WO2003050938A2 - Power inverter - Google Patents
Power inverter Download PDFInfo
- Publication number
- WO2003050938A2 WO2003050938A2 PCT/EP2002/014031 EP0214031W WO03050938A2 WO 2003050938 A2 WO2003050938 A2 WO 2003050938A2 EP 0214031 W EP0214031 W EP 0214031W WO 03050938 A2 WO03050938 A2 WO 03050938A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modules
- plates
- inverter according
- inverter
- plate
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 30
- 239000004065 semiconductor Substances 0.000 claims description 26
- 230000008439 repair process Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 230000007257 malfunction Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/505—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
- H02M7/515—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
- H05K7/1432—Housings specially adapted for power drive units or power converters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
- H05K7/1432—Housings specially adapted for power drive units or power converters
- H05K7/14325—Housings specially adapted for power drive units or power converters for cabinets or racks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Definitions
- the present invention relates to an inverter (converter) for converting a direct current into an alternating current.
- inverters have been known for a long time and are used in a variety of ways, including in wind turbines.
- Modern inverters use semiconductor switching elements such. B. IGBT 's , which are driven in a suitable manner to generate the alternating current.
- IGBT 's semiconductor switching elements
- these semiconductor switching elements are relatively reliable overall, failure cannot be ruled out.
- the object of the present invention is therefore to provide an inverter which reduces or avoids these disadvantages.
- an inverter of the type mentioned at the beginning by an at least partially modular structure, with detachably installed modules and connecting lines detachably attached to the modules.
- the invention is based on the knowledge that on-site repair is naturally more prone to errors than a repair in a workshop specially set up for this purpose. Therefore, the in- On-site maintenance to identify the defective module, remove it and replace it with a faultless module.
- an exchange can be carried out faster than a repair, so that the inverter can be put into operation again more quickly.
- the modularization is based on the function of a module, so that if a malfunction occurs, it is already possible to infer a particular module and at least a small number of modules from the malfunction, which then still need to be checked ,
- the inverter further comprises an intermediate store formed from a plurality of capacitors, to which at least some of the modules are connected. If these modules connected to the buffer are the semiconductor switching element modules, the buffer is able to compensate for fluctuations due to the switching processes of the semiconductor switching elements, and thus to enable stable operation of the semiconductor switching elements. ,
- connection between the buffer store and at least some of the modules is capacitive.
- the capacitive connection in an inverter according to the invention particularly preferably comprises at least one plate capacitor and the modules are mechanically connected to the plates of this plate capacitor.
- the plates of a plate capacitor form a mechanical and electrical connection between the intermediate store formed from a plurality of capacitors and the connected modules. In this way, the influence of inductors can be reduced as much as possible.
- the distance between the output terminals of the semiconductor switching elements of a module does not exceed a predetermined level. This means that the lines connected to it are also at an appropriate distance. In this way, these neighboring lines can be routed through a common measuring transducer, and the effort for detecting the current flowing in the lines is therefore limited.
- FIG. 1 is a simplified representation of an inverter according to the invention
- FIG. 2 shows a selection of modules from FIG. 1;
- FIG. 3 shows an enlarged detail from FIG. 2;
- FIG. 4 shows a simplified illustration of a semiconductor module;
- Figure 5 is a side view of a capacitor plate
- Figure 6 is a view of another capacitor plate
- Figure 7 shows a detail of the capacitor plate
- FIG. 8 shows an alternative embodiment to FIG. 2.
- FIG. 1 shows a simplified representation of an inverter according to the invention.
- components such as chokes, contactors, safety devices and the like, but also cables, are not shown to improve the overview.
- This inverter is in a cabinet 1 and brought in and has several modules. These modules have different functions. So modules 2, 3 and 4 are semiconductor modules, which generate an alternating current from a direct current. A separate module for 2, 3 and 4 is provided for each phase. Another module 5 is provided for controlling all modules of the inverter according to the invention. A module 6 is a voltage balancer. In addition, further modules 7 can be provided. These can take over the function of a chopper, a step-up converter, or the like.
- modules 2, 3, 4, 5, 6, 7 are installed in a cabinet 1, which is already prepared in a special way for the installation of modules. Cable connections (not shown) run between the modules 2, 3, 4, 5, 6, 7, which preferably connect the individual modules to one another via plug connections.
- the modules 2, 3, 4, 5, 6, 7 themselves are detachably attached in the cabinet 1, for. B. with screws ..
- FIG. 2 shows in particular the connection of modules 2, 3, 4 and 7 to the DC circuit of the inverter.
- modules 2, 3 and 4 are semiconductor modules, each of which generates an alternating current from a direct current for one phase.
- switching elements z.
- thyristors or IGTB 's or other semiconductors are used ter.
- connection plates 12, 13, 16, 17 are provided, to which the modules 2, 3, 4, 7 are connected.
- This connection is made via rails 10, 11, 14, 15, which are attached on the one hand to the connection plates 12, 13, 16, 17 and on the other hand to the modules 2, 3, 4, 7 with screws 21.
- the rails 10, 11, 14, 15 as well as the connection plates 12, 13, 16, 17 are len separately.
- the rails 12 and 14 can be cathodes and accordingly have a negative potential or ground potential. Accordingly, the rails 12 and 14 naturally also have positive potential and the rails 11 and 15 have negative or ground potential.
- rails 10, 11, 14, 15 for supplying electrical energy to the modules 2, 3, 4, 7, since the cross section of the rails can be designed to be correspondingly large.
- the rails 10, 11, 14, 15 can be divided so that a separate rail 10, 11, 14, 15 runs from a connection plate to a module 2, 3, 4, 7.
- FIG. 2 shows an enlarged view of the section enclosed by a circle in FIG.
- FIG. 1 A 3-layer structure is shown in FIG.
- This 3-layer structure is formed from two capacitor plates 18, 19 and a dielectric 20. Accordingly, this structure forms a plate capacitor.
- the plates 18, 19 of this capacitor z. B. be made of aluminum and have a thickness of several millimeters.
- the dielectric 20 can be formed by a plastic film and have a thickness of a few tenths of a millimeter. With this construction, one of the plates 18, 19 is necessarily the anode plate, the other plate is then inevitably the cathode plate.
- the plates 18, 19 of the capacitor are used to supply direct current to the modules 2, 3, 4, 7. Due to the construction of the feed as a plate capacitor, this feed is purely capacitive and the influence of undesired inductances is prevented.
- FIG. 4 shows a semiconductor module 2, 3, 4 in a simplified representation, namely with the semiconductor switching elements 22. These semiconductor switching elements 22, for the z. B. are used as IGTB ' s are controlled in a suitable manner known in the art to generate a desired alternating current which is derived via cable 25. The operation of such a semiconductor module can, for. B. from the patent specification DE 197 48 479 C1.
- semiconductor switch elements 22 with correspondingly arranged connections can be provided.
- rails 23 are provided from the output connections of the semiconductor modules 22 to the cable lugs 24, which conduct the output current of the semiconductor element 22 to the corresponding cable 25.
- These rails 23 are fastened to the output connection of the semiconductor module 22 with screws 26, which are shown here as hexagon socket screws, and the cables 25 are in turn fastened to the rails 23 by means of cable lugs 24 and screws 26, which are shown as Phillips screws.
- the inverter has an intermediate store which is formed from a plurality of capacitors.
- This buffer memory has, inter alia, the task of smoothing the DC voltage applied to the semiconductor modules and compensating for voltage fluctuations as a result of the switching processes of the semiconductor switching elements 22.
- this intermediate store (not shown) is connected to the modules via the plate capacitor 18, 19, 20.
- the plates 18, 19 of the plate capacitor are shown in FIGS. 5 and 6. 5 shows the anode plate and FIG. 6 shows the cathode plate.
