WO2007001448A2 - Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals - Google Patents
Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals Download PDFInfo
- Publication number
- WO2007001448A2 WO2007001448A2 PCT/US2005/040100 US2005040100W WO2007001448A2 WO 2007001448 A2 WO2007001448 A2 WO 2007001448A2 US 2005040100 W US2005040100 W US 2005040100W WO 2007001448 A2 WO2007001448 A2 WO 2007001448A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- poly
- composition
- polymer
- core
- interactions
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 131
- 229920000642 polymer Polymers 0.000 title claims abstract description 118
- 238000013270 controlled release Methods 0.000 title description 34
- 229960000074 biopharmaceutical Drugs 0.000 title description 4
- 238000000576 coating method Methods 0.000 claims abstract description 114
- 239000000203 mixture Substances 0.000 claims abstract description 107
- 239000011248 coating agent Substances 0.000 claims abstract description 106
- 239000003814 drug Substances 0.000 claims abstract description 62
- 229940079593 drug Drugs 0.000 claims abstract description 58
- 239000013543 active substance Substances 0.000 claims abstract description 56
- 230000003232 mucoadhesive effect Effects 0.000 claims abstract description 52
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 21
- 239000003937 drug carrier Substances 0.000 claims abstract description 11
- 210000004347 intestinal mucosa Anatomy 0.000 claims abstract description 8
- 238000012546 transfer Methods 0.000 claims abstract description 4
- -1 poly(alkylene glycol Chemical compound 0.000 claims description 221
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims description 116
- 238000000034 method Methods 0.000 claims description 66
- 229940125396 insulin Drugs 0.000 claims description 65
- 229920001661 Chitosan Polymers 0.000 claims description 61
- 239000000463 material Substances 0.000 claims description 60
- 102000004877 Insulin Human genes 0.000 claims description 54
- 108090001061 Insulin Proteins 0.000 claims description 54
- 239000003795 chemical substances by application Substances 0.000 claims description 50
- 230000003993 interaction Effects 0.000 claims description 48
- 108090000623 proteins and genes Proteins 0.000 claims description 33
- 102000004169 proteins and genes Human genes 0.000 claims description 33
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 31
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 31
- 229920002988 biodegradable polymer Polymers 0.000 claims description 24
- 239000004621 biodegradable polymer Substances 0.000 claims description 24
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 24
- 230000008685 targeting Effects 0.000 claims description 24
- 239000002523 lectin Substances 0.000 claims description 22
- 229960005486 vaccine Drugs 0.000 claims description 20
- 108090001090 Lectins Proteins 0.000 claims description 19
- 102000004856 Lectins Human genes 0.000 claims description 19
- 150000003384 small molecules Chemical class 0.000 claims description 18
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 17
- 229920001282 polysaccharide Polymers 0.000 claims description 16
- 239000005017 polysaccharide Substances 0.000 claims description 16
- 229920001577 copolymer Polymers 0.000 claims description 15
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 15
- 239000012867 bioactive agent Substances 0.000 claims description 14
- 230000009881 electrostatic interaction Effects 0.000 claims description 14
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- 239000003102 growth factor Substances 0.000 claims description 12
- 238000001727 in vivo Methods 0.000 claims description 12
- 229920002635 polyurethane Polymers 0.000 claims description 12
- 239000004814 polyurethane Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 230000001839 systemic circulation Effects 0.000 claims description 11
- 229920000954 Polyglycolide Polymers 0.000 claims description 10
- 102000040430 polynucleotide Human genes 0.000 claims description 10
- 108091033319 polynucleotide Proteins 0.000 claims description 10
- 239000002157 polynucleotide Substances 0.000 claims description 10
- 229920001184 polypeptide Polymers 0.000 claims description 10
- 239000004952 Polyamide Substances 0.000 claims description 9
- 229920002873 Polyethylenimine Polymers 0.000 claims description 9
- 239000002253 acid Substances 0.000 claims description 9
- 229940088597 hormone Drugs 0.000 claims description 9
- 239000005556 hormone Substances 0.000 claims description 9
- 229920002647 polyamide Polymers 0.000 claims description 9
- 239000004417 polycarbonate Substances 0.000 claims description 9
- 229920000728 polyester Polymers 0.000 claims description 9
- 238000001179 sorption measurement Methods 0.000 claims description 9
- 102000004127 Cytokines Human genes 0.000 claims description 8
- 108090000695 Cytokines Proteins 0.000 claims description 8
- 229920001542 oligosaccharide Polymers 0.000 claims description 8
- 150000002482 oligosaccharides Chemical class 0.000 claims description 8
- 229920001281 polyalkylene Polymers 0.000 claims description 8
- 229920000515 polycarbonate Polymers 0.000 claims description 8
- 229920002721 polycyanoacrylate Polymers 0.000 claims description 8
- 102000015696 Interleukins Human genes 0.000 claims description 7
- 108010063738 Interleukins Proteins 0.000 claims description 7
- 229920001400 block copolymer Polymers 0.000 claims description 7
- 229940047122 interleukins Drugs 0.000 claims description 7
- 230000000717 retained effect Effects 0.000 claims description 7
- 229920001710 Polyorthoester Polymers 0.000 claims description 6
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- 108091008104 nucleic acid aptamers Proteins 0.000 claims description 6
- 229920000570 polyether Polymers 0.000 claims description 6
- 229920001451 polypropylene glycol Polymers 0.000 claims description 6
- 108020003175 receptors Proteins 0.000 claims description 6
- 102000005962 receptors Human genes 0.000 claims description 6
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 claims description 5
- 102100033350 ATP-dependent translocase ABCB1 Human genes 0.000 claims description 5
- 108010017707 Fibronectin Receptors Proteins 0.000 claims description 5
- 108010047230 Member 1 Subfamily B ATP Binding Cassette Transporter Proteins 0.000 claims description 5
- 108010038807 Oligopeptides Proteins 0.000 claims description 5
- 102000015636 Oligopeptides Human genes 0.000 claims description 5
- 229920002732 Polyanhydride Polymers 0.000 claims description 5
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 5
- 239000004793 Polystyrene Substances 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 5
- 239000000017 hydrogel Substances 0.000 claims description 5
- 108010044426 integrins Proteins 0.000 claims description 5
- 102000006495 integrins Human genes 0.000 claims description 5
- 239000000787 lecithin Substances 0.000 claims description 5
- 235000010445 lecithin Nutrition 0.000 claims description 5
- 229940067606 lecithin Drugs 0.000 claims description 5
- 150000002772 monosaccharides Chemical class 0.000 claims description 5
- 229920001610 polycaprolactone Polymers 0.000 claims description 5
- 229920000656 polylysine Polymers 0.000 claims description 5
- 229920000193 polymethacrylate Polymers 0.000 claims description 5
- 229920002223 polystyrene Polymers 0.000 claims description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229920002396 Polyurea Polymers 0.000 claims description 4
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 4
- 150000003891 oxalate salts Chemical class 0.000 claims description 4
- 229920001308 poly(aminoacid) Polymers 0.000 claims description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 4
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 4
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 4
- 229920000141 poly(maleic anhydride) Polymers 0.000 claims description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 4
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 4
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 229920006149 polyester-amide block copolymer Polymers 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 4
- 229920001855 polyketal Polymers 0.000 claims description 4
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 4
- 229920006324 polyoxymethylene Polymers 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 229920000128 polypyrrole Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 229920000123 polythiophene Polymers 0.000 claims description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 4
- 150000003890 succinate salts Chemical class 0.000 claims description 4
- 150000004676 glycans Chemical class 0.000 claims 6
- 229920000767 polyaniline Polymers 0.000 claims 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims 1
- 150000001253 acrylic acids Chemical class 0.000 claims 1
- 125000002947 alkylene group Chemical group 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 abstract description 115
- 239000011859 microparticle Substances 0.000 abstract description 14
- 229940126534 drug product Drugs 0.000 abstract 1
- 239000000825 pharmaceutical preparation Substances 0.000 abstract 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 91
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 description 47
- 239000011162 core material Substances 0.000 description 40
- 239000000243 solution Substances 0.000 description 35
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 34
- 239000008103 glucose Substances 0.000 description 34
- 229940084769 humulin r Drugs 0.000 description 31
- 210000004369 blood Anatomy 0.000 description 28
- 239000008280 blood Substances 0.000 description 28
- 241000699670 Mus sp. Species 0.000 description 24
- 235000018102 proteins Nutrition 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 238000010521 absorption reaction Methods 0.000 description 19
- 230000000295 complement effect Effects 0.000 description 19
- 239000000126 substance Substances 0.000 description 19
- 239000004626 polylactic acid Substances 0.000 description 17
- 210000002966 serum Anatomy 0.000 description 17
- 102000013266 Human Regular Insulin Human genes 0.000 description 15
- 108010090613 Human Regular Insulin Proteins 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 210000004027 cell Anatomy 0.000 description 15
- 229940103471 humulin Drugs 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 239000012530 fluid Substances 0.000 description 14
- 102000039446 nucleic acids Human genes 0.000 description 14
- 108020004707 nucleic acids Proteins 0.000 description 14
- 150000007523 nucleic acids Chemical class 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 13
- 108091034117 Oligonucleotide Proteins 0.000 description 12
- 235000000346 sugar Nutrition 0.000 description 12
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 10
- 150000004804 polysaccharides Chemical class 0.000 description 10
- 150000008163 sugars Chemical class 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 9
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 9
- 210000001035 gastrointestinal tract Anatomy 0.000 description 9
- 230000000968 intestinal effect Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 238000005538 encapsulation Methods 0.000 description 8
- 229940088598 enzyme Drugs 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000008194 pharmaceutical composition Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 7
- 239000002671 adjuvant Substances 0.000 description 7
- 235000001014 amino acid Nutrition 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 6
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 6
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229920002472 Starch Polymers 0.000 description 6
- 239000002775 capsule Substances 0.000 description 6
- 230000002496 gastric effect Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 239000006187 pill Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000000227 bioadhesive Substances 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 238000001990 intravenous administration Methods 0.000 description 5
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 5
- 125000005647 linker group Chemical group 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 239000004633 polyglycolic acid Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 102000014150 Interferons Human genes 0.000 description 4
- 108010050904 Interferons Proteins 0.000 description 4
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 4
- 108010090804 Streptavidin Proteins 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 4
- 235000010443 alginic acid Nutrition 0.000 description 4
- 229920000615 alginic acid Polymers 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229960002685 biotin Drugs 0.000 description 4
- 235000020958 biotin Nutrition 0.000 description 4
- 239000011616 biotin Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000001079 digestive effect Effects 0.000 description 4
- 238000004945 emulsification Methods 0.000 description 4
- 229940011871 estrogen Drugs 0.000 description 4
- 239000000262 estrogen Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 4
- 239000008101 lactose Substances 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 125000003835 nucleoside group Chemical group 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 3
- BOZRCGLDOHDZBP-UHFFFAOYSA-N 2-ethylhexanoic acid;tin Chemical compound [Sn].CCCCC(CC)C(O)=O BOZRCGLDOHDZBP-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 108091023037 Aptamer Proteins 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 208000015439 Lysosomal storage disease Diseases 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical class ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 3
- 102000013275 Somatomedins Human genes 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000002870 angiogenesis inducing agent Substances 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 3
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000002801 charged material Substances 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000003304 gavage Methods 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000003914 insulin secretion Effects 0.000 description 3
- 229940047124 interferons Drugs 0.000 description 3
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 210000004877 mucosa Anatomy 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002077 nanosphere Substances 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- 230000004962 physiological condition Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229960003387 progesterone Drugs 0.000 description 3
- 239000000186 progesterone Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 238000000935 solvent evaporation Methods 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- JJTUDXZGHPGLLC-IMJSIDKUSA-N 4511-42-6 Chemical compound C[C@@H]1OC(=O)[C@H](C)OC1=O JJTUDXZGHPGLLC-IMJSIDKUSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 2
- 238000000035 BCA protein assay Methods 0.000 description 2
- 108090000932 Calcitonin Gene-Related Peptide Proteins 0.000 description 2
- 102000004414 Calcitonin Gene-Related Peptide Human genes 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 102000053642 Catalytic RNA Human genes 0.000 description 2
- 108090000994 Catalytic RNA Proteins 0.000 description 2
- 241000498849 Chlamydiales Species 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 2
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 2
- 102400000739 Corticotropin Human genes 0.000 description 2
- 101800000414 Corticotropin Proteins 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical class OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 108700012941 GNRH1 Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- 102100031000 Hepatoma-derived growth factor Human genes 0.000 description 2
- 101001083798 Homo sapiens Hepatoma-derived growth factor Proteins 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 2
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 2
- 108010025020 Nerve Growth Factor Proteins 0.000 description 2
- 102000015336 Nerve Growth Factor Human genes 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 208000034530 PLAA-associated neurodevelopmental disease Diseases 0.000 description 2
- 108010019160 Pancreatin Proteins 0.000 description 2
- 102000003982 Parathyroid hormone Human genes 0.000 description 2
- 108090000445 Parathyroid hormone Proteins 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- 102000057297 Pepsin A Human genes 0.000 description 2
- 108090000284 Pepsin A Proteins 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 229940127024 acid based drug Drugs 0.000 description 2
- 108010023082 activin A Proteins 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 230000001772 anti-angiogenic effect Effects 0.000 description 2
- 230000001078 anti-cholinergic effect Effects 0.000 description 2
- 230000001430 anti-depressive effect Effects 0.000 description 2
- 230000003276 anti-hypertensive effect Effects 0.000 description 2
- 230000000561 anti-psychotic effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 239000000935 antidepressant agent Substances 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000012754 cardiac puncture Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 229940047120 colony stimulating factors Drugs 0.000 description 2
- 239000003433 contraceptive agent Substances 0.000 description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 2
- 229960000258 corticotropin Drugs 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000002934 diuretic Substances 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 238000002641 enzyme replacement therapy Methods 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 150000002334 glycols Chemical group 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000002402 hexoses Chemical class 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000012216 imaging agent Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- 239000004026 insulin derivative Substances 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- 229960000448 lactic acid Drugs 0.000 description 2
- 238000002356 laser light scattering Methods 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000004379 membrane Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000037230 mobility Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 229940053128 nerve growth factor Drugs 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 229940125395 oral insulin Drugs 0.000 description 2
- 229940055695 pancreatin Drugs 0.000 description 2
- 239000000199 parathyroid hormone Substances 0.000 description 2
- 229960001319 parathyroid hormone Drugs 0.000 description 2
- 229940111202 pepsin Drugs 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 229920002704 polyhistidine Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001485 positron annihilation lifetime spectroscopy Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 235000013772 propylene glycol Nutrition 0.000 description 2
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000001850 reproductive effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229930002330 retinoic acid Natural products 0.000 description 2
- 108091092562 ribozyme Proteins 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 229940126586 small molecule drug Drugs 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 230000003637 steroidlike Effects 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 229960001727 tretinoin Drugs 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- RIFDKYBNWNPCQK-IOSLPCCCSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-(6-imino-3-methylpurin-9-yl)oxolane-3,4-diol Chemical compound C1=2N(C)C=NC(=N)C=2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RIFDKYBNWNPCQK-IOSLPCCCSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- RKSLVDIXBGWPIS-UAKXSSHOSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-iodopyrimidine-2,4-dione Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 RKSLVDIXBGWPIS-UAKXSSHOSA-N 0.000 description 1
- QLOCVMVCRJOTTM-TURQNECASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C#CC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 QLOCVMVCRJOTTM-TURQNECASA-N 0.000 description 1
- PISWNSOQFZRVJK-XLPZGREQSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methyl-2-sulfanylidenepyrimidin-4-one Chemical compound S=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 PISWNSOQFZRVJK-XLPZGREQSA-N 0.000 description 1
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 description 1
- YKBGVTZYEHREMT-KVQBGUIXSA-N 2'-deoxyguanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 YKBGVTZYEHREMT-KVQBGUIXSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- NGXJXICIZGSUPN-UHFFFAOYSA-N 2,5-dioxopyrrole-3-carboxylic acid Chemical compound OC(=O)C1=CC(=O)NC1=O NGXJXICIZGSUPN-UHFFFAOYSA-N 0.000 description 1
- ZDTFMPXQUSBYRL-UUOKFMHZSA-N 2-Aminoadenosine Chemical compound C12=NC(N)=NC(N)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O ZDTFMPXQUSBYRL-UUOKFMHZSA-N 0.000 description 1
- KISWVXRQTGLFGD-UHFFFAOYSA-N 2-[[2-[[6-amino-2-[[2-[[2-[[5-amino-2-[[2-[[1-[2-[[6-amino-2-[(2,5-diamino-5-oxopentanoyl)amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)p Chemical compound C1CCN(C(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(N)CCC(N)=O)C1C(=O)NC(CO)C(=O)NC(CCC(N)=O)C(=O)NC(CCCN=C(N)N)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(C(=O)NC(CC(C)C)C(O)=O)CC1=CC=C(O)C=C1 KISWVXRQTGLFGD-UHFFFAOYSA-N 0.000 description 1
- JRYMOPZHXMVHTA-DAGMQNCNSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JRYMOPZHXMVHTA-DAGMQNCNSA-N 0.000 description 1
- RHFUOMFWUGWKKO-XVFCMESISA-N 2-thiocytidine Chemical compound S=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RHFUOMFWUGWKKO-XVFCMESISA-N 0.000 description 1
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 1
- XXSIICQLPUAUDF-TURQNECASA-N 4-amino-1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidin-2-one Chemical compound O=C1N=C(N)C(C#CC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 XXSIICQLPUAUDF-TURQNECASA-N 0.000 description 1
- AGFIRQJZCNVMCW-UAKXSSHOSA-N 5-bromouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 AGFIRQJZCNVMCW-UAKXSSHOSA-N 0.000 description 1
- FHIDNBAQOFJWCA-UAKXSSHOSA-N 5-fluorouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 FHIDNBAQOFJWCA-UAKXSSHOSA-N 0.000 description 1
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 description 1
- KDOPAZIWBAHVJB-UHFFFAOYSA-N 5h-pyrrolo[3,2-d]pyrimidine Chemical compound C1=NC=C2NC=CC2=N1 KDOPAZIWBAHVJB-UHFFFAOYSA-N 0.000 description 1
- UEHOMUNTZPIBIL-UUOKFMHZSA-N 6-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-7h-purin-8-one Chemical compound O=C1NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UEHOMUNTZPIBIL-UUOKFMHZSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HCAJQHYUCKICQH-VPENINKCSA-N 8-Oxo-7,8-dihydro-2'-deoxyguanosine Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1[C@H]1C[C@H](O)[C@@H](CO)O1 HCAJQHYUCKICQH-VPENINKCSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 108010064733 Angiotensins Proteins 0.000 description 1
- 102000015427 Angiotensins Human genes 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000193738 Bacillus anthracis Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 102400000748 Beta-endorphin Human genes 0.000 description 1
- 101800005049 Beta-endorphin Proteins 0.000 description 1
- 102100022548 Beta-hexosaminidase subunit alpha Human genes 0.000 description 1
- 108010051479 Bombesin Proteins 0.000 description 1
- 102000013585 Bombesin Human genes 0.000 description 1
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 1
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 1
- 241000588832 Bordetella pertussis Species 0.000 description 1
- 241000589969 Borreliella burgdorferi Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 102000055006 Calcitonin Human genes 0.000 description 1
- 108060001064 Calcitonin Proteins 0.000 description 1
- 241000222122 Candida albicans Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 101800001982 Cholecystokinin Proteins 0.000 description 1
- 102100025841 Cholecystokinin Human genes 0.000 description 1
- 102000009016 Cholera Toxin Human genes 0.000 description 1
- 108010049048 Cholera Toxin Proteins 0.000 description 1
- HZZVJAQRINQKSD-UHFFFAOYSA-N Clavulanic acid Natural products OC(=O)C1C(=CCO)OC2CC(=O)N21 HZZVJAQRINQKSD-UHFFFAOYSA-N 0.000 description 1
- 241000193155 Clostridium botulinum Species 0.000 description 1
- 241000193468 Clostridium perfringens Species 0.000 description 1
- 241000193449 Clostridium tetani Species 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- 241000186227 Corynebacterium diphtheriae Species 0.000 description 1
- 241000709687 Coxsackievirus Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- MIKUYHXYGGJMLM-GIMIYPNGSA-N Crotonoside Natural products C1=NC2=C(N)NC(=O)N=C2N1[C@H]1O[C@@H](CO)[C@H](O)[C@@H]1O MIKUYHXYGGJMLM-GIMIYPNGSA-N 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 description 1
- 241000701022 Cytomegalovirus Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- NYHBQMYGNKIUIF-UHFFFAOYSA-N D-guanosine Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(CO)C(O)C1O NYHBQMYGNKIUIF-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108010000437 Deamino Arginine Vasopressin Proteins 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014596 Encephalitis Japanese B Diseases 0.000 description 1
- 108050009340 Endothelin Proteins 0.000 description 1
- 102000002045 Endothelin Human genes 0.000 description 1
- 108010092674 Enkephalins Proteins 0.000 description 1
- 241000224432 Entamoeba histolytica Species 0.000 description 1
- 241000709661 Enterovirus Species 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 208000000832 Equine Encephalomyelitis Diseases 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 208000024720 Fabry Disease Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000589602 Francisella tularensis Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 102400000921 Gastrin Human genes 0.000 description 1
- 108010052343 Gastrins Proteins 0.000 description 1
- 208000015872 Gaucher disease Diseases 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 208000032007 Glycogen storage disease due to acid maltase deficiency Diseases 0.000 description 1
- 206010053185 Glycogen storage disease type II Diseases 0.000 description 1
- 241000219774 Griffonia Species 0.000 description 1
- 241000219726 Griffonia simplicifolia Species 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 241000606766 Haemophilus parainfluenzae Species 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 1
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 208000007514 Herpes zoster Diseases 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- 241000228404 Histoplasma capsulatum Species 0.000 description 1
- 101001045440 Homo sapiens Beta-hexosaminidase subunit alpha Proteins 0.000 description 1
- 101000976075 Homo sapiens Insulin Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 208000015178 Hurler syndrome Diseases 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 201000005807 Japanese encephalitis Diseases 0.000 description 1
- 241000710842 Japanese encephalitis virus Species 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000589242 Legionella pneumophila Species 0.000 description 1
- 206010024238 Leptospirosis Diseases 0.000 description 1
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 102100033448 Lysosomal alpha-glucosidase Human genes 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical group O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000030162 Maple syrup disease Diseases 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 1
- 206010056886 Mucopolysaccharidosis I Diseases 0.000 description 1
- 208000005647 Mumps Diseases 0.000 description 1
- 241000186362 Mycobacterium leprae Species 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 1
- 102000047918 Myelin Basic Human genes 0.000 description 1
- 101710107068 Myelin basic protein Proteins 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 241000588652 Neisseria gonorrhoeae Species 0.000 description 1
- 241000588650 Neisseria meningitidis Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102400001103 Neurotensin Human genes 0.000 description 1
- 101800001814 Neurotensin Proteins 0.000 description 1
- 102000004108 Neurotransmitter Receptors Human genes 0.000 description 1
- 108090000590 Neurotransmitter Receptors Proteins 0.000 description 1
- 208000014060 Niemann-Pick disease Diseases 0.000 description 1
- 241000187678 Nocardia asteroides Species 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 102000011931 Nucleoproteins Human genes 0.000 description 1
- 108010061100 Nucleoproteins Proteins 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 108010067035 Pancrelipase Proteins 0.000 description 1
- 241001631646 Papillomaviridae Species 0.000 description 1
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102000015731 Peptide Hormones Human genes 0.000 description 1
- 108010038988 Peptide Hormones Proteins 0.000 description 1
- 108010069013 Phenylalanine Hydroxylase Proteins 0.000 description 1
- 102100038223 Phenylalanine-4-hydroxylase Human genes 0.000 description 1
- 108010001014 Plasminogen Activators Proteins 0.000 description 1
- 102000001938 Plasminogen Activators Human genes 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920001397 Poly-beta-hydroxybutyrate Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001273 Polyhydroxy acid Polymers 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000606701 Rickettsia Species 0.000 description 1
- 241000606726 Rickettsia typhi Species 0.000 description 1
- 208000000705 Rift Valley Fever Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 235000019485 Safflower oil Nutrition 0.000 description 1
- 241000293871 Salmonella enterica subsp. enterica serovar Typhi Species 0.000 description 1
- 241000242680 Schistosoma mansoni Species 0.000 description 1
- 108010086019 Secretin Proteins 0.000 description 1
- 102100037505 Secretin Human genes 0.000 description 1
- 244000191761 Sida cordifolia Species 0.000 description 1
- 108010087230 Sincalide Proteins 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 241000194019 Streptococcus mutans Species 0.000 description 1
- 241000193996 Streptococcus pyogenes Species 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 101710137302 Surface antigen S Proteins 0.000 description 1
- 208000022292 Tay-Sachs disease Diseases 0.000 description 1
- 229920002807 Thiomer Polymers 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 241000223997 Toxoplasma gondii Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 241000589884 Treponema pallidum Species 0.000 description 1
- 241000224527 Trichomonas vaginalis Species 0.000 description 1
- 241000223105 Trypanosoma brucei Species 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 102000055135 Vasoactive Intestinal Peptide Human genes 0.000 description 1
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 241000607626 Vibrio cholerae Species 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 208000003152 Yellow Fever Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 239000000674 adrenergic antagonist Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229920000469 amphiphilic block copolymer Polymers 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000001773 anti-convulsant effect Effects 0.000 description 1
- 230000003474 anti-emetic effect Effects 0.000 description 1
- 230000001384 anti-glaucoma Effects 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 230000002141 anti-parasite Effects 0.000 description 1
- 230000000648 anti-parkinson Effects 0.000 description 1
- 230000000842 anti-protozoal effect Effects 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 230000001262 anti-secretory effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000002921 anti-spasmodic effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229940125681 anticonvulsant agent Drugs 0.000 description 1
- 239000001961 anticonvulsive agent Substances 0.000 description 1
- 229940005513 antidepressants Drugs 0.000 description 1
- 239000002111 antiemetic agent Substances 0.000 description 1
- 229940125683 antiemetic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000002220 antihypertensive agent Substances 0.000 description 1
- 229940030600 antihypertensive agent Drugs 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229940045713 antineoplastic alkylating drug ethylene imines Drugs 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000000939 antiparkinson agent Substances 0.000 description 1
- 239000003904 antiprotozoal agent Substances 0.000 description 1
- 229940005529 antipsychotics Drugs 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229940125716 antipyretic agent Drugs 0.000 description 1
- 229940124575 antispasmodic agent Drugs 0.000 description 1
- 229960004676 antithrombotic agent Drugs 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 108010054176 apotransferrin Proteins 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 230000001746 atrial effect Effects 0.000 description 1
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- 229940065181 bacillus anthracis Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- WOPZMFQRCBYPJU-NTXHZHDSSA-N beta-endorphin Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)[C@@H](C)O)C1=CC=CC=C1 WOPZMFQRCBYPJU-NTXHZHDSSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 description 1
- 229940112869 bone morphogenetic protein Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229960004015 calcitonin Drugs 0.000 description 1
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 125000000837 carbohydrate group Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 238000010609 cell counting kit-8 assay Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 229940107137 cholecystokinin Drugs 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- HZZVJAQRINQKSD-PBFISZAISA-N clavulanic acid Chemical compound OC(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21 HZZVJAQRINQKSD-PBFISZAISA-N 0.000 description 1
- 229960003324 clavulanic acid Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 229940124558 contraceptive agent Drugs 0.000 description 1
- 230000002254 contraceptive effect Effects 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 230000037029 cross reaction Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- MSBXTPRURXJCPF-DQWIULQBSA-N cucurbit[6]uril Chemical compound N1([C@@H]2[C@@H]3N(C1=O)CN1[C@@H]4[C@@H]5N(C1=O)CN1[C@@H]6[C@@H]7N(C1=O)CN1[C@@H]8[C@@H]9N(C1=O)CN([C@H]1N(C%10=O)CN9C(=O)N8CN7C(=O)N6CN5C(=O)N4CN3C(=O)N2C2)C3=O)CN4C(=O)N5[C@@H]6[C@H]4N2C(=O)N6CN%10[C@H]1N3C5 MSBXTPRURXJCPF-DQWIULQBSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 description 1
- 239000000850 decongestant Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 229960004281 desmopressin Drugs 0.000 description 1
- NFLWUMRGJYTJIN-NXBWRCJVSA-N desmopressin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSCCC(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(N)=O)=O)CCC(=O)N)C1=CC=CC=C1 NFLWUMRGJYTJIN-NXBWRCJVSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001882 diuretic effect Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 230000037336 dry skin Effects 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940007078 entamoeba histolytica Drugs 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 210000001842 enterocyte Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000007247 enzymatic mechanism Effects 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000004920 epithelial cell of skin Anatomy 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 238000009164 estrogen replacement therapy Methods 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 125000004030 farnesyl group Chemical group [H]C([*])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])=C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 230000003328 fibroblastic effect Effects 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 229940118764 francisella tularensis Drugs 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 210000003976 gap junction Anatomy 0.000 description 1
- 210000005095 gastrointestinal system Anatomy 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 201000004502 glycogen storage disease II Diseases 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 229940029575 guanosine Drugs 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 201000010284 hepatitis E Diseases 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 238000001198 high resolution scanning electron microscopy Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000003326 hypnotic agent Substances 0.000 description 1
- 230000000147 hypnotic effect Effects 0.000 description 1
- 230000002218 hypoglycaemic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 239000000677 immunologic agent Substances 0.000 description 1
- 229940124541 immunological agent Drugs 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000037797 influenza A Diseases 0.000 description 1
- 208000037798 influenza B Diseases 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012528 insulin ELISA Methods 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 210000002977 intracellular fluid Anatomy 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 230000007775 late Effects 0.000 description 1
- 229940115932 legionella pneumophila Drugs 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 229960005015 local anesthetics Drugs 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 208000024393 maple syrup urine disease Diseases 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 230000003547 miosis Effects 0.000 description 1
- 239000003604 miotic agent Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229940111688 monobasic potassium phosphate Drugs 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 230000000921 morphogenic effect Effects 0.000 description 1
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 1
- 208000010805 mumps infectious disease Diseases 0.000 description 1
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 1
- 229940035363 muscle relaxants Drugs 0.000 description 1
- 201000006938 muscular dystrophy Diseases 0.000 description 1
- 231100000299 mutagenicity Toxicity 0.000 description 1
- 230000007886 mutagenicity Effects 0.000 description 1
- 239000003158 myorelaxant agent Substances 0.000 description 1
- 229950006238 nadide Drugs 0.000 description 1
- 230000001452 natriuretic effect Effects 0.000 description 1
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 1
- 239000002581 neurotoxin Substances 0.000 description 1
- 231100000618 neurotoxin Toxicity 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229940005483 opioid analgesics Drugs 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 230000027758 ovulation cycle Effects 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- VOUGEZYPVGAPBB-UHFFFAOYSA-N penicillin acid Natural products OC(=O)C=C(OC)C(=O)C(C)=C VOUGEZYPVGAPBB-UHFFFAOYSA-N 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 210000001986 peyer's patch Anatomy 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229940127126 plasminogen activator Drugs 0.000 description 1
- 229920000729 poly(L-lysine) polymer Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229960002796 polystyrene sulfonate Drugs 0.000 description 1
- 239000011970 polystyrene sulfonate Substances 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000003419 rna directed dna polymerase inhibitor Substances 0.000 description 1
- 201000005404 rubella Diseases 0.000 description 1
- RHFUOMFWUGWKKO-UHFFFAOYSA-N s2C Natural products S=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 RHFUOMFWUGWKKO-UHFFFAOYSA-N 0.000 description 1
- 239000003813 safflower oil Substances 0.000 description 1
- 235000005713 safflower oil Nutrition 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 229960002101 secretin Drugs 0.000 description 1
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 1
- 239000000932 sedative agent Substances 0.000 description 1
- 230000001624 sedative effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002924 silencing RNA Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000002294 steroidal antiinflammatory agent Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960005404 sulfamethoxazole Drugs 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- JLKIGFTWXXRPMT-UHFFFAOYSA-N sulphamethoxazole Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 JLKIGFTWXXRPMT-UHFFFAOYSA-N 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003356 suture material Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001578 tight junction Anatomy 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 239000003204 tranquilizing agent Substances 0.000 description 1
- 230000002936 tranquilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- HDZZVAMISRMYHH-KCGFPETGSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O HDZZVAMISRMYHH-KCGFPETGSA-N 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 239000002550 vasoactive agent Substances 0.000 description 1
- 239000003071 vasodilator agent Substances 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 229940118696 vibrio cholerae Drugs 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5138—Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5192—Processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0043—Nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
- A61K9/0065—Forms with gastric retention, e.g. floating on gastric juice, adhering to gastric mucosa, expanding to prevent passage through the pylorus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5021—Organic macromolecular compounds
- A61K9/5036—Polysaccharides, e.g. gums, alginate; Cyclodextrin
Definitions
- This invention pertains to drug delivery vehicles, and, more particularly, to controlled release particles coated with a mucoadhesive material.
- the serum levels of the drug will not be continuous. Serum levels will spike shortly after administration and then tail off in a non-linear fashion. While there may be an optimal serum concentration, a patient will only experience this optimum concentration briefly, as the concentration of the drug decreases from the initial spike. While the average concentration over time may be correct, the actual serum concentration of the drug will practically always be greater or less than optimal. Another factor that tends to impede a patient's receipt of the proper quantity of a drug is patient compliance. Many patients are unwilling or unable to comply with a physician's instructions describing how often to take a drug. It is inconvenient and confusing to take several drugs at different times during the day and painful to inject protein drugs such as insulin.
- Controlled release polymer systems can be designed to provide a drug level in the optimum range over a longer period of time than other drug delivery methods, thus increasing both the efficacy of the drug and patient compliance.
- Biodegradable particles have been developed as sustained release vehicles used in the administration of small molecule drugs as well as protein and peptide drugs and nucleic acids (Langer, Science, 249:1527-1533, 1990; Mulligan, Science, 260:926-932, 1993; Eldridge, MoI Immunol, 28:287-294, 1991; the entire teaching of each of the foregoing references is incorporated herein by reference).
- the drugs are typically encapsulated in a polymer matrix which is biodegradable and biocompatible. As the polymer is degraded or dissolved and/or as the drug diffuses out of the polymer, the drug is released into the body.
- polymers used in preparing these particles are polyesters such as poly(glycolide-co-lactide) (PLGA), polyglycolic acid, poly- ⁇ -hydroxybutyrate, and polyacrylic acid ester. These particles have the additional advantage of protecting the drug from degradation by the body.
- PLGA poly(glycolide-co-lactide)
- polyglycolic acid polyglycolic acid
- poly- ⁇ -hydroxybutyrate polyacrylic acid ester
- controlled-release system that can be used for oral administration of substances that are not normally stable in the gastrointestinal tract or that are difficult to transport across the intestinal mucosa into the bloodstream.
- Oral delivery is expected to result in enhanced patient compliance, resulting in improved clinical outcomes, largely due to ease of drug administration as compared to subcutaneous or intravenous injection.
- An appropriate delivery system that can 1) encapsulate protein and other labile drugs, 2) protect the drugs while in transit through the gastrointestinal (GI) tract, 3) efficiently transport the drugs across the intestinal mucosa, and 4) efficiently release the drugs in the systemic circulation may result in high bioavailability of protein drugs after oral administration. Even for drugs that are stable in the GI tract, a delivery system that can transport them across the intestinal mucosa and release them directly into the bloodstream can enhance bioavailability.
- the invention is a composition for delivering an active agent to a patient.
- the composition includes a polymer core encapsulating a predetermined amount of the active agent and a mucoadhesive coating disposed about the core to form a coated particle.
- the polymer includes covalently linked poly(alkylene glycol) chains.
- the mucoadhesive coating is retained on the core through one or more of covalent interactions, electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions.
- a molecular weight and cross-link density of the biodegradable polymer is selected such that the polymer core will decompose over a predetermined time interval.
- the mucoadhesive coating is selected to facilitate transfer of the particle through the intestinal mucosa.
- the fraction of the predetermined amount entering the systemic circulation during the predetermined time interval is between about 0.25% and about 25%, for example, between about 5% and about 20% or between about 10% and about 15%.
- the composition may further include a targeting agent disposed under the mucoadhesive coating and, optionally, an intermediate layer disposed between the targeting agent and the mucoadhesive coating.
- the intermediate layer may include a first material while the mucoadhesive coating includes a second material, and the first material and the second material may have opposing electrostatic charges at pH 2, but not at pH 7.4.
- the intermediate layer may include a biodegradable polymer, and the targeting agent may be disposed at a surface portion of the polymer core, an interior portion of the polymer core, or both.
- the targeting agent may be one or more of nucleic acid aptamers, growth factors, hormones, cytokines, interleukins, antibodies, integrins, fibronectin receptors, p-glycoprotein receptors, and cell binding sequences, for example, RGD.
- the core may include PEGylated poly (lactic acid).
- the coating may be a block co-polymer having a mucoadhesive block and a block that is adapted to participate in an interaction selected from electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions.
- the active agent may be a biomolecule, bioactive agent, small molecule, drug, protein, vaccine, or polynucleotide.
- the poly(alkylene glycol) may be carboxylated and may be selected from poly(ethylene glycol) and poly(propylene glycol).
- the poly(alkylene glycol) may have a molecular weight between about 100 and about 7000 Daltons, for example, between about 100 and about 1000 Daltons, between about 1000 Daltons and 3500 Daltons, between 3500 Daltons and about 7000 Daltons, or more.
- the coating may include one or more of chitosan, poly(lysine), poly(ethylene imine), lecithin, lectin, polycarboxylic acids, poly(acrylic acids), polysaccharides, hydrogels, monosaccharides, oligosaccharides, oligopeptides, polypeptides, and copolymers of these.
