012-12-04 | 2016-02-23 | Sync-Think, Inc. | Application of smooth pursuit cognitive testing paradigms to clinical drug development |
JP2016513918A (en) * | 2013-03-06 | 2016-05-16 | ジトー, アーサー ジェイ.ジュニアZITO, Arthur J.Jr. | Multimedia presentation system |
US9380976B2 (en) | 2013-03-11 | 2016-07-05 | Sync-Think, Inc. | Optical neuroinformatics |
US20140359648A1 (en) * | 2013-05-29 | 2014-12-04 | Verizon Patent And Licensing Inc. | History record and proxy rating for media recommendations |
US9686276B2 (en) | 2013-12-30 | 2017-06-20 | AdMobius, Inc. | Cookieless management translation and resolving of multiple device identities for multiple networks |
US20150249543A1 (en) * | 2014-02-28 | 2015-09-03 | United Video Properties, Inc. | Systems and methods for connecting a plurality of users based on a common interest in an unpopular media asset |
US20160078032A1 (en) * | 2014-09-15 | 2016-03-17 | Yangbin Wang | Method of on-line media scoring |
US9800535B2 (en) * | 2014-10-09 | 2017-10-24 | Facebook, Inc. | Presenting contacts to a social networking system user based on user interactions with additional users and with groups |
US20160119689A1 (en) | 2014-10-27 | 2016-04-28 | Tubemogul, Inc. | Systems and Methods for Planning and Executing an Advertising Campaign Targeting TV Viewers and Digital Media Viewers Across Formats and Screen Types |
US9501783B2 (en) | 2014-10-27 | 2016-11-22 | Tubemogul, Inc. | Systems and methods for planning, executing, and reporting a strategic advertising campaign for television |
US20160379255A1 (en) * | 2015-06-25 | 2016-12-29 | Sony Corporation | System and method for multimedia promotion and content prioritization |
US9794360B1 (en) * | 2015-09-11 | 2017-10-17 | Amazon Technologies, Inc. | Estimating unique viewers of media content without cookies |
US10178191B1 (en) | 2015-09-11 | 2019-01-08 | Amazon Technologies, Inc. | Using multiple cookies |
US10638176B2 (en) * | 2015-10-29 | 2020-04-28 | Adobe Inc. | Channel preference scoring for users based on channel watching and browsing behavior |
US11120479B2 (en) | 2016-01-25 | 2021-09-14 | Magnite, Inc. | Platform for programmatic advertising |
US20180081971A1 (en) * | 2016-09-16 | 2018-03-22 | Facebook, Inc. | Selecting content for presentation to an online system user based in part on differences in characteristics of the user and of other online system users |
US11205103B2 (en) | 2016-12-09 | 2021-12-21 | The Research Foundation for the State University | Semisupervised autoencoder for sentiment analysis |
US10791367B1 (en) * | 2017-03-31 | 2020-09-29 | Conviva Inc. | Correlating playback information of video segments |
US11044533B1 (en) | 2017-06-02 | 2021-06-22 | Conviva Inc. | Automatic diagnostics alerts |
AU2018271424A1 (en) | 2017-12-13 | 2019-06-27 | Playable Pty Ltd | System and Method for Algorithmic Editing of Video Content |
US11336506B1 (en) | 2018-05-31 | 2022-05-17 | Conviva Inc. | Automatic diagnostics alerts for streaming content encoded by multiple entities |
US10341703B1 (en) * | 2018-06-26 | 2019-07-02 | Hitachi, Ltd. | Integrated audience interaction measurements for videos |
US11288699B2 (en) | 2018-07-13 | 2022-03-29 | Pubwise, LLLP | Digital advertising platform with demand path optimization |
US11010123B2 (en) * | 2018-11-30 | 2021-05-18 | Poductivity Ltd. | Computer system providing enhanced audio playback control for audio files associated with really simple syndication (RSS) feeds and related methods |
CN109842805B (en) * | 2019-01-04 | 2022-10-21 | 平安科技(深圳)有限公司 | Video viewpoint generation method and device, computer equipment and storage medium |
CN110062256A (en) * | 2019-04-30 | 2019-07-26 | 软通智慧科技有限公司 | Video resource sharing system |
US12112354B1 (en) | 2023-06-20 | 2024-10-08 | International Business Machines Corporation | Electronic marketplace for digital advertising space |
Citations (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617486A (en) | 1993-09-30 | 1997-04-01 | Apple Computer, Inc. | Continuous reference adaptation in a pattern recognition system |
US5778340A (en) | 1994-09-08 | 1998-07-07 | Nec Corporation | Adapting input speech and reference patterns for changing speaker and environment |
US5864810A (en) | 1995-01-20 | 1999-01-26 | Sri International | Method and apparatus for speech recognition adapted to an individual speaker |
US5951642A (en) * | 1997-08-06 | 1999-09-14 | Hypertak, Inc. | System for collecting detailed internet information on the basis of the condition of activities of information viewers viewing information of service providers |
US6134532A (en) | 1997-11-14 | 2000-10-17 | Aptex Software, Inc. | System and method for optimal adaptive matching of users to most relevant entity and information in real-time |
US6208720B1 (en) | 1998-04-23 | 2001-03-27 | Mci Communications Corporation | System, method and computer program product for a dynamic rules-based threshold engine |
US6223159B1 (en) | 1998-02-25 | 2001-04-24 | Mitsubishi Denki Kabushiki Kaisha | Speaker adaptation device and speech recognition device |
US6285999B1 (en) | 1997-01-10 | 2001-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Method for node ranking in a linked database |
US6343267B1 (en) | 1998-04-30 | 2002-01-29 | Matsushita Electric Industrial Co., Ltd. | Dimensionality reduction for speaker normalization and speaker and environment adaptation using eigenvoice techniques |
US20020032904A1 (en) | 2000-05-24 | 2002-03-14 | Lerner David S. | Interactive system and method for collecting data and generating reports regarding viewer habits |
US20020049635A1 (en) | 2000-09-06 | 2002-04-25 | Khanh Mai | Multiple advertising |
US6389377B1 (en) | 1997-12-01 | 2002-05-14 | The Johns Hopkins University | Methods and apparatus for acoustic transient processing |
US20020059604A1 (en) | 1999-09-16 | 2002-05-16 | Papagan Kenneth M. | System and method for linking media content |
US20020068525A1 (en) | 2000-09-19 | 2002-06-06 | Activate.Net | Methods and systems for dynamically serving in-stream advertisements |
US20020082941A1 (en) | 2000-10-16 | 2002-06-27 | Bird Benjamin David Arthur | Method and system for the dynamic delivery, presentation, organization, storage, and retrieval of content and third party advertising information via a network |
US20020087980A1 (en) | 2000-12-28 | 2002-07-04 | Eldering Charles A. | Grouping advertisement subavails |
US20020144261A1 (en) | 2001-03-30 | 2002-10-03 | Schwalb Eddie M. | Methods and systems for mass customization of digital television broadcasts in dase environments |
US20020174425A1 (en) | 2000-10-26 | 2002-11-21 | Markel Steven O. | Collection of affinity data from television, video, or similar transmissions |
US6505169B1 (en) | 2000-01-26 | 2003-01-07 | At&T Corp. | Method for adaptive ad insertion in streaming multimedia content |
US20030050863A1 (en) | 2001-09-10 | 2003-03-13 | Michael Radwin | Targeted advertisements using time-dependent key search terms |