- These plates 18, 19 have bores 28 and recesses 29 comprising these bores. This is shown in detail using the example of a bore / recess in FIG. 7 in cross section.
- FIG. 8 shows an alternative arrangement to the connection rails 10, 11, 14, 15 shown in FIG. 2.
- the rails are widened in such a way that they cover both connection plates 12, 13.
- These rails which are also shown in the form of plates in this figure, are designated here by the reference numerals 31 and 32. To make it clear that they are on top of each other, they are shown offset from each other. In situ they are essentially congruent.
- One of the plates is connected to the anode 12 and the other to the cathode 13. Due to a dielectric inserted between the plates 31, 32 but not shown in the figure, these plates 31, 32 also form a capacitor. As shown in this figure, plate 32 is the anode plate and plate 31 is the cathode plate. Of course, these plates the semiconductor modules not shown also in this figure, again in accordance with "connected to these supply the required direct current. Thus, since the connection by the terminal plates 12, 13 occurs to the semiconductor modules of a plate capacitor is also in this portion of the electrical connection prevents an inductive influence.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
- Rectifiers (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Description
Wechselrichter inverter
Die vorliegende Erfindung betrifft einen Wechselrichter (Umrichter) zur Umwandlung eines Gleichstroms in einen Wechselstrom. Solche Wechselrichter sind seit langem bekannt und finden vielfältige Anwendung, u. a. in Windenergieanlagen. Dabei verwenden moderne Wechselrichter Halbleiter- Schaltelemente wie z. B. IGBT's, die in geeigneter Weise angesteuert werden, um den Wechselstrom zu erzeugen. Diese Halbleiter-Schaltelemente sind zwar insgesamt relativ zuverlässig, jedoch ist ein Versagen nicht auszuschließen.The present invention relates to an inverter (converter) for converting a direct current into an alternating current. Such inverters have been known for a long time and are used in a variety of ways, including in wind turbines. Modern inverters use semiconductor switching elements such. B. IGBT 's , which are driven in a suitable manner to generate the alternating current. Although these semiconductor switching elements are relatively reliable overall, failure cannot be ruled out.
Bei konventionell aufgebauten Wechselrichtern wird bei dem Ausfall eines solchen Halbleiter-Schaltelements dieses vor Ort ausgetauscht. Dabei können unbeabsichtigte und unerwünschte Verschmutzungen und/oder Beschädigungen und/oder Montagefehler auftreten, die unbemerkt bleiben und in kurzer Zeit zu einer (erneuten) Zerstörung des Halbleiter-Schaltelements führen. Die damit erneut erforderliche Instandsetzung erfordert einen Aufwand, der vermeidbar gewesen wäre.In the case of conventionally constructed inverters, if such a semiconductor switching element fails, it is replaced on site. Unintended and undesired soiling and / or damage and / or assembly errors can occur which remain unnoticed and lead to (renewed) destruction of the semiconductor switching element in a short time. The repair required again requires an effort that would have been avoidable.
Aufgabe der vorliegenden Erfindung ist es daher, einen Wechselrichter anzugeben, der diese Nachteile verringert bzw. vermeidet.The object of the present invention is therefore to provide an inverter which reduces or avoids these disadvantages.
Diese Aufgaben wird bei einem Wechselrichter der eingangs genannten Art gelöst durch einen wenigstens teilweise modularen Aufbau, mit lösbar eingebauten Modulen und an den Modulen lösbar angebrachten Verbindungsleitungen. Dabei liegt der Erfindung die Erkenntnis zugrunde, dass eine Instand- setzung vor Ort naturgemäß fehleranfälliger ist als eine Instandsetzung in einer besonders dafür eingerichteten Werkstatt. Daher beschränkt sich die In- standsetzung vor Ort darauf, das defekte Modul zu identifizieren, auszubauen und durch ein einwandfreies Modul zu ersetzen. Neben der verringerten Fehleranfälligkeit des Instandsetzungsvorgangs an sich ist bei einer entsprechenden Ausgestaltung der Module ein Austausch schneller zu bewerkstelligen als eine Reparatur, so dass der Wechselrichter schneller wieder in Betrieb genommen werden kann.These tasks are solved in an inverter of the type mentioned at the beginning by an at least partially modular structure, with detachably installed modules and connecting lines detachably attached to the modules. The invention is based on the knowledge that on-site repair is naturally more prone to errors than a repair in a workshop specially set up for this purpose. Therefore, the in- On-site maintenance to identify the defective module, remove it and replace it with a faultless module. In addition to the reduced susceptibility to errors of the repair process itself, with an appropriate configuration of the modules, an exchange can be carried out faster than a repair, so that the inverter can be put into operation again more quickly.
In einer bevorzugten Ausführungsform der Erfindung orientiert sich die Modularisierung an der Funktion eines Moduls, so dass bei dem Auftreten einer Stö- rung bereits aus der Störung auf ein bestimmtes Modul und wenigstens eine geringe Anzahl von Modulen geschlossen werden kann, die dann noch zu prüfen sind.In a preferred embodiment of the invention, the modularization is based on the function of a module, so that if a malfunction occurs, it is already possible to infer a particular module and at least a small number of modules from the malfunction, which then still need to be checked ,
In einer insbesondere bevorzugten Weiterbildung der Erfindung umfasst der Wechselrichter weiterhin einen aus mehreren Kondensatoren gebildeten Zwischenspeicher, an welchen wenigstens ein Teil der Module angeschlossen ist. Wenn diese an den Zwischenspeicher angeschlossenen Module die Halbleiter-Schaltelement-Module sind, ist der Zwischenspeicher in der Lage, Schwankungen infolge der Schaltvorgänge der Halbleiter-Schaltelemente auszugleichen, und so einen stabilen Betrieb der Haltleiter-Schaltelemente zu ermöglichen. .In a particularly preferred development of the invention, the inverter further comprises an intermediate store formed from a plurality of capacitors, to which at least some of the modules are connected. If these modules connected to the buffer are the semiconductor switching element modules, the buffer is able to compensate for fluctuations due to the switching processes of the semiconductor switching elements, and thus to enable stable operation of the semiconductor switching elements. ,
In einer besonders vorteilhaften Weiterbildung der Erfindung ist die Verbindung zwischen dem Zwischenspeicher und wenigstens einem Teil der Module kapazitiv. Durch diese kapazitive Ausgestaltung der Verbindung können die Einflüsse parasitärer Induktivitäten, die bei Verbindungsleitungen unvermeidlich sind, auf ein Minimum reduziert werden. Auf diese Weise lassen sich auch Betriebsstörungen vermeiden, die auf die Wirkung solcher Induktivitäten zurückführbar sind.In a particularly advantageous development of the invention, the connection between the buffer store and at least some of the modules is capacitive. With this capacitive configuration of the connection, the influences of parasitic inductances, which are unavoidable in connection lines, can be reduced to a minimum. In this way, malfunctions that can be traced back to the effect of such inductors can also be avoided.
Um induktive Einflüsse weitestmöglich zu beseitigen, umfasst die kapazitive Verbindung in einem erfindungsgemäßen Wechselrichter besonders bevorzugt wenigstens einen Plattenkondensator und die Module sind mechanisch mit den Platten dieses Plattenkondensators verbunden. In einer bevorzugten Weiterbildung der Erfindung bilden die Platten eines Plattenkondensators eine mechanische und elektrische Verbindung zwischen dem aus mehreren Kondensatoren gebildeten Zwischenspeicher und den angeschlossenen Modulen. Auf diese Weise lässt sich der Einfluss von Induktivitä- ten weitestmöglich verringern.In order to eliminate inductive influences as much as possible, the capacitive connection in an inverter according to the invention particularly preferably comprises at least one plate capacitor and the modules are mechanically connected to the plates of this plate capacitor. In a preferred development of the invention, the plates of a plate capacitor form a mechanical and electrical connection between the intermediate store formed from a plurality of capacitors and the connected modules. In this way, the influence of inductors can be reduced as much as possible.