- the invention is a composition for administering an active agent to a patient.
- the composition includes a plurality of particles, each particle including a polymer core encapsulating the active agent and a mucoadhesive coating disposed about the core to form a coated particle, and a pharmaceutically acceptable carrier combined with the plurality of particles.
- the pharmaceutically acceptable carrier is edible or inhalable.
- the invention is a method for administering an active agent to a patient. The method includes orally administering to the patient a composition comprising a plurality of particles. Each particle includes a polymer core encapsulating the active agent and a mucoadhesive coating disposed about the core to form a coated particle.
- the composition further includes a pharmaceutically acceptable edible carrier.
- Bioavailability refers to the rate at which and extent to which an active agent is absorbed or is otherwise available to a treatment site in the body.
- bioavailability also depends on the extent to which the active agent is released from the polymer and/or carrier into the bloodstream.
- Biomolecules refers to molecules (e.g., proteins, amino acids, peptides, polynucleotides, nucleotides, carbohydrates, sugars, lipids, nucleoproteins, glycoproteins, lipoproteins, steroids, etc.) whether naturally-occurring or artificially created (e.g., by synthetic or recombinant methods) that are commonly found in cells and tissues.
- molecules e.g., proteins, amino acids, peptides, polynucleotides, nucleotides, carbohydrates, sugars, lipids, nucleoproteins, glycoproteins, lipoproteins, steroids, etc.
- biomolecules include, but are not limited to, enzymes, receptors, neurotransmitters, hormones, cytokines, cell response modifiers such as growth factors and chemotactic factors, antibodies, vaccines, haptens, toxins, interferons, ribozymes, anti-sense agents, plasmids, DNA, and RNA.
- Biocompatible The term “biocompatible”, as used herein is intended to describe compounds that are not toxic to cells. Compounds are “biocompatible” if their addition to cells in vitro results in less than or equal to 20 % cell death, and their administration in vivo does not induce significant inflammation or other such significant adverse effects.
- Biodegradable As used herein, “biodegradable” polymers are polymers that degrade fully (i.e., down to monomeric species) under physiological or endosomal conditions. In preferred embodiments, the polymers and polymer biodegradation byproducts are biocompatible. Biodegradable polymers are not necessarily hydrolytically degradable and may require enzymatic action to fully degrade.
- composition is the process by which a material is broken down under physiological conditions into components that may be metabolized by the body.
- biodegradable polymers are degraded to monomeric species.
- Non-biodegradable polymers may be dissolved and removed from the bloodstream by the kidneys.
- the material or its components may be metabolized by the liver.
- Endosomal conditions The phrase “endosomal conditions”, as used herein, relates to the range of chemical (e.g., pH, ionic strength) and biochemical (e.g., enzyme concentrations) conditions likely to be encountered within endosomal vesicles.
- chemical e.g., pH, ionic strength
- biochemical e.g., enzyme concentrations
- endosomal pH ranges from about 5.0 to 6.5.
- physiological conditions relate to the range of chemical (e.g., pH, ionic strength) and biochemical (e.g., enzyme concentrations) conditions likely to be encountered in the intracellular and extracellular fluids of tissues.
- chemical e.g., pH, ionic strength
- biochemical e.g., enzyme concentrations
- Polynucleotide refers to a polymer of nucleotides.
- a polynucleotide comprises at least two nucleotides. DNAs and RNAs are polynucleotides.
- the polymer may include natural nucleosides (i.e., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine), nucleoside analogs (e.g., 2- aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, C5-propynylcytidine, C5-propynyluridine, C5 bromouridine, C5 fluorouridine, C5 iodouridine, C5 methylcytidine, 7 deazaadenosine, 7 deazaguanosine, 8 oxoadenosine, 8 oxoguanosine, 0(6) methylguanine, and 2-thiocytidine), chemically modified bases, biologically modified bases (e.g.,
- Nucleic acids also include nucleic acid-based therapeutic agents, for example, nucleic acid ligands, siRNA, short hairpin RNA, antisense oligonucleotides, ribozymes, aptamers, and SPIEGELMERSTM, oligonucleotide ligands described in Wlotzka, et al., Proc. Nat'l. Acad. Sci. USA, 2002, 99(13):8898, the entire contents of which are incorporated herein by reference.
- nucleic acid ligands for example, nucleic acid ligands, siRNA, short hairpin RNA, antisense oligonucleotides, ribozymes, aptamers, and SPIEGELMERSTM, oligonucleotide ligands described in Wlotzka, et al., Proc. Nat'l. Acad. Sci. USA, 2002, 99(13):8898, the entire contents of which are incorporated herein by reference
- Polypeptide “peptide”, or “protein”: According to the present invention, a “polypeptide”, “peptide”, or “protein” comprises a string of at least three amino acids linked together by peptide bonds.
- the terms “polypeptide”, “peptide”, and “protein”, may be used interchangeably.
- Peptide may refer to an individual peptide or a collection of peptides. Inventive peptides preferably contain only natural amino acids, although non natural amino acids (i.e., compounds that do not occur in nature but that can be incorporated into a polypeptide chain) and/or amino acid analogs as are known in the art may alternatively be employed.
- one or more of the amino acids in a peptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc.
- the modifications of the peptide lead to a more stable peptide (e.g., greater half-life in vivo). These modifications may include cyclization of the peptide, the incorporation of D-amino acids, etc. None of the modifications should substantially interfere with the desired biological activity of the peptide.
- "Polysaccharide”, “carbohydrate” or “oligosaccharide” The terms
- polysaccharide refers to a polymer of sugars.
- a polysaccharide comprises at least two sugars.
- the polymer may include natural sugars (e.g., glucose, fructose, galactose, mannose, arabinose, ribose, and xylose) and/or modified sugars (e.g., 2'-fluororibose, T- deoxyribose, and hexose).
- “Mucoadhesive” As used herein, the term “mucoadhesive” is used to indicate that a moiety has an affinity for a component of the intestinal wall.
- the affinity may be specific, for example, a specific affinity for a protein or sugar found in the membrane of a cell, for example, an M cell or intestinal epithelial cell, or nonspecific, for example, a tendency to non-covalently bind to the mucosa.
- Small molecule As used herein, the term “small molecule” is used to refer to molecules, whether naturally-occurring or artificially created (e.g., via chemical synthesis) that have a relatively low molecular weight. In some embodiments, small molecules are monomeric and have a molecular weight of less than about 1500 g/mol. Preferred small molecules are biologically active in that they produce a local or systemic effect in animals, preferably mammals, more preferably humans. Small molecules include, but are not limited to, radionuclides and imaging agents. In certain embodiments, the small molecule is a drug. Preferably, though not necessarily, the drug is one that has already been deemed safe and effective for use by the appropriate governmental agency or body.
- drugs for human use listed by the FDA under 21 C.F.R. ⁇ 330.5, 331 through 361, and 440 through 460; drugs for veterinary use listed by the FDA under 21 C.F.R. ⁇ 500 through 589, incorporated herein by reference, are all considered acceptable for use in accordance with the present invention.
- Known naturally-occurring small molecules include, but are not limited to, penicillin, erythromycin, taxol, cyclosporin, and rapamycin.
- Known synthetic small molecules include, but are not limited to, ampicillin, methicillin, sulfamethoxazole, and sulfonamides.
- Bioactive agents As used herein, “bioactive agents” is used to refer to compounds or entities that alter, inhibit, activate, or otherwise affect biological or chemical events.
- bioactive agents may include, but are not limited to, anti-AIDS substances, anti-cancer substances, antibiotics, immunosuppressants, anti-viral substances, enzyme inhibitors, including but not limited to protease and reverse transcriptase inhibitors, fusion inhibitors, neurotoxins, opioids, hypnotics, anti-histamines, lubricants, tranquilizers, anti-convulsants, muscle relaxants and anti-Parkinson substances, anti-spasmodics and muscle contractants including channel blockers, miotics and anti-cholinergics, anti-glaucoma compounds, anti-parasite and/or anti-protozoal compounds, modulators of cell-extracellular matrix interactions including cell growth inhibitors and anti-adhesion molecules, vasodilating agents, inhibitors of DNA, RNA or protein synthesis, anti-hypertensives, an enzyme inhibitors
- the bioactive agent is a drug.
- bioactive agents and specific drugs suitable for use in the present invention may be found in "Pharmaceutical Substances: Syntheses, Patents, Applications” by Axel Kleemann and Jurgen Engel, Thieme Medical Publishing, 1999; the “Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals", Edited by Susan Budavari et al, CRC Press, 1996, and the United States Pharmacopeia-25/National Formulary-20, published by the United States Pharmcopeial Convention, Inc., Rockville MD, 2001, all of which are incorporated herein by reference.
- pharmaceutically active agent refers collectively to biomolecules, small molecules, and bioactive agents.
- Figure 1 is a schematic diagram of a particle according to an embodiment of the invention.
- Figures 2A&B are graphs showing the transport yields of nanoparticles (A) and micorparticles (B) across monolayers of Caco-2 cells with and without a mucoadhesive coating.
- Figures 3A&B are graphs showing the absorption yields of nanoparticles (A) and micorparticles (B) into mice.
- Figure 4A is a graph showing the whole blood absorption of 125 I-insulin delivered to balb/C mice by PEGylated and non-PEGylated PLA nanoparticles.
- Fibure 4B is a graph comparing the whole blood absorption of 125 I-insulin delivered to balb/C mice by PEGylated PLA nanoparticles and microparticles
- Figure 5 is a graph illustrating the decrease in plasma glucose over time after administration of insulin encapsulated in PLA-PEG-COOH and PLGA-PEG-COOH nanoparticles.
- Figure 6 is a graph illustrating the reduction in plasma glucose after intravenous administration of Humulin R (0.5U/kg)
- Figure 7 is a graph illustrating the linear relationship between absorbance and plasma insulin concentration
- Figure 8 is a graph illustrating the serum insulin concentration with respect to time after intravenous and intraperitoneal administration of Humulin-R
- Figure 9 is a graph illustrating the serum insulin concentration with respect to time after administration of encapsulated Humulin with various surface coatings.
- a delivery device for biopharmaceuticals and other substances that are not easily transported from the gastrointestinal tract to the circulatory system or that are not stable in the gastrointestinal tract includes a polymer encapsulating an active agent and a mucoadhesive surface.
- the device is a plurality of microparticles or nanoparticles 10 having a core 12 in which a pharmaceutical is encapsulated by a controlled-release polymer and a mucoadhesive coating 14 disposed about the core ( Figure 1).
- the controlled-release polymer may be biodegradable, and the coating may be biodegradable as well.
- the coating is affixed to the core by covalent or non-covalent interactions. The coating may remain in place as the core material decomposes. Such particles may be ingested by a patient.
- the particles may be nanoparticles, having a size between about 10 and about 1000 nm, for example, between about 10 and aboutlOO nm, between 100 and about 500 nm, or between about 500 and about 1000 nm.
- the particles may be microparticles having a size between about 1 and about 100 micrometers, for example, between about 1 and about 10 micrometers, between about 10 and about 50 micrometers, or between about 50 and about 100 micrometers.
- the particles adhere to the intestinal lining and gradually pass through the lining into the circulatory system, where they gradually release the active agent at a rate determined by the decomposition rate of the core.
- the core material may also include a mucoadhesive, obviating a coating.
- Materials for use in encapsulating pharmaceuticals for use with the invention may be biodegradable.
- a variety of biodegradable polymers are well known to those skilled in the art.
- Exemplary synthetic polymers suitable for use with the invention include but are not limited to poly(arylates), poly(anhydrides), poly(hydroxy acids), polyesters, poly(ortho esters), polycarbonates, poly(propylene fumerates), poly(caprolactones), polyamides, polyphosphazenes, polyamino acids, polyethers, polyacetals, polylactides, polyhydroxyalkanoates, polyglycolides, polyketals, polyesteramides, poly(dioxanones), polyhydroxybutyrates, polyhydroxyvalyrates, polycarbonates, polyorthocarbonates, poly(vinyl pyrrolidone), biodegradable polycyanoacrylates, polyalkylene oxalates, polyalkylene succinates, poly(malic acid), poly(methyl vinyl ether), poly(
- U.S. Patents that describe the use of polyanhydrides for controlled delivery of substances include U.S. Pat. No. 4,857,311 to Domb and Langer, U.S. Pat. No. 4,888,176 to Langer, et al., and U.S. Pat. No. 4,789,724 to Domb and Langer.
- Naturally-occurring polymers such as polysaccharides and proteins, may also be employed.
- Exemplary polysaccharides include alginate, starches, dextrans, celluloses, chitin, chitosan, hyaluronic acid and its derivatives;
- exemplary proteins include collagen, albumin, and gelatin.
- Polysaccharides such as starches, dextrans, and celluloses may be unmodified or may be modified physically or chemically to affect one or more of their properties such as their characteristics in the hydrated state, their solubility, or their half-life in vivo.
- the polymer includes polyhydroxy acids such as polylactic acid (PLA), polyglycolic acid (PGA), their copolymers poly(lactic-co- glycolic acid) (PLGA), and mixtures of any of these.
- PLA polylactic acid
- PGA polyglycolic acid
- PLGA poly(lactic-co- glycolic acid)
- copolymerization of PLA and PGA offers the advantage of a large spectrum of degradation rates from a few days to several years by simply varying the copolymer ratio of glycolic acid to lactic acid, which is more hydrophobic and less crystalline than PGA and degrades at a slower rate.
- Non-biodegradable polymers may also be employed for use with the invention.
- Exemplary non-biodegradable, yet biocompatible polymers include polystyrene, polyesters, non-biodegradable polyurethanes, polyureas, poly( vinyl alcohol), polyamides, poly(tetrafluoroethylene), poly(ethylene vinyl acetate), polypropylene, polyacrylate, non-biodegradable polycyanoacrylates, nonbiodegradable polyurethanes, polymethacrylate, poly(methyl methacrylate), polyethylene, polypyrrole, polyanilmes, polythiophene, and poly(ethylene oxide), Any of the above polymers may be functionalized with a poly(alkylene glycol), for example, poly(ethylene glycol) (PEG) or poly (propyleneglycol) (PPG), or may have a particular terminal functional group, e.g., poly(lactic acid) modified to have a terminal carboxyl group.
- PEG poly(ethylene glycol)
- PPG
- Exemplary PEGylated polymers include but are not limited to PEGylated ⁇ oly(lactic acid), PEGylated poly(lactic-co-glycolic acid), PEGylated poly(ca ⁇ rolactone), PEGylated poly(ortho esters), PEGylated polylysine, and PEGylated poly(ethylene imine).
- Poly(alkylene glycols) are known to increase the bioavailability of many pharmacologically useful compounds, partly by increasing the gastrointestinal stability of derivatized compounds. Poly(alkylene glycols) chains may be as short as about 100 Daltons or have a molecular weight of about 1000, about 3000, about 5000, about 7000 Daltons, or more.
- the poly(alkylene glycol) chain may also be modified to have a charged endgroup or other group selected to engage in a particular interaction with the coating material.
- carboxylated PEG will engage in electrostatic interactions with positively charged coating materials such as chitosan.
- Co-polymers, mixtures, and adducts of any of the above modified and unmodified polymers may also be employed.
- amphiphilic block copolymers having hydrophobic regions and anionic or otherwise hydrophilic regions may be employed.
- Block co-polymers having regions that engage in different types of non-covalent or covalent interactions may also be employed.
- a block co-polymer may have one block that is optimized to interact with an active agent being encapsulated and another block optimized to interact with the bioadhesive coating (see below).
- polymers may be chemically modified to have particular functional groups.
- polymers may be functionalized with hydroxyl, amine, carboxy, maleimide, thiol, N-hydroxy- succinimide (NHS) esters, or azide groups. These groups may be used to render the polymer hydrophilic or to achieve particular interactions with coating materials as described below.
- the molecular weight and the degree of cross-linking may be adjusted to control the decomposition rate of the polymer and thus the release rate of the pharmaceutical.
- Methods of controlling molecular weight and cross-linking to adjust release rates are well known to those skilled in the art.
- particles in which active agents are encapsulated are well known to those skilled in the art.
- a double emulsion technique may be used to combine a polymer and active agent in particles.
- particles may be prepared by spray-drying.
- Positively charged biocompatible materials such as chitosan, poly(L-lysine), and poly(ethylene imines) are suitable for coating particles for use with the invention.
- Lectins may also be used to coat particles. Lectins may particularly target M cells in Peyer's patches in the intestine, enhancing the affinity of the particles for the intestinal wall. Lectins are produced by a wide variety of plants; one skilled in the art will recognize that not all lectins are appropriate for use in pharmaceutical compositions. A wide variety of lectins are available from Sigma- Aldrich, which also provides information on the toxicity and mutagenicity of commercially available lectins.
- bioadhesive materials also include, without limitation, lecithin, polycarboxylic acids, poly(acrylic acids), polysaccharides, monosaccharides, oligosaccharides, oligopeptides, polypeptides, and co-polymers of two or more mucoadhesive materials.
- mucoadhesive or non-mucoadhesive polymers may be modified with mucoadhesive materials.
- sugars may be covalently linked to poly aery lates.
- Polymers having regions adapted to bind the coating to the core material and regions adapted to be mucoadhesive may also be employed.
- a block co-polymer of a polycation and a hydrogen bond donor can be used to coat a core containing a polymer that acts as a hydrogen bond receptor.
- Additional bioadhesive molecules that may be used with the invention include but are not limited to hydrophilic and amphiphilic polymers, hydrogels, and the polymers disclosed in U.S. Patents Nos. 6,217,908, 6,297,337; 6,514,535; and 6,284,235 the contents of which are incorporated herein by reference.
- Bioadhesive molecules may be PEGylated or otherwise modified as described above.
- the particles are provided with a double coating.
- the particles may include a targeting agent that helps direct the particles to a specific tissue once they enter the blood stream.
- exemplary targeting agents include nucleic acid aptamers, growth factors, hormones, cytokines, interleukins, antibodies, integrins, fibronectin receptors, p-glycoprotein receptors, and cell binding sequences such as RGD.
- Nucleic acid aptamers selective for a particular target may be known from the literature or may be identified using any method known to those skilled in the art, for example, the methods disclosed in U.S. Patents Nos. 5,270,163, 5,475,096, and 6,114,120, the contents of which are incorporated herein by reference.
- Aptamers for certain tissues may also be obtained commercially, for example, from Archemix Corp. These targeting agents may be attached to the surface of the particle or may be attached to the polymer itself before the particles are formed.
- the particles are then coated with a negatively charged material, e.g., a negatively charged polymer.
- a negatively charged material e.g., a negatively charged polymer.
- Exemplary polymers include carboxymethylcellulose, polyacrylic acid, polymethacrylic acid, polystyrenesulfonate, and polymers including carboxylate, sulfonate, sulfate, phosphate, or nitrate groups.
- a positively charged mucoadhesive material is then coated over the negatively charged material.
- the environmental pH increases from about 2-3 to about 7.4.
- the pKa of the negative coating it may become neutrally charged, reducing its affinity for the positively charged mucoadhesive coating.
- the negatively charged coating may also be biodegradable, for example, through hydrolysis or enzymatic mechanisms.
- the pKa of the negatively charged coating is such that it will become neutrally charged after entering the bloodstream, the degradation of the coating will dislodge the outer mucoadhesive coating from the particle.
- the two coatings protect both the agent being delivered and the targeting agent from degradation in the digestive system while allowing the targeting agent to be exposed at the surface of the particles after they enter the bloodstream.
- the active agents to be incorporated in the controlled release polymer system of the present invention may be therapeutic, diagnostic, prophylactic or prognostic agents. Any chemical compound to be administered to an individual may be delivered using the conjugates of the invention.
- the active agent may be a small molecule, organometallic compound, nucleic acid, protein, peptide, metal, an isotopically labeled chemical compound, drug, vaccine, immunological agent, etc.
- Exemplary active agents include small molecules, biomolecules, and bioactive agents as defined herein.
- the agents are organic compounds with pharmaceutical activity.
- the agent is a small molecule that is a clinically used drug.
- the drug is an antibiotic, anti-viral agent, anesthetic, steroidal agent, anti-inflammatory agent, anti-neoplastic agent, antigen, vaccine, antibody, decongestant, antihypertensive, sedative, birth control agent, progestational agent, anti-cholinergic, analgesic, anti-depressant, anti- psychotic, adrenergic blocking agent, diuretic, cardiovascular active agent, vasoactive agent, non-steroidal anti-inflammatory agent, nutritional agent, etc. While many small molecule drugs are already available for oral administration, some are not sufficiently soluble to be orally administered and may benefit from the techniques described herein.
- the agent is a protein drug, such as an antibody, an antibody fragment, a recombinant antibody, a recombinant protein, a purified protein, a peptide, an amino acid and combinations thereof.
- protein drugs include but are not limited to biologically active macromolecules such as enzyme inhibitors, colony-stimulating factors, plasminogen activators, polypeptide hormones, insulin, myelin basic protein, collagen S antigen, calcitonin, angiotensin, vasopressin, desmopressin, LH-RH (luteinizing hormone-releasing hormone), somatostatin, glucagon, somatomedin, oxytocin, gastrin, secretin, h-ANP (human atrial natriuretic polypeptide), ACTH (adrenocorticotropic hormone), MSH (melanocyte stimulating hormone), beta-endorphin, muramyl dipeptide, enkephalin, neurotensin, bombesin, VIP
- Exemplary growth factors include but are not limited to activin A (ACT), retinoic acid (RA), epidermal growth factor, bone morphogenetic protein, platelet derived growth factor, hepatocyte growth factor, insulin-like growth factors (IGF) I and II, hematopoietic growth factors, peptide growth factors, erythropoietin, angiogenic factors, anti-angiogenic factors, interleukins, tumor necrosis factors, interferons, colony stimulating factors, t-PA (tissue plasminogen activator), G-CSF (granulocyte colony stimulating factor), heparin binding growth factor (HBGF), alpha or beta transforming growth factor ( ⁇ - or ⁇ -TGF), fibroblastic growth factors, epidermal growth factor (EGF), vascular endothelium growth factor (VEGF), nerve growth factor (NGF) and muscle morphogenic factor (MMP).
- ACT activin A
- RA retinoic acid
- epidermal growth factor e growth factor
- the active agent delivered using the techniques of the invention is a nucleic acid based drug, such as DNA, RNA, modified DNA, modified RNA, antisense oligonucleotides, expression plasmid systems, nucleotides, modified nucleotides, nucleosides, modified nucleosides, nucleic acid ligands (e.g. aptamers), intact genes, a promoter complementary region, a repressor complementary region, an enhancer complementary region, and combinations thereof.
- nucleic acid based drug such as DNA, RNA, modified DNA, modified RNA, antisense oligonucleotides, expression plasmid systems, nucleotides, modified nucleotides, nucleosides, modified nucleosides, nucleic acid ligands (e.g. aptamers), intact genes, a promoter complementary region, a repressor complementary region, an enhancer complementary region, and combinations thereof.
- a promoter complementary region, a repressor complementary region, or an enhancer complementary region can be fully complementary or partially complementary to the DNA promoter region, repressor region, an enhancer region of a gene for which it is desirable to modulate expression. For example, it may be at least 50% complementary, at least 60% complementary, at least 70% complementary, at least 80% complementary, at least 90% complementary, or at least 95% complementary.
- nucleic acid based drugs can be encapsulated with anionic polymers or other hydrophilic polymers that do not have cationic groups.
- polymers modified with short poly(cytosine) tags may be used to encapsulate genetic material.
- Other examples include but are not limited to polysebacic anhydride (PSA) and poly(lactic acid). These polymers may be modified to carry a more negative charge, for example, a terminal carboxylic acid group can be added to poly(lactic acid).
- the controlled release polymer systems may deliver a diagnostic or prognostic agent used for long term diagnosis of a patient's health.
- kidney function is determined by delivering an agent, such as creatinine, to the bloodstream that is cleared solely by the glomerulus and then measuring the concentration of the agent in the blood or urine over time.
- the controlled release particles of the invention can be used to provide a steady state concentration of the clearance agent in the bloodstream for an extended period of time, and periodic assays of the concentration of the agent in the patient's urine can be used to determine the rate of clearance of the agent by the kidneys.
- Alternative clearance agents for example, agents that are cleared from the body through other mechanisms, e.g, by the liver or through other metabolic processes, may also be encapsulated and delivered using the controlled release polymer systems described herein.
- Prophylactic agents that can be delivered to a patient by exploiting the invention include, but are not limited to, antibiotics and nutritional supplements.
- the techniques of the invention may be used to deliver nutrients to patients experiencing a deficiency or who are unable to produce or store such substances themselves.
- vitamin D may be delivered to patients who are unable to synthesize it.
- Vaccines and antigens are additional prophylactic agents that may be administered to a patient using the techniques of the invention. Some vaccines require extended exposure to the immune system to stimulate the desired immune response. Micro- or nanoparticles containing a vaccine or antigen may be suspended in a fluid or charged into a capsule and ingested, allowing patients to receive their vaccine orally instead of as an injection. A single administration of a dose of particles produced according to the invention may substitute for multiple injections or reduce the number of administrations. Of course, fast-decomposing particles may be fabricated to encapsulate vaccines that do not require extended exposure. Formulation of the vaccine as a capsule, pill, or ingestible liquid may also improve the shelf life of the vaccine, easing delivery of vaccines to rural or impoverished areas.
- Vaccines may comprise isolated proteins or peptides, inactivated organisms and viruses, dead organisms and viruses, genetically altered organisms or viruses, and cell extracts.
- Prophylactic agents may be combined with interleukins, interferon, cytokines, and adjuvants such as cholera toxin, alum, Freund's adjuvant, etc.
- Prophylactic agents include antigens of such bacterial organisms as Streptococccus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyrogenes, Corynebacterium diphtheriae, Listeria monocytogenes, Bacillus anthracis, Clostridium tetani, Clostridium botulinum, Clostridium perfringens, Neisseria meningitidis, Neisseria gonorrhoeae, Streptococcus mutans, Pseudomonas aeruginosa, Salmonella typhi, Haemophilus parainfluenzae, Bordetella pertussis, Francisella tularensis, Yersinia pestis, Vibrio cholerae, Legionella pneumophila, Mycobacterium tuberculosis, Mycobacterium leprae, Treponema pallidum, Lepto
- antigens may be in the form of whole killed organisms, peptides, proteins, glycoproteins, carbohydrates, or combinations thereof. While practically any bioactive agent, small molecule, or drug may benefit from the teachings herein, certain pharmaceutical compositions will find particular utility in the inventive compositions. Proteins such as insulin that are not generally stable in the gastrointestinal system may be encapsulated using the techniques of the invention. For example, diabetics could swallow a capsule containing microparticles or nanoparticles having encapsulated insulin. The particles would adhere to the mucosa and pass through the mucosal layer into the blood stream, where they would gradually release insulin. Peptides and small molecules may be delivered in the same manner. Other biomolecules involved in metabolic disorders may also be delivered using the techniques of the invention.
- phenylalanine hydroxylase and/or tyrosine may be administered to phenylketonurics.
- Nutritional and enzymatic supplements may be provided to patients with maple syrup urine disease.
- the techniques of the invention may be exploited to provided enzyme replacement therapy to treat a host of metabolic diseases including but not limited to Gaucher disease, Fabry disease, Niemann-Pick disease, cystic fibrosis, mucopolysaccharidosis, Tay- Sachs disease, Hurler syndrome, many forms of muscular dystrophy, including Pompe disease, and lysosomal storage disorders (see, for example, Sly, "Enzyme replacement therapy for lysosomal storage disorders: successful transition from concept to clinical practice," Mo Med. 2004 Mar-Apr;101(2):100-4; Desnick, et al, "Enzyme replacement and enhancement therapies: lessons from lysosomal disorders," Nat Rev Genet. 2003 Feb;4(2):157).
- the compositions of the invention can reduce the frequency with which patients have to take the drug. For example, a patient could take a pill once a week or once a month instead of daily.
- controlled release particles produced using the invention may be used to deliver contraceptive drugs to patients. Instead of taking a pill every day, the formulations of the invention may be used to provide a weekly or monthly dose regimen.
- Estrogen replacement therapy may be administered in the same manner.
- female reproductive hormones for example, estrogen and progesterone, may be formulated as particles using the techniques of the invention.
- the agent to be delivered may be a mixture of agents.
- an antibiotic may be combined with an inhibitor of the enzyme commonly produced by bacteria to inactivate the antibiotic (e.g., penicillin and clavulanic acid).
- different active agents may be compounded into particles, and then mixtures of different particles may be combined with a delivery vehicle in specific ratios using the techniques described below to provide different combinations of active agents to patients.
- cyclic contraceptives work by providing a different ratio of reproductive hormones to patients over the course of three weeks, simulating the manner in which the ratio of estrogen and other hormones vary over the course of a menstrual cycle. Rather than preparing particles with different ratios of estrogen and progesterone, different ratios of particles encapsulating estrogen and progesterone may be compounded into single dosage units.
- the techniques of the invention provide improved bioavailability to the compounds delivered thereby. Less of the compound will be lost in the digestive tract than if it were delivered without the protection of the encapsulating material and the PEG tag.
- the mucoadhesive facilitates increased transfer of the active agent across the intestinal mucosa.
- between 0.25 and 25%, for example, between 10 and 15%, of the active agent delivered in a dosage unit can be made available to the patient through release in the bloodstream.
- the bioavailability of the active agent may be determined using standard pharmacokinetic techniques known to those skilled in the art. For example, the concentration of the active agent in the bloodstream or of the agent or its derivatives in urine may be measured periodically and used to calculate AUC (area under the curve).
- Coatings may be immobilized on the particles using a variety of chemical interactions.
- positively charged coatings such as chitosan will form electrostatic bonds with negatively charged PLA or PLGA. This interaction prevents the coating from being stripped off the particle as it passes into the bloodstream.
- negatively charged coatings may be employed with positively charged cores.
- the electrostatic interaction allows for easy fabrication of the particles and facilitates release of the active agent.
- Layer-by-layer deposition techniques may be used to coat the particles. For example, particles may be suspended in a solution containing the coating material, which then simply adsorbs onto the surface of the particles.
- the coating is not a thick or tight layer but rather allows the active agent to diffuse from the polymer core into the bloodstream.
- the coating allows enzymes to diffuse from the blood into the particle. Even though the coating can remain intact as the active agent is released, it is itself susceptible to decomposition, and the particle can be fully metabolized.
- other non-covalent interactions may also be used to immobilize a coating. Exemplary non-covalent interactions include but are not limited to the following:
- biotin may be attached to the surface of the controlled release polymer core and streptavidin may be attached to the coating material; or conversely, biotin may be attached to the coating material and the streptavidin may be attached to the surface of the controlled release polymer core.
- the biotin group and streptavidin are typically attached to the controlled release polymer system or to the coating via a linker, such as an alkylene linker or a polyether linker. Biotin and streptavidin bind via affinity interactions, thereby retaining the coating on the controlled release polymer core.
- a polyhistidine may be attached to the coating material, and a nitrilotriacetic acid can be attached to the surface of the controlled release polymer core.
- a metal such as Ni +2 , will chelate the polyhistidine and the nitrilotriacetic acid, thereby binding the coating to the controlled release polymer core.
- a hydrophobic tail such as polymethacrylate or an alkyl group having at least about 10 carbons
- the hydrophobic tail will adsorb onto the surface of a hydrophobic controlled release polymer, such as a polyorthoester, polysebacic anhydride, unmodified poly(lactic acid),or polycaprolactone, thereby binding the coating to the controlled release polymer core.
- a hydrophobic controlled release polymer such as a polyorthoester, polysebacic anhydride, unmodified poly(lactic acid),or polycaprolactone
- a macrocyclic host such as cucurbituril or cyclodextrin
- a guest group such as an alkyl group, a polyethylene glycol, or a diaminoalkyl group
- the host group may be attached to the coating material and the guest group may be included in the controlled release polymer core.
- the host and/or the guest molecule may be attached to the coating material or the controlled release polymer system via a linker, such as an alkylene linker or a polyether linker.
- an oligonucleotide having a particular sequence may be attached to the surface of the controlled release polymer core, and an essentially complementary sequence may be attached to the coating material.
- the coating material will then bind to the controlled release polymer core via complementary base pairing with the oligonucleotide attached to the controlled release polymer system.
- Two oligonucleotides are essentially complimentary if about 80% of the nucleic acid bases on one oligonucleotide form hydrogen bonds via an oligonucleotide base pairing system, such as Watson-Crick base pairing, reverse Watson-Crick base pairing, Hoogsten base pairing, etc., with a base on the second oligonucleotide.
- an oligonucleotide sequence attached to the controlled release polymer system may form at least about 6 complementary base pairs with a complementary oligonucleotide attached to the nucleic acid ligand.
- a poly(cytosine) tag may be attached to the controlled release polymer core and a poly(guanine) tag may be attached to the coating material.
- sugars may be used as a mucoadhesive coating. The hydroxyl groups on sugars such as glucose and galactose will hydrogen bond with polar moieties on polymers such as poly (vinyl alcohol). Sugar dimers or oligomers may be used as well.
- the core and the coating may also be linked via covalent interactions.
- PLGA may be modified with a carboxylate group and employed as a core material. Chitosan or another aminated coating material can be coupled to the core using a coupling reagent such as EDC or DCC.
- PLGA may be modified to have an activated NHS ester which can then be reacted with an amine group on the coating material.
- Either coating or core materials may be modified to include reactive groups such as hydroxyl, amine, carboxyl, maleimide, thiol, NHS ester, azide, or alkyne. Standard coupling reactions may then be used to couple the modified material to a second material having a complementary group (e.g., a carboxyl modified core coupled to an aminated coating material).
- inventive particles may be combined with pharmaceutical acceptable carriers to form a pharmaceutical composition. While the composition may be injectable or administrable as a suppository, it is preferable that the composition be orally administrable, either through ingestion or as an inhalant. To this end, the particles produced using the techniques described herein may be sufficiently small to traverse the intestinal mucosa or the alveolar wall. Enhanced uptake may be achieved for larger particles by the use of mucoadhesive coatings, as described herein. The size of the particle may be optimized for stability and increased uptake. One skilled in the art will recognize that the optimum particle size may vary depending on the nature of the drug being delivered. The studies described below may be used to determine the optimal particle size.
- the term "pharmaceutically acceptable carrier” means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose, and sucrose; starches such as com starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; detergents such as TWEENTM 80; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen- free water; isotonic saline; Ringer's solution; ethyl alcohol; and phosphate buffer solutions, as well as
- compositions of the invention can be administered to a patient by any means known in the art including oral and parenteral routes.
- patient refers to humans as well as non-humans, including, for example, mammals, birds, reptiles, amphibians, and fish.
- the non-humans are mammals (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a primate, or a pig).
- Non-edible compositions may be administered by injection (e.g., intravenous, subcutaneous or intramuscular, intraperitoneal injection), rectally, vaginally, topically (as by powders, creams, ointments, or drops), or by inhalation (as by sprays).
- injection e.g., intravenous, subcutaneous or intramuscular, intraperitoneal injection
- rectally rectally
- vaginally topically
- topically as by powders, creams, ointments, or drops
- inhalation as by sprays.
- Powders and sprays can contain, in addition to the inventive particles of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates, and polyamide powder, or mixtures thereof.
- Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
- compositions for oral administration can be liquid or solid.
- Liquid dosage forms suitable for oral administration of inventive particles include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art such
- the oral compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
- adjuvant refers to any compound which is a nonspecific modulator of the immune response.
- the adjuvant stimulates the immune response. Any adjuvant may be used in accordance with the present invention.
- a large number of adjuvant compounds is known in the art (Allison Dev. Biol. Stand. 92:3-11, 1998; Unkeless et al. Annu. Rev. Immunol. 6 :251 -281 , 1998 ; and Phillips et al. Vaccine 10:151- 158,1992).
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
- the encapsulated or unencapsulated particle is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or (a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, (c) humectants such as glycerol, (d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, (e) solution retarding agents such as paraffin, (f) absorption accelerators such as quaternary ammonium compounds, (g) wetting agents such as, for example,
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art.
- the exact dosage of the inventive particle is chosen by the individual physician in view of the patient to be treated. In general, dosage and administration are adjusted to provide an effective amount of the desired active agent to the patient being treated.
- the "effective amount" of a substance refers to the amount necessary to elicit the desired biological response.
- the effective amount of encapsulated active agent may vary depending on such factors as the desired biological endpoint, the active agent to be delivered, the target tissue, the route of administration, etc.
- the effective amount of inventive particles containing an anti-cancer drug might be the amount that results in a reduction in tumor size by a desired amount over a desired period of time. Additional factors which may be taken into account include the severity of the disease state; age, weight and gender of the patient being treated; diet, time and frequency of administration; drug combinations; reaction sensitivities; and tolerance/response to therapy.
- the particles of the invention are preferably compounded with a carrier in dosage unit form for ease of administration and uniformity of dosage.
- dosage unit form refers to a physically discrete unit of conjugate appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment.
- the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs. The animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- Therapeutic efficacy and toxicity of particle materials and the drugs delivered thereby can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED 50 (the dose is therapeutically effective in 50% of the population) and LD 50 (the dose is lethal to 50% of the population).
- the dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD 5 o/ED 50 .
- Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use. Examples
- Example 1 In vitro and in vivo evaluation of insulin release from nano- or microspheres with or without bioadhesive polymer coats
- Poly(D,L-lactic acid)- ⁇ /oc£-poly(ethylene glycol)-COOH (PLA-PEG 3400 - COOH) was synthesized by ring opening polymerization with minor modifications in anhydrous toluene using stannous octoate as catalyst.