US20030055951A1 (en) | 2001-08-01 | 2003-03-20 | Chemali Emilio F. | Products, apparatus and methods for handling computer software/hardware messages |
US20030055729A1 (en) | 1999-11-10 | 2003-03-20 | Bezos Jeffrey P. | Method and system for allocating display space |
US20030061566A1 (en) | 1998-10-30 | 2003-03-27 | Rubstein Laila J. | Dynamic integration of digital files for transmission over a network and file usage control |
US20030070167A1 (en) | 2001-04-18 | 2003-04-10 | Alex Holtz | Advertisement management method, system, and computer program product |
US20030076347A1 (en) | 2001-10-19 | 2003-04-24 | Microsoft Corporation | Advertising using a combination of video and banner advertisements |
US20030079226A1 (en) | 2001-10-19 | 2003-04-24 | Barrett Peter T. | Video segment targeting using remotely issued instructions and localized state and behavior information |
US6560578B2 (en) | 1999-03-12 | 2003-05-06 | Expanse Networks, Inc. | Advertisement selection system supporting discretionary target market characteristics |
US20030101230A1 (en) | 2001-11-26 | 2003-05-29 | Benschoter Brian N. | System and method for effectively presenting multimedia information materials |
US20030110485A1 (en) | 1996-12-11 | 2003-06-12 | Daozheng Lu | Interactive service device metering systems |
US20030121046A1 (en) | 2001-12-21 | 2003-06-26 | Eloda Inc. | Method and system for re-identifying broadcast segments using statistical profiles |
US20030142670A1 (en) | 2000-12-29 | 2003-07-31 | Kenneth Gould | System and method for multicast stream failover |
US20030174837A1 (en) | 2002-01-02 | 2003-09-18 | Candelore Brant L. | Content replacement by PID mapping |
US20030206720A1 (en) | 1992-02-07 | 2003-11-06 | Max Abecassis | Video-on-demand purchasing and escrowing system |
US20030220791A1 (en) | 2002-04-26 | 2003-11-27 | Pioneer Corporation | Apparatus and method for speech recognition |
US20040003397A1 (en) | 2002-06-27 | 2004-01-01 | International Business Machines Corporation | System and method for customized video commercial distribution |
US20040001081A1 (en) | 2002-06-19 | 2004-01-01 | Marsh David J. | Methods and systems for enhancing electronic program guides |
US6704930B1 (en) | 1999-04-20 | 2004-03-09 | Expanse Networks, Inc. | Advertisement insertion techniques for digital video streams |
US20040051812A1 (en) | 2000-10-24 | 2004-03-18 | Hayward Monte Duane | Method of collecting data using an embedded media player page |
US20040059708A1 (en) | 2002-09-24 | 2004-03-25 | Google, Inc. | Methods and apparatus for serving relevant advertisements |
US20040059712A1 (en) | 2002-09-24 | 2004-03-25 | Dean Jeffrey A. | Serving advertisements using information associated with e-mail |
US20040073918A1 (en) * | 2002-09-30 | 2004-04-15 | Ferman A. Mufit | Automatic user profiling |
US20040093327A1 (en) | 2002-09-24 | 2004-05-13 | Darrell Anderson | Serving advertisements based on content |
US20040172267A1 (en) | 2002-08-19 | 2004-09-02 | Jayendu Patel | Statistical personalized recommendation system |
US20040204983A1 (en) | 2003-04-10 | 2004-10-14 | David Shen | Method and apparatus for assessment of effectiveness of advertisements on an Internet hub network |
US20040221309A1 (en) | 2002-06-18 | 2004-11-04 | Microsoft Corporation | Shared online experience history capture and provision system and method |
US20040267806A1 (en) | 2003-06-30 | 2004-12-30 | Chad Lester | Promoting and/or demoting an advertisement from an advertising spot of one type to an advertising spot of another type |
US20050021403A1 (en) | 2001-11-21 | 2005-01-27 | Microsoft Corporation | Methods and systems for selectively displaying advertisements |
US20050076357A1 (en) | 1999-10-28 | 2005-04-07 | Fenne Adam Michael | Dynamic insertion of targeted sponsored video messages into Internet multimedia broadcasts |
US6879956B1 (en) | 1999-09-30 | 2005-04-12 | Sony Corporation | Speech recognition with feedback from natural language processing for adaptation of acoustic models |
US6888477B2 (en) | 2000-12-22 | 2005-05-03 | Sony Corporation | Distributed on-demand media transcoding system and method |
US20050102375A1 (en) | 2003-10-23 | 2005-05-12 | Kivin Varghese | An Internet System for the Uploading, Viewing and Rating of Videos |
US20050114198A1 (en) | 2003-11-24 | 2005-05-26 | Ross Koningstein | Using concepts for ad targeting |
US6907566B1 (en) | 1999-04-02 | 2005-06-14 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
US20050137958A1 (en) | 2003-12-23 | 2005-06-23 | Thomas Huber | Advertising methods for advertising time slots and embedded objects |
US20050149396A1 (en) | 2003-11-21 | 2005-07-07 | Marchex, Inc. | Online advertising system and method |
US20050182626A1 (en) | 2004-02-18 | 2005-08-18 | Samsung Electronics Co., Ltd. | Speaker clustering and adaptation method based on the HMM model variation information and its apparatus for speech recognition |
US20050190973A1 (en) | 2004-02-27 | 2005-09-01 | International Business Machines Corporation | System and method for recognizing word patterns in a very large vocabulary based on a virtual keyboard layout |
US20050192802A1 (en) | 2004-02-11 | 2005-09-01 | Alex Robinson | Handwriting and voice input with automatic correction |
US6944585B1 (en) | 2000-09-01 | 2005-09-13 | Oracle International Corporation | Dynamic personalized content resolution for a media server |
US20050210145A1 (en) | 2000-07-24 | 2005-09-22 | Vivcom, Inc. | Delivering and processing multimedia bookmark |
US6952419B1 (en) | 2000-10-25 | 2005-10-04 | Sun Microsystems, Inc. | High performance transmission link and interconnect |
US20050246348A1 (en) | 1999-12-27 | 2005-11-03 | International Business Machines Corporation | Information extraction system, information processing apparatus, information collection apparatus, character string extraction method, and storage medium |
US20060026628A1 (en) | 2004-07-30 | 2006-02-02 | Kong Wah Wan | Method and apparatus for insertion of additional content into video |
US20060026067A1 (en) | 2002-06-14 | 2006-02-02 | Nicholas Frank C | Method and system for providing network based target advertising and encapsulation |
US20060058999A1 (en) | 2004-09-10 | 2006-03-16 | Simon Barker | Voice model adaptation |
US20060063587A1 (en) | 2004-09-13 | 2006-03-23 | Manzo Anthony V | Gaming advertisement systems and methods |
US20060064500A1 (en) | 2002-06-26 | 2006-03-23 | Microsoft Corporation | Caching control for streaming media |
US20060074753A1 (en) | 2004-10-06 | 2006-04-06 | Kimberly-Clark Worldwide, Inc. | Advertising during printing of secure customized coupons |
US20060116924A1 (en) | 1996-08-20 | 2006-06-01 | Angles Paul D | System and method for delivering customized advertisements within interactive communication systems |
US7065488B2 (en) | 2000-09-29 | 2006-06-20 | Pioneer Corporation | Speech recognition system with an adaptive acoustic model |