In einer besonders vorteilhaften Weiterbildung der Erfindung überschreitet der Abstand der Ausgangsklemmen der Halbleiter-Schaltelemente eines Moduls ein vorgegebenes Maß nicht. Damit weisen auch die daran angeschlossenen Leitungen einen entsprechenden Abstand auf. Auf diese Weise lassen sich diese benachbarten Leitungen durch einen gemeinsamen Messwandler führen und somit ist der Aufwand zur Erfassung des in den Leitungen fließenden Stromes begrenzt.In a particularly advantageous development of the invention, the distance between the output terminals of the semiconductor switching elements of a module does not exceed a predetermined level. This means that the lines connected to it are also at an appropriate distance. In this way, these neighboring lines can be routed through a common measuring transducer, and the effort for detecting the current flowing in the lines is therefore limited.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous developments of the invention are specified in the subclaims.
Im Folgenden wird eine Ausführungsform der Erfindung anhand der Figuren näher erläutert:An embodiment of the invention is explained in more detail below with reference to the figures:
Figur 1 eine vereinfachte Darstellung eines erfindungsgemäßen Wechselrichters;Figure 1 is a simplified representation of an inverter according to the invention;
Figur 2 eine Auswahl von Modulen aus Figur 1 ;FIG. 2 shows a selection of modules from FIG. 1;
Figur 3 eine vergrößerte Einzelheit aus Figur 2; Figur 4 eine vereinfachte Darstellung eines Halbleiter-Moduls;FIG. 3 shows an enlarged detail from FIG. 2; FIG. 4 shows a simplified illustration of a semiconductor module;
Figur 5 eine Seitenansicht einer Kondensatorplatte;Figure 5 is a side view of a capacitor plate;
Figur 6 eine Ansicht einer weiteren Kondensatorplatte;Figure 6 is a view of another capacitor plate;
Figur 7 eine Einzelheit der Kondensatorplatte; undFigure 7 shows a detail of the capacitor plate; and
Figur 8 eine alternative Ausführungsform zu Fig. 2.8 shows an alternative embodiment to FIG. 2.
Figur 1 zeigt eine vereinfachte Darstellung eines erfindungsgemäßen Wechselrichters. In dieser Figur sind Komponenten wie Drosseln, Schütze, Sicherungseinrichtungen und ähnliches, aber auch Kabel, zur Verbesserung der Übersicht nicht dargestellt. Dieser Wechselrichter ist in einem Schrank 1 un- tergebracht und weist mehrere Module auf. Diese Module haben unterschiedliche Funktionen. So sind die Module 2, 3 und 4 Halbleiter-Module, welche aus einem Gleichstrom einen Wechselstrom erzeugen. Dabei ist für jede Phase ein eigenes Modul zu 2, 3 und 4 vorgesehen. Ein weiteres Modul 5 ist zur Steuerung sämtlicher Module des erfindungsgemäßen Wechselrichters vorgesehen. Ein Modul 6 ist ein Spannungs-Symmetrierer. Außerdem können weitere Module 7 vorgesehen sein. Diese können die Funktion eines Choppers, eines Hochsetzstellers, oder ähnliche übernehmen.Figure 1 shows a simplified representation of an inverter according to the invention. In this figure, components such as chokes, contactors, safety devices and the like, but also cables, are not shown to improve the overview. This inverter is in a cabinet 1 and brought in and has several modules. These modules have different functions. So modules 2, 3 and 4 are semiconductor modules, which generate an alternating current from a direct current. A separate module for 2, 3 and 4 is provided for each phase. Another module 5 is provided for controlling all modules of the inverter according to the invention. A module 6 is a voltage balancer. In addition, further modules 7 can be provided. These can take over the function of a chopper, a step-up converter, or the like.
Diese Module 2, 3, 4, 5, 6, 7 sind in einen Schrank 1 eingebaut, der in besonderer Weise bereits für den Einbau von Modulen vorbereitet ist. Zwischen den Modulen 2, 3, 4, 5, 6, 7 verlaufen (nicht dargestellte) Kabelverbindungen, die bevorzugt über Steckverbindungen die einzelnen Module untereinander verbinden. Die Module 2, 3, 4, 5, 6, 7 selbst sind lösbar in dem Schrank 1 befestigt, z. B. mit Schrauben..These modules 2, 3, 4, 5, 6, 7 are installed in a cabinet 1, which is already prepared in a special way for the installation of modules. Cable connections (not shown) run between the modules 2, 3, 4, 5, 6, 7, which preferably connect the individual modules to one another via plug connections. The modules 2, 3, 4, 5, 6, 7 themselves are detachably attached in the cabinet 1, for. B. with screws ..
Zum Austausch eines Moduls 2, 3, 4, 5, 6, oder 7 sind daher lediglich die Kabel an diesem Modul abzuziehen und die Schraubverbindungen des Moduls zu lösen. So dann kann jedes einzelne der Module 2, 3, 4, 5, 6, 7 separat ausgetauscht werden. Im Fall einer Störung muss also der Servicetechniker lediglich ein entsprechendes Ersatzmodul an Stelle des als defekt erkannten Moduls einsetzen, und der Wechselrichter kann nach kurzer Instandsetzungszeit wieder in Betrieb genommen werden.To replace a module 2, 3, 4, 5, 6 or 7, simply disconnect the cables on this module and loosen the screw connections of the module. Then each of the modules 2, 3, 4, 5, 6, 7 can be replaced separately. In the event of a malfunction, the service technician only has to use a corresponding replacement module instead of the module identified as defective, and the inverter can be put into operation again after a short repair period.
In Figur 2 ist insbesondere die Verbindung der Module 2, 3, 4 und 7 mit dem Gleichstromkreis des Wechselrichters gezeigt. In Verbindung mit Figur 1 wurde bereits erläutert, dass die Module 2, 3 und 4 Halbleitermodule sind, die jeweils für eine Phase einen Wechselstrom aus einem Gleichstrom erzeugen. Als Schaltelemente können z. B. Thyristoren oder IGTB's oder andere Halblei- ter verwendet werden. Um diesen Modulen 2, 3, 4, 7 Gleichstrom zuzuführen, sind Anschlussplatten 12, 13, 16, 17 vorgesehen, mit welchen die Module 2, 3, 4, 7 verbunden sind. Diese Verbindung erfolgt über Schienen 10, 11 , 14, 15, die einerseits an den Anschlussplatten 12, 13, 16, 17 und andererseits an den Modulen 2, 3, 4, 7 mit Schrauben 21 angebracht sind. Die Schienen 10, 11 , 14, 15 sind ebenso wie die Anschlussplatten 12, 13, 16, 17 nach Potenzia- len getrennt. In dem vorliegenden Ausführungsbeispiel können z. B. PlattenFIG. 2 shows in particular the connection of modules 2, 3, 4 and 7 to the DC circuit of the inverter. In connection with FIG. 1, it has already been explained that modules 2, 3 and 4 are semiconductor modules, each of which generates an alternating current from a direct current for one phase. As switching elements z. As thyristors or IGTB 's or other semiconductors are used ter. In order to supply direct current to these modules 2, 3, 4, 7, connection plates 12, 13, 16, 17 are provided, to which the modules 2, 3, 4, 7 are connected. This connection is made via rails 10, 11, 14, 15, which are attached on the one hand to the connection plates 12, 13, 16, 17 and on the other hand to the modules 2, 3, 4, 7 with screws 21. The rails 10, 11, 14, 15 as well as the connection plates 12, 13, 16, 17 are len separately. In the present embodiment, e.g. B. plates
12 und 16 Anoden sein, so ein positives Potenzial aufweisen und die Platten12 and 16 anodes, so have a positive potential and the plates
13 und 17 können Kathoden sein und entsprechend ein negatives Potenzial oder auch Masse-Potenzial aufweisen. Dementsprechend haben dann natür- lieh auch die Schienen 12 und 14 positives Potenzial und die Schienen 11 und 15 negatives oder Masse-Potenzial.13 and 17 can be cathodes and accordingly have a negative potential or ground potential. Accordingly, the rails 12 and 14 naturally also have positive potential and the rails 11 and 15 have negative or ground potential.