- D,L-Lactide (1.6 g, 11.1 mmol) and COOH-PEG 3400 -OH (290 mg, 0.085 mmol) in anhydrous toluene (10 mL) containing anhydrous Na 2 SO 4 (200 mg) were heated to reflux temperature at 120 0 C, after which the polymerization was initiated by adding tin(II) 2-ethylhexanoate (20 mg, 0.049 mmol).
- 1 H NMR (400 MHz) spectra were recorded on a Bruker instrument (Avance DPX 400).
- Aqueous phase GPC was performed by American Polymer Standards (Mentor, OH) using Ultrahydrogels L and 120A columns in series (Waters Corporation, Milford, MA). Water (1% acetic acid, 0.3 M NaCl) was used as the eluent at a flow rate of 1.0 mL/min. Data were collected using a Knauer differential refractometer and processed using an IBM/PC GPC-PRO 3.13 software package (Viscotek Corporation, Houston, TX).
- Drug encapsulated nanoparticles were prepared using the water-in-oil-in-water (W/O/W) solvent evaporation procedure (double emulsion method) employed elsewhere.
- W/O/W water-in-oil-in-water
- 50 ⁇ l of the 125 I-lableled Insulin solution (1 mg/mL in aqueous 2 wt % trehalose) was emulsified in a 1 mL solution of the polymer (PLA-COOH or PLA-PEG-COOH) (50 mg) in dichloromethane using a probe sonicator (1OW for 15- 20s).
- Chitosan-coated nanoparticles were prepared as follows. The 125 I-Insulin encapsulated nanoparticles (1 mL, ca. 10 mg) were added dropwise to chitosan solution (10 mL, 0.2 wt% in distilled water, pH 5.5) with gentle stirring. After 10 min, the resulting suspension was then centrifuged at 10,000 rpm for 10 min. The remained nanoparticles were washed with aqueous trehalose (2% w/v, 20 mL) and finally suspended in aqueous trehalose (2% w/v, 2 mL).
- Nanoparticles encapsulating 5 I-labeled were prepared by the procedure above, centrifuged, and then the radioactivity in the supernatant was measured by liquid scintillation analyzer (Packard Instrument Company, Downers Grove, IL). The encapsulation efficiency was calculated by the difference between the total amount of radioactivity in the initial solution and the remained amount in the supernatant. lhe nanoparticles before and after chitosan coating were characterized using several standard analytical means.
- Samples (0.1 mL, ca. 1 mg) were diluted with 3 mL of distilled water. Particle sizes were measured at 25 °C.
- Correlation functions were collected at a scattering angle of 90°, and particle sizes were calculated using the MAS option of the company's particle sizing software (version 2.30) under the viscosity and refractive index of pure water at 25 °C. Particle sizes expressed as effective diameters assuming a log-normal distribution.
- Electrophoretic mobilities were measured at 25 °C using BIC PALS zeta potential analysis software, and zeta potentials were calculated using the Smoluchowsky model.
- Surface morphology and size were characterized by high-resolution scanning electron microscopy (JEOL 6320FV). All samples were coated with 75 A Au/Pd prior to analysis.
- Atom composition of the nanoparticles was analyzed using a Kratos AXIS Ultra Imaging X-ray Photoelectron Spectrometer with a monochromatized Al K X-ray source and a 160 mm concentric hemispherical energy analyzer for acquisition of spectra and scanned images, lateral resolution down to 20 ⁇ m. The spot size was 300 by 700 ⁇ m.
- Table 1 summarizes the size, zeta potential, and drug encapsulation efficiency of the nanoparticles.
- 125 Iodine-labeled insulin was encapsulated by PLA-COOH and PLA-PEG-COOH polymer system with efficiency of 65 % and 71%, respectively.
- Both polymer particles showed large negative zeta potentials, indicating the presence of the negatively charged carboxylic acid group on the particle surface.
- a much larger negative charge was developed on the surface of PEGylated particles compared to PLA particles. This may be attributed to the presence of the hydrophilic PEG block interposed between PLA and COOH.
- COOH Upon exposure to aqueous media, COOH is sequestered at the particle surface.
- Chitosan coating was carried out by simply adding the negatively charged particle ' s to chitosan solution at pH 5.5. Highly positive zeta potential values are observed after chitosan coating, suggesting successful coating of the cationic chitosan onto the negatively charged nanoparticles. As expected, there were slight increases in particle sizes after chitosan coating.
- a chitosan layer on the particle surface was further confirmed by X-ray photoelectron spectroscopy (XPS).
- XPS X-ray photoelectron spectroscopy
- Table 2 High resolution XPS C(Is) composition of nanoparticles a
- each nanoparticle (5 mg) encapsulating FITC-labeled insulin (as a model protein) was incubated at 37 °C in simulated digestive fluid (5 mL) with gentle stirring using a magnetic bar. Aliquots (33 ⁇ L) were removed at appropriate time intervals and mixed with 967 ⁇ L of lactate detection kit (0.5 mL lactate dehydrogenase, 2 vials nicotinamide adenine dinucleotide, 12 mL glycine buffer). After incubation at 37 0 C for 15 min, the absorbance of the solution was measured at 340 nm.
- lactate detection kit 0.5 mL lactate dehydrogenase, 2 vials nicotinamide adenine dinucleotide, 12 mL glycine buffer.
- Particle stability was determined by measuring lactate concentration in solution after neutralization using a lactate detection kit. As shown in Table 3, in gastric fluid, 3% and 2% of the PLA in PLA-COOH and PLA-PEG-COOH particles, respectively, degraded. In intestinal fluid, the degradation percentage was ca. 15% and 10%, respectively. As expected, the presence of PEG increased stability as compared to simple PLA, presumably due to the enzyme repelling properties of PEG. The chitosan coating rendered the corresponding nanoparticles more stable than the uncoated equivalents in intestinal fluid (15% versus 9% degradation for PLA-COOH and 10% versus 6% degradation for PLA-PEG-COOH nanoparticles, respectively).
- Caco-2 cell line was purchased from the American Type Culture Collection (Manassas, VA) and grown at 37 0 C, 5% CO 2 in Dulbecco's modified Eagle's medium (DMEM), 90%; fetal bovine serum, 10%; penicillin, 100 units/mL; streptomycin, 100 ⁇ g/mL; apo-transferrin, 10 ⁇ g/mL.
- DMEM Dulbecco's modified Eagle's medium
- Costar transwells (12 well/plate) were obtained from Corning, Inc.
- the Caco-2 cells were seeded at 1.7 x 10 5 cells/mL in 12 well/plate transwells (Costar, pore size of 3 ⁇ m) and grown for 12-24 days.
- Costar transwells had a membrane insert size of 12 mm and a pore size of 3 ⁇ m, with an apical chamber volume of 0.75 mL and a basal chamber volume of 2 mL. Cells generally reached confluence within 10 days.
- Transepithelial resistance measurements were made of monolayers and only cultures with greater than 250 ohms/cm 2 were used for experiments representing a "tight monolayer" with closed gap junctions.
- Enhanced transport by chitosan coating may be attributed to either increased interaction of positively charged chitosan with partially negatively charged epithelial cell layers or chitosan-facilitated paracellular transport.
- chitosan can open tight junctions
- PEGylated polymer particles exhibited much higher (at least 60%) transport than non-PEGylated systems with and without chitosan coating. Therefore, the chitosan-coated PEGylated nanoparticle appears to have the most satisfactory transport profile in this experimental model.
- Male BALA/c mice (10 weeks old, 22-25 g weight) were obtained from Taconic (Germantown, NY) and allowed access to food and water.
- Half of the mice (n — 4) were sacrificed, then samples of blood (0.2 mL) were taken by cardiac puncture.
- the absorption yield of insulin into blood was denoted as % original dose.
- the chitosan-coated particles exhibited approximately 80% increased insulin-absorption at Ih and 40% increased absorption when measured at 6h with respect to their uncoated equivalent. Much less absorption was observed for microparticles than for nanoparticles, but they both still exhibited enhanced insulin uptake after chitosan coating. Chitosan coating of nanoparticles resulted in at least 2 times higher absorption of insulin into the blood than corresponding microparticles.
- the absorption yield of chitosan-coated nanoparticles (14%) indicates an efficiency several times higher than reported literature values of 2- 3%.
- Example 2 In vivo absorption of 125 I-insulin and Humulin R
- NH 2 -PEG 500 o-COOH and HO- PEG 5000 -COOH were purchased from Nektar Therapeutics.
- 125 I-labeled insulin was purchased from Amersham Bioscience (Piscataway, NJ, USA).
- Chemicals purchased from Sigma/ Aldrich Chemical Co include Chitosan (minimum 85% deacetylated), poly(vinylalcohol) (PVA), and D(+)-trehalose tin(II) 2-ethylhexanoate, D,L-lactide, toluene (99.8 %, anhydrous), and lectin from Bandeiraea Simpliciforia BS-I .
- PLA-PEG-COOH was synthesized through ring opening polymerization of DL-lactide in anhydrous toluene using stannous octoate as catalyst.
- DL-Lactide was recrystalized with ethyl acetate p ⁇ or to polymerization (using approximately 250 niL ethyl acetate to recrystallize 50 g DL-lactide).
- DL-lactide (15 mmol) and COOH- PEG 340 Q-OH (0.1 mmol) in anhydrous toluene (10 mL) were heated to 120 ° C under N 2 .
- Tin(II) 2-ethylhexanoate (30 mg) was added to the solution to initiate polymerization.
- a 50 ⁇ l solution of the 125 I-Insulin solution (1-10 ⁇ Ci/mL reconstituted in pH 7.4 PBS) was emulsified in a 1 mL dichloromethane solution of 50 mg corresponding polymer (PLA-COOH, PLA-PEG-COOH) in using a probe sonicator (Sonic & Materials Inc, Danbury, CT, USA) at 1OW for 30s.
- a probe sonicator Sonic & Materials Inc, Danbury, CT, USA
- Organic solvent was either rapidly removed using rotary evaporator or by stirring at room temperature for 2.5h.
- the NPs were isolated by centrifugation at 10000 rpm for 10 min at 10 0 C, washed once with double-distilled water, and used for study immediately. The yield of NPs was between 20 and 30%.
- Drug encapsulated MPs were prepared using the water-in-oil-in-water (W/O/W) solvent evaporation procedure (double emulsion method).
- 50 ⁇ l of the 125 I- Insulin solution (1-10 ⁇ Ci/mL in pH 7.4 PBS) was emulsified in a 1 mL dichloromethane solution of 50 mg corresponding polymer (PLA-COOH, PLA-PEG- COOH) using a probe sonicator at 1OW for 30s.
- Humulin R-encapsulated NPs and MPs are same as that for making 125 I-insulin-encapsulated NPs and MPs (see above) except that 50 ⁇ L of 500 U/mL Humulin R was used instead of 125 I-insulin PBS solution.
- NPs or MPs
- a chitosan solution (20 mL, 0.2 wt% in distilled water, pH 5). After the suspension is allowed to stand for 10 min, the resulting suspension was centrifuged at 10000 rpm for 10 min.
- the NP (or MPs) were washed with 2% trehalose solution, centrifuged, and stored at -20 0 C.
- the chitosan-coated NP and MPs prepared for in vivo glucose reduction were washed with water instead of trehalose solution and used immediately.
- Lectin from Bandeiraea simplicifolia was reconstituted with DI water.
- LMW PLGA-COOH NP (20 mg) was activated with EDC/NHS and then reacted with lectin (0.2 mg) in the presence of excess DIEA (1 mg). The suspension was stirred for 4h at room temperature. The resulting NPs were washed with water, centrifuged twice, and stored in 2 mL water at -15 0 C.
- the loading of 125 I-insulin in NPs and MPs was determined by analyzing the solution of known amount of NPs or MPs (2 mg NPs or MPs dissolved in 1 mL acetonitrile/water with 5 mL added Hionic-Fluro cocktail) using a Liquid Scintillation Analyzer (Packard Instrument Company, Downers grove, IL).
- the loading of Humulin R was determined by measuring the actual amount of Humulin R using a BCA protein assay (Pierce Chemical Co., Rockford, IL).
- the 125 I-labelled insulin was encapsulated into NPs/MPs using carboxylate terminated poly(lactic acid) (PLA-COOH) or poly(lactic acid)-co-poly(ethylene glycol) (PLA-PEG-COOH) by the double emulsion method.
- the surface of the resulting NPs/MPs were negatively charged, which facilitates use of a positively charged mucoadhesive material (e.g., chitosan) coating.
- NPs were typically in a range of 300-400 run, while MPs were in a range of 1-10 ⁇ m. Details for the synthesis of PLA-PEG-COOH and for the preparation and characterization NPs/MPs are given above.
- NP 125 I-Insulin Encapsulated Nanoparticles
- MP Zeta Potential and Microparticles
- PLA-PEG-COOH MP 1-5 ⁇ m -35.70 + 1.07
- Mice blood 200 ⁇ L was collected and decolored 6h after administration and analyzed by liquid scintillation counter (Tri-Carb, Packard).
- PEGylated NPs exhibited a slightly lower systemic absorption with respect to non-PEGylated NPs for both chitosan-coated (4.79% for PLA-COOH NP and 4.41% for PLA-PEG-COOH NP) and uncoated systems (4.02% for PLA-COOH NP and 3.83% for PLA-PEG-COOH NP) ( Figure 4A).
- the detected radioactivity in blood is a combined effect of the released (both active and denatured), encapsulated and decomposed insulins. It is desirable to study the availability of the free, active insulin to evaluate the effectiveness of and to further improve the polymer particles for oral insulin delivery.
- bioavailability was measured by measuring glucose concentrations and by quantifying released insulin in blood. Plasma glucose levels were obtained by using the Ascensia Breeze Blood Glucose Monitoring System (Bayer) following the manufacturer's protocols. Since NPs show higher in-vivo absorption than MPs ( Figure 4B), we only focused on NPs in this study.
- Humulin R consists of zinc-insulin crystals dissolved in a clear fluid. Humulin R has nothing added to change the speed or length of its action. It takes effect rapidly and has a relatively short duration of activity (about 4 hours) as compared with other insulins. Prolonged hypoglycemia obtained from a sustained release system can be attributed to the effectiveness of drug delivery vehicle.
- Humulin R in mouse serum can be differentiated from mouse insulin using an appropriate assay, and thus can be accurately quantified.
- BalB/C mice weighing 23-25 g, were fasted for 12-16 h. The initial glucose level of each mouse was measured.
- Various amounts of Humulin R NPs or MPs in 200 ⁇ L water were administrated orally using gavage needles ' .
- Control mice were administered with 200 ⁇ L water only. The glucose level of each mouse was monitored at scheduled times. In some experiments and at scheduled times, in addition to measuring blood glucose concentration, we collected blood samples (50 ⁇ L) in heparinized tubes.
- PLA-PEG NPs generally are not as efficacious as PLGA-PEG- COOH NPs for reducing blood glucose (Figure 5).
- Glucose bioavailibility after administration of PLGA-PEG-COOH NPs was 1.86 ⁇ 0.86 and 2.53 ⁇ 0.62 in the 50 U/kg and 100 U/kg groups, respectively.
- the bioavailability of glucose delivered using of PLGA-PEG-COOH was 320%-440% higher than after delivery using PLA-PEG-COOH.
- the increased bioavailability of insulin delivered with PLGA may be due to the accelerated drug release rate compared to PLA groups (Carino, et al., Nanosphere based oral insulin delivery. Journal of Controlled Release 2000, 65, 261-269).
- Serum (5 ⁇ L) was transferred to a micro-well and diluted with 20 ⁇ L calibrator 0 of the Mercodia insulin ELISA kit (ALPCO Diagnostics, Inc). Enzyme conjugate (100 ⁇ L) was added to each well. The mixture was incubated at room temperature for Ih on a plate shaker. The reaction medium was aspirated and washed with 5 x 350 ⁇ L Wash Buffer (provided in the kit). The TMB substrate (200 ⁇ L) of the kit was added to the well and incubated for 15 min at room temperature. After adding 50 ⁇ L Stop Solution, the UV absorbance was measured at 450 nm. Insulin concentration was determined based on a standard curve generated from known concentration of insulin standard.
- the AUC of insulin concentration (mU/kg) vs time (hour) of the IP administered insulin was 692.29 ⁇ 272.70 ml) .hr/L. 1 he bioavailability of IP administered insulin was 29.46 ⁇ 11.60 %.
- the bioavailabilities of insulin- PLGA-PEG-COOH NP, chitosan-coated insulin-PLGA-PEG-COOH NP, and insulin- PLGA-PEG-COOH NP-Lectin bioconjugates were 1.22 ⁇ 0.38 %, 1.49 ⁇ 0.53%, and 1.87 ⁇ 0.65%, respectively.
- Chitosan coating and lectin conjugation of PLGA-PEG- COOH NP enhanced the bioavailability by 22% and 53%, respectively.
- the bioavailability of the insulin-PLGA-PEG-COOH NP (1.22 %) obtained by measuring insulin concentration was 54-107% lower than that determined by measuring glucose concentrations (compared to bioavailability of 1.86% and 2.53% in Table 4).
- COOH NP-Lectin Conjugate a Calculated based on trapezoidal treatment of the serum Humulin R concentration (mU/L) vs time (hour) for both IV, IP and oral administration groups.
- the release of Humulin from NPs and MPs was measured by incubating aliquots containing 2-5 mg of Humulin R-containing particles in 1.0 mL of 1 x??? PBS at 37°. Measurements were conducted in triplicate. The supernatant was collected after centrifugation of the particle suspension at 14000 g for 5 min and analyzed with a BCA protein assay. The amount of Humulin R was calculated based on a standard curve generated with Humulin R stock solution (See Figure S4).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Endocrinology (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
A composition for delivering an active agent to a patient. The composition includes a polymer core encapsulating the active agent and a mucoadhesive coating disposed about the core. The polymer may include covalently linked poly(ethylene glycol) chains, and the mucoadhesive coating may be selected to facilitate transfer of the particle through the intestinal mucosa. A molecular weight and cross-link density of the polymer may be selected such that the polymer core will decompose in a predetermined time interval. The fraction of the dose of the drug entering the system at circulation during the predetermined time interval may be between about 0.25% and about 25%. The composition may be formulated as a plurality of nanoparticles or microparticles that are combined with a pharmaceutically acceptable carrier to produce an edible or inhalable drug product.
Description
Coated Controlled Release Polymer Particles as Efficient Oral Delivery
Vehicles for Biopharmaceuticals
This application claims the priority of U.S. Provisional Application No. 60/625,001, filed November 4, 2004, the entire contents of which are incorporated herein by reference.
Field of the Invention
This invention pertains to drug delivery vehicles, and, more particularly, to controlled release particles coated with a mucoadhesive material.
Background of the Invention A vast pharmacopeia is available to treat conditions ranging from the annoyance of dry skin to life-threatening diseases. Many of these remedies can be administered orally, either through ingestion or inhalation, or through the skin as a patch or ointment. Others are susceptible to enzymatic degradation by proteases and other chemicals in the gastrointestinal (GI) tract or exhibit poor permeability through the skin or intestinal epithelial cells (enterocytes). Such drugs must be administered through less convenient methods, for example, by injection.
Unless a pharmaceutical is administered continuously, for example, using an intravenous drip, the serum levels of the drug will not be continuous. Serum levels will spike shortly after administration and then tail off in a non-linear fashion. While there may be an optimal serum concentration, a patient will only experience this optimum concentration briefly, as the concentration of the drug decreases from the initial spike. While the average concentration over time may be correct, the actual serum concentration of the drug will practically always be greater or less than optimal. Another factor that tends to impede a patient's receipt of the proper quantity of a drug is patient compliance. Many patients are unwilling or unable to comply with a physician's instructions describing how often to take a drug. It is inconvenient and
confusing to take several drugs at different times during the day and painful to inject protein drugs such as insulin.
The use of controlled-release formulations to provide a consistent dose of a drug to a patient has been an active area of research for decades and has been fueled by the many recent developments in polymer science and the need to deliver more labile pharmaceutical agents such as nucleic acids, proteins, and peptides. Controlled release polymer systems can be designed to provide a drug level in the optimum range over a longer period of time than other drug delivery methods, thus increasing both the efficacy of the drug and patient compliance. Biodegradable particles have been developed as sustained release vehicles used in the administration of small molecule drugs as well as protein and peptide drugs and nucleic acids (Langer, Science, 249:1527-1533, 1990; Mulligan, Science, 260:926-932, 1993; Eldridge, MoI Immunol, 28:287-294, 1991; the entire teaching of each of the foregoing references is incorporated herein by reference). The drugs are typically encapsulated in a polymer matrix which is biodegradable and biocompatible. As the polymer is degraded or dissolved and/or as the drug diffuses out of the polymer, the drug is released into the body. Typically, polymers used in preparing these particles are polyesters such as poly(glycolide-co-lactide) (PLGA), polyglycolic acid, poly-β-hydroxybutyrate, and polyacrylic acid ester. These particles have the additional advantage of protecting the drug from degradation by the body.
Still, it is desirable to have controlled-release system that can be used for oral administration of substances that are not normally stable in the gastrointestinal tract or that are difficult to transport across the intestinal mucosa into the bloodstream. Oral delivery is expected to result in enhanced patient compliance, resulting in improved clinical outcomes, largely due to ease of drug administration as compared to subcutaneous or intravenous injection. An appropriate delivery system that can 1) encapsulate protein and other labile drugs, 2) protect the drugs while in transit through the gastrointestinal (GI) tract, 3) efficiently transport the drugs across the intestinal mucosa, and 4) efficiently release the drugs in the systemic circulation may result in high bioavailability of protein drugs after oral administration. Even for drugs that are
stable in the GI tract, a delivery system that can transport them across the intestinal mucosa and release them directly into the bloodstream can enhance bioavailability.
Summary of the Invention
In one aspect, the invention is a composition for delivering an active agent to a patient. The composition includes a polymer core encapsulating a predetermined amount of the active agent and a mucoadhesive coating disposed about the core to form a coated particle. The polymer includes covalently linked poly(alkylene glycol) chains. The mucoadhesive coating is retained on the core through one or more of covalent interactions, electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions. A molecular weight and cross-link density of the biodegradable polymer is selected such that the polymer core will decompose over a predetermined time interval. The mucoadhesive coating is selected to facilitate transfer of the particle through the intestinal mucosa. The fraction of the predetermined amount entering the systemic circulation during the predetermined time interval is between about 0.25% and about 25%, for example, between about 5% and about 20% or between about 10% and about 15%.
The composition may further include a targeting agent disposed under the mucoadhesive coating and, optionally, an intermediate layer disposed between the targeting agent and the mucoadhesive coating. The intermediate layer may include a first material while the mucoadhesive coating includes a second material, and the first material and the second material may have opposing electrostatic charges at pH 2, but not at pH 7.4. The intermediate layer may include a biodegradable polymer, and the targeting agent may be disposed at a surface portion of the polymer core, an interior portion of the polymer core, or both. The targeting agent may be one or more of nucleic acid aptamers, growth factors, hormones, cytokines, interleukins, antibodies, integrins, fibronectin receptors, p-glycoprotein receptors, and cell binding sequences, for example, RGD.
The core may include PEGylated poly (lactic acid). The coating may be a block co-polymer having a mucoadhesive block and a block that is adapted to
participate in an interaction selected from electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions. The active agent may be a biomolecule, bioactive agent, small molecule, drug, protein, vaccine, or polynucleotide. The poly(alkylene glycol) may be carboxylated and may be selected from poly(ethylene glycol) and poly(propylene glycol). The poly(alkylene glycol) may have a molecular weight between about 100 and about 7000 Daltons, for example, between about 100 and about 1000 Daltons, between about 1000 Daltons and 3500 Daltons, between 3500 Daltons and about 7000 Daltons, or more. The coating may include one or more of chitosan, poly(lysine), poly(ethylene imine), lecithin, lectin, polycarboxylic acids, poly(acrylic acids), polysaccharides, hydrogels, monosaccharides, oligosaccharides, oligopeptides, polypeptides, and copolymers of these.
In another aspect, the invention is a composition for administering an active agent to a patient. The composition includes a plurality of particles, each particle including a polymer core encapsulating the active agent and a mucoadhesive coating disposed about the core to form a coated particle, and a pharmaceutically acceptable carrier combined with the plurality of particles. The pharmaceutically acceptable carrier is edible or inhalable. In another aspect, the invention is a method for administering an active agent to a patient. The method includes orally administering to the patient a composition comprising a plurality of particles. Each particle includes a polymer core encapsulating the active agent and a mucoadhesive coating disposed about the core to form a coated particle. The composition further includes a pharmaceutically acceptable edible carrier.
Definitions
"Bioavailability": The term "bioavailability", as used herein, refers to the rate at which and extent to which an active agent is absorbed or is otherwise available to a treatment site in the body. For active agents that are encapsulated in a biodegradable polymer or pharmaceutically acceptable carrier, or both, bioavailability also depends
on the extent to which the active agent is released from the polymer and/or carrier into the bloodstream.
"Biomolecules": The term "biomolecules", as used herein, refers to molecules (e.g., proteins, amino acids, peptides, polynucleotides, nucleotides, carbohydrates, sugars, lipids, nucleoproteins, glycoproteins, lipoproteins, steroids, etc.) whether naturally-occurring or artificially created (e.g., by synthetic or recombinant methods) that are commonly found in cells and tissues. Specific classes of biomolecules include, but are not limited to, enzymes, receptors, neurotransmitters, hormones, cytokines, cell response modifiers such as growth factors and chemotactic factors, antibodies, vaccines, haptens, toxins, interferons, ribozymes, anti-sense agents, plasmids, DNA, and RNA.
"Biocompatible": The term "biocompatible", as used herein is intended to describe compounds that are not toxic to cells. Compounds are "biocompatible" if their addition to cells in vitro results in less than or equal to 20 % cell death, and their administration in vivo does not induce significant inflammation or other such significant adverse effects.
"Biodegradable": As used herein, "biodegradable" polymers are polymers that degrade fully (i.e., down to monomeric species) under physiological or endosomal conditions. In preferred embodiments, the polymers and polymer biodegradation byproducts are biocompatible. Biodegradable polymers are not necessarily hydrolytically degradable and may require enzymatic action to fully degrade.
"Decomposition": As used herein, "decomposition" is the process by which a material is broken down under physiological conditions into components that may be metabolized by the body. For example, biodegradable polymers are degraded to monomeric species. Non-biodegradable polymers may be dissolved and removed from the bloodstream by the kidneys. Alternatively, the material or its components may be metabolized by the liver.
"Endosomal conditions": The phrase "endosomal conditions", as used herein, relates to the range of chemical (e.g., pH, ionic strength) and biochemical (e.g.,
enzyme concentrations) conditions likely to be encountered within endosomal vesicles. For most endosomal vesicles, the endosomal pH ranges from about 5.0 to 6.5.
"Physiological conditions": The phrase "physiological conditions", as used herein, relates to the range of chemical (e.g., pH, ionic strength) and biochemical (e.g., enzyme concentrations) conditions likely to be encountered in the intracellular and extracellular fluids of tissues. For most tissues, the physiological pH ranges from about 7.0 to 7.4.
"Polynucleotide", "nucleic acid", or "oligonucleotide": The terms "polynucleotide", "nucleic acid", or "oligonucleotide" refer to a polymer of nucleotides. The terms "polynucleotide", "nucleic acid", and "oligonucleotide", may be used interchangeably. Typically, a polynucleotide comprises at least two nucleotides. DNAs and RNAs are polynucleotides. The polymer may include natural nucleosides (i.e., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine), nucleoside analogs (e.g., 2- aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, C5-propynylcytidine, C5-propynyluridine, C5 bromouridine, C5 fluorouridine, C5 iodouridine, C5 methylcytidine, 7 deazaadenosine, 7 deazaguanosine, 8 oxoadenosine, 8 oxoguanosine, 0(6) methylguanine, and 2-thiocytidine), chemically modified bases, biologically modified bases (e.g., methylated bases), intercalated bases, modified sugars (e.g., 2'-fluororibose, ribose, 2'-deoxyribose, arabinose, and hexose), or modified phosphate groups (e.g., phosphorothioates and 5'-N phosphoramidite linkages). Enantiomers of natural or modified nucleosides may also be used. Nucleic acids also include nucleic acid-based therapeutic agents, for example, nucleic acid ligands, siRNA, short hairpin RNA, antisense oligonucleotides, ribozymes, aptamers, and SPIEGELMERS™, oligonucleotide ligands described in Wlotzka, et al., Proc. Nat'l. Acad. Sci. USA, 2002, 99(13):8898, the entire contents of which are incorporated herein by reference.
"Polypeptide", "peptide", or "protein": According to the present invention, a "polypeptide", "peptide", or "protein" comprises a string of at least three amino
acids linked together by peptide bonds. The terms "polypeptide", "peptide", and "protein", may be used interchangeably. Peptide may refer to an individual peptide or a collection of peptides. Inventive peptides preferably contain only natural amino acids, although non natural amino acids (i.e., compounds that do not occur in nature but that can be incorporated into a polypeptide chain) and/or amino acid analogs as are known in the art may alternatively be employed. Also, one or more of the amino acids in a peptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. In one embodiment, the modifications of the peptide lead to a more stable peptide (e.g., greater half-life in vivo). These modifications may include cyclization of the peptide, the incorporation of D-amino acids, etc. None of the modifications should substantially interfere with the desired biological activity of the peptide. "Polysaccharide", "carbohydrate" or "oligosaccharide": The terms
"polysaccharide", "carbohydrate", or "oligosaccharide" refer to a polymer of sugars. The terms "polysaccharide", "carbohydrate", and "oligosaccharide", may be used interchangeably. Typically, a polysaccharide comprises at least two sugars. The polymer may include natural sugars (e.g., glucose, fructose, galactose, mannose, arabinose, ribose, and xylose) and/or modified sugars (e.g., 2'-fluororibose, T- deoxyribose, and hexose).
"Mucoadhesive": As used herein, the term "mucoadhesive" is used to indicate that a moiety has an affinity for a component of the intestinal wall. The affinity may be specific, for example, a specific affinity for a protein or sugar found in the membrane of a cell, for example, an M cell or intestinal epithelial cell, or nonspecific, for example, a tendency to non-covalently bind to the mucosa.
"Small molecule": As used herein, the term "small molecule" is used to refer to molecules, whether naturally-occurring or artificially created (e.g., via chemical synthesis) that have a relatively low molecular weight. In some embodiments, small molecules are monomeric and have a molecular weight of less than about 1500 g/mol.
Preferred small molecules are biologically active in that they produce a local or systemic effect in animals, preferably mammals, more preferably humans. Small molecules include, but are not limited to, radionuclides and imaging agents. In certain embodiments, the small molecule is a drug. Preferably, though not necessarily, the drug is one that has already been deemed safe and effective for use by the appropriate governmental agency or body. For example, drugs for human use listed by the FDA under 21 C.F.R. §§ 330.5, 331 through 361, and 440 through 460; drugs for veterinary use listed by the FDA under 21 C.F.R. §§ 500 through 589, incorporated herein by reference, are all considered acceptable for use in accordance with the present invention. Known naturally-occurring small molecules include, but are not limited to, penicillin, erythromycin, taxol, cyclosporin, and rapamycin. Known synthetic small molecules include, but are not limited to, ampicillin, methicillin, sulfamethoxazole, and sulfonamides.
"Bioactive agents": As used herein, "bioactive agents" is used to refer to compounds or entities that alter, inhibit, activate, or otherwise affect biological or chemical events. For example, bioactive agents may include, but are not limited to, anti-AIDS substances, anti-cancer substances, antibiotics, immunosuppressants, anti-viral substances, enzyme inhibitors, including but not limited to protease and reverse transcriptase inhibitors, fusion inhibitors, neurotoxins, opioids, hypnotics, anti-histamines, lubricants, tranquilizers, anti-convulsants, muscle relaxants and anti-Parkinson substances, anti-spasmodics and muscle contractants including channel blockers, miotics and anti-cholinergics, anti-glaucoma compounds, anti-parasite and/or anti-protozoal compounds, modulators of cell-extracellular matrix interactions including cell growth inhibitors and anti-adhesion molecules, vasodilating agents, inhibitors of DNA, RNA or protein synthesis, anti-hypertensives, analgesics, anti-pyretics, steroidal and non-steroidal anti-inflammatory agents, anti-angiogenic factors, anti-secretory factors, anticoagulants and/or antithrombotic agents, local anesthetics, ophthalmics, prostaglandins, anti-depressants, anti-psychotic substances, anti-emetics, and imaging agents. In a certain embodiments, the bioactive agent is a drug.
A more complete listing of bioactive agents and specific drugs suitable for use in the present invention may be found in "Pharmaceutical Substances: Syntheses, Patents, Applications" by Axel Kleemann and Jurgen Engel, Thieme Medical Publishing, 1999; the "Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals", Edited by Susan Budavari et al, CRC Press, 1996, and the United States Pharmacopeia-25/National Formulary-20, published by the United States Pharmcopeial Convention, Inc., Rockville MD, 2001, all of which are incorporated herein by reference.
As used herein, the term "pharmaceutically active agent" refers collectively to biomolecules, small molecules, and bioactive agents.
Brief Description of the Drawing
The invention is described with reference to the several figures of the drawing, in which,
Figure 1 is a schematic diagram of a particle according to an embodiment of the invention.
Figures 2A&B are graphs showing the transport yields of nanoparticles (A) and micorparticles (B) across monolayers of Caco-2 cells with and without a mucoadhesive coating.
Figures 3A&B are graphs showing the absorption yields of nanoparticles (A) and micorparticles (B) into mice.
Figure 4A is a graph showing the whole blood absorption of 125I-insulin delivered to balb/C mice by PEGylated and non-PEGylated PLA nanoparticles.
Fibure 4B is a graph comparing the whole blood absorption of 125I-insulin delivered to balb/C mice by PEGylated PLA nanoparticles and microparticles Figure 5 is a graph illustrating the decrease in plasma glucose over time after administration of insulin encapsulated in PLA-PEG-COOH and PLGA-PEG-COOH nanoparticles.
Figure 6 is a graph illustrating the reduction in plasma glucose after intravenous administration of Humulin R (0.5U/kg)
Figure 7 is a graph illustrating the linear relationship between absorbance and plasma insulin concentration
Figure 8 is a graph illustrating the serum insulin concentration with respect to time after intravenous and intraperitoneal administration of Humulin-R Figure 9 is a graph illustrating the serum insulin concentration with respect to time after administration of encapsulated Humulin with various surface coatings.
Detailed Description of Certain Preferred Embodiments
A delivery device for biopharmaceuticals and other substances that are not easily transported from the gastrointestinal tract to the circulatory system or that are not stable in the gastrointestinal tract includes a polymer encapsulating an active agent and a mucoadhesive surface.
In one embodiment, the device is a plurality of microparticles or nanoparticles 10 having a core 12 in which a pharmaceutical is encapsulated by a controlled-release polymer and a mucoadhesive coating 14 disposed about the core (Figure 1). The controlled-release polymer may be biodegradable, and the coating may be biodegradable as well. The coating is affixed to the core by covalent or non-covalent interactions. The coating may remain in place as the core material decomposes. Such particles may be ingested by a patient. The particles may be nanoparticles, having a size between about 10 and about 1000 nm, for example, between about 10 and aboutlOO nm, between 100 and about 500 nm, or between about 500 and about 1000 nm. Alternatively, the particles may be microparticles having a size between about 1 and about 100 micrometers, for example, between about 1 and about 10 micrometers, between about 10 and about 50 micrometers, or between about 50 and about 100 micrometers. The particles adhere to the intestinal lining and gradually pass through the lining into the circulatory system, where they gradually release the active agent at a rate determined by the decomposition rate of the core. Alternatively, the core material may also include a mucoadhesive, obviating a coating.
Encapsulation Materials
Materials for use in encapsulating pharmaceuticals for use with the invention may be biodegradable. A variety of biodegradable polymers are well known to those skilled in the art. Exemplary synthetic polymers suitable for use with the invention include but are not limited to poly(arylates), poly(anhydrides), poly(hydroxy acids), polyesters, poly(ortho esters), polycarbonates, poly(propylene fumerates), poly(caprolactones), polyamides, polyphosphazenes, polyamino acids, polyethers, polyacetals, polylactides, polyhydroxyalkanoates, polyglycolides, polyketals, polyesteramides, poly(dioxanones), polyhydroxybutyrates, polyhydroxyvalyrates, polycarbonates, polyorthocarbonates, poly(vinyl pyrrolidone), biodegradable polycyanoacrylates, polyalkylene oxalates, polyalkylene succinates, poly(malic acid), poly(methyl vinyl ether), poly(ethylene imine), poly(acrylic acid), poly(maleic anhydride), biodegradable polyurethanes and polysaccharides. U.S. Patents that describe the use of polyanhydrides for controlled delivery of substances include U.S. Pat. No. 4,857,311 to Domb and Langer, U.S. Pat. No. 4,888,176 to Langer, et al., and U.S. Pat. No. 4,789,724 to Domb and Langer.
Naturally-occurring polymers, such as polysaccharides and proteins, may also be employed. Exemplary polysaccharides include alginate, starches, dextrans, celluloses, chitin, chitosan, hyaluronic acid and its derivatives; exemplary proteins include collagen, albumin, and gelatin. Polysaccharides such as starches, dextrans, and celluloses may be unmodified or may be modified physically or chemically to affect one or more of their properties such as their characteristics in the hydrated state, their solubility, or their half-life in vivo.