US20060135232A1 (en) | 2004-12-17 | 2006-06-22 | Daniel Willis | Method and system for delivering advertising content to video games based on game events and gamer activity |
US20060156326A1 (en) | 2002-08-30 | 2006-07-13 | Silke Goronzy | Methods to create a user profile and to specify a suggestion for a next selection of a user |
WO2006076661A2 (en) | 2005-01-14 | 2006-07-20 | Tremor Media Llc | Dynamic advertisement system and method |
US20060161553A1 (en) | 2005-01-19 | 2006-07-20 | Tiny Engine, Inc. | Systems and methods for providing user interaction based profiles |
US20060167749A1 (en) | 2005-01-25 | 2006-07-27 | Pitkow James E | Systems and methods for providing advertising in a feed of content |
US20060212350A1 (en) | 2005-03-07 | 2006-09-21 | Ellis John R | Enhanced online advertising system |
US20060212897A1 (en) | 2005-03-18 | 2006-09-21 | Microsoft Corporation | System and method for utilizing the content of audio/video files to select advertising content for display |
US20060224444A1 (en) | 2005-03-30 | 2006-10-05 | Ross Koningstein | Networking advertisers and agents for ad authoring and/or ad campaign management |
US20060224448A1 (en) | 2005-03-31 | 2006-10-05 | Herf Michael B | System and method for obtaining content based on data from an electronic device |
US7146416B1 (en) | 2000-09-01 | 2006-12-05 | Yahoo! Inc. | Web site activity monitoring system with tracking by categories and terms |
US7149772B1 (en) | 2000-02-04 | 2006-12-12 | Lucent Technologies Inc. | Media gateway appliance |
US20070055986A1 (en) | 2005-05-23 | 2007-03-08 | Gilley Thomas S | Movie advertising placement optimization based on behavior and content analysis |
US20070067215A1 (en) | 2005-09-16 | 2007-03-22 | Sumit Agarwal | Flexible advertising system which allows advertisers with different value propositions to express such value propositions to the advertising system |
US20070078707A1 (en) | 2005-09-30 | 2007-04-05 | Brian Axe | Controlling the serving of advertisements, such as cost per impression advertisements for example, to improve the value of such serves |
US20070078948A1 (en) | 2004-07-09 | 2007-04-05 | Luc Julia | Media delivery system and method for transporting media to desired target devices |
US20070094363A1 (en) | 2005-10-25 | 2007-04-26 | Podbridge, Inc. | Configuration for ad and content delivery in time and space shifted media network |
US20070101387A1 (en) | 2005-10-31 | 2007-05-03 | Microsoft Corporation | Media Sharing And Authoring On The Web |
US20070112630A1 (en) | 2005-11-07 | 2007-05-17 | Scanscout, Inc. | Techniques for rendering advertisments with rich media |
US20070118848A1 (en) | 2005-11-18 | 2007-05-24 | Microsoft Corporation | Automatically generated TV favorites list |
US20070184820A1 (en) | 2006-02-08 | 2007-08-09 | Richard Marshall | System and method for delivering content |
US20070219984A1 (en) | 2006-03-06 | 2007-09-20 | Murali Aravamudan | Methods and systems for selecting and presenting content based on a comparison of preference signatures from multiple users |
US20070226365A1 (en) | 2004-05-03 | 2007-09-27 | Microsoft Corporation | Aspects of digital media content distribution |
US20070268164A1 (en) | 2000-12-22 | 2007-11-22 | Lai Angela C | Distributed on-demand media transcoding system and method |
US20070300258A1 (en) | 2001-01-29 | 2007-12-27 | O'connor Daniel | Methods and systems for providing media assets over a network |
US20080010339A1 (en) | 2006-07-06 | 2008-01-10 | Visible Measures, Inc. | Remote invocation mechanism for logging |
US20080046562A1 (en) | 2006-08-21 | 2008-02-21 | Crazy Egg, Inc. | Visual web page analytics |
US20080045336A1 (en) | 2006-08-18 | 2008-02-21 | Merit Industries, Inc. | Interactive amusement device advertising |
US20080059312A1 (en) | 2006-09-06 | 2008-03-06 | Judith Ann Gern | System and method for dynamic online advertisement creation and management |
US20080066107A1 (en) | 2006-09-12 | 2008-03-13 | Google Inc. | Using Viewing Signals in Targeted Video Advertising |
US7356590B2 (en) | 2005-07-12 | 2008-04-08 | Visible Measures Corp. | Distributed capture and aggregation of dynamic application usage information |
US20080092159A1 (en) * | 2006-10-17 | 2008-04-17 | Google Inc. | Targeted video advertising |
US20080098301A1 (en) | 2006-10-20 | 2008-04-24 | Tyler James Black | Peer-to-web broadcasting |
US20080101763A1 (en) | 2006-10-26 | 2008-05-01 | Kulvir Singh Bhogal | Viewing pattern data collection |
US20080109391A1 (en) | 2006-11-07 | 2008-05-08 | Scanscout, Inc. | Classifying content based on mood |
US20080109300A1 (en) | 2006-11-06 | 2008-05-08 | Bason Brian J | System and Method for Managing the Distribution of Advertisements for Video Content |
US20080133475A1 (en) | 2006-11-30 | 2008-06-05 | Donald Fischer | Identification of interesting content based on observation of passive user interaction |
US20080178234A1 (en) | 2006-12-05 | 2008-07-24 | Crackle, Inc. | Video sharing platform providing for posting content to other websites |
US20080178198A1 (en) | 2007-01-22 | 2008-07-24 | Media Ripple, Llc | Distributed digital media management |
US20080183555A1 (en) | 2007-01-29 | 2008-07-31 | Hunter Walk | Determining and communicating excess advertiser demand information to users, such as publishers participating in, or expected to participate in, an advertising network |
US20080195761A1 (en) | 2007-02-09 | 2008-08-14 | Dilithium Holdings, Inc. | Method and apparatus for the adaptation of multimedia content in telecommunications networks |
US20080207182A1 (en) | 2006-12-13 | 2008-08-28 | Quickplay Media Inc. | Encoding and Transcoding for Mobile Media |
US20080228576A1 (en) | 2007-03-13 | 2008-09-18 | Scanscout, Inc. | Ad performance optimization for rich media content |
US20080228581A1 (en) | 2007-03-13 | 2008-09-18 | Tadashi Yonezaki | Method and System for a Natural Transition Between Advertisements Associated with Rich Media Content |
US20080250445A1 (en) * | 2007-04-03 | 2008-10-09 | Google Inc. | Television advertising |
US20080288973A1 (en) | 2007-05-18 | 2008-11-20 | Carson David V | System and Method for Providing Advertisements for Video Content in a Packet Based Network |
US20080300989A1 (en) | 2007-05-31 | 2008-12-04 | Eyewonder, Inc. | Systems and methods for generating, reviewing, editing, and transmitting an advertising unit in a single environment |
US20080307454A1 (en) * | 2007-06-11 | 2008-12-11 | Gulrukh Ahanger | Systems and methods for inserting ads during playback of video media |
US20080319827A1 (en) | 2007-06-25 | 2008-12-25 | Microsoft Corporation | Mining implicit behavior |
US20080320531A1 (en) | 2007-06-25 | 2008-12-25 | Interpols Network Incorporated | Systems and methods for third-party aggregated video ratings |
US20090019488A1 (en) * | 2007-07-10 | 2009-01-15 | Verizon Data Services, Inc. | System and method for providing personal content recommendations |