Durch die Verwendung von Schienen 10, 11 , 14, 15 zum Zuführen elektrischer Energie zu den Modulen 2, 3, 4, 7 können entsprechend hohe Ströme fließen, da der Querschnitt der Schienen entsprechend groß ausgelegt werden kann. Zur Verbesserung der Handhabbarkeit können die Schienen 10, 11, 14, 15 geteilt sein, so dass jeweils eine separate Schiene 10, 11 , 14, 15 von einer Anschlussplatte zu einem Modul 2, 3, 4, 7 verläuft.Correspondingly high currents can flow through the use of rails 10, 11, 14, 15 for supplying electrical energy to the modules 2, 3, 4, 7, since the cross section of the rails can be designed to be correspondingly large. To improve the manageability, the rails 10, 11, 14, 15 can be divided so that a separate rail 10, 11, 14, 15 runs from a connection plate to a module 2, 3, 4, 7.
Wie in Figur 2 erkennbar ist, befinden sich hinter den Anschlussplatten 12, 13, 16, 17 parallel zueinander weitere Platten 18, 19. Die Anordnung und Wirkungsweise dieser Platten 18, 19 wird anhand von Figur 3 näher erläutert. Dabei zeigt Figur 3 eine vergrößerte Darstellung des in Figur 2 von einem Kreis umschlossenen Abschnitts.As can be seen in FIG. 2, behind the connection plates 12, 13, 16, 17 there are further plates 18, 19 parallel to one another. The arrangement and mode of operation of these plates 18, 19 are explained in more detail with reference to FIG. 3. 3 shows an enlarged view of the section enclosed by a circle in FIG.
In Figur 3 ist eine 3-lagige Struktur dargestellt. Diese 3-lagige Struktur ist gebildet aus zwei Kondensatorplatten 18, 19 und einem Dielektrikum 20. Entsprechend bildet dieser Aufbau einen Plattenkondensator. Dabei können die Platten 18, 19 dieses Kondensators z. B. aus Aluminium hergestellt sein und eine Dicke von mehreren Millimetern aufweisen. Das Dielektrikum 20 kann durch eine Kunststoff-Folie gebildet sein und eine Dicke von einigen zehntel Millimetern aufweisen. Bei diesem Aufbau ist eine der Platten 18,19 notwendigerweise die Anodenplatte, die andere Platte ist dann unvermeidlich die Kathodenplatte. Die Platten 18, 19 des Kondensators werden verwendet, um den Modulen 2, 3, 4, 7 Gleichstrom zuzuführen. Durch den Aufbau der Zuführung als Plattenkondensator ist diese Zuführung rein kapazitiv und der Einfluss unerwünschter Induktivitäten ist unterbunden. Wenn die Kondensatorplatte 18 die Kathodenplatte ist, sind die Anschlussplatten 13 und 17 mit dieser Kondensatorplatte 18 verbunden. Entsprechend sind die Anschlussplatten 12 und 16 mit der als Anodenplatte wirkenden Kondensatorplatte 19 verbunden. Figur 4 zeigt ein Halbleiter-Modul 2, 3, 4 in einer vereinfachten Darstellung, nämlich mit den Halbleiter-Schaltelementen 22. Diese Halbleiter- Schaltelemente 22, für die z. B. als IGTB's verwendet werden, werden in ge- eigneter und im Stand der Technik bekannter Weise angesteuert, um einen gewünschten Wechselstrom zu erzeugen, der über Kabel 25 abgeleitet wird. Die Wirkungsweise eines solchen Halbleitermoduls kann z. B. aus der Patentschrift DE 197 48 479 C1 entnommen werden.A 3-layer structure is shown in FIG. This 3-layer structure is formed from two capacitor plates 18, 19 and a dielectric 20. Accordingly, this structure forms a plate capacitor. The plates 18, 19 of this capacitor z. B. be made of aluminum and have a thickness of several millimeters. The dielectric 20 can be formed by a plastic film and have a thickness of a few tenths of a millimeter. With this construction, one of the plates 18, 19 is necessarily the anode plate, the other plate is then inevitably the cathode plate. The plates 18, 19 of the capacitor are used to supply direct current to the modules 2, 3, 4, 7. Due to the construction of the feed as a plate capacitor, this feed is purely capacitive and the influence of undesired inductances is prevented. If the capacitor plate 18 is the cathode plate, the connection plates 13 and 17 are connected to this capacitor plate 18. Correspondingly, the connection plates 12 and 16 are connected to the capacitor plate 19 acting as an anode plate. Figure 4 shows a semiconductor module 2, 3, 4 in a simplified representation, namely with the semiconductor switching elements 22. These semiconductor switching elements 22, for the z. B. are used as IGTB ' s are controlled in a suitable manner known in the art to generate a desired alternating current which is derived via cable 25. The operation of such a semiconductor module can, for. B. from the patent specification DE 197 48 479 C1.
Um den Abstand zwischen mit den Kabelschuhen 24 bestückten Kabeln 25 und damit natürlich auch zwischen den Kabeln 25 auf ein vorgegebenes Maß zu begrenzen, können Halbleiter-Schalterelemente 22 mit entsprechend angeordneten Anschlüssen vorgesehen sein. Alternativ sind von den Ausgangsanschlüssen der Halbleitermodule 22 zu den Kabelschuhen 24 Schienen 23 vorgesehen, die den Ausgangsstrom des Halbleiterelementes 22 zu dem entsprechenden Kabel 25 weiterleiten. Diese Schienen 23 sind mit Schrauben 26, die hier als Innensechskantschrauben dargestellt sind, an dem Ausgangs- anschluss des Halbleitermoduls 22 befestigt und die Kabel 25 sind mittels Kabelschuhen 24 und Schrauben 26, die als Kreuzschlitzschrauben dargestellt sind, wiederum an den Schienen 23 befestigt. Durch diese Anordnung ist es möglich, die beiden Kabel 25 z. B. gemeinsam durch einen Messwertaufnehmer wie einen Ferritring eines Stromwandlers zu führen, um den Stromfluss in den Kabeln 25 zu überwachen.In order to limit the distance between the cables 25 equipped with the cable lugs 24 and thus of course also between the cables 25 to a predetermined size, semiconductor switch elements 22 with correspondingly arranged connections can be provided. Alternatively, rails 23 are provided from the output connections of the semiconductor modules 22 to the cable lugs 24, which conduct the output current of the semiconductor element 22 to the corresponding cable 25. These rails 23 are fastened to the output connection of the semiconductor module 22 with screws 26, which are shown here as hexagon socket screws, and the cables 25 are in turn fastened to the rails 23 by means of cable lugs 24 and screws 26, which are shown as Phillips screws. With this arrangement it is possible to connect the two cables 25 z. B. together through a transducer such as a ferrite ring of a current transformer to monitor the current flow in the cables 25.