In other embodiments, the polymer includes polyhydroxy acids such as polylactic acid (PLA), polyglycolic acid (PGA), their copolymers poly(lactic-co- glycolic acid) (PLGA), and mixtures of any of these. These polymers are among the synthetic polymers approved for human clinical use as surgical suture materials and in controlled release devices. They are degraded by hydrolysis to products that can be metabolized and excreted. Furthermore, copolymerization of PLA and PGA offers the advantage of a large spectrum of degradation rates from a few days to several years
by simply varying the copolymer ratio of glycolic acid to lactic acid, which is more hydrophobic and less crystalline than PGA and degrades at a slower rate.
Non-biodegradable polymers may also be employed for use with the invention. Exemplary non-biodegradable, yet biocompatible polymers include polystyrene, polyesters, non-biodegradable polyurethanes, polyureas, poly( vinyl alcohol), polyamides, poly(tetrafluoroethylene), poly(ethylene vinyl acetate), polypropylene, polyacrylate, non-biodegradable polycyanoacrylates, nonbiodegradable polyurethanes, polymethacrylate, poly(methyl methacrylate), polyethylene, polypyrrole, polyanilmes, polythiophene, and poly(ethylene oxide), Any of the above polymers may be functionalized with a poly(alkylene glycol), for example, poly(ethylene glycol) (PEG) or poly (propyleneglycol) (PPG), or may have a particular terminal functional group, e.g., poly(lactic acid) modified to have a terminal carboxyl group. Exemplary PEGylated polymers include but are not limited to PEGylated ρoly(lactic acid), PEGylated poly(lactic-co-glycolic acid), PEGylated poly(caρrolactone), PEGylated poly(ortho esters), PEGylated polylysine, and PEGylated poly(ethylene imine). Poly(alkylene glycols) are known to increase the bioavailability of many pharmacologically useful compounds, partly by increasing the gastrointestinal stability of derivatized compounds. Poly(alkylene glycols) chains may be as short as about 100 Daltons or have a molecular weight of about 1000, about 3000, about 5000, about 7000 Daltons, or more. The poly(alkylene glycol) chain may also be modified to have a charged endgroup or other group selected to engage in a particular interaction with the coating material. For example, carboxylated PEG will engage in electrostatic interactions with positively charged coating materials such as chitosan. Co-polymers, mixtures, and adducts of any of the above modified and unmodified polymers may also be employed. For example, amphiphilic block copolymers having hydrophobic regions and anionic or otherwise hydrophilic regions may be employed. Block co-polymers having regions that engage in different types of non-covalent or covalent interactions may also be employed. For example, a block co-polymer may have one block that is optimized to interact with an active agent
being encapsulated and another block optimized to interact with the bioadhesive coating (see below). Alternatively or in addition, polymers may be chemically modified to have particular functional groups. For example, polymers may be functionalized with hydroxyl, amine, carboxy, maleimide, thiol, N-hydroxy- succinimide (NHS) esters, or azide groups. These groups may be used to render the polymer hydrophilic or to achieve particular interactions with coating materials as described below.
One skilled in the art will recognize that the molecular weight and the degree of cross-linking may be adjusted to control the decomposition rate of the polymer and thus the release rate of the pharmaceutical. Methods of controlling molecular weight and cross-linking to adjust release rates are well known to those skilled in the art.
A variety of methods of making particles in which active agents are encapsulated are well known to those skilled in the art. For example, a double emulsion technique may be used to combine a polymer and active agent in particles. Alternatively, particles may be prepared by spray-drying.
Coating materials
Positively charged biocompatible materials such as chitosan, poly(L-lysine), and poly(ethylene imines) are suitable for coating particles for use with the invention. Lectins may also be used to coat particles. Lectins may particularly target M cells in Peyer's patches in the intestine, enhancing the affinity of the particles for the intestinal wall. Lectins are produced by a wide variety of plants; one skilled in the art will recognize that not all lectins are appropriate for use in pharmaceutical compositions. A wide variety of lectins are available from Sigma- Aldrich, which also provides information on the toxicity and mutagenicity of commercially available lectins. One skilled in the art will recognize that lectins that are found in commonly eaten foods are more likely to be suitable for use with embodiments of the invention. Negatively charged materials may also be employed. Exemplary bioadhesive materials also include, without limitation, lecithin, polycarboxylic acids, poly(acrylic acids), polysaccharides, monosaccharides, oligosaccharides, oligopeptides, polypeptides, and co-polymers of two or more mucoadhesive materials. Alternatively
or in addition, mucoadhesive or non-mucoadhesive polymers may be modified with mucoadhesive materials. For example, sugars may be covalently linked to poly aery lates. Polymers having regions adapted to bind the coating to the core material and regions adapted to be mucoadhesive may also be employed. For example, a block co-polymer of a polycation and a hydrogen bond donor can be used to coat a core containing a polymer that acts as a hydrogen bond receptor. Additional bioadhesive molecules that may be used with the invention include but are not limited to hydrophilic and amphiphilic polymers, hydrogels, and the polymers disclosed in U.S. Patents Nos. 6,217,908, 6,297,337; 6,514,535; and 6,284,235 the contents of which are incorporated herein by reference. Bioadhesive molecules may be PEGylated or otherwise modified as described above.
One skilled in the art will recognize that excessive cross-linking of the coating material may hinder release of the active agent from the core of the particle. The skilled artisan will also recognize that the effect of cross-linking may be easily tested by measuring the release of an active agent or a labeled analog from particles coated with materials having different degrees of cross-linking.
In another embodiment, the particles are provided with a double coating. For example, the particles may include a targeting agent that helps direct the particles to a specific tissue once they enter the blood stream. Exemplary targeting agents include nucleic acid aptamers, growth factors, hormones, cytokines, interleukins, antibodies, integrins, fibronectin receptors, p-glycoprotein receptors, and cell binding sequences such as RGD. Nucleic acid aptamers selective for a particular target may be known from the literature or may be identified using any method known to those skilled in the art, for example, the methods disclosed in U.S. Patents Nos. 5,270,163, 5,475,096, and 6,114,120, the contents of which are incorporated herein by reference. Aptamers for certain tissues may also be obtained commercially, for example, from Archemix Corp. These targeting agents may be attached to the surface of the particle or may be attached to the polymer itself before the particles are formed. The particles are then coated with a negatively charged material, e.g., a negatively charged polymer. Exemplary polymers include carboxymethylcellulose, polyacrylic acid,
polymethacrylic acid, polystyrenesulfonate, and polymers including carboxylate, sulfonate, sulfate, phosphate, or nitrate groups. A positively charged mucoadhesive material is then coated over the negatively charged material.
After the particle crosses the intestinal wall into the bloodstream, the environmental pH increases from about 2-3 to about 7.4. Depending on the pKa of the negative coating, it may become neutrally charged, reducing its affinity for the positively charged mucoadhesive coating. As a result, the mucoadhesive coating becomes dislodged from the particle. The negatively charged coating may also be biodegradable, for example, through hydrolysis or enzymatic mechanisms. In this embodiment, whether the pKa of the negatively charged coating is such that it will become neutrally charged after entering the bloodstream, the degradation of the coating will dislodge the outer mucoadhesive coating from the particle. In any of these embodiments, the two coatings protect both the agent being delivered and the targeting agent from degradation in the digestive system while allowing the targeting agent to be exposed at the surface of the particles after they enter the bloodstream.
Pharmaceutical compositions
The active agents to be incorporated in the controlled release polymer system of the present invention may be therapeutic, diagnostic, prophylactic or prognostic agents. Any chemical compound to be administered to an individual may be delivered using the conjugates of the invention. The active agent may be a small molecule, organometallic compound, nucleic acid, protein, peptide, metal, an isotopically labeled chemical compound, drug, vaccine, immunological agent, etc. Exemplary active agents include small molecules, biomolecules, and bioactive agents as defined herein. In one embodiment, the agents are organic compounds with pharmaceutical activity. In another embodiment of the invention, the agent is a small molecule that is a clinically used drug. In exemplary embodiments, the drug is an antibiotic, anti-viral agent, anesthetic, steroidal agent, anti-inflammatory agent, anti-neoplastic agent, antigen, vaccine, antibody, decongestant, antihypertensive, sedative, birth control agent, progestational agent, anti-cholinergic, analgesic, anti-depressant, anti-
psychotic, adrenergic blocking agent, diuretic, cardiovascular active agent, vasoactive agent, non-steroidal anti-inflammatory agent, nutritional agent, etc. While many small molecule drugs are already available for oral administration, some are not sufficiently soluble to be orally administered and may benefit from the techniques described herein.
In another embodiment, the agent is a protein drug, such as an antibody, an antibody fragment, a recombinant antibody, a recombinant protein, a purified protein, a peptide, an amino acid and combinations thereof. Exemplary protein drugs include but are not limited to biologically active macromolecules such as enzyme inhibitors, colony-stimulating factors, plasminogen activators, polypeptide hormones, insulin, myelin basic protein, collagen S antigen, calcitonin, angiotensin, vasopressin, desmopressin, LH-RH (luteinizing hormone-releasing hormone), somatostatin, glucagon, somatomedin, oxytocin, gastrin, secretin, h-ANP (human atrial natriuretic polypeptide), ACTH (adrenocorticotropic hormone), MSH (melanocyte stimulating hormone), beta-endorphin, muramyl dipeptide, enkephalin, neurotensin, bombesin, VIP (vasoactive intestinal peptide), CCK-8 (cholecystokinin), PTH (parathyroid hormone), CGRP (calcitonin gene related peptide), endothelin, TRH (thyroid releasing hormone), interferons, cytokines, streptokinase, urokinase, and growth factors. Exemplary growth factors include but are not limited to activin A (ACT), retinoic acid (RA), epidermal growth factor, bone morphogenetic protein, platelet derived growth factor, hepatocyte growth factor, insulin-like growth factors (IGF) I and II, hematopoietic growth factors, peptide growth factors, erythropoietin, angiogenic factors, anti-angiogenic factors, interleukins, tumor necrosis factors, interferons, colony stimulating factors, t-PA (tissue plasminogen activator), G-CSF (granulocyte colony stimulating factor), heparin binding growth factor (HBGF), alpha or beta transforming growth factor (α- or β-TGF), fibroblastic growth factors, epidermal growth factor (EGF), vascular endothelium growth factor (VEGF), nerve growth factor (NGF) and muscle morphogenic factor (MMP). Also suitable for use with the invention are recombinantly-produced derivatives of therapeutically useful
proteins, including deletion, insertion and substitution variants, which on the whole have similar or comparable pharmacological properties.
Gene therapy technology may also benefit from the techniques of the invention. Genetic material is typically not stable in the GI tract. Polymer encapsulation can protect genetic material and "escort" it through the GI tract and into the bloodstream. In one embodiment, the active agent delivered using the techniques of the invention is a nucleic acid based drug, such as DNA, RNA, modified DNA, modified RNA, antisense oligonucleotides, expression plasmid systems, nucleotides, modified nucleotides, nucleosides, modified nucleosides, nucleic acid ligands (e.g. aptamers), intact genes, a promoter complementary region, a repressor complementary region, an enhancer complementary region, and combinations thereof. A promoter complementary region, a repressor complementary region, or an enhancer complementary region can be fully complementary or partially complementary to the DNA promoter region, repressor region, an enhancer region of a gene for which it is desirable to modulate expression. For example, it may be at least 50% complementary, at least 60% complementary, at least 70% complementary, at least 80% complementary, at least 90% complementary, or at least 95% complementary.
Genetic material is acidic and will form electrostatic bonds with cationic polymers. If it is desirable to avoid strong ionic interactions, nucleic acid based drugs can be encapsulated with anionic polymers or other hydrophilic polymers that do not have cationic groups. For example, polymers modified with short poly(cytosine) tags may be used to encapsulate genetic material. Other examples include but are not limited to polysebacic anhydride (PSA) and poly(lactic acid). These polymers may be modified to carry a more negative charge, for example, a terminal carboxylic acid group can be added to poly(lactic acid).
In another embodiment, the controlled release polymer systems may deliver a diagnostic or prognostic agent used for long term diagnosis of a patient's health. For example, kidney function is determined by delivering an agent, such as creatinine, to the bloodstream that is cleared solely by the glomerulus and then measuring the concentration of the agent in the blood or urine over time. The controlled release
particles of the invention can be used to provide a steady state concentration of the clearance agent in the bloodstream for an extended period of time, and periodic assays of the concentration of the agent in the patient's urine can be used to determine the rate of clearance of the agent by the kidneys. Alternative clearance agents, for example, agents that are cleared from the body through other mechanisms, e.g, by the liver or through other metabolic processes, may also be encapsulated and delivered using the controlled release polymer systems described herein.
Prophylactic agents that can be delivered to a patient by exploiting the invention include, but are not limited to, antibiotics and nutritional supplements. For example, the techniques of the invention may be used to deliver nutrients to patients experiencing a deficiency or who are unable to produce or store such substances themselves. For example, vitamin D may be delivered to patients who are unable to synthesize it.
Vaccines and antigens are additional prophylactic agents that may be administered to a patient using the techniques of the invention. Some vaccines require extended exposure to the immune system to stimulate the desired immune response. Micro- or nanoparticles containing a vaccine or antigen may be suspended in a fluid or charged into a capsule and ingested, allowing patients to receive their vaccine orally instead of as an injection. A single administration of a dose of particles produced according to the invention may substitute for multiple injections or reduce the number of administrations. Of course, fast-decomposing particles may be fabricated to encapsulate vaccines that do not require extended exposure. Formulation of the vaccine as a capsule, pill, or ingestible liquid may also improve the shelf life of the vaccine, easing delivery of vaccines to rural or impoverished areas. Vaccines may comprise isolated proteins or peptides, inactivated organisms and viruses, dead organisms and viruses, genetically altered organisms or viruses, and cell extracts. Prophylactic agents may be combined with interleukins, interferon, cytokines, and adjuvants such as cholera toxin, alum, Freund's adjuvant, etc. Prophylactic agents include antigens of such bacterial organisms as Streptococccus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, Streptococcus
pyrogenes, Corynebacterium diphtheriae, Listeria monocytogenes, Bacillus anthracis, Clostridium tetani, Clostridium botulinum, Clostridium perfringens, Neisseria meningitidis, Neisseria gonorrhoeae, Streptococcus mutans, Pseudomonas aeruginosa, Salmonella typhi, Haemophilus parainfluenzae, Bordetella pertussis, Francisella tularensis, Yersinia pestis, Vibrio cholerae, Legionella pneumophila, Mycobacterium tuberculosis, Mycobacterium leprae, Treponema pallidum, Leptospirosis interrogans, Borrelia burgdorferi, Camphylobacter jejuni, and the like; antigens of such viruses as smallpox, influenza A and B, respiratory syncytial virus, parainfluenza, measles, HIV, varicella-zoster, herpes simplex 1 and 2, cytomegalovirus, Epstein-Barr virus, rotavirus, rhinovirus, adenovirus, papillomavirus, poliovirus, mumps, rabies, rubella, coxsackieviruses, equine encephalitis, Japanese encephalitis, yellow fever, Rift Valley fever, hepatitis A, B, C, D, and E virus, and the like; antigens of fungal, protozoan, and parasitic organisms such as Cryptococcus neoformans, Histoplasma capsulatum, Candida albicans, Candida tropicalis, Nocardia asteroides, Rickettsia ricketsii, Rickettsia typhi, Mycoplasma pneumoniae, Chlamydial psittaci, Chlamydial trachomatis, Plasmodium falciparum, Trypanosoma brucei, Entamoeba histolytica, Toxoplasma gondii, Trichomonas vaginalis, Schistosoma mansoni, and the like. These antigens may be in the form of whole killed organisms, peptides, proteins, glycoproteins, carbohydrates, or combinations thereof. While practically any bioactive agent, small molecule, or drug may benefit from the teachings herein, certain pharmaceutical compositions will find particular utility in the inventive compositions. Proteins such as insulin that are not generally stable in the gastrointestinal system may be encapsulated using the techniques of the invention. For example, diabetics could swallow a capsule containing microparticles or nanoparticles having encapsulated insulin. The particles would adhere to the mucosa and pass through the mucosal layer into the blood stream, where they would gradually release insulin. Peptides and small molecules may be delivered in the same manner. Other biomolecules involved in metabolic disorders may also be delivered using the techniques of the invention. For example, phenylalanine hydroxylase and/or tyrosine may be administered to phenylketonurics. Nutritional and enzymatic
supplements may be provided to patients with maple syrup urine disease. The techniques of the invention may be exploited to provided enzyme replacement therapy to treat a host of metabolic diseases including but not limited to Gaucher disease, Fabry disease, Niemann-Pick disease, cystic fibrosis, mucopolysaccharidosis, Tay- Sachs disease, Hurler syndrome, many forms of muscular dystrophy, including Pompe disease, and lysosomal storage disorders (see, for example, Sly, "Enzyme replacement therapy for lysosomal storage disorders: successful transition from concept to clinical practice," Mo Med. 2004 Mar-Apr;101(2):100-4; Desnick, et al, "Enzyme replacement and enhancement therapies: lessons from lysosomal disorders," Nat Rev Genet. 2003 Feb;4(2):157).
For patients who take a drug every day, the compositions of the invention can reduce the frequency with which patients have to take the drug. For example, a patient could take a pill once a week or once a month instead of daily. In one embodiment, controlled release particles produced using the invention may be used to deliver contraceptive drugs to patients. Instead of taking a pill every day, the formulations of the invention may be used to provide a weekly or monthly dose regimen. Estrogen replacement therapy may be administered in the same manner. For example, female reproductive hormones, for example, estrogen and progesterone, may be formulated as particles using the techniques of the invention. In one embodiment of the present invention, the agent to be delivered may be a mixture of agents. For example, an antibiotic may be combined with an inhibitor of the enzyme commonly produced by bacteria to inactivate the antibiotic (e.g., penicillin and clavulanic acid). In one embodiment, different active agents may be compounded into particles, and then mixtures of different particles may be combined with a delivery vehicle in specific ratios using the techniques described below to provide different combinations of active agents to patients. For example, cyclic contraceptives work by providing a different ratio of reproductive hormones to patients over the course of three weeks, simulating the manner in which the ratio of estrogen and other hormones vary over the course of a menstrual cycle. Rather than preparing particles with different ratios of estrogen and progesterone, different ratios
of particles encapsulating estrogen and progesterone may be compounded into single dosage units.
The techniques of the invention provide improved bioavailability to the compounds delivered thereby. Less of the compound will be lost in the digestive tract than if it were delivered without the protection of the encapsulating material and the PEG tag. The mucoadhesive facilitates increased transfer of the active agent across the intestinal mucosa. Using the techniques of the invention, between 0.25 and 25%, for example, between 10 and 15%, of the active agent delivered in a dosage unit can be made available to the patient through release in the bloodstream. The bioavailability of the active agent may be determined using standard pharmacokinetic techniques known to those skilled in the art. For example, the concentration of the active agent in the bloodstream or of the agent or its derivatives in urine may be measured periodically and used to calculate AUC (area under the curve).
Formation of a Coated Particle Coatings may be immobilized on the particles using a variety of chemical interactions. For example, positively charged coatings such as chitosan will form electrostatic bonds with negatively charged PLA or PLGA. This interaction prevents the coating from being stripped off the particle as it passes into the bloodstream. Likewise, negatively charged coatings may be employed with positively charged cores.
The electrostatic interaction allows for easy fabrication of the particles and facilitates release of the active agent. Layer-by-layer deposition techniques may be used to coat the particles. For example, particles may be suspended in a solution containing the coating material, which then simply adsorbs onto the surface of the particles. The coating is not a thick or tight layer but rather allows the active agent to diffuse from the polymer core into the bloodstream. In addition, where enzymatic action is needed to decompose the core, the coating allows enzymes to diffuse from the blood into the particle. Even though the coating can remain intact as the active agent is released, it is itself susceptible to decomposition, and the particle can be fully metabolized.
In addition to electrostatic interactions, other non-covalent interactions may also be used to immobilize a coating. Exemplary non-covalent interactions include but are not limited to the following:
1) Affinity Interactions: For example, biotin may be attached to the surface of the controlled release polymer core and streptavidin may be attached to the coating material; or conversely, biotin may be attached to the coating material and the streptavidin may be attached to the surface of the controlled release polymer core. The biotin group and streptavidin are typically attached to the controlled release polymer system or to the coating via a linker, such as an alkylene linker or a polyether linker. Biotin and streptavidin bind via affinity interactions, thereby retaining the coating on the controlled release polymer core.
2) Metal Coordination: For example, a polyhistidine may be attached to the coating material, and a nitrilotriacetic acid can be attached to the surface of the controlled release polymer core. A metal, such as Ni+2, will chelate the polyhistidine and the nitrilotriacetic acid, thereby binding the coating to the controlled release polymer core.
3) Physical Adsorption: For example, a hydrophobic tail, such as polymethacrylate or an alkyl group having at least about 10 carbons, may be attached to the coating material. The hydrophobic tail will adsorb onto the surface of a hydrophobic controlled release polymer, such as a polyorthoester, polysebacic anhydride, unmodified poly(lactic acid),or polycaprolactone, thereby binding the coating to the controlled release polymer core.
4) Host-Guest Interactions: For example, a macrocyclic host, such as cucurbituril or cyclodextrin, may be attached to the controlled release polymer or the surface of the controlled release polymer core and a guest group, such as an alkyl group, a polyethylene glycol, or a diaminoalkyl group, may be attached to the coating material; or conversely, the host group may be attached to the coating material and the guest group may be included in the controlled release polymer core. In one embodiment, the host and/or the guest molecule may be attached to the coating
material or the controlled release polymer system via a linker, such as an alkylene linker or a polyether linker.
5) Hydrogen Bonding Interactions: For example, an oligonucleotide having a particular sequence may be attached to the surface of the controlled release polymer core, and an essentially complementary sequence may be attached to the coating material. The coating material will then bind to the controlled release polymer core via complementary base pairing with the oligonucleotide attached to the controlled release polymer system. Two oligonucleotides are essentially complimentary if about 80% of the nucleic acid bases on one oligonucleotide form hydrogen bonds via an oligonucleotide base pairing system, such as Watson-Crick base pairing, reverse Watson-Crick base pairing, Hoogsten base pairing, etc., with a base on the second oligonucleotide. Typically, it is desirable for an oligonucleotide sequence attached to the controlled release polymer system to form at least about 6 complementary base pairs with a complementary oligonucleotide attached to the nucleic acid ligand. For example, a poly(cytosine) tag may be attached to the controlled release polymer core and a poly(guanine) tag may be attached to the coating material. Indeed, it is not necessary to only surface treat the controlled release polymer; the entire polymer may be so modified. Some of the poly-C tags will end up on the surface of the core, and others will remain in the interior portions of the particle. In another embodiment, sugars may be used as a mucoadhesive coating. The hydroxyl groups on sugars such as glucose and galactose will hydrogen bond with polar moieties on polymers such as poly (vinyl alcohol). Sugar dimers or oligomers may be used as well.
The core and the coating may also be linked via covalent interactions. For example, PLGA may be modified with a carboxylate group and employed as a core material. Chitosan or another aminated coating material can be coupled to the core using a coupling reagent such as EDC or DCC. Alternatively, PLGA may be modified to have an activated NHS ester which can then be reacted with an amine group on the coating material. Either coating or core materials may be modified to include reactive groups such as hydroxyl, amine, carboxyl, maleimide, thiol, NHS
ester, azide, or alkyne. Standard coupling reactions may then be used to couple the modified material to a second material having a complementary group (e.g., a carboxyl modified core coupled to an aminated coating material).
Administration of Inventive Compositions Once the inventive particles have been prepared, they may be combined with pharmaceutical acceptable carriers to form a pharmaceutical composition. While the composition may be injectable or administrable as a suppository, it is preferable that the composition be orally administrable, either through ingestion or as an inhalant. To this end, the particles produced using the techniques described herein may be sufficiently small to traverse the intestinal mucosa or the alveolar wall. Enhanced uptake may be achieved for larger particles by the use of mucoadhesive coatings, as described herein. The size of the particle may be optimized for stability and increased uptake. One skilled in the art will recognize that the optimum particle size may vary depending on the nature of the drug being delivered. The studies described below may be used to determine the optimal particle size.
As used herein, the term "pharmaceutically acceptable carrier" means a non-toxic, inert solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. Remington 's Pharmaceutical Sciences Ed. by Gennaro, Mack Publishing, Easton, PA, 1995, discloses various carriers used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Some examples of materials which can serve as pharmaceutically acceptable carriers include, but are not limited to, sugars such as lactose, glucose, and sucrose; starches such as com starch and potato starch; cellulose and its derivatives such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; powdered tragacanth; malt; gelatin; talc; excipients such as cocoa butter and suppository waxes; oils such as peanut oil, cottonseed oil; safflower oil; sesame oil; olive oil; corn oil and soybean oil; glycols such as propylene glycol; esters such as ethyl oleate and ethyl laurate; agar; detergents such as TWEEN™ 80; buffering agents such as magnesium hydroxide and aluminum hydroxide; alginic acid; pyrogen- free water; isotonic saline; Ringer's solution; ethyl alcohol; and phosphate buffer solutions, as well as other
non-toxic compatible lubricants such as sodium lauryl sulfate and magnesium stearate. Coloring agents, releasing agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and/or antioxidants can also be present in the composition, according to the judgment of the formulator. The pharmaceutical compositions of the invention can be administered to a patient by any means known in the art including oral and parenteral routes. The term "patient", as used herein, refers to humans as well as non-humans, including, for example, mammals, birds, reptiles, amphibians, and fish. Preferably, the non-humans are mammals (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a primate, or a pig). Non-edible compositions may be administered by injection (e.g., intravenous, subcutaneous or intramuscular, intraperitoneal injection), rectally, vaginally, topically (as by powders, creams, ointments, or drops), or by inhalation (as by sprays).
Powders and sprays can contain, in addition to the inventive particles of this invention, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates, and polyamide powder, or mixtures thereof. Sprays can additionally contain customary propellants such as chlorofluorohydrocarbons.
Pharmaceutical compositions for oral administration can be liquid or solid. Liquid dosage forms suitable for oral administration of inventive particles include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and elixirs. In addition to an encapsulated or unencapsulated particle, the liquid dosage forms may contain inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents. As used herein, the term "adjuvant" refers to any compound
which is a nonspecific modulator of the immune response. In certain preferred embodiments, the adjuvant stimulates the immune response. Any adjuvant may be used in accordance with the present invention. A large number of adjuvant compounds is known in the art (Allison Dev. Biol. Stand. 92:3-11, 1998; Unkeless et al. Annu. Rev. Immunol. 6 :251 -281 , 1998 ; and Phillips et al. Vaccine 10:151- 158,1992).
Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, the encapsulated or unencapsulated particle is mixed with at least one inert, pharmaceutically acceptable excipient or carrier such as sodium citrate or dicalcium phosphate and/or (a) fillers or extenders such as starches, lactose, sucrose, glucose, mannitol, and silicic acid, (b) binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia, (c) humectants such as glycerol, (d) disintegrating agents such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate, (e) solution retarding agents such as paraffin, (f) absorption accelerators such as quaternary ammonium compounds, (g) wetting agents such as, for example, cetyl alcohol and glycerol monostearate, (h) absorbents such as kaolin and bentonite clay, and (i) lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof. In the case of capsules, tablets, and pills, the dosage form may also comprise buffering agents.
Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art.
It will be appreciated that the exact dosage of the inventive particle is chosen by the individual physician in view of the patient to be treated. In general, dosage and administration are adjusted to provide an effective amount of the desired active agent
to the patient being treated. As used herein, the "effective amount" of a substance refers to the amount necessary to elicit the desired biological response. As will be appreciated by those of ordinary skill in the art, the effective amount of encapsulated active agent may vary depending on such factors as the desired biological endpoint, the active agent to be delivered, the target tissue, the route of administration, etc. For example, the effective amount of inventive particles containing an anti-cancer drug might be the amount that results in a reduction in tumor size by a desired amount over a desired period of time. Additional factors which may be taken into account include the severity of the disease state; age, weight and gender of the patient being treated; diet, time and frequency of administration; drug combinations; reaction sensitivities; and tolerance/response to therapy.
The particles of the invention are preferably compounded with a carrier in dosage unit form for ease of administration and uniformity of dosage. The expression "dosage unit form" as used herein refers to a physically discrete unit of conjugate appropriate for the patient to be treated. It will be understood, however, that the total daily usage of the compositions of the present invention will be decided by the attending physician within the scope of sound medical judgment. For any particle composition, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models, usually mice, rabbits, dogs, or pigs. The animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans. Therapeutic efficacy and toxicity of particle materials and the drugs delivered thereby can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED50 (the dose is therapeutically effective in 50% of the population) and LD50 (the dose is lethal to 50% of the population). The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the ratio, LD5o/ED50. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies is used in formulating a range of dosage for human use.
Examples
Example 1: In vitro and in vivo evaluation of insulin release from nano- or microspheres with or without bioadhesive polymer coats
Encapsulation of insulin in nano- or microspheres PoIy(D ,L-lactic acid) containing carboxylic end group (PLA-COOH, inherent viscosity = 0.15 — 0.25 corresponding to 1 Ik - 25k in molecular weight) was purchased from Birmingham Polymers, Inc. (Birmingham, AL). OH-PEG3400-COOH was custom synthesized by Nektar Therapeutics (San Carlos, CA5 USA). 125I-labeled insulin was purchased from Amersham Bioscience (Piscataway, NJ, USA). Chitosan (minimum 85% deacetylated), poly(vinylalcohol) (PVA), and D(+)-trehalose were also obtained from Sigma.
Poly(D,L-lactic acid)-ό/oc£-poly(ethylene glycol)-COOH (PLA-PEG3400- COOH) was synthesized by ring opening polymerization with minor modifications in anhydrous toluene using stannous octoate as catalyst. D,L-Lactide (1.6 g, 11.1 mmol) and COOH-PEG3400-OH (290 mg, 0.085 mmol) in anhydrous toluene (10 mL) containing anhydrous Na2SO4 (200 mg) were heated to reflux temperature at 120 0C, after which the polymerization was initiated by adding tin(II) 2-ethylhexanoate (20 mg, 0.049 mmol). After stirring for 6 h with reflux, the reaction mixture was cooled to room temperature. To this solution was added cold water (10 mL), and the resulting suspension was stirred vigorously at room temperature for 30 min to hydrolyze unxeacted lactide monomers. The resulting mixture was transferred to a separation funnel containing CHCl3 (50 mL) and water (30 mL). After layer separation, the organic layer was collected, dried using anhydrous MgSO4, filtered, and concentrated under reduced vacuum. Hexane was then added to the concentrated solution to precipitate the polymer product. Pure PLA-PEG340o-COOH was collected as a white solid. PLA-PEG34OO-COOH: 1H-NMR (400 MHz), δ = 5.28-5.11 (br, -OC- CH(CH3)O- in PLA), 3.62 (s, -CH2CH2O- in PEG), 1.57-1.45 (br, -OC-CHCH5O- in PLA); molecular weight (GPC): Mn = 10500 with MvZMn = 1.54 relative to monodisperse polystyrene standards. 1H NMR (400 MHz) spectra were recorded on a
Bruker instrument (Avance DPX 400). Aqueous phase GPC was performed by American Polymer Standards (Mentor, OH) using Ultrahydrogels L and 120A columns in series (Waters Corporation, Milford, MA). Water (1% acetic acid, 0.3 M NaCl) was used as the eluent at a flow rate of 1.0 mL/min. Data were collected using a Knauer differential refractometer and processed using an IBM/PC GPC-PRO 3.13 software package (Viscotek Corporation, Houston, TX).
Drug encapsulated nanoparticles were prepared using the water-in-oil-in-water (W/O/W) solvent evaporation procedure (double emulsion method) employed elsewhere. In brief, 50 μl of the 125I-lableled Insulin solution (1 mg/mL in aqueous 2 wt % trehalose) was emulsified in a 1 mL solution of the polymer (PLA-COOH or PLA-PEG-COOH) (50 mg) in dichloromethane using a probe sonicator (1OW for 15- 20s). To this emulsion was then added 3 mL of aqueous PVA (1 % w/v), and the mixture was sonicated again for 20 s (10W) using the same probe sonicator. The resulting emulsion was poured into 50 mL of aqueous PVA (0.3 % w/v) with gentle stirring, after which organic solvent was rapidly removed using rotary evaporator. Finally, the 125I-Insulin encapsulated nanoparticles were isolated by centrifugation at 10,000 rpm for 10 min, washed 2 times with water, and preserved at -15 0C as emulsion form in aqueous trehalose (2% w/v, 2 mL).
Chitosan-coated nanoparticles were prepared as follows. The 125I-Insulin encapsulated nanoparticles (1 mL, ca. 10 mg) were added dropwise to chitosan solution (10 mL, 0.2 wt% in distilled water, pH 5.5) with gentle stirring. After 10 min, the resulting suspension was then centrifuged at 10,000 rpm for 10 min. The remained nanoparticles were washed with aqueous trehalose (2% w/v, 20 mL) and finally suspended in aqueous trehalose (2% w/v, 2 mL).
Characterization of Particles
Nanoparticles encapsulating 5I-labeled were prepared by the procedure above, centrifuged, and then the radioactivity in the supernatant was measured by liquid scintillation analyzer (Packard Instrument Company, Downers Grove, IL). The encapsulation efficiency was calculated by the difference between the total amount of radioactivity in the initial solution and the remained amount in the supernatant.
lhe nanoparticles before and after chitosan coating were characterized using several standard analytical means. The size of the particles and zeta-potential (surface charge) were measured by Quasi-elastic laser light scattering (QELS) using a ZetaPALS dynamic light scattering detector (Brookhaven Instruments Corporation, 15 mW laser, incident beam = 676 nm). Samples (0.1 mL, ca. 1 mg) were diluted with 3 mL of distilled water. Particle sizes were measured at 25 °C. Correlation functions were collected at a scattering angle of 90°, and particle sizes were calculated using the MAS option of the company's particle sizing software (version 2.30) under the viscosity and refractive index of pure water at 25 °C. Particle sizes expressed as effective diameters assuming a log-normal distribution. Three measurements were made on each sample and results are reported as mean diameters. Electrophoretic mobilities were measured at 25 °C using BIC PALS zeta potential analysis software, and zeta potentials were calculated using the Smoluchowsky model. Surface morphology and size were characterized by high-resolution scanning electron microscopy (JEOL 6320FV). All samples were coated with 75 A Au/Pd prior to analysis. Atom composition of the nanoparticles was analyzed using a Kratos AXIS Ultra Imaging X-ray Photoelectron Spectrometer with a monochromatized Al K X-ray source and a 160 mm concentric hemispherical energy analyzer for acquisition of spectra and scanned images, lateral resolution down to 20 μm. The spot size was 300 by 700 μm.
Table 1 summarizes the size, zeta potential, and drug encapsulation efficiency of the nanoparticles. As a model protein drug, 125Iodine-labeled insulin was encapsulated by PLA-COOH and PLA-PEG-COOH polymer system with efficiency of 65 % and 71%, respectively. Both polymer particles showed large negative zeta potentials, indicating the presence of the negatively charged carboxylic acid group on the particle surface. In particular, a much larger negative charge was developed on the surface of PEGylated particles compared to PLA particles. This may be attributed to the presence of the hydrophilic PEG block interposed between PLA and COOH. Upon exposure to aqueous media, COOH is sequestered at the particle surface. Chitosan coating was carried out by simply adding the negatively charged particle's to
chitosan solution at pH 5.5. Highly positive zeta potential values are observed after chitosan coating, suggesting successful coating of the cationic chitosan onto the negatively charged nanoparticles. As expected, there were slight increases in particle sizes after chitosan coating.
Table 1 : Particle size, zeta potential, and drag encapsulation efficiency of PLA-
COOH and PLA-PEG-COOH based nanoparticles encapsulating insulin
Polymer particles Mean Size (nm)a Zeta Potential Encapsulation efficiency (%)a
PLA-COOH 275 ± 16 -35 + 3 65 ± 7
PLA-COOH/ Chitosan 310 + 19 +55 + 7
PLA-PEG-COOH 249 ± 12 -50 + 3 71 ± 8
PLA-PEG-COOH/
265 ± 22 +59 + 5 Chitosan a Mean ± SD (n = 3).
The scanning electron microscopic images of the particles are shown in Figure 1. A majority of the PLA-COOH and PLA-PEG-COOH nanoparticles are approximately 200 to 300 nm, and there was no distinct discrepancy before and after chitosan coating, in agreement with the quasi-elastic laser scattering (QELS) data.
The presence of a chitosan layer on the particle surface was further confirmed by X-ray photoelectron spectroscopy (XPS). We compared high resolution carbon (Is) intensity. PLA contains three different types of carbons, namely, -C(=0)0 carbonyl, C-O ether, and C-C carbons, whereas the PEG chain contains only C-O ether carbons. Very similarly, chitosan is also composed of mostly C-O ether carbon. Therefore, it is expected that after chitosan coating, the ratio of C-O to -C(=0)0 carbons should increase. As shown in Table 2, the value increased by approximately 35% for PLA particles and 20% for PEGylated particles, respectively. These data also indicate that chitosan is coated onto the particle surface.
Table 2: High resolution XPS C(Is) composition of nanoparticlesa
Composition (%)b
Nanoparticles C-C C(=O)O C-O C-O/C(=O)O
PLA-COOH 31.1 ± 0.7 32.8 ± 0.3 36.1 ± 0.5 1.10
PLA-COOH0 30.5 + 0.4 28.0 + 0.5 41.5 ± 0.2 1.48
PLA-PEG-COOH 42.2 ± 0.8 26.5 + 0.6 31.2 + 0.7 1.18
PLA-PEG-COOH0 40.5 ± 0.4 24.6 ± 0.3 35.0 ± 0.2 1.42 a55 take-off angle was taken from surface normal. bMean ± SD. cChitosan-coated equivalent.