US20090077033A1 (en) | 2007-04-03 | 2009-03-19 | Mcgary Faith | System and method for customized search engine and search result optimization |
US20090089830A1 (en) | 2007-10-02 | 2009-04-02 | Blinkx Uk Ltd | Various methods and apparatuses for pairing advertisements with video files |
US20090094520A1 (en) | 2007-10-07 | 2009-04-09 | Kulas Charles J | User Interface for Creating Tags Synchronized with a Video Playback |
US20090100456A1 (en) | 2007-10-12 | 2009-04-16 | John Hughes | Method and apparatus for monitoring online video |
US20090119169A1 (en) | 2007-10-02 | 2009-05-07 | Blinkx Uk Ltd | Various methods and apparatuses for an engine that pairs advertisements with video files |
US20090144780A1 (en) * | 2007-11-29 | 2009-06-04 | John Toebes | Socially collaborative filtering |
US20090171728A1 (en) | 2007-12-27 | 2009-07-02 | Yan Tak W | Simulation framework for evaluating designs for sponsored search markets |
US20090183210A1 (en) | 2008-01-16 | 2009-07-16 | Apple Inc. | Filtering and tailoring multimedia content based on observed user behavior |
US20090259552A1 (en) | 2008-04-11 | 2009-10-15 | Tremor Media, Inc. | System and method for providing advertisements from multiple ad servers using a failover mechanism |
US20090328105A1 (en) * | 2008-06-27 | 2009-12-31 | Guideworks, Llc | Systems and methods for ranking assets relative to a group of viewers |
US20100011020A1 (en) | 2008-07-11 | 2010-01-14 | Motorola, Inc. | Recommender system |
US20100023960A1 (en) | 2008-07-22 | 2010-01-28 | General Instrument Corporation | Detection of Video Program Viewing Behavior for Correlation with Advertisement Presentation |
US20100057576A1 (en) | 2008-09-02 | 2010-03-04 | Apple Inc. | System and method for video insertion into media stream or file |
US20100088614A1 (en) | 2008-09-02 | 2010-04-08 | Frank Barbieri | Just-in-time media delivery system |
US20100088394A1 (en) | 2008-09-02 | 2010-04-08 | Frank Barbieri | Multipoint publishing |
US20100114696A1 (en) | 2008-10-31 | 2010-05-06 | Yahoo! Inc. | Method of programmed allocation of advertising opportunities for conformance with goals |
US20100191680A1 (en) | 2009-01-23 | 2010-07-29 | Samsung Electronics Co., Ltd. | Method and apparatus for predicting preference rating for content, and method and apparatus for selecting sample content |
US7822636B1 (en) | 1999-11-08 | 2010-10-26 | Aol Advertising, Inc. | Optimal internet ad placement |
US20100287580A1 (en) | 2009-05-08 | 2010-11-11 | Harding John M | Content syndication in web-based media via ad tagging |
US20100318611A1 (en) | 2009-06-10 | 2010-12-16 | Silverpop Systems, Inc. | Methods and systems for tracking shared content |
US20110010231A1 (en) | 2001-12-14 | 2011-01-13 | Price William P | Audiovisual system and method for displaying segmented advertisements tailored to the characteristic viewing preferences of a user |
US20110029666A1 (en) | 2008-09-17 | 2011-02-03 | Lopatecki Jason | Method and Apparatus for Passively Monitoring Online Video Viewing and Viewer Behavior |
US20110072449A1 (en) | 1997-11-20 | 2011-03-24 | Ivanyi Thomas P | System and method for measuring and storing information pertaining to television viewer or user behavior |
US20110078740A1 (en) | 2009-09-30 | 2011-03-31 | Verizon Patent And Licensing, Inc. | Advance notice of television advertisements |
US20110078018A1 (en) | 2005-07-22 | 2011-03-31 | Rathod Yogesh Chunilal | System and method of targeting advertisements and providing advertisements management |
US20110093783A1 (en) | 2009-10-16 | 2011-04-21 | Charles Parra | Method and system for linking media components |
US20110125573A1 (en) | 2009-11-20 | 2011-05-26 | Scanscout, Inc. | Methods and apparatus for optimizing advertisement allocation |
US20110225608A1 (en) | 2008-09-17 | 2011-09-15 | Lopatecki Jason | Video Viewer Targeting based on Preference Similarity |
US8060463B1 (en) | 2005-03-30 | 2011-11-15 | Amazon Technologies, Inc. | Mining of user event data to identify users with common interests |
US20110295716A1 (en) | 2009-04-08 | 2011-12-01 | Ebay Inc. | Method, medium, and system for adjusting product ranking scores based on an adjustment factor |
US8301497B2 (en) | 2008-04-17 | 2012-10-30 | Aol Advertising Inc. | Method and system for media initialization via data sharing |
US20130145388A1 (en) | 2000-04-07 | 2013-06-06 | Virage, Inc. | System and method for applying a database to video multimedia |
US8577996B2 (en) | 2007-09-18 | 2013-11-05 | Tremor Video, Inc. | Method and apparatus for tracing users of online video web sites |
US20140298373A1 (en) | 2008-12-11 | 2014-10-02 | Sony Corporation | Social networking and peer to peer for tvs |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6557042B1 (en) | 1999-03-19 | 2003-04-29 | Microsoft Corporation | Multimedia summary generation employing user feedback |
US20050133475A1 (en) * | 2001-08-30 | 2005-06-23 | Takayuki Goto | Safety cap and container with safety cap |
US8868467B2 (en) | 2002-10-23 | 2014-10-21 | Oleg Serebrennikov | Method for performing transactional communication using a universal transaction account identifier assigned to a customer |
US20060031187A1 (en) * | 2004-08-04 | 2006-02-09 | Advizor Solutions, Inc. | Systems and methods for enterprise-wide visualization of multi-dimensional data |
US8352980B2 (en) * | 2007-02-15 | 2013-01-08 | At&T Intellectual Property I, Lp | System and method for single sign on targeted advertising |
US8763020B2 (en) | 2008-10-14 | 2014-06-24 | Cisco Technology, Inc. | Determining user attention level during video presentation by monitoring user inputs at user premises |
US8572647B2 (en) | 2009-03-19 | 2013-10-29 | Google Inc. | Online ad placement based on user metrics for hosted media |
US9215423B2 (en) | 2009-03-30 | 2015-12-15 | Time Warner Cable Enterprises Llc | Recommendation engine apparatus and methods |
-
2011
- 2011-05-19 US US13/111,705 patent/US9612995B2/en active Active
-
2016
- 2016-11-10 US US15/348,780 patent/US9967603B2/en active Active
-
2018
- 2018-03-29 US US15/940,882 patent/US10462504B2/en active Active
Patent Citations (168)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030206720A1 (en) | 1992-02-07 | 2003-11-06 | Max Abecassis | Video-on-demand purchasing and escrowing system |
US5617486A (en) | 1993-09-30 | 1997-04-01 | Apple Computer, Inc. | Continuous reference adaptation in a pattern recognition system |
US5778340A (en) | 1994-09-08 | 1998-07-07 | Nec Corporation | Adapting input speech and reference patterns for changing speaker and environment |
US5864810A (en) | 1995-01-20 | 1999-01-26 | Sri International | Method and apparatus for speech recognition adapted to an individual speaker |
US20060116924A1 (en) | 1996-08-20 | 2006-06-01 | Angles Paul D | System and method for delivering customized advertisements within interactive communication systems |
US20100049613A1 (en) | 1996-08-20 | 2010-02-25 | Hemisphere Solutions N.A., L.L.C. | System and method for delivering customized advertisements within interactive communication systems |