Erfindungsgemäß verfügt der Wechselrichter über einen Zwischenspeicher, der aus einer Mehrzahl von Kondensatoren gebildet ist. Dieser Zwischenspeicher hat u. a. die Aufgabe, die an den Halbleitermodulen anliegende Gleichspannung zu glätten und Spannungsschwankungen infolge der Schaltvorgänge der Halbleiter-Schaltelemente 22 auszugleichen. Dazu ist dieser Zwi- schenspeicher (nicht dargestellt) über den Plattenkondensator 18, 19, 20 mit den Modulen verbunden. Die Platten 18, 19 des Plattenkondensators sind in den Figuren 5 und 6 dargestellt. Dabei zeigt Figur 5 die Anodenplatte und Figur 6 zeigt die Kathodenplatte. Diese Platten 18, 19 weisen Bohrungen 28 und diese Bohrungen umfassende Ausnehmungen 29 auf. Dies ist detailliert am Beispiel einer Bohrung/Ausnehmung in Figur 7 im Querschnitt dargestellt. Durch diese Anordnung ist es einerseits möglich, die den Zwischenspeicher bildenden, jedoch nicht dargestellten Kondensatoren durch Verschraubung mit den Platten 18, 19 zu verbinden, so dass bei Bedarf auch einzelne Kondensatoren ausgetauscht werden können, und durch die versenkte Anbringung des Schraubenkopfes in der Ausnehmung 29 die Platten nur um den Abstand des Dielektrikums (Bezugszeichen 20 in Fig. 3) voneinander getrennt nebeneinander anzuordnen. Ein Vergleich der in den Figuren 5 und 6 dargestellten Platten zeigt bereits, dass die Anschlussplatten 12, 13, 16, 17 für die Anschluss- Schienen in der Höhe zueinander versetzt sind, so dass sich die bereits in Figur 2 dargestellte Staffelung ergibt.According to the invention, the inverter has an intermediate store which is formed from a plurality of capacitors. This buffer memory has, inter alia, the task of smoothing the DC voltage applied to the semiconductor modules and compensating for voltage fluctuations as a result of the switching processes of the semiconductor switching elements 22. For this purpose, this intermediate store (not shown) is connected to the modules via the plate capacitor 18, 19, 20. The plates 18, 19 of the plate capacitor are shown in FIGS. 5 and 6. 5 shows the anode plate and FIG. 6 shows the cathode plate. These plates 18, 19 have bores 28 and recesses 29 comprising these bores. This is shown in detail using the example of a bore / recess in FIG. 7 in cross section. This arrangement makes it possible, on the one hand, to connect the capacitors which form the intermediate storage but are not shown by screwing them to the plates 18, 19, so that individual capacitors can also be replaced if necessary, and by the recessed attachment of the screw head in the recess 29 arrange the plates separately from one another only by the distance of the dielectric (reference number 20 in FIG. 3). A comparison of the plates shown in FIGS. 5 and 6 already shows that the connecting plates 12, 13, 16, 17 for the connecting rails are offset in height from one another, so that the staggering already shown in FIG. 2 results.
Figur 8 zeigt eine alternative Anordnung zu den in Figur 2 gezeigten An- schluss-Schienen 10, 11 , 14, 15. Dazu werden die Schienen derart verbreitert, dass sie beide Anschlussplatten 12, 13 überdecken. Diese in dieser Figur ebenfalls plattenförmig dargestellten Schienen sind hier mit den Bezugszeichen 31 und 32 bezeichnet. Um zu verdeutlichen, dass diese übereinander liegen, sind sie gegeneinander versetzt dargestellt. In situ liegen sie im Wesentlichen deckungsgleich übereinander.FIG. 8 shows an alternative arrangement to the connection rails 10, 11, 14, 15 shown in FIG. 2. For this purpose, the rails are widened in such a way that they cover both connection plates 12, 13. These rails, which are also shown in the form of plates in this figure, are designated here by the reference numerals 31 and 32. To make it clear that they are on top of each other, they are shown offset from each other. In situ they are essentially congruent.
Dabei ist eine der Platten mit der Anode 12 und die andere mit der Kathode 13 verbunden. Durch ein zwischen den Platten 31 , 32 eingefügtes, jedoch in der Figur nicht dargestelltes Dielektrikum bilden auch diese Platten 31, 32 einen Kondensator. Gemäß der Darstellung in dieser Figur ist die Platte 32 die Anodenplatte und die Platte 31 ist die Kathodenplatte. Natürlich sind diese Platten wiederum entsprechend mit "den ebenfalls in dieser Figur nicht dargestellten Halbleitermodulen verbunden, um diesen den erforderlichen Gleichstrom zuzuführen. Da somit auch die Verbindung von den Anschlussplatten 12, 13 zu den Halbleitermodulen über einen Plattenkondensator erfolgt, ist auch auf diesem Abschnitt des elektrischen Anschlusses ein induktiver Einfluss unter- bunden.One of the plates is connected to the anode 12 and the other to the cathode 13. Due to a dielectric inserted between the plates 31, 32 but not shown in the figure, these plates 31, 32 also form a capacitor. As shown in this figure, plate 32 is the anode plate and plate 31 is the cathode plate. Of course, these plates the semiconductor modules not shown also in this figure, again in accordance with "connected to these supply the required direct current. Thus, since the connection by the terminal plates 12, 13 occurs to the semiconductor modules of a plate capacitor is also in this portion of the electrical connection prevents an inductive influence.
Damit ergibt sich eine kapazitive Verbindung von dem Zwischenspeicher bis zu den Eingangsklemmen der Halbleitermodule. This results in a capacitive connection from the buffer store to the input terminals of the semiconductor modules.