Evaluation of particles in simulated digestive fluid Simulated gastric fluid (pH 1.2, pepsin 0.32% w/v, sodium chloride 0.2% w/v) and intestinal fluid (pH 7.5, pancreatin 1% w/v, monobasic potassium phosphate 0.68% w/v) were prepared by referring to US Pharmacopoeia (23rd edition, 1995). Pepsin from porcine stomach mucosa and pancreatin from porcine pancreases were purchased from Sigma (St Louis, USA). Chitosan-coated and uncoated nanoparticles were incubated in each digestive solution for 4 h. Degradation of PLA was determined by measuring lactate concentration in the suspension using a lactate detection kit. Briefly, each nanoparticle (5 mg) encapsulating FITC-labeled insulin (as a model protein) was incubated at 37 °C in simulated digestive fluid (5 mL) with gentle stirring using a magnetic bar. Aliquots (33 μL) were removed at appropriate time intervals and mixed with 967 μL of lactate detection kit (0.5 mL lactate dehydrogenase, 2 vials nicotinamide adenine dinucleotide, 12 mL glycine buffer). After incubation at 37 0C for 15 min, the absorbance of the solution was measured at 340 nm.
Particle stability was determined by measuring lactate concentration in solution after neutralization using a lactate detection kit. As shown in Table 3, in gastric fluid, 3% and 2% of the PLA in PLA-COOH and PLA-PEG-COOH particles, respectively, degraded. In intestinal fluid, the degradation percentage was ca. 15% and 10%, respectively. As expected, the presence of PEG increased stability as
compared to simple PLA, presumably due to the enzyme repelling properties of PEG. The chitosan coating rendered the corresponding nanoparticles more stable than the uncoated equivalents in intestinal fluid (15% versus 9% degradation for PLA-COOH and 10% versus 6% degradation for PLA-PEG-COOH nanoparticles, respectively). In addition, when the chitosan-coated PLA-PEG-COOH nanoparticles were collected and analyzed after 4 h incubation in gastric fluid, the size and zeta potential of collected nanoparticles were unchanged, suggesting the chitosan coating layer remained stable on the particle surface (data not shown). Consequently, coexistence of PEG and chitosan coating layers largely increased particle stability over PLA nanoparticles in digestive fluids.
Table 3: Stability of the nanoparticles in simulated gastric and intestinal fluids
PLA converted to lactate (%)a
Nanoparticles Gastric fluid (4 h) Intestinal fluid (4 h)
PLA-COOH 3 + 0.9 15 ± 1.3
PLA-COOHb 2 + 0.5 9 + 2.2
PLA-PEG-COOH 2 + 0.3 10 + 1.5
PLA-PEG-COOHb 2 + 1.1 6 + 0.8 aMean ± SD. bChitosan-coated equivalent.
In vitro model: determination of uptake efficiency of chitosan-coated controlled release polymer particles across human intestinal epithelial cells (Caco-2) AU manipulations involving live cells or sterile materials were performed in a laminar flow hood using standard sterile technique. The Caco-2 cell line was purchased from the American Type Culture Collection (Manassas, VA) and grown at 37 0C, 5% CO2 in Dulbecco's modified Eagle's medium (DMEM), 90%; fetal bovine serum, 10%; penicillin, 100 units/mL; streptomycin, 100 μg/mL; apo-transferrin, 10 μg/mL. Costar transwells (12 well/plate) were obtained from Corning, Inc. (Acton, MA).
The Caco-2 cells were seeded at 1.7 x 105 cells/mL in 12 well/plate transwells (Costar, pore size of 3μm) and grown for 12-24 days. Costar transwells had a membrane insert size of 12 mm and a pore size of 3 μm, with an apical chamber volume of 0.75 mL and a basal chamber volume of 2 mL. Cells generally reached confluence within 10 days. Transepithelial resistance measurements were made of monolayers and only cultures with greater than 250 ohms/cm2 were used for experiments representing a "tight monolayer" with closed gap junctions. 100 μL of each nanoparticle from stock solution (ca.lO mg/mL in aqueous 2% w/v trehalose) was mixed with 400 μL of cell culture medium and then, the mixture was loaded to each apical chamber. After 12 h, the radioactivity in the basal chamber was measured using a liquid scintillation analyzer to measure the transport efficiency of the particles across the Caco-2 monolayers. The transport efficiency was denoted as % total radioactivity obtained in the basal chamber. The results are summarized in Figure 2. First, in terms of chitosan coating effect, both non-PEGylated and PEGylated nanoparticles showed approximately 40% increased transport after chitosan coating. Enhanced transport by chitosan coating may be attributed to either increased interaction of positively charged chitosan with partially negatively charged epithelial cell layers or chitosan-facilitated paracellular transport. Although the mechanism by which chitosan can open tight junctions is not clearly demonstrated to date, it is currently accepted that it opens the junction reversibly so as to facilitate paracellular transport of macromolecules. Secondly, PEGylated polymer particles exhibited much higher (at least 60%) transport than non-PEGylated systems with and without chitosan coating. Therefore, the chitosan-coated PEGylated nanoparticle appears to have the most satisfactory transport profile in this experimental model.
In vivo: absorption and biodistribution of nanoparticles in mice
Nanoparticles (0.2 mL) encapsulating 125I-labeled insulin were fed to mice (n = 8) by a gavage method. Male BALA/c mice (10 weeks old, 22-25 g weight) were obtained from Taconic (Germantown, NY) and allowed access to food and water. At Ih after oral administration, half of the mice (n — 4) were sacrificed, then samples of
blood (0.2 mL) were taken by cardiac puncture. The remaining mice (n = 4) were sacrificed at 6 h post oral administration and samples of blood were taken. Some organs and tissues were harvested by necropsy. The radioactivity in blood or in tissues was measured to calculate absorption yield into the body. The results are summarized in Figure 3. The absorption yield of insulin into blood was denoted as % original dose. The chitosan-coated particles exhibited approximately 80% increased insulin-absorption at Ih and 40% increased absorption when measured at 6h with respect to their uncoated equivalent. Much less absorption was observed for microparticles than for nanoparticles, but they both still exhibited enhanced insulin uptake after chitosan coating. Chitosan coating of nanoparticles resulted in at least 2 times higher absorption of insulin into the blood than corresponding microparticles. The absorption yield of chitosan-coated nanoparticles (14%) indicates an efficiency several times higher than reported literature values of 2- 3%.
Example 2: In vivo absorption of125I-insulin and Humulin R
General
Human insulin (Humulin R, 100 U/mL and 500 VImL, 100 unit = 3.5mg Humulin R) was purchased from www.drugstore.com and used as the stock soluion. Bovine zinc insulin was purchased from Sigma. A number of different polymers used in these studies were obtained from Absorbable Polymers International (Pelham, AL): low molecular- weight (LMW) poly(DL-lactic acid) with acid terminal groups (LMW PLA-COOH, inherent viscosity (IV) 0.20 dL/g,), high molecular-weight (HMW) poly(DL-lactic acid) with acid terminal groups (HMW PLA-COOH, IV 0.45 dL/g), LMW 50/50 poly(DL-lactide-co-glycolide) with acid terminal groups (LMW PLGA- COOH, IV 0.18 dL/g), HMW 50/50 poly(DL-lactide-co-glycolide) with acid terminal groups (HMW PLGA-COOH, IV 0.76 dL/g). NH2-PEG500o-COOH and HO- PEG5000-COOH were purchased from Nektar Therapeutics. 125I-labeled insulin was purchased from Amersham Bioscience (Piscataway, NJ, USA). Chemicals purchased from Sigma/ Aldrich Chemical Co include Chitosan (minimum 85% deacetylated),
poly(vinylalcohol) (PVA), and D(+)-trehalose tin(II) 2-ethylhexanoate, D,L-lactide, toluene (99.8 %, anhydrous), and lectin from Bandeiraea Simpliciforia BS-I .
Synthesis of PLA-PEG-COOH via ring-opening polymerization
PLA-PEG-COOH was synthesized through ring opening polymerization of DL-lactide in anhydrous toluene using stannous octoate as catalyst. DL-Lactide was recrystalized with ethyl acetate pήor to polymerization (using approximately 250 niL ethyl acetate to recrystallize 50 g DL-lactide). DL-lactide (15 mmol) and COOH- PEG340Q-OH (0.1 mmol) in anhydrous toluene (10 mL) were heated to 120 ° C under N2. Tin(II) 2-ethylhexanoate (30 mg) was added to the solution to initiate polymerization. After stirring for 6-8h under N2 at 120 0C, the reaction mixture was cooled to room temperature and poured to cold methanol (60 mL). The precipitate was washed with methanol and dried under vacuum (yield 62%). 1H NMR (400 MHz) δ = 5.20 (m, -OC-CH(CH3)O-), 3.55 (s, -CH2CH2O-), 1.57-1.45 (br, -OC- CHCH3O-).
Synthesis of PLGA-PEG-COOH (or PLA-PEG-COOH) via conjugation methods
ΗMW DL-PLGA-COOΗ (0.99g) was dissolved in anhydrous methylene chloride (5 mL). N-Ηydroxysuccinimide (NΗS) (23 mg) and l-Ethyl-3-(3- dimethylaminopropyl)-carbodiimide (EDC) (42 mg) were added to the solution. After 3h solution was poured into 25 mL cold MeOH. The precipitate was washed with 3 χ25 mL MeOH and dried under vacuum (yield 100%). The white solid (335 mg) obtained was re-dissolved in chloroform (3.35 mL). A chloroform solution of NH2-PEG5OOO-COOH (32.5 mg in 320 μL chloroform) was added dropwisely to the activated PLGA solution. Diisopropylethylamine (DIEA, 3 eq., 2.52 mg) was added the mixtures. The solution was stirred under N2 overnight. The resulting PLGA- PEG-COOH was precipitated with cold MeOH and dried under vacuum (yield 95%). 1H NMR (400 MHz) δ = 5.18 (m, -OC-CH(CH3)O-), 4.79 (m, -OC-CH2O-), 3.61 (s, - CH2CH2O-), 3.41 (s, -CH2CH2O-), 1.56 (br, -OC-CHCH5O-).
Preparation ofU3I-insulin~encapsulated nanoparticles (NPs) Drug encapsulated NPs were prepared using the water-in-oil-in-water (W/O/W) solvent evaporation procedure (double emulsion method). A 50 μl solution of the 125I-Insulin solution (1-10 μCi/mL reconstituted in pH 7.4 PBS) was emulsified in a 1 mL dichloromethane solution of 50 mg corresponding polymer (PLA-COOH, PLA-PEG-COOH) in using a probe sonicator (Sonic & Materials Inc, Danbury, CT, USA) at 1OW for 30s. To this emulsion was then added 3 mL of aqueous PVA (MW = 30-70 kDa, 1 % w/v) and the mixture was sonicated for 30s using the same probe sonicator at 1OW. The resulting emulsion was immediately poured into 50 mL of aqueous PVA (MW = 30-70 kDa, 0.3 % w/v) with gentle stirring. Organic solvent was either rapidly removed using rotary evaporator or by stirring at room temperature for 2.5h. The NPs were isolated by centrifugation at 10000 rpm for 10 min at 10 0C, washed once with double-distilled water, and used for study immediately. The yield of NPs was between 20 and 30%.
Preparation of125I-insulin-encapsulated microparticles (MPs)
Drug encapsulated MPs were prepared using the water-in-oil-in-water (W/O/W) solvent evaporation procedure (double emulsion method). 50 μl of the 125I- Insulin solution (1-10 μCi/mL in pH 7.4 PBS) was emulsified in a 1 mL dichloromethane solution of 50 mg corresponding polymer (PLA-COOH, PLA-PEG- COOH) using a probe sonicator at 1OW for 30s. The first emulsion was transferred to 50 mL of aqueous PVA (MW = 30-70 kDa, 1 % w/v) and homogenized at 8000 rpm for 1 minute. The resulting emulsion was immediately poured into 200 mL of aqueous PVA solution (MW = 30-70 kDa, 0.3 % w/v) with gentle stirring. Organic solvent was removed using rotary evaporator or by stirring at room temperature for 2.5h. The MPs were isolated by centrifugation at 10000 rpm for 10 min at 1O0C, washed once with double-distilled water, and lyophilized. The yield of MPs was between 60-80%.
Preparation ofHumulin R-encapsulated NPs and MPs
The procedures for making Humulin R-encapsulated NPs and MPs are same as that for making 125I-insulin-encapsulated NPs and MPs (see above) except that 50μL of 500 U/mL Humulin R was used instead of 125I-insulin PBS solution.
Chitosan coating of NP and MPs
To a suspension of NPs (or MPs) (15-30 mg in 1 mL water) was added a chitosan solution (20 mL, 0.2 wt% in distilled water, pH 5). After the suspension is allowed to stand for 10 min, the resulting suspension was centrifuged at 10000 rpm for 10 min. The NP (or MPs) were washed with 2% trehalose solution, centrifuged, and stored at -20 0C. The chitosan-coated NP and MPs prepared for in vivo glucose reduction were washed with water instead of trehalose solution and used immediately.
NP modified with lectin
Lectin from Bandeiraea simplicifolia (Sigma) was reconstituted with DI water. LMW PLGA-COOH NP (20 mg) was activated with EDC/NHS and then reacted with lectin (0.2 mg) in the presence of excess DIEA (1 mg). The suspension was stirred for 4h at room temperature. The resulting NPs were washed with water, centrifuged twice, and stored in 2 mL water at -15 0C.
Characterization of the NPs and MPs
The size of the NPs and the zeta-potential of NPs and MPs were measured by Quasi-elastic laser light scattering (QELS) using a ZetaPALS dynamic light scattering detector (Brookhaven Instruments Corporation, 15 mW laser, incident beam = 676 nm). Particle sizes were measured at room temperature at a concentration of 0.5-1 mg/mL water. Three to five measurements were made on each sample. Results are reported as mean diameters. Electrophoretic mobilities were measured at 25 0C using BIC PALS zeta potential analysis software, and zeta potentials were calculated using the Smoluchowsky model. Surface morphology and size were characterized by scanning electron microscopy.
Determination of drug loading
The loading of 125I-insulin in NPs and MPs was determined by analyzing the solution of known amount of NPs or MPs (2 mg NPs or MPs dissolved in 1 mL acetonitrile/water with 5 mL added Hionic-Fluro cocktail) using a Liquid Scintillation Analyzer (Packard Instrument Company, Downers grove, IL). The loading of Humulin R was determined by measuring the actual amount of Humulin R using a BCA protein assay (Pierce Chemical Co., Rockford, IL). Briefly, aliquots containing known amounts of particles (5-10 mg) dissolved in 2 ml Of CH2Cl2 were extracted with 2 ml buffer (1 x phosphate-buffered saline (PBS) and 0.05% sodium dodecyl sulfate (SDS)). Humulin R in buffer solution was quantified using BCA assay (Pierce) in triplicate.
In-vivo absorption of125I-insulin encapsulated PLA-based NPs and MPs
The 125I-labelled insulin was encapsulated into NPs/MPs using carboxylate terminated poly(lactic acid) (PLA-COOH) or poly(lactic acid)-co-poly(ethylene glycol) (PLA-PEG-COOH) by the double emulsion method. The surface of the resulting NPs/MPs were negatively charged, which facilitates use of a positively charged mucoadhesive material (e.g., chitosan) coating. NPs were typically in a range of 300-400 run, while MPs were in a range of 1-10 μm. Details for the synthesis of PLA-PEG-COOH and for the preparation and characterization NPs/MPs are given above.
125I-Insulin encapsulated PLA or PLA-PEG NPs and MPs (Table 3) were administered to mice (n = 4) orally by gavage. Each animal received 0.2 mL of the NP or MP suspension (approximately 0.2-0.5 μCi). Mice were euthanized at 6h by CO2 inhalation. Blood (200 μL) from each mouse was collected immediately in a glass scintillation vial by cardiac puncture. The blood was treated with 0.4 mL Solvable for Ih at 55 0C. Sample color turned into green. EDTA-di-sodium salt solution (0.04 mL) was added, followed by dropwise addition of 30% hydrogen peroxide (0.15 mL). The solution was allowed to stand for 15 to 30 minutes at room temperature to complete the reaction. The vial was incubated again at 55 - 60 0C for
one hour. The color changed from green to pale yellow. After solution was cooled to room .temperature for about Ih, Hionic-Fluor (5 mL) was added to the mixture. The solution was then analyzed on a Liquid Scintillation Counter (Packard, IL). Table 3. Nanoparticle and Microparticle Characterization
125I-Insulin Encapsulated Nanoparticles (NP) Particle size Zeta Potential and Microparticles (MP) (nm)
PLA-COOH NP 332 + 2.5 -28.42 + 2.21
PLA-PEG-COOH NP 375 ± 6.2 -37.49 + 1.73
PLA-COOH NP/Chitosan 405 ± 18.6 53.06 ± 0.77
PLA-PEG-COOH NP/Chitosan 415 + 13.8 57.33 ± 0.90
PLA-PEG-COOH MP 1-5 μm -35.70 + 1.07
NPs/MPs (Table 3) were administered to Balb/C mice (average 25 g, N = 4) by oral gavage at 0.2-0.5 μCi per mouse. Mice blood (200 μL) was collected and decolored 6h after administration and analyzed by liquid scintillation counter (Tri-Carb, Packard). PEGylated NPs exhibited a slightly lower systemic absorption with respect to non-PEGylated NPs for both chitosan-coated (4.79% for PLA-COOH NP and 4.41% for PLA-PEG-COOH NP) and uncoated systems (4.02% for PLA-COOH NP and 3.83% for PLA-PEG-COOH NP) (Figure 4A). The absorption of NPs coated with chitosan was enhanced with respect to equivalent NPs without chitosan. The absorption of PLA-PEG-COOH NPs was increased by 133% as compared to PLA- PEG-COOH MPs (Figure 4B). This in-vivo absorption study showed that particle size significantly affects the absorption efficiency and smaller particles can be absorbed more efficiently.
Release of insulin from PLA-PEG-COOH and P LGA-P EG-COOH particles In the previous set of experiments we measured the amount of radioactivity (125I insulin encapsulated particles) in the plasma. However, we did not differentiate between released insulin and insulin that remained encapsulated. Since only the released insulin is therapeutically effective, it is desirable to evaluate the insulin release rate from particles prepared from various polymers. In this set of studies, we
used particles generated from the PLA-PEG-COOH as before, in addition to particles generated from a poly(DL-lactide-co-glycolide)-PEG-COOH (PLGA-PEG-COOH) polymer system (the latter is expected to have a faster release kinetics). We studied the release of insulin from uncoated and chitosan-coated PLA-PEG-COOH or PLGA- PEG-COOH particles in PBS. 68% of insulin was released from uncoated PLGA- PEG-COOH NPs within 4h, while about 42% of insulin was released from uncoated PLA-PEG-COOH NPs. The insulin release rate from particles with chitosan surface- coatings was reduced by 10-15% in both the PLA-PEG-COOH and PLGA-PEG- COOH systems.
Oral efficacy ofHumulin R Encapsulated PLA-PEG-COOH and PLGA-PEG-
COOH Nanoparticles
The detected radioactivity in blood is a combined effect of the released (both active and denatured), encapsulated and decomposed insulins. It is desirable to study the availability of the free, active insulin to evaluate the effectiveness of and to further improve the polymer particles for oral insulin delivery. We determined bioavailability by measuring glucose concentrations and by quantifying released insulin in blood. Plasma glucose levels were obtained by using the Ascensia Breeze Blood Glucose Monitoring System (Bayer) following the manufacturer's protocols. Since NPs show higher in-vivo absorption than MPs (Figure 4B), we only focused on NPs in this study.
We chose Humulin R because:
1. Humulin R consists of zinc-insulin crystals dissolved in a clear fluid. Humulin R has nothing added to change the speed or length of its action. It takes effect rapidly and has a relatively short duration of activity (about 4 hours) as compared with other insulins. Prolonged hypoglycemia obtained from a sustained release system can be attributed to the effectiveness of drug delivery vehicle.
2. Humulin R in mouse serum can be differentiated from mouse insulin using an appropriate assay, and thus can be accurately quantified.
We first chose to study the response of glucose concentration to the orally administered, Humulin R-encapsulated polymer NPs. BalB/C mice, weighing 23-25 g, were fasted for 12-16 h. The initial glucose level of each mouse was measured. Four mice were assigned to a group such that the mean values of the glucose concentrations of each group were roughly equal. Various amounts of Humulin R NPs or MPs in 200 μL water were administrated orally using gavage needles'. Control mice were administered with 200 μL water only. The glucose level of each mouse was monitored at scheduled times. In some experiments and at scheduled times, in addition to measuring blood glucose concentration, we collected blood samples (50 μL) in heparinized tubes.
We found that PLA-PEG NPs generally are not as efficacious as PLGA-PEG- COOH NPs for reducing blood glucose (Figure 5). PLGA-PEG-COOH NPs administered at 100 U/mg reduced glucose levels by 48.7 ± 12.9%, compared to 24.0 ± 5.93% after administration of the same dose using PLA-PEG-COOH NPs. Administration of PLGA-PEG-COOH and PLA-PEG-COOH NPs at 50 U/kg reduced serum glucose by 36.2 ± 7.5% and 16.7 ± 9.3%, respectively (Figure 5). The lowest glucose levels were observed 4 hours after administration in all tested groups except for the 50 U/kg dosed PLGA-PEG-COOH NP group, in which the lowest glucose level occurred 6 hours after administration. To determine the bioavailability, we measured the glucose concentrations after tail-vein intravenous (IV) administration of Humulin R alone at 0.5 U/kg (25-50 μL total, n=4) (Figure 6). A rapid decrease of glucose concentration was observed during the first hour, and the lowest glucose level was detected at t = 1 hour with a decrease of 45.4 ± 12.2%. The glucose concentration returned to the original level after 5 hours (Figure 6). Based on the percent of glucose level deviation from the fasting blood glucose level for the challenged mice (see Figure 6 for the Humulin IV administration group), we calculated the area under the curve (AUC) for the percent of the decreased blood glucose (%) vs time (hour) using the trapezoidal method for both IV and oral administration groups (Table 4). Glucose bioavailibility after the oral administration of Humulin encapsulated in PLA-PEG-COOH NPs was 0.34 ± 0.43 and 0.58 ± 0.28
for the 50 U/kg and 100 U/kg groups, respectively. Glucose bioavailibility after administration of PLGA-PEG-COOH NPs, however, was 1.86 ± 0.86 and 2.53 ± 0.62 in the 50 U/kg and 100 U/kg groups, respectively. Thus, the bioavailability of glucose delivered using of PLGA-PEG-COOH was 320%-440% higher than after delivery using PLA-PEG-COOH. Without being limited by any particular hypothesis, the increased bioavailability of insulin delivered with PLGA may be due to the accelerated drug release rate compared to PLA groups (Carino, et al., Nanosphere based oral insulin delivery. Journal of Controlled Release 2000, 65, 261-269).
Table 4 Determination of Bioavailibility of Orally Administered Humulin R Encapsulated PLA-PEG-COOH and PLGA-PEG-COOH Nanoparticles in Mice
Gp Route Substrate Dose Avg Weight AUCa Bioavailibility
(U/kg) of Mice (g) (%)
1 IV Humulin R 0.5 29.7 95.79 ± -
50.03
2 oral Humulin R-PLA- 50 27.5 76.45 ± 0.34 ± 0.43
PEG-COOH NP 94.60
3 oral Humulin R-PLA- 100 27 133.27 ± 0.58 ± 0.28
PEG-COOHNP 64.58
4 oral Humulin R-PLGA- 50 27.5 206.59 ± 1.86 ± 0.86
PEG-COOH NP 94.98
5 oral Humulin R-PLGA- 100 28 276.07± 2.53 ± 0.62
PEG-COOH NP 68.59 a Calculated based on trapezoidal treatment of the percent of decreased blood glucose
(%) vs time (hour) for both W and oral administration groups. b/= [AUCo-8h oral x (weight of mice/dose)orai]/ [AUCo-5hivx(weight of mice/dose)iv]
Besides determining bioavailability based on the blood glucose concentration, we also studied bioavailibility by directly measuring serum Humulin R using an ELISA insulin assay (Mercodic, ALPCO Diagnostics). This assay has very high specificity for the detection of Humulin R in mouse serum and shows no cross- reaction with mouse insulin. As shown in Figure 7, the concentration of Humulin R
measured in mouse plasma is linear over a range typically used for quantification of absorbed Humulin R via oral administration. Blood (approximately 20 μL) samples were collected into Startedt serum gel microtubes and allowed to clot for 30 minutes. The tubes were then centrifuged for 3 min at 10, 000 x g. Serum (5 μL) was transferred to a micro-well and diluted with 20 μL calibrator 0 of the Mercodia insulin ELISA kit (ALPCO Diagnostics, Inc). Enzyme conjugate (100 μL) was added to each well. The mixture was incubated at room temperature for Ih on a plate shaker. The reaction medium was aspirated and washed with 5 x 350 μL Wash Buffer (provided in the kit). The TMB substrate (200 μL) of the kit was added to the well and incubated for 15 min at room temperature. After adding 50 μL Stop Solution, the UV absorbance was measured at 450 nm. Insulin concentration was determined based on a standard curve generated from known concentration of insulin standard. When serum was administered at 2 U/kg via tail- vein intravenous injection, the serum concentration decreased drastically from 3203.21 ± 143.65 mU/L to 124.18 ± 30.90 mU/L at t = Ih and to 14.17 ± 3.08 mU/L at t = 2h (Figure 8). Less than
0.5% of administered insulin remained in blood 2h after administration. The AUC of insulin concentration (mU/kg) vs time (hour) was 1175.89 ± 125.51 mU.hr/L (Table 5).
Since the encapsulation of insulin during double emulsion may denature and thus deactivate the loaded insulin, the bioactivity of some Humulin R encapsulated MPs were tested using intraperitoneal administration before testing for oral activity. Balb/c mice were fasted overnight (about 12-16h). Humulin R and Humulin R- magnetite-PLGA-MP were injected intraperitoneally to one and three mice, respectively. Blood (1 drop, roughly 3 μL) was collected from tail vein through puncture using 26G needle and analyzed with Ascensia Breeze Blood Glucose Monitoring System. The serum concentration of the intraperitoneally (IP) administered Humulin (4 U/kg) reached its highest level (541.85 ± 46.92 mU/L) at t = 30 minutes, and decreased to 36.32 ± 6.92 mU/L at t = 7h (Figure 8). The AUC of insulin concentration (mU/kg) vs time (hour) of the IP administered insulin was
692.29 ± 272.70 ml) .hr/L. 1 he bioavailability of IP administered insulin was 29.46 ± 11.60 %.
After oral administration of insulin-PLGA-PEG-COOH NP, chitosan-coated, insulin-PLGA-PEG-COOH NP, and insulin-PLGA-PEG-COOH NP-Lectin bioconjugates, the highest insulin concentrations were 267.08 ± 10.07 mU/kg (t=2h), 188.04 ± 46.75 mU/kg (f=4h), and 391.87 ± 68.43 mU/kg (t=2h), respectively (Figure 9). By t=20.5h, serum insulin concentrations decreased to 15.21 ± 7.97 mU/kg, 8.05 ± 14.46 mU/kg, 39.48 ± 37.76 mU/kg, respectively. The bioavailabilities of insulin- PLGA-PEG-COOH NP, chitosan-coated insulin-PLGA-PEG-COOH NP, and insulin- PLGA-PEG-COOH NP-Lectin bioconjugates were 1.22 ± 0.38 %, 1.49 ± 0.53%, and 1.87 ± 0.65%, respectively. Chitosan coating and lectin conjugation of PLGA-PEG- COOH NP enhanced the bioavailability by 22% and 53%, respectively. The bioavailability of the insulin-PLGA-PEG-COOH NP (1.22 %) obtained by measuring insulin concentration was 54-107% lower than that determined by measuring glucose concentrations (compared to bioavailability of 1.86% and 2.53% in Table 4).
Table 5 Determination of Bioavailability of Orally Administered Humulin R Encapsulated PLGA-PEG-COOH Nanoparticles with Various Surface Modifications
Gp Route Substrate Dose AUC Bioavailability
(U/kg) (mU.hr/L) (Jf
6 IV Humulin R 2 1175.89 ± 125.51 -
7 IP Humulin R 4 692.29 ± 272.70 29.43 ± 11.60
8 oral Humulin R-PLGA-PEG- 200 1435.63 ± 445.84 1.22 ± 0.38
COOH NP
9 oral Humulin R-PLGA-PEG- 200 1754.87 ± 629.15 1.49 ± 0.54
COOH NP/Chitosan
10 oral Humulin R-PLGA-PEG- 200 2194.26± 759.69 1.87 ± 0.65
COOH NP-Lectin Conjugate a Calculated based on trapezoidal treatment of the serum Humulin R concentration (mU/L) vs time (hour) for both IV, IP and oral administration groups. Vorai = (AUC0-20.5h Or3IZdOSeOr3Iy(AUC0-7I1 IvZdOSe1V)-ZiP = (AUC0-7h ipZdoseip)Z(AUCo-7h ivZdoseiv). Mice were grouped to make average body weight to be 3Og in each group.
Humulin R release study
The release of Humulin from NPs and MPs was measured by incubating aliquots containing 2-5 mg of Humulin R-containing particles in 1.0 mL of 1 x??? PBS at 37°. Measurements were conducted in triplicate. The supernatant was collected after centrifugation of the particle suspension at 14000 g for 5 min and analyzed with a BCA protein assay. The amount of Humulin R was calculated based on a standard curve generated with Humulin R stock solution (See Figure S4).
Other embodiments of the invention will be apparent to those skilled in the art from a consideration of the specification or practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims. What is claimed is:
Claims
1. A composition for delivering an active agent to a patient, comprising: a polymer core encapsulating a predetermined amount of the active agent; and a mucoadhesive coating disposed about the core to form a coated particle, wherein the polymer is derivatized with a poly(alkylene glycol), the mucoadhesive coating is retained on the core through one or more of covalent interactions, electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions, a molecular weight and cross-link density of the polymer is selected such that the polymer core will decompose in a predetermined time interval, the mucoadhesive coating is selected to facilitate transfer of the particle through the intestinal mucosa, and a fraction of the predetermined amount of the active agent entering the systemic circulation during the predetermined time interval is between about 0.25% and about 25%.
2. The composition of claim 1 , further comprising a targeting agent disposed under the mucoadhesive coating.
3. The composition of claim 2, further comprising an intermediate layer disposed between the targeting agent and the mucoadhesive coating.
4. The composition of claim 3, wherein the intermediate layer comprises a first material and the mucoadhesive coating comprises a second material, wherein the first material and the second material have opposing electrostatic charges at pH 2.
5. The composition of claim 4, wherein the first material and the second material do not have opposing electrostatic charges at pH 7.4.
6. The composition of claim 3, wherein the intermediate layer comprises a biodegradable polymer.
7. The composition of claim 2, wherein the targeting agent is disposed at a surface portion of the polymer core.
8. The composition of claim 2, wherein the targeting agent is disposed at a surface portion of the polymer core and is also disposed at an interior portion of the polymer core.
9. The composition of claim 2, wherein the targeting agent is selected from nucleic acid aptamers, growth factors, hormones, cytokines, interleukins, antibodies, integrins, fibronectin receptors, p-glycoprotein receptors, and cell binding sequences.
10. The composition of claim 1, wherein the fraction of the dose of the drug entering the systemic circulation during the predetermined time interval is between about 5% and about 20%.
11. The composition of claim 1 , wherein the fraction of the dose of the drug entering the systemic circulation during the predetermined time interval is between about 10% and about 15%.
12. The composition of claim 1 , wherein the mucoadhesive coating is retained on the core though electrostatic interactions.
13. The composition of claim 1, wherein the core comprises PEGylated poly(lactic acid).
14. The composition of claim 1, wherein the poly(alkylene glycol) is carboxylated.
15. The composition of claim 1 wherein the poly(alkylene glycol) is selected from poly(ethylene glycol) and poly(propylene glycol).
16. The composition of claim 1, wherein the poly(alkylene glycol) has a molecular weight between about 100 and about 7000 Daltons.
17. The composition of claim 16, wherein the poly(alkylene glycol) has a molecular weight between about 100 and about 1000 Daltons.
18. The composition of claim 16, wherein the poly(alkylene glycol) has a molecular weight between about 1000 and about 3500 Daltons.
19. The composition of claim 16, wherein the poly(alkylene glycol) has a molecular weight between about 3500 and 7000 Daltons.
20. The composition of claim 1, wherein the polymer is a biodegradable polymer or a non-biodegradable polymer.
21. The composition of claim 20, wherein the biodegradable polymer is selected from poly(arylates), poly(anhydrides), poly(hydroxy acids), polyesters, poly(lactic acid), poly(glycolic acid), poly(ortho esters), polycarbonates, poly(propylene fumerates), poly(caprolactones), polyamides, polyphosphazenes, polyamino acids, polyethers, polyacetals, polylactides, polyhydroxyalkanoates, polyglycolides, polyketals, polyesteramides, poly(dioxanones), polyhydroxybutyrates, polyhydroxyvalyrates, polycarbonates, polyorthocarbonates, polyvinyl pyrrolidone), biodegradable polycyanoacrylates, polyalkylene oxalates, polyalkylene succinates, poly(malic acid), poly(methyl vinyl ether), poly(ethylene imine), poly(acrylic acid), poly(maleic anhydride), biodegradable polyurethanes, polysaccharides, PEG-functionalized derivatives of the above, co-polymers of the above, adducts of the above, and mixtures of the above.
22. The composition of claim 20, wherein the non-biodegradable polymer is selected from polystyrene, polyesters, non-biodegradable polyurethanes, polyureas, poly(vinyl alcohol), polyamides, poly(tetrafluoroethylene), poly(ethylene vinyl acetate), polypropylene, polyacrylate, non-biodegradable polycyanoacrylates, non-biodegradable polyurethanes, polymethacrylate, poly(methyl methacrylate), polyethylene, polypyrrole, polyanilines, polythiophene, poly(ethylene oxide), PEG-functionalized derivatives of the above, co-polymers of the above, adducts of the above, and mixtures of the above.
23 The composition of claim 1, wherein the coating comprises chitosan, poly(lysine), poly(ethylene imine), lecithin, lectin, polycarboxylic acids, poly(acrylic acids), polysaccharides, hydrogels, monosaccharides, oligosaccharides, oligopeptides, polypeptides, co-polymers of the above, or any combination of the above.
24 The composition of claim 1, wherein the coating comprises chitosan, lectin, or both.
25 The composition of claim 1, wherein the coating is a block co-polymer having a mucoadhesive block and a block that is adapted to participate in an interaction selected from electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions.
26 The composition of claim 1, wherein the active agent is a biomolecule, bioactive agent, small molecule, drug, protein, vaccine, or polynucleotide.
27 The composition of claim 26, wherein the active agent is a vaccine.
28 The composition of claim 26, wherein the active agent is a protein.
29. The composition of claim 28, wherein the active agent is insulin.
30. A composition for administering an active agent to a patient, comprising: a plurality of particles, each particle comprising a polymer core encapsulating a predetermined amount of the active agent and a mucoadhesive coating disposed about the core to form a coated particle; and a pharmaceutically acceptable carrier combined with the plurality of particles, wherein the pharmaceutically acceptable carrier is edible or inhalable, wherein: the mucoadhesive coating is retained on the core through one or more of covalent interactions, electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions, a molecular weight and cross-link density of the biodegradable polymer is selected such that the polymer core will decompose in vivo in a predetermined time interval, and a fraction of the predetermined amount of the bioactive agent entering the systemic circulation during the predetermined time interval is between about 0.25% and about 25%.
31. The composition of claim 30, wherein each particle further comprises a targeting agent disposed under the mucoadhesive coating.
32. The composition of claim 31 , wherein each particle further comprises an intermediate layer disposed between the targeting agent and the mucoadhesive coating.
33. The composition of claim 32, wherein the intermediate layer comprises a first material and the mucoadhesive coating comprises a second material, wherein the first material and the second material have opposing electrostatic charges at pH 2.
34. The composition of claim 33, wherein the first material and the second material do not have opposing electrostatic charges at pH 7.4.
35. The composition of claim 32, wherein the intermediate layer comprises a biodegradable polymer.
36. The composition of claim 31, wherein the targeting agent is disposed at a surface portion of the polymer core.
37. The composition of claim 31, wherein the targeting agent is disposed at a surface portion of the polymer core and is also disposed at an interior portion of the polymer core.
38. The composition of claim 31, wherein the targeting agent is selected from nucleic acid aptamers, growth factors, hormones, cytokines, interleukins, antibodies, integrins, fibronectin receptors, p-glycoprotein receptors, and cell binding sequences.
39. The composition of claim 30, wherein the fraction of the dose of the drug entering the systemic circulation during the predetermined time interval is between about 5% and about 20%.
40. The composition of claim 30, wherein the fraction of the dose of the drug entering the systemic circulation during the predetermined time interval is between about 10% and about 15%.
41. The composition of claim 30, wherein the mucoadhesive coating is retained on the core though electrostatic interactions.
42. The composition of claim 30, wherein the polymer is derivatized with a poly (alky lene glycol).
43. The composition of claim 42 wherein the poly(alkylene glycol) is selected from poly(ethylene glycol) and poly(propylene glycol).
44. The composition of claim 30, wherein the core comprises PEGylated poly (lactic acid).
45. The composition of claim 42, wherein the poly(alkylene glycol) is carboxylated.
46. The composition of claim 42, wherein the poly(alkylene glycol) has a molecular weight between about 100 and about 7000 Daltons.