US20030110485A1 (en) | 1996-12-11 | 2003-06-12 | Daozheng Lu | Interactive service device metering systems |
US6285999B1 (en) | 1997-01-10 | 2001-09-04 | The Board Of Trustees Of The Leland Stanford Junior University | Method for node ranking in a linked database |
US5951642A (en) * | 1997-08-06 | 1999-09-14 | Hypertak, Inc. | System for collecting detailed internet information on the basis of the condition of activities of information viewers viewing information of service providers |
US6134532A (en) | 1997-11-14 | 2000-10-17 | Aptex Software, Inc. | System and method for optimal adaptive matching of users to most relevant entity and information in real-time |
US20110072449A1 (en) | 1997-11-20 | 2011-03-24 | Ivanyi Thomas P | System and method for measuring and storing information pertaining to television viewer or user behavior |
US6389377B1 (en) | 1997-12-01 | 2002-05-14 | The Johns Hopkins University | Methods and apparatus for acoustic transient processing |
US6223159B1 (en) | 1998-02-25 | 2001-04-24 | Mitsubishi Denki Kabushiki Kaisha | Speaker adaptation device and speech recognition device |
US6208720B1 (en) | 1998-04-23 | 2001-03-27 | Mci Communications Corporation | System, method and computer program product for a dynamic rules-based threshold engine |
US6343267B1 (en) | 1998-04-30 | 2002-01-29 | Matsushita Electric Industrial Co., Ltd. | Dimensionality reduction for speaker normalization and speaker and environment adaptation using eigenvoice techniques |
US20030061566A1 (en) | 1998-10-30 | 2003-03-27 | Rubstein Laila J. | Dynamic integration of digital files for transmission over a network and file usage control |
US6560578B2 (en) | 1999-03-12 | 2003-05-06 | Expanse Networks, Inc. | Advertisement selection system supporting discretionary target market characteristics |
US6907566B1 (en) | 1999-04-02 | 2005-06-14 | Overture Services, Inc. | Method and system for optimum placement of advertisements on a webpage |
US6704930B1 (en) | 1999-04-20 | 2004-03-09 | Expanse Networks, Inc. | Advertisement insertion techniques for digital video streams |
US20020059604A1 (en) | 1999-09-16 | 2002-05-16 | Papagan Kenneth M. | System and method for linking media content |
US6879956B1 (en) | 1999-09-30 | 2005-04-12 | Sony Corporation | Speech recognition with feedback from natural language processing for adaptation of acoustic models |
US20050076357A1 (en) | 1999-10-28 | 2005-04-07 | Fenne Adam Michael | Dynamic insertion of targeted sponsored video messages into Internet multimedia broadcasts |
US7822636B1 (en) | 1999-11-08 | 2010-10-26 | Aol Advertising, Inc. | Optimal internet ad placement |
US20030055729A1 (en) | 1999-11-10 | 2003-03-20 | Bezos Jeffrey P. | Method and system for allocating display space |
US20050246348A1 (en) | 1999-12-27 | 2005-11-03 | International Business Machines Corporation | Information extraction system, information processing apparatus, information collection apparatus, character string extraction method, and storage medium |
US6505169B1 (en) | 2000-01-26 | 2003-01-07 | At&T Corp. | Method for adaptive ad insertion in streaming multimedia content |
US7149772B1 (en) | 2000-02-04 | 2006-12-12 | Lucent Technologies Inc. | Media gateway appliance |
US20130145388A1 (en) | 2000-04-07 | 2013-06-06 | Virage, Inc. | System and method for applying a database to video multimedia |
US20020032904A1 (en) | 2000-05-24 | 2002-03-14 | Lerner David S. | Interactive system and method for collecting data and generating reports regarding viewer habits |
US20050210145A1 (en) | 2000-07-24 | 2005-09-22 | Vivcom, Inc. | Delivering and processing multimedia bookmark |
US7146416B1 (en) | 2000-09-01 | 2006-12-05 | Yahoo! Inc. | Web site activity monitoring system with tracking by categories and terms |
US6944585B1 (en) | 2000-09-01 | 2005-09-13 | Oracle International Corporation | Dynamic personalized content resolution for a media server |
US20020049635A1 (en) | 2000-09-06 | 2002-04-25 | Khanh Mai | Multiple advertising |
US20020068525A1 (en) | 2000-09-19 | 2002-06-06 | Activate.Net | Methods and systems for dynamically serving in-stream advertisements |
US7065488B2 (en) | 2000-09-29 | 2006-06-20 | Pioneer Corporation | Speech recognition system with an adaptive acoustic model |
US20020082941A1 (en) | 2000-10-16 | 2002-06-27 | Bird Benjamin David Arthur | Method and system for the dynamic delivery, presentation, organization, storage, and retrieval of content and third party advertising information via a network |
US20040051812A1 (en) | 2000-10-24 | 2004-03-18 | Hayward Monte Duane | Method of collecting data using an embedded media player page |
US6952419B1 (en) | 2000-10-25 | 2005-10-04 | Sun Microsystems, Inc. | High performance transmission link and interconnect |
US20020174425A1 (en) | 2000-10-26 | 2002-11-21 | Markel Steven O. | Collection of affinity data from television, video, or similar transmissions |
US6888477B2 (en) | 2000-12-22 | 2005-05-03 | Sony Corporation | Distributed on-demand media transcoding system and method |
US20070268164A1 (en) | 2000-12-22 | 2007-11-22 | Lai Angela C | Distributed on-demand media transcoding system and method |
US20020087980A1 (en) | 2000-12-28 | 2002-07-04 | Eldering Charles A. | Grouping advertisement subavails |
US20030142670A1 (en) | 2000-12-29 | 2003-07-31 | Kenneth Gould | System and method for multicast stream failover |
US20070300258A1 (en) | 2001-01-29 | 2007-12-27 | O'connor Daniel | Methods and systems for providing media assets over a network |
US20020144261A1 (en) | 2001-03-30 | 2002-10-03 | Schwalb Eddie M. | Methods and systems for mass customization of digital television broadcasts in dase environments |
US20030070167A1 (en) | 2001-04-18 | 2003-04-10 | Alex Holtz | Advertisement management method, system, and computer program product |
US20030055951A1 (en) | 2001-08-01 | 2003-03-20 | Chemali Emilio F. | Products, apparatus and methods for handling computer software/hardware messages |
US20030050863A1 (en) | 2001-09-10 | 2003-03-13 | Michael Radwin | Targeted advertisements using time-dependent key search terms |
US20030079226A1 (en) | 2001-10-19 | 2003-04-24 | Barrett Peter T. | Video segment targeting using remotely issued instructions and localized state and behavior information |
US20080010654A1 (en) | 2001-10-19 | 2008-01-10 | Microsoft Corporation | Advertising using a combination of video and banner advertisements |
US20030076347A1 (en) | 2001-10-19 | 2003-04-24 | Microsoft Corporation | Advertising using a combination of video and banner advertisements |
US7117439B2 (en) | 2001-10-19 | 2006-10-03 | Microsoft Corporation | Advertising using a combination of video and banner advertisements |
US20050021403A1 (en) | 2001-11-21 | 2005-01-27 | Microsoft Corporation | Methods and systems for selectively displaying advertisements |