Claims
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2004-7008993A KR20040068218A (en) | 2001-12-13 | 2002-12-11 | Power inverter |
EP02796603A EP1466398B1 (en) | 2001-12-13 | 2002-12-11 | Power inverter |
MXPA04005547A MXPA04005547A (en) | 2001-12-13 | 2002-12-11 | Power inverter. |
DE50208811T DE50208811D1 (en) | 2001-12-13 | 2002-12-11 | INVERTER |
BR0214797-1A BR0214797A (en) | 2001-12-13 | 2002-12-11 | Inverter, and, wind power installation |
JP2003551887A JP4153875B2 (en) | 2001-12-13 | 2002-12-11 | Inverter |
DK02796603T DK1466398T3 (en) | 2001-12-13 | 2002-12-11 | inverter |
NZ533522A NZ533522A (en) | 2001-12-13 | 2002-12-11 | Power inverter |
AU2002361386A AU2002361386B2 (en) | 2001-12-13 | 2002-12-11 | Power inverter |
US10/497,953 US7492621B2 (en) | 2001-12-13 | 2002-12-11 | Inverter, method for use thereof and wind power installation employing same |
SI200230434T SI1466398T1 (en) | 2001-12-13 | 2002-12-11 | Power inverter |
CA002470129A CA2470129C (en) | 2001-12-13 | 2002-12-11 | Power inverter |
ZA2004/04506A ZA200404506B (en) | 2001-12-13 | 2004-06-08 | Power inverter |
NO20042933A NO324910B1 (en) | 2001-12-13 | 2004-07-12 | Inverters |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10161178.1 | 2001-12-13 | ||
DE10161178A DE10161178A1 (en) | 2001-12-13 | 2001-12-13 | inverter |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003050938A2 true WO2003050938A2 (en) | 2003-06-19 |
WO2003050938A3 WO2003050938A3 (en) | 2003-11-20 |
Family
ID=7709023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2002/014031 WO2003050938A2 (en) | 2001-12-13 | 2002-12-11 | Power inverter |
Country Status (22)
Country | Link |
---|---|
US (1) | US7492621B2 (en) |
EP (1) | EP1466398B1 (en) |
JP (1) | JP4153875B2 (en) |
KR (1) | KR20040068218A (en) |
CN (1) | CN1602578A (en) |
AR (1) | AR037820A1 (en) |
AT (1) | ATE346418T1 (en) |
AU (1) | AU2002361386B2 (en) |
BR (1) | BR0214797A (en) |
CA (1) | CA2470129C (en) |
CY (1) | CY1107581T1 (en) |
DE (2) | DE10161178A1 (en) |
DK (1) | DK1466398T3 (en) |
ES (1) | ES2275020T3 (en) |
MA (1) | MA26254A1 (en) |
MX (1) | MXPA04005547A (en) |
NO (1) | NO324910B1 (en) |
NZ (1) | NZ533522A (en) |
PL (1) | PL219079B1 (en) |
PT (1) | PT1466398E (en) |
WO (1) | WO2003050938A2 (en) |
ZA (1) | ZA200404506B (en) |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009007782A3 (en) * | 2006-12-06 | 2009-03-19 | Solaredge Ltd | Removable component cartridge for increasing reliability in power harvesting systems |
US7900361B2 (en) | 2006-12-06 | 2011-03-08 | Solaredge, Ltd. | Current bypass for distributed power harvesting systems using DC power sources |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
US8289742B2 (en) | 2007-12-05 | 2012-10-16 | Solaredge Ltd. | Parallel connected inverters |
US8319471B2 (en) | 2006-12-06 | 2012-11-27 | Solaredge, Ltd. | Battery power delivery module |
US8319483B2 (en) | 2007-08-06 | 2012-11-27 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8473250B2 (en) | 2006-12-06 | 2013-06-25 | Solaredge, Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US8531055B2 (en) | 2006-12-06 | 2013-09-10 | Solaredge Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US8570005B2 (en) | 2011-09-12 | 2013-10-29 | Solaredge Technologies Ltd. | Direct current link circuit |
US8710699B2 (en) | 2009-12-01 | 2014-04-29 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US8766696B2 (en) | 2010-01-27 | 2014-07-01 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US8771024B2 (en) | 2009-05-22 | 2014-07-08 | Solaredge Technologies Ltd. | Dual compressive connector |
US8816535B2 (en) | 2007-10-10 | 2014-08-26 | Solaredge Technologies, Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US8957645B2 (en) | 2008-03-24 | 2015-02-17 | Solaredge Technologies Ltd. | Zero voltage switching |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9006569B2 (en) | 2009-05-22 | 2015-04-14 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US9099849B2 (en) | 2009-05-25 | 2015-08-04 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
EP1802189A3 (en) * | 2005-12-21 | 2016-02-17 | Vacon Oy | Arrangement for placing a frequency converter in a cabinet |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9870016B2 (en) | 2012-05-25 | 2018-01-16 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10161178A1 (en) | 2001-12-13 | 2003-07-10 | Aloys Wobben | inverter |
US8324921B2 (en) | 2007-12-05 | 2012-12-04 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
AT504199A1 (en) | 2006-09-04 | 2008-03-15 | Fronius Int Gmbh | MODULAR INVERTER SYSTEM |
DE102008034417B4 (en) | 2007-09-25 | 2023-03-16 | Sew-Eurodrive Gmbh & Co Kg | converter |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US8461453B2 (en) * | 2009-01-27 | 2013-06-11 | Connector Manufacturing Company | Wind turbine wiring enclosure cabinet |
DE102009051518B3 (en) * | 2009-10-31 | 2011-05-12 | Semikron Elektronik Gmbh & Co. Kg | Modular converter arrangement |
US9118213B2 (en) | 2010-11-24 | 2015-08-25 | Kohler Co. | Portal for harvesting energy from distributed electrical power sources |
EP2814308B1 (en) * | 2013-06-10 | 2019-06-26 | SEMIKRON Elektronik GmbH & Co. KG | 3 level power converter |
JP2020144492A (en) * | 2019-03-05 | 2020-09-10 | 株式会社チノー | Heating element cooling structure |
KR102314048B1 (en) * | 2019-10-15 | 2021-10-19 | 한국전력공사 | Apparatus and Method for converting power intelligently |
DE102023128509A1 (en) * | 2023-10-18 | 2025-04-24 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | power converter |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2586139B1 (en) | 1985-08-12 | 1987-10-30 | Commissariat Energie Atomique | MAGNETIC MIRROR ION DIODE |
DE3609065A1 (en) * | 1986-03-18 | 1987-09-24 | Siemens Ag | LOW-INDUCTIVE RAILING |
US4684191A (en) * | 1986-06-30 | 1987-08-04 | Amp Incorporated | Electrical terminal and electrical connector assembly |
US4845589A (en) * | 1987-05-04 | 1989-07-04 | Amp Incorporated | Bus bar connector assembly |
DE3802593A1 (en) | 1988-01-29 | 1989-08-10 | Heidelberger Druckmasch Ag | CONVERTER WITH DC INTERMEDIATE CIRCUIT |
US4867696A (en) * | 1988-07-15 | 1989-09-19 | Amp Incorporated | Laminated bus bar with power tabs |
US4908258A (en) | 1988-08-01 | 1990-03-13 | Rogers Corporation | High dielectric constant flexible sheet material |
GB2242580B (en) * | 1990-03-30 | 1994-06-15 | Mitsubishi Electric Corp | Inverter unit with improved bus-plate configuration |
US5172310A (en) | 1991-07-10 | 1992-12-15 | U.S. Windpower, Inc. | Low impedance bus for power electronics |
US5365424A (en) * | 1991-07-10 | 1994-11-15 | Kenetech Windpower, Inc. | High power laminated bus assembly for an electrical switching converter |
US5579217A (en) * | 1991-07-10 | 1996-11-26 | Kenetech Windpower, Inc. | Laminated bus assembly and coupling apparatus for a high power electrical switching converter |
US5164624A (en) * | 1991-09-06 | 1992-11-17 | General Motors Corporation | Modular power semiconductor assembly for an alternator-fed DC power source |
US5253613A (en) * | 1992-04-30 | 1993-10-19 | General Electric Company | High power AC traction inverter cooling |
DE4232763C2 (en) | 1992-09-25 | 1995-12-14 | Aeg Westinghouse Transport | Construction of an inverter, in particular a 3-point inverter |
JP2809026B2 (en) * | 1992-09-30 | 1998-10-08 | 三菱電機株式会社 | INVERTER DEVICE AND METHOD OF USING INVERTER DEVICE |
US5434770A (en) * | 1992-11-20 | 1995-07-18 | United States Department Of Energy | High voltage power supply with modular series resonant inverters |
DE4301342C1 (en) | 1993-01-20 | 1994-04-14 | Niesing Stahlbau Stahlschornst | Wind- or water-powered electricity generator - has drive coupling having adjustable transmission ratio adjusted to maintain constant generator revolutions. |
DE9303886U1 (en) | 1993-03-16 | 1993-06-17 | Siemens Nixdorf Informationssysteme AG, 4790 Paderborn | Busbar package |
US5422440A (en) * | 1993-06-08 | 1995-06-06 | Rem Technologies, Inc. | Low inductance bus bar arrangement for high power inverters |