47. The composition of claim 46, wherein the poly(alkylene glycol) has a molecular weight between about 100 and about 1000 Daltons.
48. The composition of claim 46, wherein the poly(alkylene glycol) has a molecular weight between about 1000 and about 3500 Daltons.
49. The composition of claim 46, wherein the poly(alkylene glycol) has a molecular weight between about 3500 and 7000 Daltons.
50. The composition of claim 30, wherein the polymer is a biodegradable polymer or a non-biodegradable polymer.
51. The composition of claim 50, wherein the biodegradable polymer is selected from poly(arylates), poly(anhydrides), poly(hydroxy acids), polyesters, poly(ortho esters), polycarbonates, poly(propylene fumerates), poly(caprolactones), polyamides, polyphosphazenes, polyamino acids, polyethers, polyacetals, polylactides, polyhydroxyalkanoates, polyglycolides, polyketals, polyesteramides, poly(dioxanones), polyhydroxybutyrates, polyhydroxyvalyrates, polycarbonates, polyorthocarbonates, poly(vinyl pyrrolidone), biodegradable polycyanoacrylates, polyalkylene oxalates, polyalkylene succinates, poly(malic acid), poly(methyl vinyl ether), poly(ethylene imine), poly(acrylic acid), poly(maleic anhydride), biodegradable polyurethanes, polysaccharides, PEG-functionalized derivatives of the above, co-polymers of the above, adducts of the above, and mixtures of the above.
52. The composition of claim 50, wherein the non-biodegradable polymer is selected from polystyrene, polyesters, non-biodegradable polyurethanes, polyureas, poly(vinyl alcohol), polyamides, poly(tetrafluoroethylene), poly(ethylene vinyl acetate), polypropylene, polyacrylate, non-biodegradable polycyanoacrylates, non-biodegradable polyurethanes, polymethacrylate, poly(methyl methacrylate), polyethylene, polypyrrole, polyanilines, polythiophene, poly(ethylene oxide), PEG-functionalized derivatives of the above, co-polymers of the above, adducts of the above, and mixtures of the above.
53 The composition of claim 30, wherein the coating comprises chitosan, poly(lysine), poly(ethylene imine), lecithin, lectin, polycarboxylic acids, ρoly(acrylic acids), polysaccharides, hydrogels, monosaccharides, oligosaccharides, oligopeptides, polypeptides, co-polymers of the above, or any combination of the above.
54 The composition of claim 30, wherein the coating comprises chitosan, lectin, or both.
55 The composition of claim 30, wherein the coating is a block co-polymer having a mucoadhesive block and a block that is adapted to participate in an interaction selected from electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions.
56 The composition of claim 30, wherein the active agent is a biomolecule, bioactive agent, small molecule, drug, protein, vaccine, or polynucleotide.
57 The composition of claim 56, wherein the active agent is a vaccine.
58 The composition of claim 56, wherein the active agent is a protein.
59. The composition of claim 58, wherein the active agent is insulin.
60. A method for administering an active agent to a patient, comprising: orally or nasally administering to the patient a composition comprising: A) a plurality of particles, each particle comprising: a polymer core encapsulating a predetermined amount of the active agent; and a mucoadhesive coating disposed about the core to form a coated particle; and B) a pharmaceutically acceptable carrier, wherein the pharmaceutically acceptable carrier is edible or inhalable, wherein the mucoadhesive coating is retained on the core through one or more of covalent interactions, electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions, a molecular weight and cross-link density of the polymer is selected such that the polymer core will decompose in vivo in a predetermined time interval, and a fraction of the predetermined amount of the bioactive agent entering the systemic circulation during the predetermined time interval is between about 0.25% and about 25%.
61. The method of claim 60, wherein each particle further comprises a targeting agent disposed under the mucoadhesive coating.
62. The method of claim 61 , wherein each particle further comprises an intermediate layer disposed between the targeting agent and the mucoadhesive coating.
63. The method of claim 62, wherein the intermediate layer comprises a first material and the mucoadhesive coating comprises a second material, wherein the first material and the second material have opposing electrostatic charges at pH 2.
64. The method of claim 63, wherein the first material and the second material do not have opposing electrostatic charges at pH 7.4.
65. The method of claim 62, wherein the intermediate layer comprises a biodegradable polymer.
66. The method of claim 61, wherein the targeting agent is disposed at a surface portion of the polymer core.
67. The method of claim 61, wherein the targeting agent is disposed at a surface portion of the polymer core and is also disposed at an interior portion of the polymer core.
68. The method of claim 61, wherein the targeting agent is selected from nucleic acid aptamers, growth factors, hormones, cytokines, interleukins, antibodies, integrins, fibronectin receptors, p-glycoprotein receptors, and cell binding sequences.
69. The method of claim 60, wherein the fraction of the dose of the drug entering the systemic circulation during the predetermined time interval is between about 5% and about 20%.
70. The method of claim 60, wherein the fraction of the dose of the drug entering the systemic circulation during the predetermined time interval is between about 10% and about 15%.
71. The method of claim 60, wherein the polymer is derivatized with a poly(alkylene glycol).
72. The method of claim 71, wherein the poly(alkylene glycol) is selected from poly(ethylene glycol) and poly(propylene glycol).
73. The method of claim 71, wherein the core comprises PEGylated poly(lactic acid).
74. The method of claim 71, wherein the poly(alkylene glycol) is carboxylated.
75. The method of claim 71 , wherein the poly(alkylene glycol) has a molecular weight between about 100 and about 7000 Daltons.
76. The method of claim 71 , wherein the poly(alkylene glycol) has a molecular weight between about 100 and about 1000 Daltons.
77. The method of claim 71 , wherein the poly(alkylene glycol) has a molecular weight between about 1000 and about 3500 Daltons.
78. The method of claim 71, wherein the poly(alkylene glycol) has a molecular weight between about 3500 and 7000 Daltons.
79. The method of claim 60, wherein the mucoadhesive coating is retained on the core though electrostatic interactions.
80. The method of claim 60, wherein the core comprises PEGylated poly(lactic acid).
81. The method of claim 60, wherein the polymer is a biodegradable polymer or a non-biodegradable polymer.
82. The method of claim 81, wherein the biodegradable polymer is selected from poly(arylates), poly(anhydrides), poly(hydroxy acids), polyesters, poly(ortho esters), polycarbonates, poly(propylene fumerates), poly(caprolactones), polyamides, polyphosphazenes, polyamino acids, polyethers, polyacetals, polylactides, polyhydroxyalkanoates, polyglycolides, polyketals, polyesteramides, poly(dioxanones), polyhydroxybutyrates, polyhydroxyvalyrates, polycarbonates, polyorthocarbonates, polyvinyl pyrrolidone), biodegradable polycyanoacrylates, polyalkylene oxalates, polyalkylene succinates, poly(malic acid), poly(methyl vinyl ether), poly(ethylene imine), poly(acrylic acid), poly(maleic anhydride), biodegradable polyurethanes, polysaccharides, PEG-functionalized derivatives of the above, co-polymers of the above, adducts of the above, and mixtures of the above.
83. The method of claim 81 , wherein the non-biodegradable polymer is selected from polystyrene, polyesters, non-biodegradable polyurethanes, polyureas, polyvinyl alcohol), polyamides, poly(tetrafluoroethylene), poly(ethylene vinyl acetate), polypropylene, polyacrylate, non-biodegradable polycyanoacrylates, non-biodegradable polyurethanes, polymethacrylate, poly(methyl methacrylate), polyethylene, polypyrrole, polyanilines, polythiophene, poly(ethylene oxide), PEG-functionalized derivatives of the above, co-polymers of the above, adducts of the above, and mixtures of the above.
84. The method of claim 60, wherein the coating comprises chitosan, poly(lysine), poly(ethylene imine), lecithin, lectin, polycarboxylic acids, poly(acrylic acids), polysaccharides, hydrogels, monosaccharides, oligosaccharides, oligopeptides, polypeptides, co-polymers of the above, or any combination of the above.
85. The method of claim 60, wherein the coating comprises lectin, chitosan, or both.
86. The method of claim 60, wherein the coating is a block co-polymer having a mucoadhesive block and a block that is adapted to participate in an interaction selected from electrostatic interactions, affinity interactions, metal coordination, physical adsorption, host-guest interactions, and hydrogen bonding interactions.
87. The method of claim 60, wherein the active agent is a biomolecule, bioactive agent, small molecule, drug, protein, vaccine, or polynucleotide.
88. The method of claim 87, wherein the active agent is a vaccine.
89. The method of claim 87, wherein the active agent is a protein.
90. The method of claim 87, wherein the active agent is insulin.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/666,908 US9492400B2 (en) | 2004-11-04 | 2005-11-04 | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
US15/349,681 US20170112776A1 (en) | 2004-11-04 | 2016-11-11 | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US62500104P | 2004-11-04 | 2004-11-04 | |
US60/625,001 | 2004-11-04 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/666,908 A-371-Of-International US9492400B2 (en) | 2004-11-04 | 2005-11-04 | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
US15/349,681 Division US20170112776A1 (en) | 2004-11-04 | 2016-11-11 | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007001448A2 true WO2007001448A2 (en) | 2007-01-04 |
WO2007001448A3 WO2007001448A3 (en) | 2009-04-23 |
Family
ID=37595609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/040100 WO2007001448A2 (en) | 2004-11-04 | 2005-11-04 | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
Country Status (2)
Country | Link |
---|---|
US (2) | US9492400B2 (en) |
WO (1) | WO2007001448A2 (en) |
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1962867A2 (en) * | 2005-12-06 | 2008-09-03 | Tyco Healthcare Group, LP | Biocompatible surgical compositions |
WO2009148598A1 (en) * | 2008-06-05 | 2009-12-10 | President And Fellows Of Harvard College | Polymersomes, colloidosomes, liposomes, and other species associated with fluidic droplets |
US7910129B2 (en) | 2005-12-06 | 2011-03-22 | Tyco Healthcare Group Lp | Carbodiimide crosslinking of functionalized polyethylene glycols |
EP2308473A1 (en) * | 2008-07-01 | 2011-04-13 | Nitto Denko Corporation | Pharmaceutical composition containing surface-coated microparticles |
US7998466B2 (en) | 2005-12-06 | 2011-08-16 | Tyco Healthcare Group Lp | Biocompatible tissue sealants and adhesives |
US8044234B2 (en) | 2005-05-05 | 2011-10-25 | Tyco Healthcare Group Lp | Bioabsorbable surgical composition |
US8263704B2 (en) | 2008-04-23 | 2012-09-11 | Tyco Healthcare Group Lp | Bioabsorbable surgical composition |
US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
US8343497B2 (en) | 2008-10-12 | 2013-01-01 | The Brigham And Women's Hospital, Inc. | Targeting of antigen presenting cells with immunonanotherapeutics |
US8449714B2 (en) | 2005-12-08 | 2013-05-28 | Covidien Lp | Biocompatible surgical compositions |
WO2013124867A1 (en) * | 2012-02-21 | 2013-08-29 | Amrita Vishwa Vidyapeetham University | Polymer - polymer or polymer - protein core - shell nano medicine loaded with multiple drug molecules |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US8629151B2 (en) | 2009-05-27 | 2014-01-14 | Selecta Biosciences, Inc. | Immunomodulatory agent-polymeric compounds |
US8652487B2 (en) | 2011-04-29 | 2014-02-18 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for inducing regulatory B cells |
US8709483B2 (en) | 2006-03-31 | 2014-04-29 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
US8748094B2 (en) | 2008-12-19 | 2014-06-10 | President And Fellows Of Harvard College | Particle-assisted nucleic acid sequencing |
US8906381B2 (en) | 2008-10-12 | 2014-12-09 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IGG humoral response without T-cell antigen |
WO2014169256A3 (en) * | 2013-04-11 | 2014-12-11 | Vanderbilt University | Polyplexes |
US9017948B2 (en) | 2007-03-07 | 2015-04-28 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US9039273B2 (en) | 2005-03-04 | 2015-05-26 | President And Fellows Of Harvard College | Method and apparatus for forming multiple emulsions |
US9056289B2 (en) | 2009-10-27 | 2015-06-16 | President And Fellows Of Harvard College | Droplet creation techniques |
US9066978B2 (en) | 2010-05-26 | 2015-06-30 | Selecta Biosciences, Inc. | Dose selection of adjuvanted synthetic nanocarriers |
US9080014B2 (en) | 2006-05-15 | 2015-07-14 | Massachusetts Institute Of Technology | Polymers for functional particles |
US9238206B2 (en) | 2011-05-23 | 2016-01-19 | President And Fellows Of Harvard College | Control of emulsions, including multiple emulsions |
US9267937B2 (en) | 2005-12-15 | 2016-02-23 | Massachusetts Institute Of Technology | System for screening particles |
US9333179B2 (en) | 2007-04-04 | 2016-05-10 | Massachusetts Institute Of Technology | Amphiphilic compound assisted nanoparticles for targeted delivery |
US9381477B2 (en) | 2006-06-23 | 2016-07-05 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
US9388465B2 (en) | 2013-02-08 | 2016-07-12 | 10X Genomics, Inc. | Polynucleotide barcode generation |
US9410201B2 (en) | 2012-12-14 | 2016-08-09 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
WO2016153920A1 (en) * | 2015-03-20 | 2016-09-29 | Memorial Sloan Kettering Cancer Center | Mesoscale nanoparticles for selective targeting to the kidney and methods of their therapeutic use |
US9474717B2 (en) | 2007-10-12 | 2016-10-25 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US9492400B2 (en) | 2004-11-04 | 2016-11-15 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
US9689024B2 (en) | 2012-08-14 | 2017-06-27 | 10X Genomics, Inc. | Methods for droplet-based sample preparation |
US9694361B2 (en) | 2014-04-10 | 2017-07-04 | 10X Genomics, Inc. | Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same |
US9701998B2 (en) | 2012-12-14 | 2017-07-11 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9707252B2 (en) | 2005-02-09 | 2017-07-18 | Covidien Lp | Synthetic sealants |
US9737614B2 (en) | 2014-04-17 | 2017-08-22 | Memorial Sloan Kettering Cancer Center | Fucoidan nanogels and methods of their use and manufacture |
CN107121554A (en) * | 2009-09-02 | 2017-09-01 | 新泽西鲁特格斯州立大学 | Treat the composition and method of neurogenic pain |
US9797010B2 (en) | 2007-12-21 | 2017-10-24 | President And Fellows Of Harvard College | Systems and methods for nucleic acid sequencing |
US9824068B2 (en) | 2013-12-16 | 2017-11-21 | 10X Genomics, Inc. | Methods and apparatus for sorting data |
CN107582527A (en) * | 2017-10-10 | 2018-01-16 | 雷笑天 | A kind of enteral administration bioadhesive microspheres preparation and preparation method thereof |
US9951386B2 (en) | 2014-06-26 | 2018-04-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9975122B2 (en) | 2014-11-05 | 2018-05-22 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
US9994443B2 (en) | 2010-11-05 | 2018-06-12 | Selecta Biosciences, Inc. | Modified nicotinic compounds and related methods |
US10011872B1 (en) | 2016-12-22 | 2018-07-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
EP3395957A1 (en) * | 2011-04-25 | 2018-10-31 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
US10143700B2 (en) | 2013-02-19 | 2018-12-04 | Amrita Vishwa Vidyapeetham | Nanoparticle formulations for delivering multiple therapeutic agents |
US10195571B2 (en) | 2011-07-06 | 2019-02-05 | President And Fellows Of Harvard College | Multiple emulsions and techniques for the formation of multiple emulsions |
US10221442B2 (en) | 2012-08-14 | 2019-03-05 | 10X Genomics, Inc. | Compositions and methods for sample processing |
US10221436B2 (en) | 2015-01-12 | 2019-03-05 | 10X Genomics, Inc. | Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same |
US10273541B2 (en) | 2012-08-14 | 2019-04-30 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10287623B2 (en) | 2014-10-29 | 2019-05-14 | 10X Genomics, Inc. | Methods and compositions for targeted nucleic acid sequencing |
US10300136B2 (en) | 2013-12-16 | 2019-05-28 | Massachusetts Institute Of Technology | Micromolded or 3-D printed pulsatile release vaccine formulations |
US10323279B2 (en) | 2012-08-14 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10395758B2 (en) | 2013-08-30 | 2019-08-27 | 10X Genomics, Inc. | Sequencing methods |
US10400280B2 (en) | 2012-08-14 | 2019-09-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10400235B2 (en) | 2017-05-26 | 2019-09-03 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US10428326B2 (en) | 2017-01-30 | 2019-10-01 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
US10471016B2 (en) | 2013-11-08 | 2019-11-12 | President And Fellows Of Harvard College | Microparticles, methods for their preparation and use |
US10533221B2 (en) | 2012-12-14 | 2020-01-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10550429B2 (en) | 2016-12-22 | 2020-02-04 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
WO2020028909A1 (en) * | 2018-08-03 | 2020-02-06 | Brown University | Oral formulations with increased uptake |
CN110964204A (en) * | 2018-09-29 | 2020-04-07 | 南方医科大学 | PLGA microspheres of charge-loaded positive micelle/insulin compound and preparation method thereof |
US10650912B2 (en) | 2015-01-13 | 2020-05-12 | 10X Genomics, Inc. | Systems and methods for visualizing structural variation and phasing information |
US10697000B2 (en) | 2015-02-24 | 2020-06-30 | 10X Genomics, Inc. | Partition processing methods and systems |
US10745742B2 (en) | 2017-11-15 | 2020-08-18 | 10X Genomics, Inc. | Functionalized gel beads |
US10752949B2 (en) | 2012-08-14 | 2020-08-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10758520B1 (en) | 2015-05-20 | 2020-09-01 | University Of South Florida | Glutathione-coated nanoparticles for delivery of MKT-077 across the blood-brain barrier |
US10765755B1 (en) * | 2013-11-20 | 2020-09-08 | University Of South Florida | Preparation and characterization of methylene blue nanoparticles for Alzheimer's disease and other tauopathies |
US10774370B2 (en) | 2015-12-04 | 2020-09-15 | 10X Genomics, Inc. | Methods and compositions for nucleic acid analysis |
US10815525B2 (en) | 2016-12-22 | 2020-10-27 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10829815B2 (en) | 2017-11-17 | 2020-11-10 | 10X Genomics, Inc. | Methods and systems for associating physical and genetic properties of biological particles |
US10839939B2 (en) | 2014-06-26 | 2020-11-17 | 10X Genomics, Inc. | Processes and systems for nucleic acid sequence assembly |
US10854315B2 (en) | 2015-02-09 | 2020-12-01 | 10X Genomics, Inc. | Systems and methods for determining structural variation and phasing using variant call data |
US10874997B2 (en) | 2009-09-02 | 2020-12-29 | President And Fellows Of Harvard College | Multiple emulsions created using jetting and other techniques |
US10874622B2 (en) | 2015-06-24 | 2020-12-29 | Board Of Regents, The University Of Texas System | Dual assembly nanoparticles |
US10933129B2 (en) | 2011-07-29 | 2021-03-02 | Selecta Biosciences, Inc. | Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses |
US11081208B2 (en) | 2016-02-11 | 2021-08-03 | 10X Genomics, Inc. | Systems, methods, and media for de novo assembly of whole genome sequence data |
US11084036B2 (en) | 2016-05-13 | 2021-08-10 | 10X Genomics, Inc. | Microfluidic systems and methods of use |
US11123297B2 (en) | 2015-10-13 | 2021-09-21 | President And Fellows Of Harvard College | Systems and methods for making and using gel microspheres |
US11155881B2 (en) | 2018-04-06 | 2021-10-26 | 10X Genomics, Inc. | Systems and methods for quality control in single cell processing |
US11274343B2 (en) | 2015-02-24 | 2022-03-15 | 10X Genomics, Inc. | Methods and compositions for targeted nucleic acid sequence coverage |
US11401550B2 (en) | 2008-09-19 | 2022-08-02 | President And Fellows Of Harvard College | Creation of libraries of droplets and related species |
US11541017B2 (en) | 2013-12-16 | 2023-01-03 | Massachusetts Institute Of Technology | Fortified micronutrient salt formulations |
US11591637B2 (en) | 2012-08-14 | 2023-02-28 | 10X Genomics, Inc. | Compositions and methods for sample processing |
US11629344B2 (en) | 2014-06-26 | 2023-04-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US20230126744A1 (en) * | 2021-10-25 | 2023-04-27 | The Secant Group, Llc. | Polymeric delivery systems |
US11773389B2 (en) | 2017-05-26 | 2023-10-03 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US11898206B2 (en) | 2017-05-19 | 2024-02-13 | 10X Genomics, Inc. | Systems and methods for clonotype screening |
US12163191B2 (en) | 2014-06-26 | 2024-12-10 | 10X Genomics, Inc. | Analysis of nucleic acid sequences |
US12264411B2 (en) | 2017-01-30 | 2025-04-01 | 10X Genomics, Inc. | Methods and systems for analysis |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9217129B2 (en) | 2007-02-09 | 2015-12-22 | Massachusetts Institute Of Technology | Oscillating cell culture bioreactor |
WO2008124634A1 (en) | 2007-04-04 | 2008-10-16 | Massachusetts Institute Of Technology | Polymer-encapsulated reverse micelles |
US8778384B2 (en) | 2008-03-24 | 2014-07-15 | Advanced Bionutrition Corporation | Compositions and methods for encapsulating vaccines for the oral vaccination and boostering of fish and other animals |
ES2661038T3 (en) * | 2008-03-24 | 2018-03-27 | Intervet International B.V. | Encapsulated vaccines for oral and booster vaccination of fish and other animals |
JP5804453B2 (en) * | 2009-05-14 | 2015-11-04 | 国立大学法人 東京大学 | Crystalline polyol fine particles and preparation method thereof |
CA2771863A1 (en) * | 2009-08-26 | 2011-03-17 | Selecta Biosciences, Inc. | Compositions that induce t cell help |
US8865220B2 (en) * | 2010-06-14 | 2014-10-21 | Kaohsiung Medical University | Method for controlled release of parathyroid hormone from encapsulated poly(lactic-glycolic)acid microspheres |
EP2768488A4 (en) | 2011-10-19 | 2015-04-15 | Rp Scherer Technologies Llc | Two phase pharmaceutical delivery system |
JP6396288B2 (en) | 2012-04-23 | 2018-09-26 | ナノプロティアジェン, リミテッド | Polymer nanoparticles and process for their preparation |
EP3068223B1 (en) * | 2013-11-12 | 2020-01-01 | University of Utah Research Foundation | Glycol chitin based thermosensitive hydrogel for vaginal delivery of progesterone |
EP3076952A4 (en) * | 2013-12-06 | 2017-09-20 | Advanced BioNutrition Corporation | Composition for oral delivery of bioactive agents |
US11918695B2 (en) * | 2014-05-09 | 2024-03-05 | Yale University | Topical formulation of hyperbranched polymer-coated particles |
US10272019B2 (en) | 2014-05-09 | 2019-04-30 | Yale University | Topical formulation of hyperbranched polyglycerol-coated particles thereof |
CA2951707A1 (en) | 2014-06-10 | 2015-12-17 | Massachusetts Institute Of Technology | Method for gene editing |
WO2016025871A2 (en) | 2014-08-14 | 2016-02-18 | Secant Medical, Inc. | Composition, methods and devices useful for manufacturing of implantable articles |
US11596605B2 (en) * | 2016-08-01 | 2023-03-07 | The Brigham And Women's Hospital, Inc. | Particles for delivery of proteins and peptides |
KR20190082263A (en) | 2016-11-02 | 2019-07-09 | 나노프로테아젠 | Polymer nanoparticles |
KR102753928B1 (en) | 2017-03-11 | 2025-01-14 | 셀렉타 바이오사이언시즈, 인크. | Methods and compositions relating to combination therapy using synthetic nanocarriers comprising anti-inflammatory agents and immunosuppressants |
US10835489B2 (en) * | 2018-03-09 | 2020-11-17 | University Of Saskatchewan | Modified release formulations of mycophenolate mofetil |
EP3803866A4 (en) | 2018-05-24 | 2022-03-16 | Nureva Inc. | Method, apparatus and computer-readable media to manage semi-constant (persistent) sound sources in microphone pickup/focus zones |
EP3801378A4 (en) | 2018-05-24 | 2022-02-23 | Celanese EVA Performance Polymers LLC | IMPLANTABLE DEVICE FOR THE DELAYED RELEASE OF A MACROMOLECULAR DRUG COMPOUND |
JP2021524841A (en) | 2018-05-24 | 2021-09-16 | セラニーズ・イーブイエイ・パフォーマンス・ポリマーズ・エルエルシー | Implantable device for sustained release of macromolecular drug compounds |
CN108743971B (en) * | 2018-06-11 | 2021-04-13 | 西南大学 | Preparation method and application of drug-loaded polypyrrole nanoparticles |
BR112021003897A2 (en) | 2018-08-30 | 2021-05-25 | Tenaya Therapeutics, Inc. | reprogramming of cardiac cells with myocarin and asci1 |
GB201818517D0 (en) * | 2018-11-13 | 2018-12-26 | Univ Liverpool John Moores | Nanoparticles and uses thereof |
US20230137971A1 (en) | 2019-07-11 | 2023-05-04 | Tenaya Therapeutics Inc. | Cardiac cell reprogramming with micrornas and other factors |
WO2023164487A1 (en) * | 2022-02-22 | 2023-08-31 | Brown University | Compositions and methods to achieve systemic uptake of particles following oral or mucosal administration |
AU2023227803A1 (en) * | 2022-03-04 | 2024-09-05 | 2508 Biosciences Llc | Compositions and methods to promote brain health |
WO2023214285A1 (en) * | 2022-05-03 | 2023-11-09 | Alek Itsekson | Compositions comprising female reproductive hormones and methods for using thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050249799A1 (en) * | 2004-03-03 | 2005-11-10 | Spherics, Inc. | Polymeric drug delivery system for hydrophobic drugs |
Family Cites Families (391)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3766774A (en) | 1972-02-18 | 1973-10-23 | H Clark | Apparatus and method for measuring blood characteristics |
US4270537A (en) | 1979-11-19 | 1981-06-02 | Romaine Richard A | Automatic hypodermic syringe |
USRE33405E (en) | 1979-12-28 | 1990-10-23 | Research Corporation Technologies, Inc. | Purified human prostate antigen |
US4446122A (en) | 1979-12-28 | 1984-05-01 | Research Corporation | Purified human prostate antigen |
US4946929A (en) | 1983-03-22 | 1990-08-07 | Massachusetts Institute Of Technology | Bioerodible articles useful as implants and prostheses having predictable degradation rates |
US4818542A (en) * | 1983-11-14 | 1989-04-04 | The University Of Kentucky Research Foundation | Porous microspheres for drug delivery and methods for making same |
US4795436A (en) * | 1983-11-14 | 1989-01-03 | Bio-Mimetics, Inc. | Bioadhesive composition and method of treatment therewith |
US4638045A (en) * | 1985-02-19 | 1987-01-20 | Massachusetts Institute Of Technology | Non-peptide polyamino acid bioerodible polymers |
US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
US4631211A (en) | 1985-03-25 | 1986-12-23 | Scripps Clinic & Research Foundation | Means for sequential solid phase organic synthesis and methods using the same |
GB8601100D0 (en) * | 1986-01-17 | 1986-02-19 | Cosmas Damian Ltd | Drug delivery system |
US4806621A (en) * | 1986-01-21 | 1989-02-21 | Massachusetts Institute Of Technology | Biocompatible, bioerodible, hydrophobic, implantable polyimino carbonate article |
US4970299A (en) | 1986-07-03 | 1990-11-13 | Sloan-Kettering Institute For Cancer Research | Monoclonal antibodies selective for prostate cancer |
US5075109A (en) | 1986-10-24 | 1991-12-24 | Southern Research Institute | Method of potentiating an immune response |
US6024983A (en) | 1986-10-24 | 2000-02-15 | Southern Research Institute | Composition for delivering bioactive agents for immune response and its preparation |
US5736372A (en) * | 1986-11-20 | 1998-04-07 | Massachusetts Institute Of Technology | Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure |
CA1340581C (en) | 1986-11-20 | 1999-06-08 | Joseph P. Vacanti | Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices |
US5804178A (en) | 1986-11-20 | 1998-09-08 | Massachusetts Institute Of Technology | Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue |
US5116742A (en) | 1986-12-03 | 1992-05-26 | University Patents, Inc. | RNA ribozyme restriction endoribonucleases and methods |
US4987071A (en) | 1986-12-03 | 1991-01-22 | University Patents, Inc. | RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods |
US4886499A (en) | 1986-12-18 | 1989-12-12 | Hoffmann-La Roche Inc. | Portable injection appliance |
US5174930A (en) | 1986-12-31 | 1992-12-29 | Centre National De La Recherche Scientifique (Cnrs) | Process for the preparation of dispersible colloidal systems of amphiphilic lipids in the form of oligolamellar liposomes of submicron dimensions |
FR2608988B1 (en) | 1986-12-31 | 1991-01-11 | Centre Nat Rech Scient | PROCESS FOR THE PREPARATION OF COLLOIDAL DISPERSIBLE SYSTEMS OF A SUBSTANCE, IN THE FORM OF NANOPARTICLES |
GB8704027D0 (en) | 1987-02-20 | 1987-03-25 | Owen Mumford Ltd | Syringe needle combination |
US4903649A (en) | 1987-03-12 | 1990-02-27 | Brunswick Corporation | Fuel supply system with pneumatic amplifier |
US4902615A (en) * | 1987-03-27 | 1990-02-20 | Biosciences Corporation Of Texas | Detection of human cancer cells with antibodies to human cancer nucleolar antigen p120 |
DE3812289C2 (en) | 1987-04-20 | 1995-06-08 | Mitsubishi Electric Corp | Idle speed control device for an internal combustion engine |
US4839416A (en) | 1987-06-09 | 1989-06-13 | Ampad Corporation | Low tack microsphere adhesive |
US4940460A (en) | 1987-06-19 | 1990-07-10 | Bioject, Inc. | Patient-fillable and non-invasive hypodermic injection device assembly |
US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
US5069936A (en) | 1987-06-25 | 1991-12-03 | Yen Richard C K | Manufacturing protein microspheres |
US5019379A (en) | 1987-07-31 | 1991-05-28 | Massachusetts Institute Of Technology | Unsaturated polyanhydrides |
US5200181A (en) * | 1988-01-11 | 1993-04-06 | Massachusetts Institute Of Technology | Oral bilirubin therapy |
US5339163A (en) | 1988-03-16 | 1994-08-16 | Canon Kabushiki Kaisha | Automatic exposure control device using plural image plane detection areas |
US5162504A (en) | 1988-06-03 | 1992-11-10 | Cytogen Corporation | Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients |
JPH0249596A (en) | 1988-08-09 | 1990-02-19 | Masamichi Ueda | Monoclonal antibody specifically reacting with surface of human prostatic epithelial cells |
US4959219A (en) | 1988-08-15 | 1990-09-25 | Fisons Corporation | Coating barriers comprising ethyl cellulose |
FR2638359A1 (en) | 1988-11-03 | 1990-05-04 | Tino Dalto | SYRINGE GUIDE WITH ADJUSTMENT OF DEPTH DEPTH OF NEEDLE IN SKIN |
DE3872260T2 (en) | 1988-12-09 | 1992-12-24 | Bosch Gmbh Robert | METHOD FOR ACCELERATING ACCELERATION IN FUEL INJECTION SYSTEMS. |
US5334497A (en) | 1988-12-13 | 1994-08-02 | Hideki Inaba | Method of feeding a substrate into tubular bioreactor |
US4976968A (en) | 1989-02-24 | 1990-12-11 | Clinical Technologies Associates, Inc. | Anhydrous delivery systems for pharmacological agents |
US5010167A (en) * | 1989-03-31 | 1991-04-23 | Massachusetts Institute Of Technology | Poly(amide-and imide-co-anhydride) for biological application |
AU642932B2 (en) | 1989-11-06 | 1993-11-04 | Alkermes Controlled Therapeutics, Inc. | Protein microspheres and methods of using them |
DE69025334T2 (en) | 1989-11-06 | 1996-08-01 | Alkermes Inc | PRODUCTION PROCESS FOR PROTEIN MICROSPHERES |
US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
US6399754B1 (en) | 1991-12-24 | 2002-06-04 | Isis Pharmaceuticals, Inc. | Sugar modified oligonucleotides |
US6005087A (en) | 1995-06-06 | 1999-12-21 | Isis Pharmaceuticals, Inc. | 2'-modified oligonucleotides |
US5240963A (en) | 1990-01-19 | 1993-08-31 | Nova Pharmaceutical Corporation | Branched polyanhydrides |
US5496938A (en) * | 1990-06-11 | 1996-03-05 | Nexstar Pharmaceuticals, Inc. | Nucleic acid ligands to HIV-RT and HIV-1 rev |
US5270163A (en) | 1990-06-11 | 1993-12-14 | University Research Corporation | Methods for identifying nucleic acid ligands |
US6280932B1 (en) | 1990-06-11 | 2001-08-28 | Gilead Sciences, Inc. | High affinity nucleic acid ligands to lectins |
US5874218A (en) * | 1990-06-11 | 1999-02-23 | Nexstar Pharmaceuticals, Inc. | Method for detecting a target compound in a substance using a nucleic acid ligand |
US6001577A (en) | 1998-06-08 | 1999-12-14 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: photoselection of nucleic acid ligands and solution selex |
US5789163A (en) | 1990-06-11 | 1998-08-04 | Nexstar Pharmaceuticals, Inc. | Enzyme linked oligonucleotide assays (ELONAS) |
ATE318832T1 (en) | 1990-06-11 | 2006-03-15 | Gilead Sciences Inc | METHOD FOR USING NUCLEIC ACID LIGANDS |
US5853984A (en) | 1990-06-11 | 1998-12-29 | Nexstar Pharmaceuticals, Inc. | Use of nucleic acid ligands in flow cytometry |
US5567588A (en) | 1990-06-11 | 1996-10-22 | University Research Corporation | Systematic evolution of ligands by exponential enrichment: Solution SELEX |
US6716580B2 (en) | 1990-06-11 | 2004-04-06 | Somalogic, Inc. | Method for the automated generation of nucleic acid ligands |
US5763177A (en) | 1990-06-11 | 1998-06-09 | Nexstar Pharmaceuticals, Inc. | Systematic evolution of ligands by exponential enrichment: photoselection of nucleic acid ligands and solution selex |
US5660985A (en) | 1990-06-11 | 1997-08-26 | Nexstar Pharmaceuticals, Inc. | High affinity nucleic acid ligands containing modified nucleotides |
US6699474B1 (en) * | 1990-08-20 | 2004-03-02 | Erich Hugo Cerny | Vaccine and immunserum against drugs of abuse |
US5190521A (en) * | 1990-08-22 | 1993-03-02 | Tecnol Medical Products, Inc. | Apparatus and method for raising a skin wheal and anesthetizing skin |
US5527288A (en) | 1990-12-13 | 1996-06-18 | Elan Medical Technologies Limited | Intradermal drug delivery device and method for intradermal delivery of drugs |
US5175296A (en) | 1991-03-01 | 1992-12-29 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-c]quinolin-4-amines and processes for their preparation |
US5389640A (en) * | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
US5403750A (en) * | 1991-03-06 | 1995-04-04 | W. R. Grace & Co.-Conn. | Biocompatible, low protein adsorption affinity matrix |
IT1250421B (en) * | 1991-05-30 | 1995-04-07 | Recordati Chem Pharm | CONTROLLED RELEASE PHARMACEUTICAL COMPOSITION WITH BIO-ADHESIVE PROPERTIES. |
US5766635A (en) | 1991-06-28 | 1998-06-16 | Rhone-Poulenc Rorer S.A. | Process for preparing nanoparticles |
GB9118204D0 (en) * | 1991-08-23 | 1991-10-09 | Weston Terence E | Needle-less injector |
SE9102652D0 (en) | 1991-09-13 | 1991-09-13 | Kabi Pharmacia Ab | INJECTION NEEDLE ARRANGEMENT |
US5811447A (en) * | 1993-01-28 | 1998-09-22 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5328483A (en) | 1992-02-27 | 1994-07-12 | Jacoby Richard M | Intradermal injection device with medication and needle guard |
IL105325A (en) | 1992-04-16 | 1996-11-14 | Minnesota Mining & Mfg | Immunogen/vaccine adjuvant composition |
US6235313B1 (en) | 1992-04-24 | 2001-05-22 | Brown University Research Foundation | Bioadhesive microspheres and their use as drug delivery and imaging systems |
US6197346B1 (en) * | 1992-04-24 | 2001-03-06 | Brown Universtiy Research Foundation | Bioadhesive microspheres and their use as drug delivery and imaging systems |
US5383851A (en) * | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