US20030101230A1 (en) | 2001-11-26 | 2003-05-29 | Benschoter Brian N. | System and method for effectively presenting multimedia information materials |
US20110010231A1 (en) | 2001-12-14 | 2011-01-13 | Price William P | Audiovisual system and method for displaying segmented advertisements tailored to the characteristic viewing preferences of a user |
US20030121046A1 (en) | 2001-12-21 | 2003-06-26 | Eloda Inc. | Method and system for re-identifying broadcast segments using statistical profiles |
US20030174837A1 (en) | 2002-01-02 | 2003-09-18 | Candelore Brant L. | Content replacement by PID mapping |
US20030220791A1 (en) | 2002-04-26 | 2003-11-27 | Pioneer Corporation | Apparatus and method for speech recognition |
US20060026067A1 (en) | 2002-06-14 | 2006-02-02 | Nicholas Frank C | Method and system for providing network based target advertising and encapsulation |
US20040221309A1 (en) | 2002-06-18 | 2004-11-04 | Microsoft Corporation | Shared online experience history capture and provision system and method |
US20040001081A1 (en) | 2002-06-19 | 2004-01-01 | Marsh David J. | Methods and systems for enhancing electronic program guides |
US20060064500A1 (en) | 2002-06-26 | 2006-03-23 | Microsoft Corporation | Caching control for streaming media |
US20040003397A1 (en) | 2002-06-27 | 2004-01-01 | International Business Machines Corporation | System and method for customized video commercial distribution |
US20040172267A1 (en) | 2002-08-19 | 2004-09-02 | Jayendu Patel | Statistical personalized recommendation system |
US20060156326A1 (en) | 2002-08-30 | 2006-07-13 | Silke Goronzy | Methods to create a user profile and to specify a suggestion for a next selection of a user |
US20040093327A1 (en) | 2002-09-24 | 2004-05-13 | Darrell Anderson | Serving advertisements based on content |
US7136875B2 (en) | 2002-09-24 | 2006-11-14 | Google, Inc. | Serving advertisements based on content |
US20040059712A1 (en) | 2002-09-24 | 2004-03-25 | Dean Jeffrey A. | Serving advertisements using information associated with e-mail |
US20040059708A1 (en) | 2002-09-24 | 2004-03-25 | Google, Inc. | Methods and apparatus for serving relevant advertisements |
US20040073918A1 (en) * | 2002-09-30 | 2004-04-15 | Ferman A. Mufit | Automatic user profiling |
US20040204983A1 (en) | 2003-04-10 | 2004-10-14 | David Shen | Method and apparatus for assessment of effectiveness of advertisements on an Internet hub network |
US20040267806A1 (en) | 2003-06-30 | 2004-12-30 | Chad Lester | Promoting and/or demoting an advertisement from an advertising spot of one type to an advertising spot of another type |
US20050102375A1 (en) | 2003-10-23 | 2005-05-12 | Kivin Varghese | An Internet System for the Uploading, Viewing and Rating of Videos |
US20050149396A1 (en) | 2003-11-21 | 2005-07-07 | Marchex, Inc. | Online advertising system and method |
US20050114198A1 (en) | 2003-11-24 | 2005-05-26 | Ross Koningstein | Using concepts for ad targeting |
US20050137958A1 (en) | 2003-12-23 | 2005-06-23 | Thomas Huber | Advertising methods for advertising time slots and embedded objects |
US20050192802A1 (en) | 2004-02-11 | 2005-09-01 | Alex Robinson | Handwriting and voice input with automatic correction |
US20050182626A1 (en) | 2004-02-18 | 2005-08-18 | Samsung Electronics Co., Ltd. | Speaker clustering and adaptation method based on the HMM model variation information and its apparatus for speech recognition |
US20050190973A1 (en) | 2004-02-27 | 2005-09-01 | International Business Machines Corporation | System and method for recognizing word patterns in a very large vocabulary based on a virtual keyboard layout |
US20070226365A1 (en) | 2004-05-03 | 2007-09-27 | Microsoft Corporation | Aspects of digital media content distribution |
US20070078948A1 (en) | 2004-07-09 | 2007-04-05 | Luc Julia | Media delivery system and method for transporting media to desired target devices |
US20060026628A1 (en) | 2004-07-30 | 2006-02-02 | Kong Wah Wan | Method and apparatus for insertion of additional content into video |
US20060058999A1 (en) | 2004-09-10 | 2006-03-16 | Simon Barker | Voice model adaptation |
US20060063587A1 (en) | 2004-09-13 | 2006-03-23 | Manzo Anthony V | Gaming advertisement systems and methods |
US20060074753A1 (en) | 2004-10-06 | 2006-04-06 | Kimberly-Clark Worldwide, Inc. | Advertising during printing of secure customized coupons |
US20060135232A1 (en) | 2004-12-17 | 2006-06-22 | Daniel Willis | Method and system for delivering advertising content to video games based on game events and gamer activity |
US20060242016A1 (en) | 2005-01-14 | 2006-10-26 | Tremor Media Llc | Dynamic advertisement system and method |
WO2006076661A2 (en) | 2005-01-14 | 2006-07-20 | Tremor Media Llc | Dynamic advertisement system and method |
US20060161553A1 (en) | 2005-01-19 | 2006-07-20 | Tiny Engine, Inc. | Systems and methods for providing user interaction based profiles |
US20060167749A1 (en) | 2005-01-25 | 2006-07-27 | Pitkow James E | Systems and methods for providing advertising in a feed of content |
US20060212350A1 (en) | 2005-03-07 | 2006-09-21 | Ellis John R | Enhanced online advertising system |
US20060212897A1 (en) | 2005-03-18 | 2006-09-21 | Microsoft Corporation | System and method for utilizing the content of audio/video files to select advertising content for display |
US8060463B1 (en) | 2005-03-30 | 2011-11-15 | Amazon Technologies, Inc. | Mining of user event data to identify users with common interests |
US20060224444A1 (en) | 2005-03-30 | 2006-10-05 | Ross Koningstein | Networking advertisers and agents for ad authoring and/or ad campaign management |
US20060224448A1 (en) | 2005-03-31 | 2006-10-05 | Herf Michael B | System and method for obtaining content based on data from an electronic device |
US20070055986A1 (en) | 2005-05-23 | 2007-03-08 | Gilley Thomas S | Movie advertising placement optimization based on behavior and content analysis |
US7356590B2 (en) | 2005-07-12 | 2008-04-08 | Visible Measures Corp. | Distributed capture and aggregation of dynamic application usage information |
US20110078018A1 (en) | 2005-07-22 | 2011-03-31 | Rathod Yogesh Chunilal | System and method of targeting advertisements and providing advertisements management |
US20070067215A1 (en) | 2005-09-16 | 2007-03-22 | Sumit Agarwal | Flexible advertising system which allows advertisers with different value propositions to express such value propositions to the advertising system |
US20070078707A1 (en) | 2005-09-30 | 2007-04-05 | Brian Axe | Controlling the serving of advertisements, such as cost per impression advertisements for example, to improve the value of such serves |
US20070094363A1 (en) | 2005-10-25 | 2007-04-26 | Podbridge, Inc. | Configuration for ad and content delivery in time and space shifted media network |
US20070101387A1 (en) | 2005-10-31 | 2007-05-03 | Microsoft Corporation | Media Sharing And Authoring On The Web |