DE4412990A1 (en) | 1994-04-15 | 1995-10-19 | Abb Patent Gmbh | Power converter system with liquid or air-cooled power semiconductors and DC link |
US5517063A (en) * | 1994-06-10 | 1996-05-14 | Westinghouse Electric Corp. | Three phase power bridge assembly |
DE19519538A1 (en) | 1995-05-27 | 1996-11-28 | Export Contor Ausenhandelsgese | Power semiconductor circuit with multiple paired power semiconductor devices |
DE19711016A1 (en) | 1996-05-21 | 1997-11-27 | Siemens Ag | Inverters with a modular design |
US5808240A (en) * | 1996-05-24 | 1998-09-15 | Otis Elevator Company | Low-inductance planar bus arrangement |
JP3851926B2 (en) | 1996-07-22 | 2006-11-29 | ティーエム4・インコーポレイテッド | Power conversion module with low stray connection inductance and method for converting DC voltage to AC voltage |
DE19732402B4 (en) | 1997-07-28 | 2004-07-15 | Danfoss Drives A/S | Electrical bus arrangement for the direct current supply of circuit elements of an inverter |
JPH1169840A (en) * | 1997-08-22 | 1999-03-09 | Aisin Seiki Co Ltd | Switching assembly |
DE19748479C1 (en) | 1997-11-03 | 1999-04-15 | Aloys Wobben | AC current converter with variable pulse frequency |
JP3424532B2 (en) * | 1997-11-25 | 2003-07-07 | 株式会社日立製作所 | Power converter |
JPH11262135A (en) | 1998-03-13 | 1999-09-24 | Sumitomo Wiring Syst Ltd | Assembling structure of laminated bus bar |
FR2777109B1 (en) * | 1998-04-06 | 2000-08-04 | Gec Alsthom Transport Sa | CAPACITOR BATTERY, ELECTRONIC POWER DEVICE COMPRISING SUCH A BATTERY AND ELECTRONIC POWER ASSEMBLY COMPRISING SUCH A DEVICE |
US6160696A (en) * | 1998-05-04 | 2000-12-12 | General Electric Company | Modular bus bar and switch assembly for traction inverter |
JPH11346480A (en) * | 1998-06-02 | 1999-12-14 | Hitachi Ltd | Inverter device |
DE19847029A1 (en) * | 1998-10-13 | 2000-04-27 | Semikron Elektronik Gmbh | Converter with low-inductance capacitor in the intermediate circuit |
US6212087B1 (en) * | 1999-02-05 | 2001-04-03 | International Rectifier Corp. | Electronic half bridge module |
JP3624798B2 (en) * | 2000-06-07 | 2005-03-02 | 株式会社村田製作所 | Inverter capacitor module, inverter |
DE10161178A1 (en) | 2001-12-13 | 2003-07-10 | Aloys Wobben | inverter |
US7289343B2 (en) * | 2003-12-17 | 2007-10-30 | Siemens Vdo Automotive Corporation | Architecture for power modules such as power inverters |
US7046535B2 (en) * | 2003-12-17 | 2006-05-16 | Ballard Power Systems Corporation | Architecture for power modules such as power inverters |
-
2001
- 2001-12-13 DE DE10161178A patent/DE10161178A1/en not_active Withdrawn
-
2002
- 2002-12-11 WO PCT/EP2002/014031 patent/WO2003050938A2/en active IP Right Grant
- 2002-12-11 NZ NZ533522A patent/NZ533522A/en not_active IP Right Cessation
- 2002-12-11 AT AT02796603T patent/ATE346418T1/en active
- 2002-12-11 PL PL368990A patent/PL219079B1/en unknown
- 2002-12-11 CN CNA028246977A patent/CN1602578A/en active Pending
- 2002-12-11 DK DK02796603T patent/DK1466398T3/en active
- 2002-12-11 AU AU2002361386A patent/AU2002361386B2/en not_active Ceased
- 2002-12-11 MX MXPA04005547A patent/MXPA04005547A/en active IP Right Grant
- 2002-12-11 DE DE50208811T patent/DE50208811D1/en not_active Expired - Lifetime
- 2002-12-11 JP JP2003551887A patent/JP4153875B2/en not_active Expired - Lifetime
- 2002-12-11 CA CA002470129A patent/CA2470129C/en not_active Expired - Lifetime
- 2002-12-11 PT PT02796603T patent/PT1466398E/en unknown
- 2002-12-11 US US10/497,953 patent/US7492621B2/en not_active Expired - Lifetime
- 2002-12-11 EP EP02796603A patent/EP1466398B1/en not_active Revoked
- 2002-12-11 ES ES02796603T patent/ES2275020T3/en not_active Expired - Lifetime
- 2002-12-11 BR BR0214797-1A patent/BR0214797A/en not_active Application Discontinuation
- 2002-12-11 KR KR10-2004-7008993A patent/KR20040068218A/en not_active Ceased
- 2002-12-13 AR ARP020104837A patent/AR037820A1/en not_active Application Discontinuation
-
2004
- 2004-06-07 MA MA27722A patent/MA26254A1/en unknown
- 2004-06-08 ZA ZA2004/04506A patent/ZA200404506B/en unknown
- 2004-07-12 NO NO20042933A patent/NO324910B1/en not_active IP Right Cessation
-
2007
- 2007-01-18 CY CY20071100076T patent/CY1107581T1/en unknown
Cited By (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
EP1802189A3 (en) * | 2005-12-21 | 2016-02-17 | Vacon Oy | Arrangement for placing a frequency converter in a cabinet |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US8319471B2 (en) | 2006-12-06 | 2012-11-27 | Solaredge, Ltd. | Battery power delivery module |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US8473250B2 (en) | 2006-12-06 | 2013-06-25 | Solaredge, Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US8531055B2 (en) | 2006-12-06 | 2013-09-10 | Solaredge Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US8587151B2 (en) | 2006-12-06 | 2013-11-19 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US8659188B2 (en) | 2006-12-06 | 2014-02-25 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9041339B2 (en) | 2006-12-06 | 2015-05-26 | Solaredge Technologies Ltd. | Battery power delivery module |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US8004117B2 (en) | 2006-12-06 | 2011-08-23 | Solaredge, Ltd. | Current bypass for distributed power harvesting systems using DC power sources |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US7900361B2 (en) | 2006-12-06 | 2011-03-08 | Solaredge, Ltd. | Current bypass for distributed power harvesting systems using DC power sources |
WO2009007782A3 (en) * | 2006-12-06 | 2009-03-19 | Solaredge Ltd | Removable component cartridge for increasing reliability in power harvesting systems |
US12281919B2 (en) | 2006-12-06 | 2025-04-22 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US12276997B2 (en) | 2006-12-06 | 2025-04-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12224706B2 (en) | 2006-12-06 | 2025-02-11 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8319483B2 (en) | 2007-08-06 | 2012-11-27 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US8773092B2 (en) | 2007-08-06 | 2014-07-08 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US8816535B2 (en) | 2007-10-10 | 2014-08-26 | Solaredge Technologies, Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US8289742B2 (en) | 2007-12-05 | 2012-10-16 | Solaredge Ltd. | Parallel connected inverters |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US8599588B2 (en) | 2007-12-05 | 2013-12-03 | Solaredge Ltd. | Parallel connected inverters |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US8957645B2 (en) | 2008-03-24 | 2015-02-17 | Solaredge Technologies Ltd. | Zero voltage switching |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US12218498B2 (en) | 2008-05-05 | 2025-02-04 | Solaredge Technologies Ltd. | Direct current power combiner |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11509263B2 (en) | 2009-05-22 | 2022-11-22 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9692164B2 (en) | 2009-05-22 | 2017-06-27 | Solaredge Technologies Ltd. | Dual compressive connector |
US9006569B2 (en) | 2009-05-22 | 2015-04-14 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US12074566B2 (en) | 2009-05-22 | 2024-08-27 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9391385B2 (en) | 2009-05-22 | 2016-07-12 | Solaredge Technologies Ltd. | Dual compressive connector |
US10879840B2 (en) | 2009-05-22 | 2020-12-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9748896B2 (en) | 2009-05-22 | 2017-08-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US9748897B2 (en) | 2009-05-22 | 2017-08-29 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US11695371B2 (en) | 2009-05-22 | 2023-07-04 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US10411644B2 (en) | 2009-05-22 | 2019-09-10 | Solaredge Technologies, Ltd. | Electrically isolated heat dissipating junction box |
US10686402B2 (en) | 2009-05-22 | 2020-06-16 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
US8771024B2 (en) | 2009-05-22 | 2014-07-08 | Solaredge Technologies Ltd. | Dual compressive connector |
US9438161B2 (en) | 2009-05-25 | 2016-09-06 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US11088656B2 (en) | 2009-05-25 | 2021-08-10 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US10622939B2 (en) | 2009-05-25 | 2020-04-14 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US10432138B2 (en) | 2009-05-25 | 2019-10-01 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US9813020B2 (en) | 2009-05-25 | 2017-11-07 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US9099849B2 (en) | 2009-05-25 | 2015-08-04 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US11817820B2 (en) | 2009-05-25 | 2023-11-14 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US10090803B2 (en) | 2009-05-25 | 2018-10-02 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US12199560B2 (en) | 2009-05-25 | 2025-01-14 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US12306215B2 (en) | 2009-05-26 | 2025-05-20 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10270255B2 (en) | 2009-12-01 | 2019-04-23 | Solaredge Technologies Ltd | Dual use photovoltaic system |
US8710699B2 (en) | 2009-12-01 | 2014-04-29 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US9276410B2 (en) | 2009-12-01 | 2016-03-01 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US12316158B2 (en) | 2009-12-01 | 2025-05-27 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US11735951B2 (en) | 2009-12-01 | 2023-08-22 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US11056889B2 (en) | 2009-12-01 | 2021-07-06 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US8766696B2 (en) | 2010-01-27 | 2014-07-01 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US9231570B2 (en) | 2010-01-27 | 2016-01-05 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US9564882B2 (en) | 2010-01-27 | 2017-02-07 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US9917587B2 (en) | 2010-01-27 | 2018-03-13 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US12295184B2 (en) | 2010-12-09 | 2025-05-06 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US8570005B2 (en) | 2011-09-12 | 2013-10-29 | Solaredge Technologies Ltd. | Direct current link circuit |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US12306653B2 (en) | 2012-05-25 | 2025-05-20 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US11740647B2 (en) | 2012-05-25 | 2023-08-29 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US9870016B2 (en) | 2012-05-25 | 2018-01-16 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US10705551B2 (en) | 2012-05-25 | 2020-07-07 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US11334104B2 (en) | 2012-05-25 | 2022-05-17 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US12218628B2 (en) | 2012-06-04 | 2025-02-04 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12255457B2 (en) | 2013-03-14 | 2025-03-18 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US12136890B2 (en) | 2014-03-26 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11824131B2 (en) | 2016-03-03 | 2023-11-21 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US12224365B2 (en) | 2016-03-03 | 2025-02-11 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
US10540530B2 (en) | 2016-03-03 | 2020-01-21 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11538951B2 (en) | 2016-03-03 | 2022-12-27 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
Also Published As
Publication number | Publication date |
---|---|
CA2470129C (en) | 2007-08-07 |
NO20042933L (en) | 2004-07-12 |
NZ533522A (en) | 2005-12-23 |
ZA200404506B (en) | 2005-01-26 |
PT1466398E (en) | 2007-01-31 |
CY1107581T1 (en) | 2013-03-13 |
ES2275020T3 (en) | 2007-06-01 |
AR037820A1 (en) | 2004-12-09 |
BR0214797A (en) | 2004-10-19 |
AU2002361386A1 (en) | 2003-06-23 |
MXPA04005547A (en) | 2004-09-10 |
CA2470129A1 (en) | 2003-06-19 |
KR20040068218A (en) | 2004-07-30 |
WO2003050938A3 (en) | 2003-11-20 |
DE10161178A1 (en) | 2003-07-10 |
US20050122692A1 (en) | 2005-06-09 |
DK1466398T3 (en) | 2007-03-26 |
EP1466398B1 (en) | 2006-11-22 |
ATE346418T1 (en) | 2006-12-15 |
PL368990A1 (en) | 2005-04-04 |
JP2005517372A (en) | 2005-06-09 |
PL219079B1 (en) | 2015-03-31 |
EP1466398A2 (en) | 2004-10-13 |
CN1602578A (en) | 2005-03-30 |
AU2002361386B2 (en) | 2005-06-30 |
JP4153875B2 (en) | 2008-09-24 |
DE50208811D1 (en) | 2007-01-04 |
US7492621B2 (en) | 2009-02-17 |
NO324910B1 (en) | 2008-01-07 |
MA26254A1 (en) | 2004-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1466398B1 (en) | Power inverter | |
DE102005045091B4 (en) | Control method for redundancy use in case of failure of a multiphase power converter with distributed energy storage | |
EP2325990B1 (en) | Modular frequency converter assembly | |
EP3069158B1 (en) | Method and inverter for determining capacitance values of capacitances of an energy supply system | |
EP3245727B1 (en) | Converter module for a multi-level energy converter | |
WO2013004585A1 (en) | Operating method for an inverter and network fault-tolerant inverter | |
DE102014218001A1 (en) | Inverter device, inverter, power generation system, and methods of controlling the inverter device | |
DE2843528C2 (en) | ||
DE1914875A1 (en) | Inverter | |
DE102016117379A1 (en) | Process for reforming an electrolytic capacitor in a power converter and power converter with this | |
WO2018138184A1 (en) | Method for feeding in an electrical alternating current | |
EP1195877A1 (en) | Inverter system with dc-link connected inverter modules and method of operation | |
WO2013023914A1 (en) | Inverter arrangement | |
DE19650994C1 (en) | Pulse-width modulation (PWM) of rated voltage waveform for three-level four-quadrant control-servo (4QS) e.g. for railway engineering | |
EP3449554B1 (en) | Inverter and method for generating an alternating current | |
DE102012212556A1 (en) | Battery mounted in motor vehicle e.g. electric vehicle, has battery module which is designed as multi-stage battery module, by switching battery module voltage to fraction of full voltage of battery module by coupling circuit | |
DE102017203233A1 (en) | Modular inverter | |
DE102010042718A1 (en) | Method for controlling a battery with variable output voltage | |
DE102022104429B4 (en) | Multilevel converter arrangement for converting electrical energy, use of a multilevel converter arrangement, method and computer program product | |
EP3043459A1 (en) | Modular multilevel converter with phase-specific modulators | |
DE102014203382A1 (en) | Modular inverter system and converter modules to set up a suitable inverter system | |
DE102022131921B3 (en) | Arrangement with a plurality of power semiconductor modules | |
DE102012210423A1 (en) | Infeed of solar energy into an energy supply network by means of a solar inverter | |
EP2608390A1 (en) | Modular Multilevel DC/AC converter comprising a series connection of DC/AC inverter sub-modules controlled by a central and electrically protective separated common control unit | |
EP2928055B1 (en) | Modular power converter and method for generating a sinusoidal output voltage with reduced harmonics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 00738/KOLNP/2004 Country of ref document: IN Ref document number: 738/KOLNP/2004 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004/04506 Country of ref document: ZA Ref document number: PA/a/2004/005547 Country of ref document: MX Ref document number: 200404506 Country of ref document: ZA Ref document number: 2002361386 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003551887 Country of ref document: JP Ref document number: 20028246977 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2470129 Country of ref document: CA Ref document number: 1020047008993 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 533522 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002796603 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002796603 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10497953 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002361386 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 533522 Country of ref document: NZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 533522 Country of ref document: NZ |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002796603 Country of ref document: EP |