KR940003548U (en) | 1992-08-14 | 1994-02-21 | 김형술 | Laundry dryer |
US6608201B2 (en) | 1992-08-28 | 2003-08-19 | 3M Innovative Properties Company | Process for preparing 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
FR2695563B1 (en) * | 1992-09-11 | 1994-12-02 | Pasteur Institut | Microparticles carrying antigens and their use for the induction of humoral or cellular responses. |
US5569189A (en) | 1992-09-28 | 1996-10-29 | Equidyne Systems, Inc. | hypodermic jet injector |
US5334144A (en) | 1992-10-30 | 1994-08-02 | Becton, Dickinson And Company | Single use disposable needleless injector |
US5399665A (en) * | 1992-11-05 | 1995-03-21 | Massachusetts Institute Of Technology | Biodegradable polymers for cell transplantation |
AU679041B2 (en) | 1993-01-11 | 1997-06-19 | Dana-Farber Cancer Institute | Inducing cytotoxic T lymphocyte responses |
US5512600A (en) | 1993-01-15 | 1996-04-30 | Massachusetts Institute Of Technology | Preparation of bonded fiber structures for cell implantation |
US5514378A (en) | 1993-02-01 | 1996-05-07 | Massachusetts Institute Of Technology | Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures |
US5820879A (en) | 1993-02-12 | 1998-10-13 | Access Pharmaceuticals, Inc. | Method of delivering a lipid-coated condensed-phase microparticle composition |
DE59403734D1 (en) | 1993-03-17 | 1997-09-18 | Silica Gel Gmbh | SUPERPARAMAGNETIC PARTICLES, METHOD FOR THE PRODUCTION AND USE THEREOF |
US5342781A (en) | 1993-07-15 | 1994-08-30 | Su Wei Wen W | External-loop perfusion air-lift bioreactor |
US5565215A (en) * | 1993-07-23 | 1996-10-15 | Massachusettes Institute Of Technology | Biodegradable injectable particles for imaging |
US5543158A (en) | 1993-07-23 | 1996-08-06 | Massachusetts Institute Of Technology | Biodegradable injectable nanoparticles |
EP0712421A1 (en) | 1993-07-23 | 1996-05-22 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US5744155A (en) | 1993-08-13 | 1998-04-28 | Friedman; Doron | Bioadhesive emulsion preparations for enhanced drug delivery |
US6458539B1 (en) | 1993-09-17 | 2002-10-01 | Somalogic, Inc. | Photoselection of nucleic acid ligands |
US5798340A (en) | 1993-09-17 | 1998-08-25 | Gilead Sciences, Inc. | Nucleotide analogs |
US5500161A (en) * | 1993-09-21 | 1996-03-19 | Massachusetts Institute Of Technology And Virus Research Institute | Method for making hydrophobic polymeric microparticles |
WO1995024176A1 (en) | 1994-03-07 | 1995-09-14 | Bioject, Inc. | Ampule filling device |
US5466220A (en) | 1994-03-08 | 1995-11-14 | Bioject, Inc. | Drug vial mixing and transfer device |
US5596091A (en) * | 1994-03-18 | 1997-01-21 | The Regents Of The University Of California | Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleotides |
GB9412273D0 (en) * | 1994-06-18 | 1994-08-10 | Univ Nottingham | Administration means |
US6007845A (en) | 1994-07-22 | 1999-12-28 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
US5716404A (en) * | 1994-12-16 | 1998-02-10 | Massachusetts Institute Of Technology | Breast tissue engineering |
US5599302A (en) * | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
US6030613A (en) * | 1995-01-17 | 2000-02-29 | The Brigham And Women's Hospital, Inc. | Receptor specific transepithelial transport of therapeutics |
US5786204A (en) | 1995-01-20 | 1998-07-28 | Human Genome Sciences, Inc. | Human prostatic specific reductase |
US5686113A (en) | 1995-03-21 | 1997-11-11 | Temple University Of The Commonwealth System Of Higher Education | Microcapsules of predetermined peptide(s) specificity (ies), their preparation and uses |
US5876727A (en) * | 1995-03-31 | 1999-03-02 | Immulogic Pharmaceutical Corporation | Hapten-carrier conjugates for use in drug-abuse therapy and methods for preparation of same |
US6123727A (en) | 1995-05-01 | 2000-09-26 | Massachusetts Institute Of Technology | Tissue engineered tendons and ligaments |
US6902743B1 (en) | 1995-05-22 | 2005-06-07 | The United States Of America As Represented By The Secretary Of The Army | Therapeutic treatment and prevention of infections with a bioactive material(s) encapuslated within a biodegradable-bio-compatable polymeric matrix |
US5730723A (en) | 1995-10-10 | 1998-03-24 | Visionary Medical Products Corporation, Inc. | Gas pressured needle-less injection device and method |
US20020150578A1 (en) | 1995-06-05 | 2002-10-17 | Human Genome Sciences, Inc. | Human prostatic specific reductase |
US5843732A (en) | 1995-06-06 | 1998-12-01 | Nexstar Pharmaceuticals, Inc. | Method and apparatus for determining consensus secondary structures for nucleic acid sequences |
US7422902B1 (en) | 1995-06-07 | 2008-09-09 | The University Of British Columbia | Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer |
US5879712A (en) * | 1995-06-07 | 1999-03-09 | Sri International | Method for producing drug-loaded microparticles and an ICAM-1 dosage form so produced |
AU5931896A (en) | 1995-06-07 | 1996-12-30 | Advanced Tissue Sciences, Inc. | Apparatus and method for sterilizing, seeding, culturing, st oring, shipping, and testing replacement cartilage tissue co nstructs |
WO1997004747A1 (en) | 1995-07-27 | 1997-02-13 | Dunn James M | Drug delivery systems for macromolecular drugs |
US6096344A (en) | 1995-07-28 | 2000-08-01 | Advanced Polymer Systems, Inc. | Bioerodible porous compositions |
US5622699A (en) | 1995-09-11 | 1997-04-22 | La Jolla Cancer Research Foundation | Method of identifying molecules that home to a selected organ in vivo |
US6395770B1 (en) | 1995-10-26 | 2002-05-28 | Baker Norton Pharmaceuticals, Inc. | Method and compositions for administering taxanes orally to human patients |
US6095148A (en) | 1995-11-03 | 2000-08-01 | Children's Medical Center Corporation | Neuronal stimulation using electrically conducting polymers |
FR2742357B1 (en) | 1995-12-19 | 1998-01-09 | Rhone Poulenc Rorer Sa | STABILIZED AND FILTRABLE NANOPARTICLES UNDER STERILE CONDITIONS |
US5893397A (en) | 1996-01-12 | 1999-04-13 | Bioject Inc. | Medication vial/syringe liquid-transfer apparatus |
US5902599A (en) | 1996-02-20 | 1999-05-11 | Massachusetts Institute Of Technology | Biodegradable polymer networks for use in orthopedic and dental applications |
GB9607549D0 (en) | 1996-04-11 | 1996-06-12 | Weston Medical Ltd | Spring-powered dispensing device |
US6136311A (en) * | 1996-05-06 | 2000-10-24 | Cornell Research Foundation, Inc. | Treatment and diagnosis of cancer |
US5898031A (en) | 1996-06-06 | 1999-04-27 | Isis Pharmaceuticals, Inc. | Oligoribonucleotides for cleaving RNA |
US20020106647A1 (en) | 1996-07-24 | 2002-08-08 | Segal Andrew H. | Nucleic acid compositions and methods of introducing nucleic acids into cells |
US5922695A (en) | 1996-07-26 | 1999-07-13 | Gilead Sciences, Inc. | Antiviral phosphonomethyoxy nucleotide analogs having increased oral bioavarilability |
US6605713B1 (en) | 1996-08-30 | 2003-08-12 | Jens Peter Furste | Mirror-symmetrical selection and evolution of nucleic acids |
US6043224A (en) * | 1996-09-05 | 2000-03-28 | The Massachusetts Institute Of Technology | Compositions and methods for treatment of neurological disorders and neurodegenerative diseases |
US6368598B1 (en) | 1996-09-16 | 2002-04-09 | Jcrt Radiation Oncology Support Services, Inc. | Drug complex for treatment of metastatic prostate cancer |
US6120666A (en) | 1996-09-26 | 2000-09-19 | Ut-Battelle, Llc | Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same |
ATE367159T1 (en) | 1996-10-25 | 2007-08-15 | Minnesota Mining & Mfg | COMPOUNDS THAT ALTER THE IMMUNE RESPONSE FOR THE TREATMENT OF TH2-MEDIATED AND RELATED DISEASES |
US7759520B2 (en) * | 1996-11-27 | 2010-07-20 | University Of Tennessee Research Foundation | Synthesis of selective androgen receptor modulators |
US6995284B2 (en) * | 2000-08-24 | 2006-02-07 | The University Of Tennessee Research Foundation | Synthesis of selective androgen receptor modulators |
US6492554B2 (en) | 2000-08-24 | 2002-12-10 | The University Of Tennessee Research Corporation | Selective androgen receptor modulators and methods of use thereof |
US7518013B2 (en) | 2000-08-24 | 2009-04-14 | University Of Tennessee Research Foundation | Selective androgen receptor modulators |
US7205437B2 (en) | 1996-11-27 | 2007-04-17 | University Of Tennessee Research Foundation | Selective androgen receptor modulators |
US6127533A (en) | 1997-02-14 | 2000-10-03 | Isis Pharmaceuticals, Inc. | 2'-O-aminooxy-modified oligonucleotides |
EP1019071A4 (en) | 1997-05-15 | 2003-07-30 | Cytogen Corp | Random peptides that bind to gastro-intestinal tract (git) transport receptors and related methods |
US5993412A (en) | 1997-05-19 | 1999-11-30 | Bioject, Inc. | Injection apparatus |
GB9713980D0 (en) | 1997-07-03 | 1997-09-10 | Danbiosyst Uk | New conjugates |
US5837752A (en) | 1997-07-17 | 1998-11-17 | Massachusetts Institute Of Technology | Semi-interpenetrating polymer networks |
US6190913B1 (en) * | 1997-08-12 | 2001-02-20 | Vijay Singh | Method for culturing cells using wave-induced agitation |
US7001996B1 (en) | 1997-08-21 | 2006-02-21 | The United States Of America As Represented By The Secretary Of The Army | Enzymatic template polymerization |
US6451527B1 (en) | 1997-08-29 | 2002-09-17 | Selective Genetics, Inc. | Methods using genetic package display for selecting internalizing ligands for gene delivery |
US20040136961A1 (en) | 1997-10-09 | 2004-07-15 | Ales Prokop | Nanoparticulate composition for efficient gene transfer |
DE19745950A1 (en) | 1997-10-17 | 1999-04-22 | Dds Drug Delivery Service Ges | Drug carrier particle for site specific drug delivery, especially to CNS |
AU1095799A (en) | 1997-10-17 | 1999-05-10 | Philip L. Fuchs | Folic acid derivatives |
AU734476B2 (en) * | 1997-11-05 | 2001-06-14 | Baylor College Of Medicine | Sequences for targeting metastatic cells |
US6254890B1 (en) | 1997-12-12 | 2001-07-03 | Massachusetts Institute Of Technology | Sub-100nm biodegradable polymer spheres capable of transporting and releasing nucleic acids |
US6242246B1 (en) | 1997-12-15 | 2001-06-05 | Somalogic, Inc. | Nucleic acid ligand diagnostic Biochip |
US6506559B1 (en) * | 1997-12-23 | 2003-01-14 | Carnegie Institute Of Washington | Genetic inhibition by double-stranded RNA |
IT1298087B1 (en) | 1998-01-08 | 1999-12-20 | Fiderm S R L | DEVICE FOR CHECKING THE PENETRATION DEPTH OF A NEEDLE, IN PARTICULAR APPLICABLE TO A SYRINGE FOR INJECTIONS |
US6686446B2 (en) * | 1998-03-19 | 2004-02-03 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
US6506577B1 (en) * | 1998-03-19 | 2003-01-14 | The Regents Of The University Of California | Synthesis and crosslinking of catechol containing copolypeptides |
US6632922B1 (en) | 1998-03-19 | 2003-10-14 | The Regents Of The University Of California | Methods and compositions for controlled polypeptide synthesis |
WO1999055715A2 (en) | 1998-04-28 | 1999-11-04 | Galenica Pharmaceuticals, Inc. | Polysaccharide-antigen conjugates |
SE9801923D0 (en) | 1998-05-29 | 1998-05-29 | Independent Pharmaceutical Ab | Nicotine vaccine |
DE19827164A1 (en) * | 1998-06-18 | 1999-12-23 | Merck Patent Gmbh | Catalytic titanium (IV) oxide mediated geminal symmetrical dialkylation of carboxamides |
US6265608B1 (en) | 1998-06-30 | 2001-07-24 | Eastman Chemical Company | Method of purifying aromatic dicarboxylic acids |
US6395718B1 (en) | 1998-07-06 | 2002-05-28 | Guilford Pharmaceuticals Inc. | Pharmaceutical compositions and methods of inhibiting angiogenesis using naaladase inhibitors |
US6429200B1 (en) | 1998-07-17 | 2002-08-06 | Mirus Corporation | Reverse micelles for delivery of nucleic acids |
DE19839214C1 (en) | 1998-08-28 | 2000-05-25 | Aventis Res & Tech Gmbh & Co | Process for the production of spherical microparticles with a smooth surface which consist wholly or partly of at least one water-insoluble linear polysaccharide, and microparticles obtainable by this process and their use |
CN1325115C (en) | 1998-10-05 | 2007-07-11 | 法麦克萨有限公司 | Methods for therapeutic vaccination |
AU6419899A (en) | 1998-10-09 | 2000-05-01 | Regents Of The University Of Michigan, The | Hydrogels and water soluble polymeric carriers for drug delivery |
US6428814B1 (en) | 1999-10-08 | 2002-08-06 | Elan Pharma International Ltd. | Bioadhesive nanoparticulate compositions having cationic surface stabilizers |
US7521068B2 (en) | 1998-11-12 | 2009-04-21 | Elan Pharma International Ltd. | Dry powder aerosols of nanoparticulate drugs |
US6232082B1 (en) | 1998-12-01 | 2001-05-15 | Nabi | Hapten-carrier conjugates for treating and preventing nicotine addiction |
US6403779B1 (en) | 1999-01-08 | 2002-06-11 | Isis Pharmaceuticals, Inc. | Regioselective synthesis of 2′-O-modified nucleosides |
PL349773A1 (en) | 1999-01-08 | 2002-09-09 | 3M Innovative Properties Co | Formulations comprising imiquimod or other immune response modifiers for treating mucosal conditions |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
US20030054360A1 (en) * | 1999-01-19 | 2003-03-20 | Larry Gold | Method and apparatus for the automated generation of nucleic acid ligands |
DE19956568A1 (en) | 1999-01-30 | 2000-08-17 | Roland Kreutzer | Method and medicament for inhibiting the expression of a given gene |
JP2002536640A (en) | 1999-02-03 | 2002-10-29 | アクララ バイオサイエンシーズ, インコーポレイテッド | Multi-channel control for microfluidic introduction |
US6558951B1 (en) | 1999-02-11 | 2003-05-06 | 3M Innovative Properties Company | Maturation of dendritic cells with immune response modifying compounds |
US6110462A (en) | 1999-03-03 | 2000-08-29 | The Scripps Research Institute | Enzymatic DNA molecules that contain modified nucleotides |
GB9905136D0 (en) | 1999-03-06 | 1999-04-28 | Danbiosyst Uk | Surface modification of lamellar particles |
ES2254167T3 (en) | 1999-04-08 | 2006-06-16 | The Johns Hopkins University | SPECIFIC INDUCTION OF PERIPHERAL IMMUNOLOGICAL TOLERANCE ANTIGENS. |
US6943235B1 (en) * | 1999-04-12 | 2005-09-13 | Agensys, Inc. | Transmembrane protein expressed in prostate cancer |
US6444782B1 (en) | 1999-04-26 | 2002-09-03 | Eastman Chemical Company | Process for making pre-gels for a cross-linked branched polyester |
US6528499B1 (en) * | 2000-04-27 | 2003-03-04 | Georgetown University | Ligands for metabotropic glutamate receptors and inhibitors of NAALADase |
US20020102613A1 (en) | 1999-05-18 | 2002-08-01 | Hoogenboom Hendricus Renerus Jacobus Mattheus | Novel Fab fragment libraries and methods for their use |
AU780474B2 (en) | 1999-06-16 | 2005-03-24 | Boston Biomedical Research Institute Incorporated | Immunological control of beta-amyloid levels in vivo |
US6506887B1 (en) | 1999-07-29 | 2003-01-14 | Somalogic, Incorporated | Conditional-selex |
DE60045201D1 (en) * | 1999-08-12 | 2010-12-16 | Agensys Inc | C-type lectin transmembrane antigen expressed in human prostate cancer, and uses of this antigen |
US20020009466A1 (en) * | 1999-08-31 | 2002-01-24 | David J. Brayden | Oral vaccine compositions |
US7429639B2 (en) | 1999-09-29 | 2008-09-30 | Ludwig Institute For Cancer Research | SSX-2 peptides presented by HLA class II molecules |
CA2321321A1 (en) | 1999-09-30 | 2001-03-30 | Isotis B.V. | Polymers loaded with bioactive agents |
US6790631B1 (en) | 1999-10-05 | 2004-09-14 | Agensys, Inc. | G protein-coupled receptor up-regulated in prostate cancer and uses thereof |
US7030228B1 (en) | 1999-11-15 | 2006-04-18 | Miltenyi Biotec Gmbh | Antigen-binding fragments specific for dendritic cells, compositions and methods of use thereof antigens recognized thereby and cells obtained thereby |
AU2463701A (en) | 1999-12-29 | 2001-07-09 | Nanodelivery, Inc. | Drug delivery system exhibiting permeability control |
WO2001051665A2 (en) | 2000-01-13 | 2001-07-19 | Nanosphere Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
US20050020525A1 (en) * | 2002-02-20 | 2005-01-27 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA) |
US8202979B2 (en) | 2002-02-20 | 2012-06-19 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid |
US20050032733A1 (en) * | 2001-05-18 | 2005-02-10 | Sirna Therapeutics, Inc. | RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA) |
US7534417B2 (en) | 2000-02-24 | 2009-05-19 | Agensys, Inc. | 103P2D6: tissue specific protein highly expressed in various cancers |
SE0000933D0 (en) | 2000-03-21 | 2000-03-21 | Independent Pharmaceutica Ab | Method of producing 6-substituted (S) -nicotine derivatives and intermediate compounds |
NZ522045A (en) | 2000-03-30 | 2007-05-31 | Whitehead Biomedical Inst | RNA sequence-specific mediators of RNA interference |
US7217770B2 (en) | 2000-05-17 | 2007-05-15 | Samyang Corporation | Stable polymeric micelle-type drug composition and method for the preparation thereof |
US6610713B2 (en) | 2000-05-23 | 2003-08-26 | North Shore - Long Island Jewish Research Institute | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
US20020151004A1 (en) | 2000-07-24 | 2002-10-17 | Roger Craig | Delivery vehicles and methods for using the same |
US6838484B2 (en) * | 2000-08-24 | 2005-01-04 | University Of Tennessee Research Foundation | Formulations comprising selective androgen receptor modulators |
US20040260108A1 (en) | 2001-06-25 | 2004-12-23 | Dalton James T. | Metabolites of selective androgen receptor modulators and methods of use thereof |
US7026500B2 (en) * | 2000-08-24 | 2006-04-11 | University Of Tennessee Research Foundation | Halogenated selective androgen receptor modulators and methods of use thereof |
US20020173495A1 (en) | 2000-08-24 | 2002-11-21 | Dalton James T. | Selective androgen receptor modulators and methods of use thereof |
US20030232792A1 (en) | 2000-08-24 | 2003-12-18 | Dalton James T. | Selective androgen receptor modulators and methods of use thereof |
ES2321933T3 (en) | 2000-08-24 | 2009-06-15 | University Of Tennessee Research Foundation | SELECTIVE MODULATORS OF THE ANDROGEN RECEIVER AND METHODS OF USE OF THE SAME. |
US6998500B2 (en) * | 2000-08-24 | 2006-02-14 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and methods of use thereof |
US6503538B1 (en) | 2000-08-30 | 2003-01-07 | Cornell Research Foundation, Inc. | Elastomeric functional biodegradable copolyester amides and copolyester urethanes |
US6376190B1 (en) | 2000-09-22 | 2002-04-23 | Somalogic, Inc. | Modified SELEX processes without purified protein |
US20040067196A1 (en) | 2000-10-11 | 2004-04-08 | Brunke Karen J. | Targeted therapeutic lipid constructs |
CA2425605A1 (en) | 2000-10-16 | 2002-04-25 | Gilead Sciences, Inc. | Nucleic acid ligands to the prostate specific membrane antigen |
US6589562B1 (en) | 2000-10-25 | 2003-07-08 | Salvona L.L.C. | Multicomponent biodegradable bioadhesive controlled release system for oral care products |
SI1407044T2 (en) | 2000-12-01 | 2018-03-30 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Small RNA molecules that mediate RNA interference |
US6623761B2 (en) | 2000-12-22 | 2003-09-23 | Hassan Emadeldin M. | Method of making nanoparticles of substantially water insoluble materials |
TWI246524B (en) | 2001-01-19 | 2006-01-01 | Shearwater Corp | Multi-arm block copolymers as drug delivery vehicles |
DE60214134T2 (en) | 2001-02-07 | 2007-07-19 | Beth Israel Deaconess Medical Center, Boston | MODIFIED PSMA LIGANDS AND THEIR USE |
US7097837B2 (en) | 2001-02-19 | 2006-08-29 | Pharmexa A/S | Synthetic vaccine agents |
US7326564B2 (en) | 2001-02-20 | 2008-02-05 | St. Jude Medical, Inc. | Flow system for medical device evaluation and production |
ES2234723T3 (en) | 2001-03-22 | 2005-07-01 | Cognis Iberia, S.L. | NANOCAPSULES |
WO2002076394A2 (en) | 2001-03-22 | 2002-10-03 | The Ohio State University Research Foundation | Enzyme-based anti-cancer compositions and methods |
WO2002076469A1 (en) | 2001-03-27 | 2002-10-03 | Baylor College Of Medicine | A novel technology of intracellular delivery of dna oligonucleotides to improve drug activity |
CA2747159A1 (en) | 2001-05-07 | 2002-11-07 | Queen's University At Kingston | Biodegradable elastomer and method of preparing same |
US20030175950A1 (en) | 2001-05-29 | 2003-09-18 | Mcswiggen James A. | RNA interference mediated inhibition of HIV gene expression using short interfering RNA |
EP2545937A1 (en) | 2001-06-05 | 2013-01-16 | The Regents Of The University Of Michigan | Nanoemulsion vaccines |
EP1264603B8 (en) | 2001-06-10 | 2010-03-03 | Noxxon Pharma AG | Use of L-polynucleotides for in vivo imaging |
US20030022868A1 (en) * | 2001-06-25 | 2003-01-30 | Dalton James T. | Selective androgen receptor modulators and methods of use thereof |
AU2775402A (en) * | 2001-06-29 | 2003-01-02 | Medimolecular Pty Ltd | Nucleic acid ligands to complex targets |
US7863014B2 (en) | 2001-07-02 | 2011-01-04 | Oriental Yeast Co., Ltd. | Process for preparing nicotinamide adenine dinucleotide phosphate(NADP) |
BR0103887C1 (en) | 2001-07-17 | 2005-11-08 | Univ Minas Gerais | Immunogenic compositions containing biodegradable microspheres encapsulating antigens, gene vectors and adjuvants |
EP1279404A1 (en) | 2001-07-26 | 2003-01-29 | Istituto Superiore di Sanità | Use of HIV-1 tat, fragments or derivatives thereof, to target or to activate antigen-presenting cells, to deliver cargo molecules for vaccination or to treat other diseases |
CA2456328C (en) | 2001-08-07 | 2015-05-26 | Dynavax Technologies Corporation | Complexes of a short cpg-containing oligonucleotide bound to the surface of a solid phase microcarrier and methods for use thereof |
ATE500315T1 (en) | 2001-08-16 | 2011-03-15 | Statoil Asa | METHOD OF FERRYING |
US20060004042A1 (en) * | 2001-08-23 | 2006-01-05 | Dalton James T | Formulations comprising selective androgen receptor modulators |
US6818732B2 (en) | 2001-08-30 | 2004-11-16 | The Regents Of The University Of California | Transition metal initiators for controlled poly (beta-peptide) synthesis from beta-lactam monomers |
DE60234375D1 (en) | 2001-09-14 | 2009-12-24 | Cytos Biotechnology Ag | PACKAGING IMMUNSTIMULATING CpG IN VIRUS LIKE PARTICLES: PREPARATION METHOD AND USE |
WO2003028657A2 (en) | 2001-10-03 | 2003-04-10 | The Johns Hopkins University | Compositions for oral gene therapy and methods of using same |
US20030134810A1 (en) | 2001-10-09 | 2003-07-17 | Chris Springate | Methods and compositions comprising biocompatible materials useful for the administration of therapeutic agents |
BRPI0213226B1 (en) | 2001-10-10 | 2016-03-01 | Pf Medicament | process of preparing a pharmaceutical composition in the form of extended release microspheres of a water soluble active ingredient, and, microspheres |
CN1303155C (en) | 2001-10-18 | 2007-03-07 | 株式会社三养社 | Polymeric michelle composition with improved stability |
JP4425536B2 (en) | 2001-10-30 | 2010-03-03 | 株式会社吉野工業所 | Container, thermoforming apparatus and thermoforming method thereof |
US6881746B2 (en) * | 2001-12-03 | 2005-04-19 | Novo Nordick A/S | Glucagon antagonists/inverse agonists |
AU2002363998A1 (en) | 2001-12-15 | 2003-06-30 | Spherics, Inc. | Bioadhesive drug delivery system with enhanced gastric retention |
US20030235619A1 (en) | 2001-12-21 | 2003-12-25 | Christine Allen | Polymer-lipid delivery vehicles |
US7148250B2 (en) | 2001-12-28 | 2006-12-12 | Guilford Pharmaceuticals Inc. | Indoles as NAALADase inhibitors |
US7408079B2 (en) * | 2002-01-10 | 2008-08-05 | The Johns Hopkins University | Imaging agents and methods of imaging NAALADase or PSMA |
US6720008B2 (en) | 2002-01-22 | 2004-04-13 | Pr Pharmaceuticals, Inc. | Composition and method for the encapsulation of water-soluble molecules into nanoparticles |
US8088388B2 (en) | 2002-02-14 | 2012-01-03 | United Biomedical, Inc. | Stabilized synthetic immunogen delivery system |
US20030232013A1 (en) | 2002-02-22 | 2003-12-18 | Gary Sieckman | Therapeutic and diagnostic targeting of cancers cells with tumor homing peptides |
CA2476769A1 (en) | 2002-02-22 | 2003-09-04 | Insert Therapeutics, Inc. | Carbohydrate-modified polymers, compositions and uses related thereto |
US7344700B2 (en) * | 2002-02-28 | 2008-03-18 | University Of Tennessee Research Corporation | Radiolabeled selective androgen receptor modulators and their use in prostate cancer imaging and therapy |
AU2003217303A1 (en) | 2002-02-28 | 2003-09-16 | University Of Tennessee Research Foundation | Haloacetamide and azide substituted compounds and methods of use thereof |
ES2528764T3 (en) | 2002-02-28 | 2015-02-12 | University Of Tennessee Research Foundation | Multi-substituted selective androgen receptor modulators and methods of use thereof |
US7803970B2 (en) * | 2002-02-28 | 2010-09-28 | University Of Tennessee Research Foundation | Multi-substitued selective androgen receptor modulators and methods of use thereof |
AU2003217912A1 (en) | 2002-03-01 | 2003-09-16 | Xencor | Antibody optimization |
US20030228603A1 (en) | 2002-04-05 | 2003-12-11 | Cload Sharon T. | Compositions selective for caffeine or aspartame and methods of using same |
US20060165987A1 (en) | 2002-04-05 | 2006-07-27 | Patrice Hildgen | Stealthy polymeric biodegradable nanospheres and uses thereof |
US7285289B2 (en) * | 2002-04-12 | 2007-10-23 | Nagy Jon O | Nanoparticle vaccines |
EP1499895B1 (en) | 2002-04-22 | 2008-05-07 | University Of Florida | Functionalized nanoparticles and methods of use |
JP2003342168A (en) * | 2002-05-24 | 2003-12-03 | Nano Career Kk | Method for producing polymer micelle preparation containing drug for injection |
US6819165B2 (en) | 2002-05-30 | 2004-11-16 | Analog Devices, Inc. | Voltage regulator with dynamically boosted bias current |
US20050214378A1 (en) | 2002-06-11 | 2005-09-29 | Ethypharm | Stealth lipid nanocapsules, methods for the preparation thereof and use thereof as a carrier for active principle(s) |
US7741371B2 (en) | 2002-06-17 | 2010-06-22 | University Of Tennessee Research Foundation | Selective androgen receptor modulators and methods of use thereof |
WO2003106401A1 (en) | 2002-06-17 | 2003-12-24 | University Of Tennessee Research Foundation | N-bridged selective androgen receptor modulators and methods of use thereof |
EP1552002A4 (en) * | 2002-06-18 | 2006-02-08 | Archemix Corp | Aptamer-toxin molecules and methods for using same |
US7767803B2 (en) * | 2002-06-18 | 2010-08-03 | Archemix Corp. | Stabilized aptamers to PSMA and their use as prostate cancer therapeutics |
US20040092470A1 (en) | 2002-06-18 | 2004-05-13 | Leonard Sherry A. | Dry powder oligonucleotide formualtion, preparation and its uses |
EP1523334A2 (en) | 2002-07-18 | 2005-04-20 | Cytos Biotechnology AG | Hapten-carrier conjugates and uses thereof |
WO2004032829A2 (en) | 2002-08-15 | 2004-04-22 | 3M Innovative Properties Company | Immunostimulatory compositions and methods of stimulating an immune response |
US6875605B1 (en) | 2002-08-21 | 2005-04-05 | Florida State University Research Foundation, Inc. | Modular cell culture bioreactor and associated methods |
US7488792B2 (en) * | 2002-08-28 | 2009-02-10 | Burnham Institute For Medical Research | Collagen-binding molecules that selectively home to tumor vasculature and methods of using same |
EP1556506A1 (en) | 2002-09-19 | 2005-07-27 | The Chancellor, Masters And Scholars Of The University Of Oxford | Molecular arrays and single molecule detection |
US7008411B1 (en) * | 2002-09-30 | 2006-03-07 | Advanced Cardiovascular Systems, Inc. | Method and apparatus for treating vulnerable plaque |
AU2003287077B2 (en) | 2002-10-15 | 2007-09-20 | University Of Tennessee Research Foundation | Methylene-bridged selective androgen receptor modulators and methods of use thereof |
US20040087810A1 (en) * | 2002-10-23 | 2004-05-06 | Dalton James T. | Irreversible selective androgen receptor modulators and methods of use thereof |
EP1578419A4 (en) | 2002-12-30 | 2008-11-12 | 3M Innovative Properties Co | Immunostimulatory combinations |
WO2004062612A2 (en) | 2003-01-13 | 2004-07-29 | Gtx Inc. | Large-scale synthesis of selective androgen receptor modulators |
US20040156846A1 (en) | 2003-02-06 | 2004-08-12 | Triton Biosystems, Inc. | Therapy via targeted delivery of nanoscale particles using L6 antibodies |
WO2004071459A2 (en) | 2003-02-13 | 2004-08-26 | 3M Innovative Properties Company | Methods and compositions related to irm compounds and toll-like receptor 8 |
US8575110B2 (en) | 2003-02-17 | 2013-11-05 | Alpha-O Peptides G | Peptidic nanoparticles as drug delivery and antigen display systems |
US20040167103A1 (en) | 2003-02-24 | 2004-08-26 | Dalton James T. | Haloacetamide and azide substituted compounds and methods of use thereof |
US7871607B2 (en) | 2003-03-05 | 2011-01-18 | Halozyme, Inc. | Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases |
US9028863B2 (en) | 2003-04-25 | 2015-05-12 | The Penn State Research Foundation | Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds |
US20050008572A1 (en) | 2003-04-29 | 2005-01-13 | Ales Prokop | Nanoparticular tumor targeting and therapy |
US7731967B2 (en) | 2003-04-30 | 2010-06-08 | Novartis Vaccines And Diagnostics, Inc. | Compositions for inducing immune responses |
WO2004103159A2 (en) | 2003-05-14 | 2004-12-02 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for modulating endometrium |
GB0312309D0 (en) | 2003-05-29 | 2003-07-02 | Gaslini Children S Hospital G | Targeted liposome |
US20060239907A1 (en) | 2003-06-03 | 2006-10-26 | The Trustees Of The University Of Pennsylvania | Stealthy nano agents |
US7727969B2 (en) | 2003-06-06 | 2010-06-01 | Massachusetts Institute Of Technology | Controlled release nanoparticle having bound oligonucleotide for targeted delivery |
US7149574B2 (en) | 2003-06-09 | 2006-12-12 | Palo Alto Investors | Treatment of conditions through electrical modulation of the autonomic nervous system |
PL1635863T3 (en) | 2003-06-17 | 2011-01-31 | Mannkind Corp | Compositions to elicit, enhance and sustain immune responses against mhc class i-restricted epitopes, for prophylactic or therapeutic purposes |
US7336744B2 (en) * | 2003-06-25 | 2008-02-26 | Interdigital Technology Corporation | Digital baseband receiver including a cross-talk compensation module for suppressing interference between real and imaginary signal component paths |
WO2005012407A2 (en) | 2003-06-30 | 2005-02-10 | Canji, Inc. | Polymer encapsulation of adenoviruses |
US20050256071A1 (en) | 2003-07-15 | 2005-11-17 | California Institute Of Technology | Inhibitor nucleic acids |
AU2004257373B2 (en) | 2003-07-16 | 2011-03-24 | Arbutus Biopharma Corporation | Lipid encapsulated interfering RNA |
US7362068B2 (en) * | 2003-07-23 | 2008-04-22 | Asmo Co., Ltd. | Closing member control system |
CN1860363B (en) | 2003-08-28 | 2011-12-28 | 赛路拉公司 | Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network |
WO2005021730A2 (en) | 2003-09-02 | 2005-03-10 | University Of North Carolina At Chapel Hill | Biodegradable polymer-ligand conjugates and their uses in isolation of cellular subpopulations and in cryopreservation, culture and transplantation of cells |
JP5097400B2 (en) * | 2003-09-03 | 2012-12-12 | デンドリセラピューティクス、インク. | Combined vaccine |
US7329742B2 (en) | 2003-09-04 | 2008-02-12 | The Regents Of The University Of California | Aptamers and methods for their in vitro selection and uses thereof |
US7744861B2 (en) | 2003-09-17 | 2010-06-29 | Nektar Therapeutics | Multi-arm polymer prodrugs |
CA2558916C (en) | 2003-10-20 | 2009-09-22 | William Marsh Rice University | Method to fabricate microcapsules from polymers and charged nanoparticles |
US8129506B2 (en) | 2003-10-24 | 2012-03-06 | Genzyme Corporation | Modulation of the interaction of MUC1 with MUC1 ligands |
EP1687663A4 (en) | 2003-10-28 | 2010-03-31 | Arryx Inc | System and method for manipulating and processing materials using holographic optical trapping |
WO2005055949A2 (en) | 2003-12-09 | 2005-06-23 | The Children's Hospital Of Philadelphia | Sustained release preparations composed of biocompatible complex microparticles |
KR101376715B1 (en) * | 2003-12-19 | 2014-03-27 | 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 | Methods for fabricating isolated micro- and nano- structures using soft or imprint lithography |
US7846412B2 (en) | 2003-12-22 | 2010-12-07 | Emory University | Bioconjugated nanostructures, methods of fabrication thereof, and methods of use thereof |
WO2005062977A2 (en) | 2003-12-23 | 2005-07-14 | The Regents Of The University Of California | Prostate cancer specific internalizing human antibodies |
WO2005065418A2 (en) | 2003-12-31 | 2005-07-21 | Board Of Regents, The University Of Texas System | Compositions and methods of use of targeting peptides for diagnosis and therapy |
US8957034B2 (en) | 2004-01-28 | 2015-02-17 | Johns Hopkins University | Drugs and gene carrier particles that rapidly move through mucous barriers |
US20070053845A1 (en) * | 2004-03-02 | 2007-03-08 | Shiladitya Sengupta | Nanocell drug delivery system |
WO2005110438A2 (en) | 2004-04-15 | 2005-11-24 | Massachusetts Institute Of Technology | Methods and products related to the intracellular delivery of polysaccharides |
US20050239134A1 (en) | 2004-04-21 | 2005-10-27 | Board Of Regents, The University Of Texas System | Combinatorial selection of phosphorothioate single-stranded DNA aptamers for TGF-beta-1 protein |
AU2005325262B2 (en) | 2004-04-27 | 2011-08-11 | Alnylam Pharmaceuticals, Inc. | Single-stranded and double-stranded oligonucleotides comprising a 2-arylpropyl moiety |
ES2246695B1 (en) | 2004-04-29 | 2007-05-01 | Instituto Cientifico Y Tecnologico De Navarra, S.A. | STIMULATING COMPOSITION OF THE IMMUNE RESPONSE THAT INCLUDES NANOPARTICLES BASED ON A COPYLIMER OF METHYL VINYL ETER AND MALEIC ANHYDRIDE. |
AU2005244851B2 (en) | 2004-05-12 | 2010-08-26 | Baxter Healthcare S.A. | Oligonucleotide-containing microspheres, their use for the manufacture of a medicament for treating diabetes type 1 |
US8821859B2 (en) | 2004-05-19 | 2014-09-02 | Agency For Science, Technology And Research | Methods and articles for the delivery of therapeutic agents |
CN100475837C (en) | 2004-06-11 | 2009-04-08 | 北京键凯科技有限公司 | Branched polyglycol-amino acid oligopeptide and active derivative and medicinal composition thereof |
US20080124400A1 (en) | 2004-06-24 | 2008-05-29 | Angiotech International Ag | Microparticles With High Loadings Of A Bioactive Agent |
AU2005326322B2 (en) * | 2004-07-01 | 2009-02-05 | Yale University | Targeted and high density drug loaded polymeric materials |
US20060258628A1 (en) | 2004-07-20 | 2006-11-16 | Steiner Mitchell S | Compositions comprising 5-alpha reductase inhibitors, and SARMs and methods of use thereof |
AU2005267028A1 (en) * | 2004-07-22 | 2006-02-02 | Genentech, Inc. | Method of treating Sjogren's syndrome |
KR100604976B1 (en) | 2004-09-03 | 2006-07-28 | 학교법인연세대학교 | Water-soluble nanoparticles stabilized with multifunctional ligands |
WO2005111192A1 (en) | 2004-09-22 | 2005-11-24 | Catchmabs Bv | Bioreactor assembly comprising at least one tray-like rocking platform |
AU2005291058B2 (en) | 2004-10-01 | 2011-09-29 | Midatech Limited | Nanoparticles comprising antigens and adjuvants and immunogenic structure |
US20090004118A1 (en) * | 2004-10-07 | 2009-01-01 | Shuming Nie | Multifunctional Nanoparticle Conjugates And Their Use |
WO2007001448A2 (en) | 2004-11-04 | 2007-01-04 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
EP2332985A3 (en) | 2004-11-12 | 2012-01-25 | Xencor, Inc. | Fc variants with altered binding to FcRn |
US20060111271A1 (en) | 2004-11-24 | 2006-05-25 | Cerny Erich H | Active and passive immunization against pharmacologically active hapten molecules using a synthetic carrier compound composed of similar elements |
WO2006066158A2 (en) | 2004-12-14 | 2006-06-22 | Alnylam Pharmaceuticals, Inc. | Rnai modulation of mll-af4 and uses thereof |
WO2006090924A1 (en) | 2005-02-28 | 2006-08-31 | The University Of Tokyo | Block copolymer having peptide ligand |