US20070112567A1 (en) | 2005-11-07 | 2007-05-17 | Scanscout, Inc. | Techiques for model optimization for statistical pattern recognition |
US20070112630A1 (en) | 2005-11-07 | 2007-05-17 | Scanscout, Inc. | Techniques for rendering advertisments with rich media |
US20120278169A1 (en) | 2005-11-07 | 2012-11-01 | Tremor Media, Inc | Techniques for rendering advertisements with rich media |
US20070118848A1 (en) | 2005-11-18 | 2007-05-24 | Microsoft Corporation | Automatically generated TV favorites list |
US20070184820A1 (en) | 2006-02-08 | 2007-08-09 | Richard Marshall | System and method for delivering content |
US20070219984A1 (en) | 2006-03-06 | 2007-09-20 | Murali Aravamudan | Methods and systems for selecting and presenting content based on a comparison of preference signatures from multiple users |
US20080010339A1 (en) | 2006-07-06 | 2008-01-10 | Visible Measures, Inc. | Remote invocation mechanism for logging |
US20080045336A1 (en) | 2006-08-18 | 2008-02-21 | Merit Industries, Inc. | Interactive amusement device advertising |
US20080046562A1 (en) | 2006-08-21 | 2008-02-21 | Crazy Egg, Inc. | Visual web page analytics |
US20080059312A1 (en) | 2006-09-06 | 2008-03-06 | Judith Ann Gern | System and method for dynamic online advertisement creation and management |
US20080066107A1 (en) | 2006-09-12 | 2008-03-13 | Google Inc. | Using Viewing Signals in Targeted Video Advertising |
US20080092159A1 (en) * | 2006-10-17 | 2008-04-17 | Google Inc. | Targeted video advertising |
US20080098301A1 (en) | 2006-10-20 | 2008-04-24 | Tyler James Black | Peer-to-web broadcasting |
US20080101763A1 (en) | 2006-10-26 | 2008-05-01 | Kulvir Singh Bhogal | Viewing pattern data collection |
US20080109300A1 (en) | 2006-11-06 | 2008-05-08 | Bason Brian J | System and Method for Managing the Distribution of Advertisements for Video Content |
US20080109391A1 (en) | 2006-11-07 | 2008-05-08 | Scanscout, Inc. | Classifying content based on mood |
US20080133475A1 (en) | 2006-11-30 | 2008-06-05 | Donald Fischer | Identification of interesting content based on observation of passive user interaction |
US20080178234A1 (en) | 2006-12-05 | 2008-07-24 | Crackle, Inc. | Video sharing platform providing for posting content to other websites |
US20080207182A1 (en) | 2006-12-13 | 2008-08-28 | Quickplay Media Inc. | Encoding and Transcoding for Mobile Media |
US20080178198A1 (en) | 2007-01-22 | 2008-07-24 | Media Ripple, Llc | Distributed digital media management |
US20080183555A1 (en) | 2007-01-29 | 2008-07-31 | Hunter Walk | Determining and communicating excess advertiser demand information to users, such as publishers participating in, or expected to participate in, an advertising network |
US20080195761A1 (en) | 2007-02-09 | 2008-08-14 | Dilithium Holdings, Inc. | Method and apparatus for the adaptation of multimedia content in telecommunications networks |
US20080228576A1 (en) | 2007-03-13 | 2008-09-18 | Scanscout, Inc. | Ad performance optimization for rich media content |
US20080228581A1 (en) | 2007-03-13 | 2008-09-18 | Tadashi Yonezaki | Method and System for a Natural Transition Between Advertisements Associated with Rich Media Content |
US20080250445A1 (en) * | 2007-04-03 | 2008-10-09 | Google Inc. | Television advertising |
US20090077033A1 (en) | 2007-04-03 | 2009-03-19 | Mcgary Faith | System and method for customized search engine and search result optimization |
US20080288973A1 (en) | 2007-05-18 | 2008-11-20 | Carson David V | System and Method for Providing Advertisements for Video Content in a Packet Based Network |
US20080300989A1 (en) | 2007-05-31 | 2008-12-04 | Eyewonder, Inc. | Systems and methods for generating, reviewing, editing, and transmitting an advertising unit in a single environment |
US20090013347A1 (en) | 2007-06-11 | 2009-01-08 | Gulrukh Ahanger | Systems and methods for reporting usage of dynamically inserted and delivered ads |
US20080307454A1 (en) * | 2007-06-11 | 2008-12-11 | Gulrukh Ahanger | Systems and methods for inserting ads during playback of video media |
US20090007172A1 (en) | 2007-06-11 | 2009-01-01 | Gulrukh Ahanger | Systems and methods for forecasting ad inventory |
US20080320531A1 (en) | 2007-06-25 | 2008-12-25 | Interpols Network Incorporated | Systems and methods for third-party aggregated video ratings |
US20080319827A1 (en) | 2007-06-25 | 2008-12-25 | Microsoft Corporation | Mining implicit behavior |
US20090019488A1 (en) * | 2007-07-10 | 2009-01-15 | Verizon Data Services, Inc. | System and method for providing personal content recommendations |
US8577996B2 (en) | 2007-09-18 | 2013-11-05 | Tremor Video, Inc. | Method and apparatus for tracing users of online video web sites |
US20090119169A1 (en) | 2007-10-02 | 2009-05-07 | Blinkx Uk Ltd | Various methods and apparatuses for an engine that pairs advertisements with video files |
US20090089830A1 (en) | 2007-10-02 | 2009-04-02 | Blinkx Uk Ltd | Various methods and apparatuses for pairing advertisements with video files |
US20090094520A1 (en) | 2007-10-07 | 2009-04-09 | Kulas Charles J | User Interface for Creating Tags Synchronized with a Video Playback |
US20090100456A1 (en) | 2007-10-12 | 2009-04-16 | John Hughes | Method and apparatus for monitoring online video |
US20090144780A1 (en) * | 2007-11-29 | 2009-06-04 | John Toebes | Socially collaborative filtering |
US20090171728A1 (en) | 2007-12-27 | 2009-07-02 | Yan Tak W | Simulation framework for evaluating designs for sponsored search markets |
US20090183210A1 (en) | 2008-01-16 | 2009-07-16 | Apple Inc. | Filtering and tailoring multimedia content based on observed user behavior |
US20090259551A1 (en) | 2008-04-11 | 2009-10-15 | Tremor Media, Inc. | System and method for inserting advertisements from multiple ad servers via a master component |
US20090259552A1 (en) | 2008-04-11 | 2009-10-15 | Tremor Media, Inc. | System and method for providing advertisements from multiple ad servers using a failover mechanism |
US8301497B2 (en) | 2008-04-17 | 2012-10-30 | Aol Advertising Inc. | Method and system for media initialization via data sharing |
US20090328105A1 (en) * | 2008-06-27 | 2009-12-31 | Guideworks, Llc | Systems and methods for ranking assets relative to a group of viewers |
US20100011020A1 (en) | 2008-07-11 | 2010-01-14 | Motorola, Inc. | Recommender system |
US20100023960A1 (en) | 2008-07-22 | 2010-01-28 | General Instrument Corporation | Detection of Video Program Viewing Behavior for Correlation with Advertisement Presentation |
US20100057576A1 (en) | 2008-09-02 | 2010-03-04 | Apple Inc. | System and method for video insertion into media stream or file |
US20100088614A1 (en) | 2008-09-02 | 2010-04-08 | Frank Barbieri | Just-in-time media delivery system |
US20100088394A1 (en) | 2008-09-02 | 2010-04-08 | Frank Barbieri | Multipoint publishing |
US20110225608A1 (en) | 2008-09-17 | 2011-09-15 | Lopatecki Jason | Video Viewer Targeting based on Preference Similarity |