WO2006093991A1 (en) | 2005-03-02 | 2006-09-08 | The Cleveland Clinic Foundation | Compounds which bind psma and uses thereof |
US20090105172A1 (en) | 2005-03-07 | 2009-04-23 | Diener John L | Stabilized Aptamers to PSMA and Their Use as Prostate Cancer Therapeutics |
US20090110633A1 (en) | 2005-03-14 | 2009-04-30 | Shiladitya Sengupta | Nanocells for Diagnosis and Treatment of Diseases and Disorders |
US7785612B2 (en) | 2005-04-20 | 2010-08-31 | Taiho Pharmaceutical Co., Ltd. | Polyamino acid for use as adjuvant |
KR101418367B1 (en) | 2005-05-04 | 2014-07-25 | 녹손 파르마 아게 | HMGA-Binding Nucleic acids |
US8088908B2 (en) | 2005-05-10 | 2012-01-03 | City Of Hope | Humanized anti-prostate stem cell antigen monoclonal antibody |
WO2006133271A2 (en) | 2005-06-06 | 2006-12-14 | The General Hospital Corporation | Compositions and methods relating to target-specific photodynamic therapy |
WO2006138463A2 (en) | 2005-06-17 | 2006-12-28 | Nektar Therapeutics Al, Corporation | Polymer-based compositions and conjugates of non-steroidal anti-inflammatory drugs |
UA94412C2 (en) * | 2005-07-11 | 2011-05-10 | Уайет | Glutamate aggrecanase inhibitors |
AU2006280600B2 (en) | 2005-08-17 | 2012-01-19 | Bioneer Corporation | Sirna-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof |
US20090156480A1 (en) | 2005-08-25 | 2009-06-18 | Mitsuru Akashi | Biodegradable nanoparticle having t-cell recognizable epitope peptide immobilized thereon or encapsulated therein |
JP2009508936A (en) | 2005-09-20 | 2009-03-05 | イッサム リサーチ ディベロップメント カンパニー | Nanoparticles for targeted delivery of active agents |
EP1951299B1 (en) | 2005-11-04 | 2012-01-04 | Novartis Vaccines and Diagnostics S.r.l. | Influenza vaccines including combinations of particulate adjuvants and immunopotentiators |
NZ569741A (en) | 2005-12-14 | 2012-02-24 | Cytos Biotechnology Ag | Immunostimulatory nucleic acid packaged particles for the treatment of hypersensitivity |
WO2007070682A2 (en) | 2005-12-15 | 2007-06-21 | Massachusetts Institute Of Technology | System for screening particles |
EP1971372B1 (en) | 2005-12-19 | 2018-11-14 | PharmaIN Corporation | Hydrophobic core carrier compositions for delivery of therapeutic agents, methods of making and using the same |
US20070233534A1 (en) | 2006-01-06 | 2007-10-04 | Marware Inc. | Project management system and method |
WO2007084797A1 (en) | 2006-01-23 | 2007-07-26 | Abbott Laboratories | Chemically modified polycation polymer for sirna delivery |
US8021689B2 (en) | 2006-02-21 | 2011-09-20 | Ecole Polytechnique Federale de Lausanne (“EPFL”) | Nanoparticles for immunotherapy |
US20100189657A1 (en) | 2006-03-20 | 2010-07-29 | The General Hospital Corporation | Intramolecularly quenched fluorochrome conjugates and methods of use |
US20070225213A1 (en) | 2006-03-23 | 2007-09-27 | Kosak Matthew K | Nucleic acid carriers for delivery of therapeutic agents |
ES2776100T3 (en) | 2006-03-31 | 2020-07-29 | Massachusetts Inst Technology | System for targeted delivery of therapeutic agents |
WO2008051291A2 (en) | 2006-04-11 | 2008-05-02 | Ordway Research Institute | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof |
US20100247653A1 (en) | 2006-04-11 | 2010-09-30 | Hans Lautenschlager | Nanoparticles containing nicotine and/or cotinine, dispersions, and use thereof |
EP1854478A1 (en) | 2006-05-12 | 2007-11-14 | Cytos Biotechnology AG | Nicotine-carrier vaccine formulation |
EP2019691B1 (en) | 2006-05-15 | 2020-08-12 | Massachusetts Institute of Technology | Polymers for functional particles |
US20110052697A1 (en) * | 2006-05-17 | 2011-03-03 | Gwangju Institute Of Science & Technology | Aptamer-Directed Drug Delivery |
US9381477B2 (en) * | 2006-06-23 | 2016-07-05 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
US20090117549A1 (en) | 2006-07-18 | 2009-05-07 | Weihong Tan | Aptamer-based methods for identifying cellular biomarkers |
JP4936312B2 (en) | 2006-07-20 | 2012-05-23 | 株式会社島津製作所 | Novel amphiphile, drug delivery system and molecular imaging system using the same |
US20100144845A1 (en) | 2006-08-04 | 2010-06-10 | Massachusetts Institute Of Technology | Oligonucleotide systems for targeted intracellular delivery |
WO2008019366A2 (en) | 2006-08-07 | 2008-02-14 | Ludwig Institute For Cancer Research | Methods and compositions for increased priming of t-cells through cross-presentation of exogenous antigens |
US20080057103A1 (en) * | 2006-08-21 | 2008-03-06 | Wouter Roorda | Methods of using medical devices for controlled drug release |
JPWO2008041703A1 (en) | 2006-10-02 | 2010-02-04 | 国立大学法人大阪大学 | Influenza vaccine and influenza vaccine |
CA2702340C (en) | 2006-10-12 | 2014-12-16 | The University Of Queensland | Compositions and methods for modulating immune responses |
ES2684322T3 (en) | 2006-11-08 | 2018-10-02 | Molecular Insight Pharmaceuticals, Inc. | Heterodimers of glutamic acid |
US20100303723A1 (en) | 2006-11-20 | 2010-12-02 | Massachusetts Institute Of Technology | Drug delivery systems using fc fragments |
EP2099496A2 (en) | 2006-12-08 | 2009-09-16 | Massachusetts Institute of Technology | Delivery of nanoparticles and/or agents to cells |
US9217129B2 (en) | 2007-02-09 | 2015-12-22 | Massachusetts Institute Of Technology | Oscillating cell culture bioreactor |
US20090074828A1 (en) * | 2007-04-04 | 2009-03-19 | Massachusetts Institute Of Technology | Poly(amino acid) targeting moieties |
WO2008124634A1 (en) | 2007-04-04 | 2008-10-16 | Massachusetts Institute Of Technology | Polymer-encapsulated reverse micelles |
US20080311045A1 (en) | 2007-06-06 | 2008-12-18 | Biovaluation & Analysis, Inc. | Polymersomes for Use in Acoustically Mediated Intracellular Drug Delivery in vivo |
HUE034775T2 (en) * | 2007-09-28 | 2018-02-28 | Pfizer | Cancer Cell Targeting Using Nanoparticles |
CN101861165A (en) | 2007-10-12 | 2010-10-13 | 麻省理工学院 | Vaccine Nanotechnology |
EP2235043A2 (en) | 2008-02-01 | 2010-10-06 | Alpha-O Peptides AG | Self-assembling peptide nanoparticles useful as vaccines |
EP2106806A1 (en) | 2008-03-31 | 2009-10-07 | Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. | Nanoparticles for targeted delivery of active agents to the lung |
US8318211B2 (en) | 2008-06-16 | 2012-11-27 | Bind Biosciences, Inc. | Therapeutic polymeric nanoparticles comprising vinca alkaloids and methods of making and using same |
HUE047004T2 (en) | 2008-06-16 | 2020-04-28 | Pfizer | Drug loaded polymeric nanoparticles and methods of making and using same |
WO2010005726A2 (en) | 2008-06-16 | 2010-01-14 | Bind Biosciences Inc. | Therapeutic polymeric nanoparticles with mtor inhibitors and methods of making and using same |
US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US8277812B2 (en) | 2008-10-12 | 2012-10-02 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IgG humoral response without T-cell antigen |
US8343497B2 (en) | 2008-10-12 | 2013-01-01 | The Brigham And Women's Hospital, Inc. | Targeting of antigen presenting cells with immunonanotherapeutics |
WO2010068866A2 (en) | 2008-12-12 | 2010-06-17 | Bind Biosciences | Therapeutic particles suitable for parenteral administration and methods of making and using same |
WO2010075072A2 (en) | 2008-12-15 | 2010-07-01 | Bind Biosciences | Long circulating nanoparticles for sustained release of therapeutic agents |
WO2010114770A1 (en) | 2009-03-30 | 2010-10-07 | Cerulean Pharma Inc. | Polymer-agent conjugates, particles, compositions, and related methods of use |
WO2010114768A1 (en) | 2009-03-30 | 2010-10-07 | Cerulean Pharma Inc. | Polymer-epothilone conjugates, particles, compositions, and related methods of use |
EP2509634B1 (en) | 2009-12-11 | 2019-03-06 | Pfizer Inc | Stable formulations for lyophilizing therapeutic particles |
-
2005
- 2005-11-04 WO PCT/US2005/040100 patent/WO2007001448A2/en active Application Filing
- 2005-11-04 US US11/666,908 patent/US9492400B2/en active Active
-
2016
- 2016-11-11 US US15/349,681 patent/US20170112776A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050249799A1 (en) * | 2004-03-03 | 2005-11-10 | Spherics, Inc. | Polymeric drug delivery system for hydrophobic drugs |
Cited By (216)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9492400B2 (en) | 2004-11-04 | 2016-11-15 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
US9707252B2 (en) | 2005-02-09 | 2017-07-18 | Covidien Lp | Synthetic sealants |
US9039273B2 (en) | 2005-03-04 | 2015-05-26 | President And Fellows Of Harvard College | Method and apparatus for forming multiple emulsions |
US10316873B2 (en) | 2005-03-04 | 2019-06-11 | President And Fellows Of Harvard College | Method and apparatus for forming multiple emulsions |
US8044234B2 (en) | 2005-05-05 | 2011-10-25 | Tyco Healthcare Group Lp | Bioabsorbable surgical composition |
US7998466B2 (en) | 2005-12-06 | 2011-08-16 | Tyco Healthcare Group Lp | Biocompatible tissue sealants and adhesives |
US7947263B2 (en) | 2005-12-06 | 2011-05-24 | Tyco Healthcare Group Lp | Biocompatible surgical compositions |
US7910129B2 (en) | 2005-12-06 | 2011-03-22 | Tyco Healthcare Group Lp | Carbodiimide crosslinking of functionalized polyethylene glycols |
EP1962867A4 (en) * | 2005-12-06 | 2010-08-04 | Tyco Healthcare | Biocompatible surgical compositions |
EP1962867A2 (en) * | 2005-12-06 | 2008-09-03 | Tyco Healthcare Group, LP | Biocompatible surgical compositions |
US8790488B2 (en) | 2005-12-08 | 2014-07-29 | Covidien Lp | Biocompatible surgical compositions |
US8449714B2 (en) | 2005-12-08 | 2013-05-28 | Covidien Lp | Biocompatible surgical compositions |
US9267937B2 (en) | 2005-12-15 | 2016-02-23 | Massachusetts Institute Of Technology | System for screening particles |
US8709483B2 (en) | 2006-03-31 | 2014-04-29 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
US8802153B2 (en) | 2006-03-31 | 2014-08-12 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
US9080014B2 (en) | 2006-05-15 | 2015-07-14 | Massachusetts Institute Of Technology | Polymers for functional particles |
US9688812B2 (en) | 2006-05-15 | 2017-06-27 | Massachusetts Institute Of Technology | Polymers for functional particles |
US9381477B2 (en) | 2006-06-23 | 2016-07-05 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
US10941430B2 (en) | 2007-03-07 | 2021-03-09 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US9029085B2 (en) | 2007-03-07 | 2015-05-12 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US10221437B2 (en) | 2007-03-07 | 2019-03-05 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US9850526B2 (en) | 2007-03-07 | 2017-12-26 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US9068210B2 (en) | 2007-03-07 | 2015-06-30 | President And Fellows Of Harvard College | Assay and other reactions involving droplets |
US10738337B2 (en) | 2007-03-07 | 2020-08-11 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US9816121B2 (en) | 2007-03-07 | 2017-11-14 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US10683524B2 (en) | 2007-03-07 | 2020-06-16 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US10508294B2 (en) | 2007-03-07 | 2019-12-17 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US9017948B2 (en) | 2007-03-07 | 2015-04-28 | President And Fellows Of Harvard College | Assays and other reactions involving droplets |
US9333179B2 (en) | 2007-04-04 | 2016-05-10 | Massachusetts Institute Of Technology | Amphiphilic compound assisted nanoparticles for targeted delivery |
US9526702B2 (en) | 2007-10-12 | 2016-12-27 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US9474717B2 (en) | 2007-10-12 | 2016-10-25 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US11547667B2 (en) | 2007-10-12 | 2023-01-10 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US9539210B2 (en) | 2007-10-12 | 2017-01-10 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US10736848B2 (en) | 2007-10-12 | 2020-08-11 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
US9797010B2 (en) | 2007-12-21 | 2017-10-24 | President And Fellows Of Harvard College | Systems and methods for nucleic acid sequencing |
US10633701B2 (en) | 2007-12-21 | 2020-04-28 | President And Fellows Of Harvard College | Systems and methods for nucleic acid sequencing |
US8263704B2 (en) | 2008-04-23 | 2012-09-11 | Tyco Healthcare Group Lp | Bioabsorbable surgical composition |
WO2009148598A1 (en) * | 2008-06-05 | 2009-12-10 | President And Fellows Of Harvard College | Polymersomes, colloidosomes, liposomes, and other species associated with fluidic droplets |
EP2308473A4 (en) * | 2008-07-01 | 2013-01-09 | Nitto Denko Corp | Pharmaceutical composition containing surface-coated microparticles |
EP2308473A1 (en) * | 2008-07-01 | 2011-04-13 | Nitto Denko Corporation | Pharmaceutical composition containing surface-coated microparticles |
US12116631B2 (en) | 2008-09-19 | 2024-10-15 | President And Fellows Of Harvard College | Creation of libraries of droplets and related species |
US11401550B2 (en) | 2008-09-19 | 2022-08-02 | President And Fellows Of Harvard College | Creation of libraries of droplets and related species |
US9233072B2 (en) | 2008-10-12 | 2016-01-12 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
US8343497B2 (en) | 2008-10-12 | 2013-01-01 | The Brigham And Women's Hospital, Inc. | Targeting of antigen presenting cells with immunonanotherapeutics |
US8637028B2 (en) | 2008-10-12 | 2014-01-28 | President And Fellows Of Harvard College | Adjuvant incorporation in immunonanotherapeutics |
US8932595B2 (en) | 2008-10-12 | 2015-01-13 | Massachusetts Institute Of Technology | Nicotine immunonanotherapeutics |
US9439859B2 (en) | 2008-10-12 | 2016-09-13 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunoanotherapeutics |
US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
US8906381B2 (en) | 2008-10-12 | 2014-12-09 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IGG humoral response without T-cell antigen |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US9308280B2 (en) | 2008-10-12 | 2016-04-12 | Massachusetts Institute Of Technology | Targeting of antigen presenting cells with immunonanotherapeutics |
US8562998B2 (en) | 2008-10-12 | 2013-10-22 | President And Fellows Of Harvard College | Targeting of antigen presenting cells with immunonanotherapeutics |
US10457977B2 (en) | 2008-12-19 | 2019-10-29 | President And Fellows Of Harvard College | Particle-assisted nucleic acid sequencing |
US8748094B2 (en) | 2008-12-19 | 2014-06-10 | President And Fellows Of Harvard College | Particle-assisted nucleic acid sequencing |
US9884112B2 (en) | 2009-05-27 | 2018-02-06 | Selecta Biosciences, Inc. | Immunomodulatory agent-polymeric compounds |
US9006254B2 (en) | 2009-05-27 | 2015-04-14 | Selecta Biosciences, Inc. | Immunomodulatory agent-polymeric compounds |
US8629151B2 (en) | 2009-05-27 | 2014-01-14 | Selecta Biosciences, Inc. | Immunomodulatory agent-polymeric compounds |
CN107121554A (en) * | 2009-09-02 | 2017-09-01 | 新泽西鲁特格斯州立大学 | Treat the composition and method of neurogenic pain |
US10874997B2 (en) | 2009-09-02 | 2020-12-29 | President And Fellows Of Harvard College | Multiple emulsions created using jetting and other techniques |
US11000849B2 (en) | 2009-10-27 | 2021-05-11 | President And Fellows Of Harvard College | Droplet creation techniques |
US12121898B2 (en) | 2009-10-27 | 2024-10-22 | President And Fellows Of Harvard College | Droplet creation techniques |
US9056289B2 (en) | 2009-10-27 | 2015-06-16 | President And Fellows Of Harvard College | Droplet creation techniques |
US9839911B2 (en) | 2009-10-27 | 2017-12-12 | President And Fellows Of Harvard College | Droplet creation techniques |
US9066978B2 (en) | 2010-05-26 | 2015-06-30 | Selecta Biosciences, Inc. | Dose selection of adjuvanted synthetic nanocarriers |
US9764031B2 (en) | 2010-05-26 | 2017-09-19 | Selecta Biosciences, Inc. | Dose selection of adjuvanted synthetic nanocarriers |
US9994443B2 (en) | 2010-11-05 | 2018-06-12 | Selecta Biosciences, Inc. | Modified nicotinic compounds and related methods |
US10190115B2 (en) | 2011-04-25 | 2019-01-29 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
US11939573B2 (en) | 2011-04-25 | 2024-03-26 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
EP3395957A1 (en) * | 2011-04-25 | 2018-10-31 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
US10760073B2 (en) | 2011-04-25 | 2020-09-01 | Bio-Rad Laboratories, Inc. | Methods and compositions for nucleic acid analysis |
US11717569B2 (en) | 2011-04-29 | 2023-08-08 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers |
US10420835B2 (en) | 2011-04-29 | 2019-09-24 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells |
US9295718B2 (en) | 2011-04-29 | 2016-03-29 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins |
US9289476B2 (en) | 2011-04-29 | 2016-03-22 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for allergy therapy |
US9987354B2 (en) | 2011-04-29 | 2018-06-05 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells |
US9289477B2 (en) | 2011-04-29 | 2016-03-22 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers to reduce cytotoxic T lymphocyte responses |
US9993548B2 (en) | 2011-04-29 | 2018-06-12 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for inducing regulatory B cells |
US10004802B2 (en) | 2011-04-29 | 2018-06-26 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells |
US8652487B2 (en) | 2011-04-29 | 2014-02-18 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for inducing regulatory B cells |
US9265815B2 (en) | 2011-04-29 | 2016-02-23 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers |
US10039822B2 (en) | 2011-04-29 | 2018-08-07 | Selecta Biosciences, Inc. | Method for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses |
US11779641B2 (en) | 2011-04-29 | 2023-10-10 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for allergy therapy |
US10441651B2 (en) | 2011-04-29 | 2019-10-15 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells |
US9238206B2 (en) | 2011-05-23 | 2016-01-19 | President And Fellows Of Harvard College | Control of emulsions, including multiple emulsions |
US9573099B2 (en) | 2011-05-23 | 2017-02-21 | President And Fellows Of Harvard College | Control of emulsions, including multiple emulsions |
US10195571B2 (en) | 2011-07-06 | 2019-02-05 | President And Fellows Of Harvard College | Multiple emulsions and techniques for the formation of multiple emulsions |
US10933129B2 (en) | 2011-07-29 | 2021-03-02 | Selecta Biosciences, Inc. | Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses |
WO2013124867A1 (en) * | 2012-02-21 | 2013-08-29 | Amrita Vishwa Vidyapeetham University | Polymer - polymer or polymer - protein core - shell nano medicine loaded with multiple drug molecules |
US11021749B2 (en) | 2012-08-14 | 2021-06-01 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10669583B2 (en) | 2012-08-14 | 2020-06-02 | 10X Genomics, Inc. | Method and systems for processing polynucleotides |
US10752950B2 (en) | 2012-08-14 | 2020-08-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10752949B2 (en) | 2012-08-14 | 2020-08-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9695468B2 (en) | 2012-08-14 | 2017-07-04 | 10X Genomics, Inc. | Methods for droplet-based sample preparation |
US10221442B2 (en) | 2012-08-14 | 2019-03-05 | 10X Genomics, Inc. | Compositions and methods for sample processing |
US11035002B2 (en) | 2012-08-14 | 2021-06-15 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11078522B2 (en) | 2012-08-14 | 2021-08-03 | 10X Genomics, Inc. | Capsule array devices and methods of use |
US11359239B2 (en) | 2012-08-14 | 2022-06-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10626458B2 (en) | 2012-08-14 | 2020-04-21 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9689024B2 (en) | 2012-08-14 | 2017-06-27 | 10X Genomics, Inc. | Methods for droplet-based sample preparation |
US10273541B2 (en) | 2012-08-14 | 2019-04-30 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10597718B2 (en) | 2012-08-14 | 2020-03-24 | 10X Genomics, Inc. | Methods and systems for sample processing polynucleotides |
US10584381B2 (en) | 2012-08-14 | 2020-03-10 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11441179B2 (en) | 2012-08-14 | 2022-09-13 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10323279B2 (en) | 2012-08-14 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US12098423B2 (en) | 2012-08-14 | 2024-09-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US12037634B2 (en) | 2012-08-14 | 2024-07-16 | 10X Genomics, Inc. | Capsule array devices and methods of use |
US11591637B2 (en) | 2012-08-14 | 2023-02-28 | 10X Genomics, Inc. | Compositions and methods for sample processing |
US10450607B2 (en) | 2012-08-14 | 2019-10-22 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10053723B2 (en) | 2012-08-14 | 2018-08-21 | 10X Genomics, Inc. | Capsule array devices and methods of use |
US10400280B2 (en) | 2012-08-14 | 2019-09-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11473138B2 (en) | 2012-12-14 | 2022-10-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9856530B2 (en) | 2012-12-14 | 2018-01-02 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9410201B2 (en) | 2012-12-14 | 2016-08-09 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10676789B2 (en) | 2012-12-14 | 2020-06-09 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9701998B2 (en) | 2012-12-14 | 2017-07-11 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9567631B2 (en) | 2012-12-14 | 2017-02-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10533221B2 (en) | 2012-12-14 | 2020-01-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10227648B2 (en) | 2012-12-14 | 2019-03-12 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10253364B2 (en) | 2012-12-14 | 2019-04-09 | 10X Genomics, Inc. | Method and systems for processing polynucleotides |
US10612090B2 (en) | 2012-12-14 | 2020-04-07 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11421274B2 (en) | 2012-12-14 | 2022-08-23 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10150964B2 (en) | 2013-02-08 | 2018-12-11 | 10X Genomics, Inc. | Partitioning and processing of analytes and other species |
US9388465B2 (en) | 2013-02-08 | 2016-07-12 | 10X Genomics, Inc. | Polynucleotide barcode generation |
US9644204B2 (en) | 2013-02-08 | 2017-05-09 | 10X Genomics, Inc. | Partitioning and processing of analytes and other species |
US10150963B2 (en) | 2013-02-08 | 2018-12-11 | 10X Genomics, Inc. | Partitioning and processing of analytes and other species |
US11193121B2 (en) | 2013-02-08 | 2021-12-07 | 10X Genomics, Inc. | Partitioning and processing of analytes and other species |
US10143700B2 (en) | 2013-02-19 | 2018-12-04 | Amrita Vishwa Vidyapeetham | Nanoparticle formulations for delivering multiple therapeutic agents |
US10835549B2 (en) | 2013-04-11 | 2020-11-17 | Vanderbilt University | Polyplexes |
WO2014169256A3 (en) * | 2013-04-11 | 2014-12-11 | Vanderbilt University | Polyplexes |
US12249402B2 (en) | 2013-08-30 | 2025-03-11 | 10X Genomics, Inc. | Sequencing methods |
US10395758B2 (en) | 2013-08-30 | 2019-08-27 | 10X Genomics, Inc. | Sequencing methods |
US12131805B2 (en) | 2013-08-30 | 2024-10-29 | 10X Genomics, Inc. | Sequencing methods |
US10471016B2 (en) | 2013-11-08 | 2019-11-12 | President And Fellows Of Harvard College | Microparticles, methods for their preparation and use |
US10765755B1 (en) * | 2013-11-20 | 2020-09-08 | University Of South Florida | Preparation and characterization of methylene blue nanoparticles for Alzheimer's disease and other tauopathies |
US11541017B2 (en) | 2013-12-16 | 2023-01-03 | Massachusetts Institute Of Technology | Fortified micronutrient salt formulations |
US10300136B2 (en) | 2013-12-16 | 2019-05-28 | Massachusetts Institute Of Technology | Micromolded or 3-D printed pulsatile release vaccine formulations |
US10960073B2 (en) | 2013-12-16 | 2021-03-30 | Tokitae Llc | Micromolded or 3-D printed pulsatile release vaccine formulations |
US11975069B2 (en) | 2013-12-16 | 2024-05-07 | Massachusetts Institute Of Technology | Micromolded or 3-D printed pulsatile release vaccine formulations |
US9824068B2 (en) | 2013-12-16 | 2017-11-21 | 10X Genomics, Inc. | Methods and apparatus for sorting data |
US10137449B2 (en) | 2014-04-10 | 2018-11-27 | 10X Genomics, Inc. | Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same |
US9694361B2 (en) | 2014-04-10 | 2017-07-04 | 10X Genomics, Inc. | Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same |
US10150117B2 (en) | 2014-04-10 | 2018-12-11 | 10X Genomics, Inc. | Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same |
US12005454B2 (en) | 2014-04-10 | 2024-06-11 | 10X Genomics, Inc. | Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same |
US10343166B2 (en) | 2014-04-10 | 2019-07-09 | 10X Genomics, Inc. | Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same |
US10071377B2 (en) | 2014-04-10 | 2018-09-11 | 10X Genomics, Inc. | Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same |
US9737614B2 (en) | 2014-04-17 | 2017-08-22 | Memorial Sloan Kettering Cancer Center | Fucoidan nanogels and methods of their use and manufacture |
US10030267B2 (en) | 2014-06-26 | 2018-07-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9951386B2 (en) | 2014-06-26 | 2018-04-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10208343B2 (en) | 2014-06-26 | 2019-02-19 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10839939B2 (en) | 2014-06-26 | 2020-11-17 | 10X Genomics, Inc. | Processes and systems for nucleic acid sequence assembly |
US12163191B2 (en) | 2014-06-26 | 2024-12-10 | 10X Genomics, Inc. | Analysis of nucleic acid sequences |
US11133084B2 (en) | 2014-06-26 | 2021-09-28 | 10X Genomics, Inc. | Systems and methods for nucleic acid sequence assembly |
US10480028B2 (en) | 2014-06-26 | 2019-11-19 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11713457B2 (en) | 2014-06-26 | 2023-08-01 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10041116B2 (en) | 2014-06-26 | 2018-08-07 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10337061B2 (en) | 2014-06-26 | 2019-07-02 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10344329B2 (en) | 2014-06-26 | 2019-07-09 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11629344B2 (en) | 2014-06-26 | 2023-04-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10760124B2 (en) | 2014-06-26 | 2020-09-01 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10457986B2 (en) | 2014-06-26 | 2019-10-29 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11739368B2 (en) | 2014-10-29 | 2023-08-29 | 10X Genomics, Inc. | Methods and compositions for targeted nucleic acid sequencing |
US10287623B2 (en) | 2014-10-29 | 2019-05-14 | 10X Genomics, Inc. | Methods and compositions for targeted nucleic acid sequencing |
US11135584B2 (en) | 2014-11-05 | 2021-10-05 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
US10245587B2 (en) | 2014-11-05 | 2019-04-02 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
US9975122B2 (en) | 2014-11-05 | 2018-05-22 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
US10557158B2 (en) | 2015-01-12 | 2020-02-11 | 10X Genomics, Inc. | Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same |
US11414688B2 (en) | 2015-01-12 | 2022-08-16 | 10X Genomics, Inc. | Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same |
US10221436B2 (en) | 2015-01-12 | 2019-03-05 | 10X Genomics, Inc. | Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same |
US10650912B2 (en) | 2015-01-13 | 2020-05-12 | 10X Genomics, Inc. | Systems and methods for visualizing structural variation and phasing information |
US10854315B2 (en) | 2015-02-09 | 2020-12-01 | 10X Genomics, Inc. | Systems and methods for determining structural variation and phasing using variant call data |
US10697000B2 (en) | 2015-02-24 | 2020-06-30 | 10X Genomics, Inc. | Partition processing methods and systems |
US11274343B2 (en) | 2015-02-24 | 2022-03-15 | 10X Genomics, Inc. | Methods and compositions for targeted nucleic acid sequence coverage |
US11603554B2 (en) | 2015-02-24 | 2023-03-14 | 10X Genomics, Inc. | Partition processing methods and systems |
WO2016153920A1 (en) * | 2015-03-20 | 2016-09-29 | Memorial Sloan Kettering Cancer Center | Mesoscale nanoparticles for selective targeting to the kidney and methods of their therapeutic use |
US11173152B1 (en) | 2015-05-20 | 2021-11-16 | University Of South Florida | Glutathione-coated nanoparticles for delivery of MKT-077 across the blood-brain barrier |
US10758520B1 (en) | 2015-05-20 | 2020-09-01 | University Of South Florida | Glutathione-coated nanoparticles for delivery of MKT-077 across the blood-brain barrier |
US10874622B2 (en) | 2015-06-24 | 2020-12-29 | Board Of Regents, The University Of Texas System | Dual assembly nanoparticles |
US11123297B2 (en) | 2015-10-13 | 2021-09-21 | President And Fellows Of Harvard College | Systems and methods for making and using gel microspheres |
US11473125B2 (en) | 2015-12-04 | 2022-10-18 | 10X Genomics, Inc. | Methods and compositions for nucleic acid analysis |
US10774370B2 (en) | 2015-12-04 | 2020-09-15 | 10X Genomics, Inc. | Methods and compositions for nucleic acid analysis |
US11873528B2 (en) | 2015-12-04 | 2024-01-16 | 10X Genomics, Inc. | Methods and compositions for nucleic acid analysis |
US11624085B2 (en) | 2015-12-04 | 2023-04-11 | 10X Genomics, Inc. | Methods and compositions for nucleic acid analysis |
US11081208B2 (en) | 2016-02-11 | 2021-08-03 | 10X Genomics, Inc. | Systems, methods, and media for de novo assembly of whole genome sequence data |
US12138628B2 (en) | 2016-05-13 | 2024-11-12 | 10X Genomics, Inc. | Microfluidic systems and methods of use |
US11084036B2 (en) | 2016-05-13 | 2021-08-10 | 10X Genomics, Inc. | Microfluidic systems and methods of use |
US10011872B1 (en) | 2016-12-22 | 2018-07-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10793905B2 (en) | 2016-12-22 | 2020-10-06 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10550429B2 (en) | 2016-12-22 | 2020-02-04 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10480029B2 (en) | 2016-12-22 | 2019-11-19 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10815525B2 (en) | 2016-12-22 | 2020-10-27 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10858702B2 (en) | 2016-12-22 | 2020-12-08 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10323278B2 (en) | 2016-12-22 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US12084716B2 (en) | 2016-12-22 | 2024-09-10 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11180805B2 (en) | 2016-12-22 | 2021-11-23 | 10X Genomics, Inc | Methods and systems for processing polynucleotides |
US11193122B2 (en) | 2017-01-30 | 2021-12-07 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
US12264411B2 (en) | 2017-01-30 | 2025-04-01 | 10X Genomics, Inc. | Methods and systems for analysis |
US12264316B2 (en) | 2017-01-30 | 2025-04-01 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
US10428326B2 (en) | 2017-01-30 | 2019-10-01 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
US11898206B2 (en) | 2017-05-19 | 2024-02-13 | 10X Genomics, Inc. | Systems and methods for clonotype screening |
US10844372B2 (en) | 2017-05-26 | 2020-11-24 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US10927370B2 (en) | 2017-05-26 | 2021-02-23 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US11773389B2 (en) | 2017-05-26 | 2023-10-03 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US11198866B2 (en) | 2017-05-26 | 2021-12-14 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US10400235B2 (en) | 2017-05-26 | 2019-09-03 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
US11155810B2 (en) | 2017-05-26 | 2021-10-26 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
CN107582527A (en) * | 2017-10-10 | 2018-01-16 | 雷笑天 | A kind of enteral administration bioadhesive microspheres preparation and preparation method thereof |
US11884962B2 (en) | 2017-11-15 | 2024-01-30 | 10X Genomics, Inc. | Functionalized gel beads |
US10745742B2 (en) | 2017-11-15 | 2020-08-18 | 10X Genomics, Inc. | Functionalized gel beads |
US10876147B2 (en) | 2017-11-15 | 2020-12-29 | 10X Genomics, Inc. | Functionalized gel beads |
US10829815B2 (en) | 2017-11-17 | 2020-11-10 | 10X Genomics, Inc. | Methods and systems for associating physical and genetic properties of biological particles |
US11155881B2 (en) | 2018-04-06 | 2021-10-26 | 10X Genomics, Inc. | Systems and methods for quality control in single cell processing |
WO2020028909A1 (en) * | 2018-08-03 | 2020-02-06 | Brown University | Oral formulations with increased uptake |
CN110964204A (en) * | 2018-09-29 | 2020-04-07 | 南方医科大学 | PLGA microspheres of charge-loaded positive micelle/insulin compound and preparation method thereof |
CN110964204B (en) * | 2018-09-29 | 2021-03-12 | 南方医科大学 | PLGA microspheres of charge-loaded positive micelle/insulin compound and preparation method thereof |
US20230126744A1 (en) * | 2021-10-25 | 2023-04-27 | The Secant Group, Llc. | Polymeric delivery systems |
US20230125499A1 (en) * | 2021-10-25 | 2023-04-27 | The Secant Group, Llc | Polymeric delivery systems |
Also Published As
Publication number | Publication date |
---|---|
US20170112776A1 (en) | 2017-04-27 |
US9492400B2 (en) | 2016-11-15 |
WO2007001448A3 (en) | 2009-04-23 |
US20080268063A1 (en) | 2008-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9492400B2 (en) | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals | |
JP5384831B2 (en) | Nanoparticles for protein drug delivery | |
Dailey et al. | The role of branched polyesters and their modifications in the development of modern drug delivery vehicles | |
US20200078304A1 (en) | Compositions and methods relating to reduced mucoadhesion | |
Bala et al. | PLGA nanoparticles in drug delivery: the state of the art | |
US6706289B2 (en) | Methods and compositions for enhanced delivery of bioactive molecules | |
Uhrich et al. | Polymeric systems for controlled drug release | |
US7550441B2 (en) | Controlled release polymer nanoparticle containing bound nucleic acid ligand for targeting | |
US6221397B1 (en) | Surface cross-linked particles suitable for controlled delivery | |
EP2308473A1 (en) | Pharmaceutical composition containing surface-coated microparticles | |
CN102970864A (en) | A pharmaceutical composition of nanoparticles | |
AU2002220002A1 (en) | Methods and compositions for enhanced delivery of bioactive molecules | |
CN102014880A (en) | Therapeutic calcium phosphate particles and methods of making and using same | |
Vaidya et al. | Bioconjugation of polymers: a novel platform for targeted drug delivery | |
US8449915B1 (en) | Pharmaceutical composition of nanoparticles | |
CN103656653A (en) | Polyelectrolyte compound based on hyaluronic acid drug-loading nano particles, preparation method and application thereof | |
Davis | Drug delivery systems | |
CN112469397B (en) | Nanoparticles comprising bioresorbable polyester, hydrophilic polymer and acylated human lactoferrin derived peptide | |
WO2006105367A2 (en) | Magnetically-labeled microparticles for oral drug delivery | |
Jain et al. | Particulate systems of PLA and its copolymers | |
Agnihotri et al. | Protein and peptide delivery through chitin, chitosan, and starch | |
Sarmento et al. | Polymer-based delivery systems for oral delivery of peptides and proteins | |
Bhayana et al. | Block Co-polymers: Vital Aspects and Applications in Drug Delivery | |
Maher et al. | 2.1 Nanostructures overcoming the intestinal barrier: Physiological considerations and mechanistic issues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05858302 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11666908 Country of ref document: US |