US8549550B2 (en) | 2008-09-17 | 2013-10-01 | Tubemogul, Inc. | Method and apparatus for passively monitoring online video viewing and viewer behavior |
US9612995B2 (en) * | 2008-09-17 | 2017-04-04 | Adobe Systems Incorporated | Video viewer targeting based on preference similarity |
US20170026479A1 (en) | 2008-09-17 | 2017-01-26 | Tubemogul, Inc. | Method and Apparatus for Passively Monitoring Online Video Viewing and Viewer Behavior |
US20110029666A1 (en) | 2008-09-17 | 2011-02-03 | Lopatecki Jason | Method and Apparatus for Passively Monitoring Online Video Viewing and Viewer Behavior |
US9485316B2 (en) | 2008-09-17 | 2016-11-01 | Tubemogul, Inc. | Method and apparatus for passively monitoring online video viewing and viewer behavior |
US20100114696A1 (en) | 2008-10-31 | 2010-05-06 | Yahoo! Inc. | Method of programmed allocation of advertising opportunities for conformance with goals |
US20140298373A1 (en) | 2008-12-11 | 2014-10-02 | Sony Corporation | Social networking and peer to peer for tvs |
US20100191680A1 (en) | 2009-01-23 | 2010-07-29 | Samsung Electronics Co., Ltd. | Method and apparatus for predicting preference rating for content, and method and apparatus for selecting sample content |
US20110295716A1 (en) | 2009-04-08 | 2011-12-01 | Ebay Inc. | Method, medium, and system for adjusting product ranking scores based on an adjustment factor |
US20100287580A1 (en) | 2009-05-08 | 2010-11-11 | Harding John M | Content syndication in web-based media via ad tagging |
US20100318611A1 (en) | 2009-06-10 | 2010-12-16 | Silverpop Systems, Inc. | Methods and systems for tracking shared content |
US20110078740A1 (en) | 2009-09-30 | 2011-03-31 | Verizon Patent And Licensing, Inc. | Advance notice of television advertisements |
US20110093783A1 (en) | 2009-10-16 | 2011-04-21 | Charles Parra | Method and system for linking media components |
US20110125573A1 (en) | 2009-11-20 | 2011-05-26 | Scanscout, Inc. | Methods and apparatus for optimizing advertisement allocation |
Non-Patent Citations (30)
Title |
---|
Chorianopoulos, K et al., "Affective Usability Evaluation for an Interactive Music Television Channel", ACM Computer in Entertainment. vol. 2, No. 3. Article 78. Retrieved Apr. 24, 2008 from the internet: http://www.dmst.aueb.gr/dds/pubs/jrnl/2004-CIE-VC/html/CS04b.pdf, Jul. 1-11, 2004. |
Flanagan, David, "JavaScript: The Definitive Guide, 5th Edition", O'Reilly Media, (Aug. 17, 2006), pp. 271-272 and 536-538. |
Hanjalic, A et al., "Affective Video Content Representation and Modeling", IEEE Transactions on Multimedia. vol. 7, No. 1., Feb. 2005, pp. 143-154. |
Mihalcea, R et al., "A Corpus-Based Approach to Finding Happiness", AAAI Spring Symposium, Mar. 2006, pp. 1-6. |
Mihalcea, R et al., "Learning to Laugh (Automatically): Computational Models for Humor Recognition", Computational Intelligence. vol. 22, Issue 2., May 2006, pp. 126-142. |
U.S. Appl. No. 11/871,880, dated Aug. 10, 2011, Office Action. |
U.S. Appl. No. 11/871,880, dated Dec. 20, 2010, Office Action. |
U.S. Appl. No. 11/871,880, dated Dec. 9, 2009, Office Action. |
U.S. Appl. No. 11/871,880, dated Jun. 8, 2010, Office Action. |
U.S. Appl. No. 12/212,553, dated Feb. 4, 2013, Office Action. |
U.S. Appl. No. 12/212,553, dated Mar. 10, 2011, Office Action. |
U.S. Appl. No. 12/212,553, dated May 10, 2012, Office Action. |
U.S. Appl. No. 12/212,553, dated May 13, 2010, Office Action. |
U.S. Appl. No. 12/212,553, dated Nov. 17, 2009, Office Action. |
U.S. Appl. No. 12/212,553, dated Sep. 21, 2010, Office Action. |
U.S. Appl. No. 12/212,556, dated Aug. 22, 2013, Notice of Allowance. |
U.S. Appl. No. 12/904,552, dated Apr. 26, 2012, Office Action. |
U.S. Appl. No. 12/904,552, dated Dec. 18, 2012, Office Action. |
U.S. Appl. No. 12/904,552, dated May 30, 2013, Notice of Allowance. |
U.S. Appl. No. 13/111,705, dated Aug. 10, 2016, Office Action. |
U.S. Appl. No. 13/111,705, dated Feb. 23, 2016, Office Action. |
U.S. Appl. No. 13/111,705, dated Jul. 31, 2014, Office Action. |
U.S. Appl. No. 13/111,705, dated Mar. 10, 2015, Office Action. |
U.S. Appl. No. 13/111,705, dated Nov. 16, 2016, Notice of Allowance. |
U.S. Appl. No. 13/975,196, dated Jul. 21, 2015, Office Action. |
U.S. Appl. No. 13/975,196, dated May 13, 2016, Office Action. |
U.S. Appl. No. 13/975,196, dated Sep. 26, 2016, Notice of Allowance. |
U.S. Appl. No. 15/285,356, dated Feb. 10, 2017, Office Action. |
U.S. Appl. No. 15/285,356, dated May 18, 2017, Notice of Allowance. |
Young, S et al., "The HTK Book", Microsoft. Hidden Markov Model Toolkit User Manual., Jul. 2000, 277 pages. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180227615A1 (en) * | 2008-09-17 | 2018-08-09 | Adobe Systems Incorporated | Targeting videos based on viewer similarity |
US10462504B2 (en) * | 2008-09-17 | 2019-10-29 | Adobe Inc. | Targeting videos based on viewer similarity |
Also Published As
Publication number | Publication date |
---|---|
US20180227615A1 (en) | 2018-08-09 |
US10462504B2 (en) | 2019-10-29 |
US20110225608A1 (en) | 2011-09-15 |
US20170094331A1 (en) | 2017-03-30 |
US9612995B2 (en) | 2017-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10462504B2 (en) | Targeting videos based on viewer similarity | |
US10270870B2 (en) | Passively monitoring online video viewing and viewer behavior | |
US8577996B2 (en) | Method and apparatus for tracing users of online video web sites | |
US11854049B2 (en) | Methods and apparatus to measure media using media object characteristics | |
JP6436445B2 (en) | Method and apparatus for identifying media impressions | |
KR101753179B1 (en) | Method and apparatus to determine ratings information for online media presentations | |
US9124631B2 (en) | Content syndication in web-based media via ad tagging | |
US7930391B1 (en) | Method and system for determining viewing time of an online video | |
CN106062801B (en) | Tracking pixels and COOKIE for television event viewing | |
US20090100456A1 (en) | Method and apparatus for monitoring online video | |
US20140068411A1 (en) | Methods and apparatus to monitor usage of internet advertising networks | |
EP3087748B1 (en) | Methods and apparatus to measure media using media object characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TUBEMOGUL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOPATECKI, JASON;ROSE, ADAM;HUGHES, JOHN;AND OTHERS;REEL/FRAME:040485/0011 Effective date: 20110426 |
|
AS | Assignment |
Owner name: TUBEMOGUL, INC., CALIFORNIA Free format text: MERGER;ASSIGNOR:TUBEMOGUL, INC.;REEL/FRAME:040838/0148 Effective date: 20140320 |
|
AS | Assignment |
Owner name: ADOBE SYSTEMS INCORPORATED, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TUBEMOGUL, INC.;REEL/FRAME:041024/0872 Effective date: 20170113 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: ADOBE INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:ADOBE SYSTEMS INCORPORATED;REEL/FRAME:048867/0882 Effective date: 20181008 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |