WO2018083351A1 - Device and method for physiological parameter detection - Google Patents

Device and method for physiological parameter detection Download PDF

Info

Publication number
WO2018083351A1
WO2018083351A1 PCT/EP2017/078508 EP2017078508W WO2018083351A1 WO 2018083351 A1 WO2018083351 A1 WO 2018083351A1 EP 2017078508 W EP2017078508 W EP 2017078508W WO 2018083351 A1 WO2018083351 A1 WO 2018083351A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
wavelength converter
doped
tissue
Prior art date
Application number
PCT/EP2017/078508
Other languages
French (fr)
Inventor
Yannyk Parulian Julian BOURQUIN
Original Assignee
Koninklijke Philips N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips N.V. filed Critical Koninklijke Philips N.V.
Priority to JP2019521085A priority Critical patent/JP7245774B2/en
Priority to CN201780068672.8A priority patent/CN109952057A/en
Priority to US16/346,891 priority patent/US11482034B2/en
Priority to EP17800470.1A priority patent/EP3534775B1/en
Publication of WO2018083351A1 publication Critical patent/WO2018083351A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/024Measuring pulse rate or heart rate
    • A61B5/02416Measuring pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F55/00Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto
    • H10F55/20Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto wherein the electric light source controls the radiation-sensitive semiconductor devices, e.g. optocouplers
    • H10F55/25Radiation-sensitive semiconductor devices covered by groups H10F10/00, H10F19/00 or H10F30/00 being structurally associated with electric light sources and electrically or optically coupled thereto wherein the electric light source controls the radiation-sensitive semiconductor devices, e.g. optocouplers wherein the radiation-sensitive devices and the electric light source are all semiconductor devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/496Luminescent members, e.g. fluorescent sheets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • H10H20/8513Wavelength conversion materials having two or more wavelength conversion materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface

Definitions

  • the present invention relates to a device and method for detecting light allowing retrieval of a physiological parameter of a user carrying said device.
  • PPG photoplethysmography
  • the emission of light into targeted tissue is most commonly done by one or more LEDs or laser diodes (as light source), and the collection of light is most commonly done directly using a photosensor (as light sensor, such as a photodiode) close to the targeted tissue.
  • a photosensor as light sensor, such as a photodiode
  • US 2013/0131519 Al discloses a monitoring device for the ear where the light is delivered to the ear canal through a light guide and where the light is collected from the ear region and guided to the optical detector. This enables sensing a position on the body difficult to access such as the inner ear. However, it suffers from low efficacy in light coupling into the light guide, loss within the guide and low light capture.
  • US 2015/094550 Al, EP 3020331 Al, and US 2007/129613 Al disclose devices, in which a light source is equipped with a wavelength conversion means to alter the wavelength of the light emitted by the light source.
  • a device for detecting light allowing retrieval of a physiological parameter of a user carrying said device comprising:
  • a light source arranged for emitting light of at least a first wavelength into tissue of the subject
  • a wavelength converter arranged for receiving at least part of the emitted light after interaction of the emitted light with the tissue and for converting the received light into at least a second wavelength different from the first wavelength
  • a light sensor arranged for receiving light converted by said wavelength converter.
  • the present invention is based on the idea to improve the capture of the light scattered back from the tissue through a larger surface and detection by a (small) sensor.
  • a wavelength converter is used in the optical path between the tissue and the light sensor to convert the wavelength of the light scattered back from the tissue to a different wavelength. The converted light is then guided within the wavelength converter to the light sensor.
  • a wavelength converter is introduced, sometimes also referred to as luminescent concentrator or light concentrator.
  • a wavelength converter is typically made of a glass doped with a fluorescent dye.
  • the fluorescent dye converts the light into a longer wavelength emitted in all directions. A large part of the light is trapped in the material due to total internal reflection.
  • Wavelength converters per se are generally known and e.g. described in US 7,982,229 B2. In embodiments of the presented device such a known wavelength converter may be used.
  • the light that is captured by the photodetector in a conventional sensing device comes from only a small part in the skin and depends very much on the local structure in the skin. Therefore it is prone to motion artefacts caused by shifting of the sensor over the skin. With the presented device a larger part of the skin is probed so that the motion artefacts are reduced.
  • the presented device does not simply use a larger sensor or multiple sensors to capture more light, which would add further limitations due to size, shape, cost and more complex electronics, but mere an additional wavelength converter is integrated into the device.
  • said wavelength converter comprises a doped material arranged for converting the wavelength of the received light.
  • a material doped with fluorescent dye or quantum dots may be used which can be easily implemented at low costs for the desired purpose.
  • the material may e.g. be a light transmissive material such as crystalline, glass, ceramic or polymeric material.
  • the shape and/ material are preferably designed to guide the converted light within the wavelength converter.
  • the wavelength converter has a width selected to absorb more than 95% of the light source light, e.g. the wavelength converter may have a width selected from the range of 0.05-3 cm, especially 0.1-1.5 cm, such as 0.2-0.5 cm. With the preferably used fluorescent dye concentration, such width is enough to absorb substantially all light received from the tissue.
  • the wavelength converter is preferably configured to convert the received light into a second wavelength that is longer than the first wavelength. Longer wavelengths generally have a lower refractive index, so they may be less efficiently trapped in the wavelength converter. Further, the sensor should have good sensitivity for the detected wavelength and preferably low sensitivity for the emitted wavelength, which can also be supported with this embodiment.
  • the wavelength converter may further comprise one or more radiation input faces. These one or more faces are configured to receive light scattered from the tissue. The scattered light may provide light to a single face, or to a plurality of faces of the wavelength converter.
  • said wavelength converter is arranged between the light source and the light sensor, in particular for receiving light reflected from the tissue. It is preferably formed as a rod or cylinder and is arranged such that it receives light at a lateral side surface and emits converted light at a first front surface. In this way a compact design can be achieved.
  • said wavelength converter is arranged at a distance from the light source for receiving light transmitted through the tissue.
  • the device may e.g. be configured in the form of a finger clip making use of light that passed through the finger.
  • the wavelength converter comprises a mirror at a first front surface and/or at a second front surface opposite the first front surface for internally reflecting the light. This further improves the efficiency.
  • a mirror may be arranged at the first front surface.
  • the wavelength converter may also be made of a ceramic material, which generally has a large hardness and resistivity against chemicals.
  • Practically usable materials for the wavelength converter include one or more of the following materials:
  • glass-ceramics doped with Mn2+ in particular one or more of garnets or cubic crystals doped/co-doped with Mn2+, Mn4+, Ce3+, Pr3+, Eu3+, Sm3+, Eu2+, Yb2+; non- cubic crystals, in particular phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+; Eu3+ incorporated into index-matching matrixes, in particular Te02, SnO/P205, or Bi203 containing glasses, high-index polyimide;
  • glass-ceramics doped with Co3+ in particular one or more of garnets or cubic crystals doped/co-doped with Ce3+, Mn2+, Mn4+, Cr3+ ; non-cubic crystals, in particular phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+, Eu3+, Tm3+, Sm2+, Cr3+, Ti3+
  • the wavelength converter comprises an outcoupling element, in particular a tapered outcoupling element, a lens, a fluid, a polymer, a glue, a gel or a collimator.
  • an outcoupling element in particular a tapered outcoupling element, a lens, a fluid, a polymer, a glue, a gel or a collimator.
  • the outcoupling element may be arranged at the first front surface, but may also be arranged on any other surface for practical reasons.
  • the wavelength converter may be formed as a disk or ring, wherein the light source is arranged in a central area of the wavelength converter the light sensor is arranged at an edge of the wavelength converter.
  • the wavelength converter may also be a fiber or a multitude of fibers, for instance a fiber bundle, either closely spaced or optically connected in a transparent material.
  • the fiber may be referred to as a luminescent fiber.
  • the individual fiber may be very thin in diameter, for instance, 0.1 to 0.5 mm.
  • the light source preferably comprises one or more LEDs, arrays of LEDs, or lasers.
  • the light source comprises two light source elements for emitting light at two different first wavelengths, in particular at a wavelength of visible light (e.g. red light) and a wavelength of infrared light (e.g. near-infrared light).
  • the wavelength converter may also comprise two or more fluorescent dyes to convert the respective wavelength emitted by the respective light source element.
  • the device may further comprise an evaluation unit arranged for retrieving a physiological parameter of a user carrying said device from the light received by the light sensor.
  • physiological information such as heart rate, respiration rate, pulse arrival, blood pressure, oxygen saturation, may be obtained.
  • a dichroic mirror may be placed between the wavelength converter and the tissue in order to allow the light scattered from the tissue to reach the wavelength converter and prevent the converted light of being reemitted to the tissue.
  • FIG. 1 shows a side view of a first embodiment of a device according to the present invention
  • Fig. 2 shows a schematic diagram of an embodiment of a wavelength converter as used in an embodiment of the device according to the present invention
  • Fig. 3 shows a top view of a second embodiment of a device according to the present invention
  • Fig. 4 shows a top view of a third embodiment of a device according to the present invention
  • Fig. 5 shows a perspective view of a wrist watch including a fourth embodiment of a device according to the present invention.
  • Fig. 6 shows a side view of a pulse oximeter representing a fifth embodiment of a device according to the present invention.
  • Fig. 1 shows a side view of a first embodiment of a device 1 according to the present invention.
  • the device 1 comprises a light source 10 for emitting light 2 of at least a first wavelength into tissue 3 of the subject, a wavelength converter 20 for receiving at least part of the emitted light 4 after interaction of the emitted light 2 with the tissue 3 and for converting the received light 4 into at least a second wavelength different from the first wavelength, and a light sensor 30 for receiving light 5 converted by said wavelength converter 20.
  • Fig. 2 shows a schematic diagram of an embodiment of a wavelength converter 20 as used in an embodiment of the device according to the present invention.
  • the wavelength converter 20 of this embodiment is formed as a plate, rod or cylinder and is made of a material 21 which is doped with fluorescent dye converting the wavelength of the light 4 to light 50 with a different, preferably longer wavelength and propagating in all directions. It is arranged such that it receives light 4 at a lateral side surface 22 and emits converted light 5 at a first front surface 23, also called outcoupling surface 23.
  • the light 50 is thus maintained within the material 21 due to total internal reflection and can escape preferably only from the outcoupling surface 23. In this way the light intensity of the light 5 escaping from the outcoupling surface 23 is concentrated.
  • a mirror 24 is placed at the opposite front surface 25 so that as much light as possible is reflected to the outcoupling surface 23.
  • the light source 10 is for example an LED, an array of LEDs, a laser, etc.
  • the light 2, 4 passes through the sensed region 3, which can be skin or any other body tissue.
  • Using a wavelength converter allows converting almost all the light passing through the wavelength converter (independently of the direction of the light rays) into a second wavelength which will emit light in all directions. These light rays are then trapped inside the wavelength converter due to total internal reflection (in an exemplary
  • the wavelength converter 20 is preferable made of a ceramic material.
  • these materials have, in general, a very high hardness, are very stable, do not "wear” with respect to optical properties and show a large resistivity against chemicals, thus enabling cleaning in various ways (both chemically and mechanically).
  • the compositions of these ceramics can be tuned in such a way, that the absorbing light matches the emitting spectrum of the light source 2 and the absorption spectrum of the targeted tissue 3.
  • glass-ceramics doped with Mn2+ garnets and other cubic crystals (Spinel, perovskite, pyrochlore, etc.) doped/co-doped with Mn2+, Mn4+, Ce3+, Pr3+, Eu3+, Sm3+, Eu2+, Yb2+; non-cubic crystals, such as phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+; Eu3+ incorporated into index-matching matrixes (e.g. Te02, SnO/P205, or Bi203 containing glasses, high-index polyimide);
  • index-matching matrixes e.g. Te02, SnO/P205, or Bi203 containing glasses, high-index polyimide
  • glass-ceramics doped with Co3+ garnets and other cubic crystals doped/co- doped with Ce3+, Mn2+, Mn4+, Cr3+ ; non-cubic crystals, such as phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+, Eu3+, Tm3+, Sm2+, Cr3+, Ti3+ incorporated into index-matching matrixes;
  • the concentration of luminescent sites (e.g. Ce) in the converter material 21 is high enough to have more than 99% conversion. That implies that the absorption length for the incident light 4 should be less than 0.22 times the plate thickness.
  • an optional outcoupling element 26 may be provided at the first front surface 23 (shown with dashed lines in Fig. 2).
  • the outcoupling element can e.g. have a tapered angle, e.g. in the range of 30° to 60°, e.g. of 45°.
  • the outcoupling of light from the wavelength converter 20 to the light sensor 30 can be enhanced using a fluid (such as oil, gel), a lens, a collimator as outcoupling element 26.
  • Fig. 3 shows a top view of a second embodiment of a device 2according to the present invention.
  • the light source 10 is in the middle surrounded by the wavelength converter 20 that has the form of a disk.
  • the light sensor 30 is arranged on a circumferential side surface (edge) of the disk- shaped wavelength converter 20.
  • Fig. 4 shows a top view of a third embodiment of a device 3 according to the present invention.
  • the wavelength converter 20 is formed in the shape of a ring to capture the light at a specific distance from the light source 10 in order to capture light having travelled deeper in the tissue.
  • the light source may contain an LED array including LEDs of different colors.
  • a device 4 used in a wristwatch 5 is illustrated in Fig. 5.
  • the device 4 is arranged at the lower surface 6 of the wristwatch so that it is in contact with the skin when worn by a user.
  • the light source is formed by two LEDs of different colors, in particular a first LED 11 emitting red light and a second LED 12 emitting infrared light.
  • the light sensor 30 is in the central area and waveguide converters 20 are arranged between the LEDs 11, 12 and the light sensor 30.
  • the light sensor 30 (and/or a processor evaluating the sensed signals) can distinguish between light originating from the first LED 11 and light originating from the second LED 12 by using the time at which the light is sensed, as usually in PPG sensors with LEDs of different colors, which alternate in their on and off states (i.e. when one LED is emitting light, the other is not and vice versa).
  • the device further comprises an evaluation unit 40, e.g. a processor, for evaluating the sensed signals and for retrieving a physiological parameter of a user carrying said device from the light received by the light sensor 30, i.e. the sensed signals.
  • an evaluation unit 40 e.g. a processor
  • the sensed signals are transmitted (in a wired or wireless manner) to an external evaluation unit, e.g. to a smartphone, computer, laptop, patient monitor, etc. for further processing.
  • Fig. 6 shows a side view of a pulse oximeter 7 representing a fifth embodiment of a device according to the present invention.
  • the pulse oximeter 7 is configured as finger clip for monitoring Sp02 of the subject.
  • the two LEDs 11, 12 are arranged on a first side of the finger 100.
  • the wavelength converter 20 and the photodiode 30 are arranged on the other side of the finger 100, i.e. light emitted by the LEDs 11, 12 is transmitted through the finger 100 and the received by the wavelength converter 20.
  • the photodiode 30 is arranged on a lateral side of the wavelength converter 20 in this embodiment, from which the converted light is output.
  • the present invention is not limited to devices of a reflective type making use of light reflected from tissue, but can also be applied in device of a transmissive type making use of light transmitted through tissue. Also hybrid forms of devices may be used. For instance, in the embodiment shown in Fig. 6 the wavelength converter may be arranged around part or the complete finger to collect light scattered by the tissue in all directions.
  • the present invention can be used for unobtrusive monitoring of physiological parameters such as heart rate, respiration rate, blood oxygen saturation and (a surrogate for) blood pressure .
  • Applications range from healthy living (think of activity trackers and sports watches), to home monitoring of elderly, patients with chronic diseases and for hospital to home, to hospital use, such as in the ICU and OR.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

The present invention relates to a device and method for detecting light allowing retrieval of a physiological parameter of a user carrying said device. To improve the efficiency of light capturing, the device (1, 2, 3, 4) comprises a light source (10) arranged for emitting light of at least a first wavelength into tissue of the subject, a wavelength converter (20) arranged for receiving at least part of the emitted light after interaction of the emitted light with the tissue and for converting the received light into at least a second wavelength different from the first wavelength, and a light sensor (30) arranged for receiving light converted by said wavelength converter.

Description

Device and method for physiological parameter detection
FIELD OF THE INVENTION
The present invention relates to a device and method for detecting light allowing retrieval of a physiological parameter of a user carrying said device. BACKGROUND OF THE INVENTION
Light based non-invasive monitoring devices of physiological parameter (or signal) rely on the light emission to a targeted body part, the light absorption/scattering proprieties of the tissue (including the blood) and the collection of the scattered or transmitted light. Every heart beat leads to a blood pulse in the body part, with an increased amount of blood and therefore an increased light absorption and thus a decreased collection of scattered/transmitted light by the light detector. The optical method to measure such blood volume changes is called photoplethysmography (PPG). Various vital signs can be derived from PPG, namely heart rate, respiration rate, blood oxygen saturation, and it might even be used as a surrogate measurement for blood pressure. When it is used to derive the blood oxygen saturation, the method is called pulse oximetry (Sp02). Sp02 sensors are widely used in hospital settings, whereas PPG heart rate measurements find applications in wearable devices as activity trackers or sports watches.
The emission of light into targeted tissue (or skin; both being used herein as meaning the same) is most commonly done by one or more LEDs or laser diodes (as light source), and the collection of light is most commonly done directly using a photosensor (as light sensor, such as a photodiode) close to the targeted tissue. Part of the light from the light source that has entered the tissue / skin comes back out of the tissue / skin after scattering in the tissue / skin. In known sensors, only a small part of that light is captured by the light sensor, while the rest of the light is lost.
US 2013/0131519 Al discloses a monitoring device for the ear where the light is delivered to the ear canal through a light guide and where the light is collected from the ear region and guided to the optical detector. This enables sensing a position on the body difficult to access such as the inner ear. However, it suffers from low efficacy in light coupling into the light guide, loss within the guide and low light capture. US 2015/094550 Al, EP 3020331 Al, and US 2007/129613 Al disclose devices, in which a light source is equipped with a wavelength conversion means to alter the wavelength of the light emitted by the light source. SUMMARY OF THE INVENTION
It is an object of the present invention to provide a device and method for detecting light allowing retrieval of a physiological parameter of a user carrying said device with an increased light sensing efficiency and efficacy.
In a first aspect of the present invention a device for detecting light allowing retrieval of a physiological parameter of a user carrying said device is presented, said device comprising:
a light source arranged for emitting light of at least a first wavelength into tissue of the subject,
a wavelength converter arranged for receiving at least part of the emitted light after interaction of the emitted light with the tissue and for converting the received light into at least a second wavelength different from the first wavelength, and
a light sensor arranged for receiving light converted by said wavelength converter.
In a further aspect of the present invention a corresponding method is presented.
Preferred embodiments of the invention are defined in the dependent claims. It shall be understood that the claimed method has similar and/or identical preferred
embodiments as the claimed device, in particular as defined in the dependent claims and as disclosed herein.
The present invention is based on the idea to improve the capture of the light scattered back from the tissue through a larger surface and detection by a (small) sensor. In particular, a wavelength converter is used in the optical path between the tissue and the light sensor to convert the wavelength of the light scattered back from the tissue to a different wavelength. The converted light is then guided within the wavelength converter to the light sensor.
In this invention, a wavelength converter is introduced, sometimes also referred to as luminescent concentrator or light concentrator. A wavelength converter is typically made of a glass doped with a fluorescent dye. The fluorescent dye converts the light into a longer wavelength emitted in all directions. A large part of the light is trapped in the material due to total internal reflection. Wavelength converters per se are generally known and e.g. described in US 7,982,229 B2. In embodiments of the presented device such a known wavelength converter may be used.
Whereas in conventional PPG only about 1 % of the light emitted from the light source to the skin is captured by the sensor although around 50% of the light emitted is scattered back from the skin, leading to a low and noisy signal, according to the present invention much more light can be captured (e.g. more than 20% or even more than 50%).
Further, with a conventional sensing device a high amount of power from the light source is required to obtain a good signal, thus limiting the battery life of a wearable device. Battery life is very important in nowadays wearables that should be worn
continuously. Due to the improved efficiency of the presented device, battery life can be extended.
The light that is captured by the photodetector in a conventional sensing device comes from only a small part in the skin and depends very much on the local structure in the skin. Therefore it is prone to motion artefacts caused by shifting of the sensor over the skin. With the presented device a larger part of the skin is probed so that the motion artefacts are reduced.
The presented device does not simply use a larger sensor or multiple sensors to capture more light, which would add further limitations due to size, shape, cost and more complex electronics, but mere an additional wavelength converter is integrated into the device.
According to an embodiment said wavelength converter comprises a doped material arranged for converting the wavelength of the received light. For instance, a material doped with fluorescent dye or quantum dots may be used which can be easily implemented at low costs for the desired purpose. The material may e.g. be a light transmissive material such as crystalline, glass, ceramic or polymeric material.
The shape and/ material are preferably designed to guide the converted light within the wavelength converter. Preferably, a material with refractive index between 1.42 and 1.8, more preferably between 1.48 and 1.54, is used.
In an embodiment, the wavelength converter has a width selected to absorb more than 95% of the light source light, e.g. the wavelength converter may have a width selected from the range of 0.05-3 cm, especially 0.1-1.5 cm, such as 0.2-0.5 cm. With the preferably used fluorescent dye concentration, such width is enough to absorb substantially all light received from the tissue. The wavelength converter is preferably configured to convert the received light into a second wavelength that is longer than the first wavelength. Longer wavelengths generally have a lower refractive index, so they may be less efficiently trapped in the wavelength converter. Further, the sensor should have good sensitivity for the detected wavelength and preferably low sensitivity for the emitted wavelength, which can also be supported with this embodiment.
The wavelength converter may further comprise one or more radiation input faces. These one or more faces are configured to receive light scattered from the tissue. The scattered light may provide light to a single face, or to a plurality of faces of the wavelength converter.
In another embodiment said wavelength converter is arranged between the light source and the light sensor, in particular for receiving light reflected from the tissue. It is preferably formed as a rod or cylinder and is arranged such that it receives light at a lateral side surface and emits converted light at a first front surface. In this way a compact design can be achieved.
In an alternative embodiment said wavelength converter is arranged at a distance from the light source for receiving light transmitted through the tissue. The device may e.g. be configured in the form of a finger clip making use of light that passed through the finger.
Preferably, the wavelength converter comprises a mirror at a first front surface and/or at a second front surface opposite the first front surface for internally reflecting the light. This further improves the efficiency. In case the first front surface is not totally covered by the light sensor, a mirror may be arranged at the first front surface.
The wavelength converter may also be made of a ceramic material, which generally has a large hardness and resistivity against chemicals.
Practically usable materials for the wavelength converter include one or more of the following materials:
glass-ceramics doped with Mn2+, in particular one or more of garnets or cubic crystals doped/co-doped with Mn2+, Mn4+, Ce3+, Pr3+, Eu3+, Sm3+, Eu2+, Yb2+; non- cubic crystals, in particular phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+; Eu3+ incorporated into index-matching matrixes, in particular Te02, SnO/P205, or Bi203 containing glasses, high-index polyimide;
glass-ceramics doped with Co3+, in particular one or more of garnets or cubic crystals doped/co-doped with Ce3+, Mn2+, Mn4+, Cr3+ ; non-cubic crystals, in particular phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+, Eu3+, Tm3+, Sm2+, Cr3+, Ti3+
incorporated into index-matching matrixes;
garnets or cubic crystals doped/co -doped with Cr3+, Nd3+, Tm3+.
In one embodiment the wavelength converter comprises an outcoupling element, in particular a tapered outcoupling element, a lens, a fluid, a polymer, a glue, a gel or a collimator. This increases the transmission from the wavelength converter to the sensor and thus leads to a large signal output. The outcoupling element may be arranged at the first front surface, but may also be arranged on any other surface for practical reasons.
In an alternative embodiment the wavelength converter may be formed as a disk or ring, wherein the light source is arranged in a central area of the wavelength converter the light sensor is arranged at an edge of the wavelength converter.
The wavelength converter may also be a fiber or a multitude of fibers, for instance a fiber bundle, either closely spaced or optically connected in a transparent material. The fiber may be referred to as a luminescent fiber. The individual fiber may be very thin in diameter, for instance, 0.1 to 0.5 mm.
The light source preferably comprises one or more LEDs, arrays of LEDs, or lasers. For instance, in a practical embodiment for Sp02 measurements, the light source comprises two light source elements for emitting light at two different first wavelengths, in particular at a wavelength of visible light (e.g. red light) and a wavelength of infrared light (e.g. near-infrared light). In this case, the wavelength converter may also comprise two or more fluorescent dyes to convert the respective wavelength emitted by the respective light source element.
The device may further comprise an evaluation unit arranged for retrieving a physiological parameter of a user carrying said device from the light received by the light sensor. Thus, physiological information such as heart rate, respiration rate, pulse arrival, blood pressure, oxygen saturation, may be obtained.
Additionally, a dichroic mirror may be placed between the wavelength converter and the tissue in order to allow the light scattered from the tissue to reach the wavelength converter and prevent the converted light of being reemitted to the tissue.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiment(s) described hereinafter. In the following drawings Fig. 1 shows a side view of a first embodiment of a device according to the present invention,
Fig. 2 shows a schematic diagram of an embodiment of a wavelength converter as used in an embodiment of the device according to the present invention,
Fig. 3 shows a top view of a second embodiment of a device according to the present invention,
Fig. 4 shows a top view of a third embodiment of a device according to the present invention,
Fig. 5 shows a perspective view of a wrist watch including a fourth embodiment of a device according to the present invention, and
Fig. 6 shows a side view of a pulse oximeter representing a fifth embodiment of a device according to the present invention.
DETAILED DESCRIPTION OF EMBODIMENTS
Fig. 1 shows a side view of a first embodiment of a device 1 according to the present invention. The device 1 comprises a light source 10 for emitting light 2 of at least a first wavelength into tissue 3 of the subject, a wavelength converter 20 for receiving at least part of the emitted light 4 after interaction of the emitted light 2 with the tissue 3 and for converting the received light 4 into at least a second wavelength different from the first wavelength, and a light sensor 30 for receiving light 5 converted by said wavelength converter 20.
Fig. 2 shows a schematic diagram of an embodiment of a wavelength converter 20 as used in an embodiment of the device according to the present invention. The wavelength converter 20 of this embodiment is formed as a plate, rod or cylinder and is made of a material 21 which is doped with fluorescent dye converting the wavelength of the light 4 to light 50 with a different, preferably longer wavelength and propagating in all directions. It is arranged such that it receives light 4 at a lateral side surface 22 and emits converted light 5 at a first front surface 23, also called outcoupling surface 23. The light 50 is thus maintained within the material 21 due to total internal reflection and can escape preferably only from the outcoupling surface 23. In this way the light intensity of the light 5 escaping from the outcoupling surface 23 is concentrated.
Optionally, a mirror 24 is placed at the opposite front surface 25 so that as much light as possible is reflected to the outcoupling surface 23. The light source 10 is for example an LED, an array of LEDs, a laser, etc. The light 2, 4 passes through the sensed region 3, which can be skin or any other body tissue.
Using a wavelength converter allows converting almost all the light passing through the wavelength converter (independently of the direction of the light rays) into a second wavelength which will emit light in all directions. These light rays are then trapped inside the wavelength converter due to total internal reflection (in an exemplary
implementation approx. 60% will remain in the wavelength converter).
In an embodiment the wavelength converter 20 is preferable made of a ceramic material. Advantages of this are that these materials have, in general, a very high hardness, are very stable, do not "wear" with respect to optical properties and show a large resistivity against chemicals, thus enabling cleaning in various ways (both chemically and mechanically). Furthermore, the compositions of these ceramics can be tuned in such a way, that the absorbing light matches the emitting spectrum of the light source 2 and the absorption spectrum of the targeted tissue 3.
Several exemplary potential materials are identified with various absorption/emission wavelengths that can provide the desired properties:
glass-ceramics doped with Mn2+; garnets and other cubic crystals (Spinel, perovskite, pyrochlore, etc.) doped/co-doped with Mn2+, Mn4+, Ce3+, Pr3+, Eu3+, Sm3+, Eu2+, Yb2+; non-cubic crystals, such as phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+; Eu3+ incorporated into index-matching matrixes (e.g. Te02, SnO/P205, or Bi203 containing glasses, high-index polyimide);
glass-ceramics doped with Co3+; garnets and other cubic crystals doped/co- doped with Ce3+, Mn2+, Mn4+, Cr3+ ; non-cubic crystals, such as phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+, Eu3+, Tm3+, Sm2+, Cr3+, Ti3+ incorporated into index-matching matrixes;
garnets and other cubic crystals doped/co-doped with Cr3+, Nd3+, Tm3+.
Preferably, the concentration of luminescent sites (e.g. Ce) in the converter material 21 is high enough to have more than 99% conversion. That implies that the absorption length for the incident light 4 should be less than 0.22 times the plate thickness.
In other embodiments, an optional outcoupling element 26 may be provided at the first front surface 23 (shown with dashed lines in Fig. 2). The outcoupling element can e.g. have a tapered angle, e.g. in the range of 30° to 60°, e.g. of 45°. In another embodiment, the outcoupling of light from the wavelength converter 20 to the light sensor 30 can be enhanced using a fluid (such as oil, gel), a lens, a collimator as outcoupling element 26. Fig. 3 shows a top view of a second embodiment of a device 2according to the present invention. In this embodiment the light source 10 is in the middle surrounded by the wavelength converter 20 that has the form of a disk. The light sensor 30 is arranged on a circumferential side surface (edge) of the disk- shaped wavelength converter 20.
Fig. 4 shows a top view of a third embodiment of a device 3 according to the present invention. In this embodiment the wavelength converter 20 is formed in the shape of a ring to capture the light at a specific distance from the light source 10 in order to capture light having travelled deeper in the tissue.
The light source may contain an LED array including LEDs of different colors. Such an embodiment of a device 4 used in a wristwatch 5 is illustrated in Fig. 5. The device 4 is arranged at the lower surface 6 of the wristwatch so that it is in contact with the skin when worn by a user.
In this embodiment the light source is formed by two LEDs of different colors, in particular a first LED 11 emitting red light and a second LED 12 emitting infrared light. The light sensor 30 is in the central area and waveguide converters 20 are arranged between the LEDs 11, 12 and the light sensor 30.
It is known that adding one or more extra colors (with a different absorption coefficient in blood and/or a different penetration depth) can be used to reduce motion artefacts. Further, the use of at least two colors (having different absorption and/or scattering coefficients for oxygenated versus deoxygenated blood) is required for deriving the oxygen saturation in the blood. Although the wavelength converter changes the wavelength of the colors, this has no further implications, because the wavelength is changed only after it has been scattered by the skin (including the blood) and therefore, the information of interest has already been obtained before the wavelength is changed.
The light sensor 30 (and/or a processor evaluating the sensed signals) can distinguish between light originating from the first LED 11 and light originating from the second LED 12 by using the time at which the light is sensed, as usually in PPG sensors with LEDs of different colors, which alternate in their on and off states (i.e. when one LED is emitting light, the other is not and vice versa).
In another embodiment the device further comprises an evaluation unit 40, e.g. a processor, for evaluating the sensed signals and for retrieving a physiological parameter of a user carrying said device from the light received by the light sensor 30, i.e. the sensed signals. Such an optional evaluation unit 40 is also shown in Fig. 5 with dashed lines. In an alternative embodiment the sensed signals are transmitted (in a wired or wireless manner) to an external evaluation unit, e.g. to a smartphone, computer, laptop, patient monitor, etc. for further processing.
Fig. 6 shows a side view of a pulse oximeter 7 representing a fifth embodiment of a device according to the present invention. The pulse oximeter 7 is configured as finger clip for monitoring Sp02 of the subject. The two LEDs 11, 12 are arranged on a first side of the finger 100. The wavelength converter 20 and the photodiode 30 are arranged on the other side of the finger 100, i.e. light emitted by the LEDs 11, 12 is transmitted through the finger 100 and the received by the wavelength converter 20. The photodiode 30 is arranged on a lateral side of the wavelength converter 20 in this embodiment, from which the converted light is output.
Hence, the present invention is not limited to devices of a reflective type making use of light reflected from tissue, but can also be applied in device of a transmissive type making use of light transmitted through tissue. Also hybrid forms of devices may be used. For instance, in the embodiment shown in Fig. 6 the wavelength converter may be arranged around part or the complete finger to collect light scattered by the tissue in all directions.
Other embodiments may be envisaged for specific location of the body such as the nose and the ear where access is more difficult.
The present invention can be used for unobtrusive monitoring of physiological parameters such as heart rate, respiration rate, blood oxygen saturation and (a surrogate for) blood pressure . Applications range from healthy living (think of activity trackers and sports watches), to home monitoring of elderly, patients with chronic diseases and for hospital to home, to hospital use, such as in the ICU and OR.
While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims.
In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. A single element or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.

Claims

CLAIMS:
1. Device for detecting light allowing retrieval of a physiological parameter of a user carrying said device, said device (1, 2, 3, 4) comprising:
a light source (10) arranged for emitting light of at least a first wavelength into tissue of the subject,
a wavelength converter (20) arranged for receiving at least part of the emitted light after interaction of the emitted light with the tissue and for converting the received light into at least a second wavelength different from the first wavelength, and
a light sensor (30) arranged for receiving light converted by said wavelength converter.
2. Device as claimed in claim 1,
wherein said wavelength converter (20) comprises a doped material (21) arranged for converting the wavelength of the received light, in particular a material (21) doped with fluorescent dye or quantum dots.
3. Device as claimed in claim 1,
wherein said wavelength converter (20) is configured to convert the received light into a second wavelength that is longer than the first wavelength.
4. Device as claimed in claim 1,
wherein said wavelength converter (20) is arranged between the light source (10) and the light sensor (30), in particular for receiving light reflected from the tissue.
5. Device as claimed in claim 1,
wherein said wavelength converter (20) is arranged at a distance from the light source (10) for receiving light transmitted through the tissue.
6. Device as claimed in claim 1,
wherein said wavelength converter (20) is formed as a rod or cylinder and is arranged such that it receives light at a lateral side surface (22) and emits converted light at a first front surface (23).
7. Device as claimed in claim 1,
wherein said wavelength converter (20) comprises a mirror (24) at a first front surface (23) and/or at a second front surface (25) opposite the first front surface for internally reflecting the light.
8. Device as claimed in claim 1,
wherein said wavelength converter (20) is made of a ceramic material.
9. Device as claimed in claim 1,
wherein said wavelength converter (20) is made of one of the following materials:
- glass-ceramics doped with Mn2+, in particular one or more of garnets or cubic crystals doped/co-doped with Mn2+, Mn4+, Ce3+, Pr3+, Eu3+, Sm3+, Eu2+, Yb2+; non- cubic crystals, in particular phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+; Eu3+ incorporated into index-matching matrixes, in particular Te02, SnO/P205, or Bi203 containing glasses, high-index polyimide;
glass-ceramics doped with Co3+, in particular one or more of garnets or cubic crystals doped/co-doped with Ce3+, Mn2+, Mn4+, Cr3+ ; non-cubic crystals, in particular phosphors doped with Ce3+, Pr3+, Eu2+, Yb2+, Eu3+, Tm3+, Sm2+, Cr3+, Ti3+
incorporated into index-matching matrixes;
garnets or cubic crystals doped/co-doped with Cr3+, Nd3+, Tm3+.
10. Device as claimed in claim 1,
wherein said wavelength converter (20) comprises an outcoupling element (26), in particular a tapered outcoupling element, a lens, a fluid, a polymer, a glue, a gel or a collimator.
11. Device as claimed in claim 1 ,
wherein said wavelength converter (20) is formed as a disk or ring, wherein the light source (10) is arranged in a central area (27) of the wavelength converter (20) the light sensor (30) is arranged at an edge (28) of the wavelength converter (20) or comprises a fiber or a multitude of fibers.
12. Device as claimed in claim 1,
wherein said light source (10) comprises one or more LEDs, arrays of LEDs, or lasers.
13. Device as claimed in claim 1,
wherein said light source (10) comprises two light source elements (11, 12) for emitting light at two different first wavelengths, in particular at a wavelength of visible light and a wavelength of infrared light.
14. Device as claimed in claim 1,
further comprising an evaluation unit (40) arranged for retrieving a
physiological parameter of a user carrying said device from the light received by the light sensor (30).
15. Method for detecting light allowing retrieval of a physiological parameter of a user carrying said device, said method comprising:
emitting light of at least a first wavelength into tissue of the subject, receiving at least part of the emitted light after interaction of the emitted light with the tissue,
converting the received light into at least a second wavelength different from the first wavelength, and
receiving the converted light.
PCT/EP2017/078508 2016-11-07 2017-11-07 Device and method for physiological parameter detection WO2018083351A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019521085A JP7245774B2 (en) 2016-11-07 2017-11-07 Devices and methods for physiological parameter sensing
CN201780068672.8A CN109952057A (en) 2016-11-07 2017-11-07 Apparatus and method for detection of physiological parameters
US16/346,891 US11482034B2 (en) 2016-11-07 2017-11-07 Device and method for physiological parameter detection
EP17800470.1A EP3534775B1 (en) 2016-11-07 2017-11-07 Device for physiological parameter detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16197460 2016-11-07
EP16197460.5 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018083351A1 true WO2018083351A1 (en) 2018-05-11

Family

ID=57240990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/078508 WO2018083351A1 (en) 2016-11-07 2017-11-07 Device and method for physiological parameter detection

Country Status (5)

Country Link
US (1) US11482034B2 (en)
EP (1) EP3534775B1 (en)
JP (1) JP7245774B2 (en)
CN (1) CN109952057A (en)
WO (1) WO2018083351A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020126891A1 (en) * 2018-12-17 2020-06-25 Osram Opto Semiconductors Gmbh Pulse sensor for detecting the pulse of a living organism
WO2021236102A1 (en) * 2020-05-22 2021-11-25 Google Llc Erbium doped glass for optical amplification in detecting a photoplethysmography

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070129613A1 (en) 2003-11-18 2007-06-07 Qinetiq Limited Flexible light sources and detectors and applications thereof
US20100327306A1 (en) * 2008-02-11 2010-12-30 Koninklijke Philips Electronics N.V. Led based light source for improved color saturation
US7982229B2 (en) 2004-11-18 2011-07-19 Koninklijke Philips Electronics N.V. Light emitting device with conversion structure
EP2401958A1 (en) * 2010-07-02 2012-01-04 Inspektor Research Systems B.V. Intraoral observation equipment
US20130131519A1 (en) 2009-02-25 2013-05-23 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US20150094550A1 (en) 2013-09-30 2015-04-02 General Electric Company Dual-spectra pulse oximeter sensors and methods of making the same
EP3020331A1 (en) 2014-11-14 2016-05-18 Polar Electro Oy Improving wrist device efficiency

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466806B1 (en) * 2000-05-17 2002-10-15 Card Guard Scientific Survival Ltd. Photoacoustic material analysis
KR100827138B1 (en) 2006-08-10 2008-05-02 삼성전자주식회사 Biometric information measuring device
US8320982B2 (en) * 2006-12-27 2012-11-27 Valencell, Inc. Multi-wavelength optical devices and methods of using same
WO2012021968A1 (en) 2010-08-18 2012-02-23 Dayan Ban Organic/inorganic hybrid optical amplifier with wavelength conversion
JP5658993B2 (en) * 2010-12-15 2015-01-28 株式会社日立製作所 Biological measuring device
JP5203488B2 (en) * 2011-05-26 2013-06-05 シャープ株式会社 Measuring apparatus and measuring method
CN104205375B (en) * 2012-03-30 2019-01-15 亮锐控股有限公司 Optics cavity including luminescent device and wavelength conversion material
US9883824B2 (en) 2012-08-20 2018-02-06 Taiwan Biophotonic Corporation Detecting device
US20140107495A1 (en) 2012-10-17 2014-04-17 Nokia Corporation Wearable Apparatus and Associated Methods
EP2769667A1 (en) * 2013-02-22 2014-08-27 Koninklijke Philips N.V. Marker with light emitting area for use in determining vital sign information
US20160079490A1 (en) 2013-03-29 2016-03-17 Koninklijke Philips N.V. Light emitting device comprising wavelength converter
CN105163650B (en) * 2013-05-03 2018-12-07 飞利浦照明控股有限公司 The light source exported with adapted spectrum
KR102270798B1 (en) * 2013-12-16 2021-06-30 삼성메디슨 주식회사 Photoacoustic probe and photoacoustic diagnostic apparatus
WO2015197385A1 (en) 2014-06-27 2015-12-30 Koninklijke Philips N.V. Animal vital sign detection system
US10575765B2 (en) * 2014-10-13 2020-03-03 Glusense Ltd. Analyte-sensing device
EP3015062A1 (en) 2014-10-30 2016-05-04 ams AG Optical sensor arrangement for an optical measurement of biological parameters and watch comprising the optical sensor arrangement
EP3015848A1 (en) 2014-10-30 2016-05-04 Nokia Technologies OY Apparatus and method for detecting light reflected from an object
JP2016174766A (en) 2015-03-20 2016-10-06 国立大学法人名古屋大学 Non-contact biological information sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070129613A1 (en) 2003-11-18 2007-06-07 Qinetiq Limited Flexible light sources and detectors and applications thereof
US7982229B2 (en) 2004-11-18 2011-07-19 Koninklijke Philips Electronics N.V. Light emitting device with conversion structure
US20100327306A1 (en) * 2008-02-11 2010-12-30 Koninklijke Philips Electronics N.V. Led based light source for improved color saturation
US20130131519A1 (en) 2009-02-25 2013-05-23 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP2401958A1 (en) * 2010-07-02 2012-01-04 Inspektor Research Systems B.V. Intraoral observation equipment
US20150094550A1 (en) 2013-09-30 2015-04-02 General Electric Company Dual-spectra pulse oximeter sensors and methods of making the same
EP3020331A1 (en) 2014-11-14 2016-05-18 Polar Electro Oy Improving wrist device efficiency

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020126891A1 (en) * 2018-12-17 2020-06-25 Osram Opto Semiconductors Gmbh Pulse sensor for detecting the pulse of a living organism
US20220015656A1 (en) * 2018-12-17 2022-01-20 Osram Opto Semiconductors Gmbh Pulse Sensor for Detecting the Pulse of a Living Organism
US12279854B2 (en) * 2018-12-17 2025-04-22 Osram Opto Semiconductors Gmbh Pulse sensor for detecting the pulse of a living organism
WO2021236102A1 (en) * 2020-05-22 2021-11-25 Google Llc Erbium doped glass for optical amplification in detecting a photoplethysmography

Also Published As

Publication number Publication date
CN109952057A (en) 2019-06-28
JP2019533509A (en) 2019-11-21
US11482034B2 (en) 2022-10-25
US20200193121A1 (en) 2020-06-18
EP3534775A1 (en) 2019-09-11
EP3534775B1 (en) 2023-06-07
JP7245774B2 (en) 2023-03-24

Similar Documents

Publication Publication Date Title
US12076142B2 (en) Physiological monitoring system for measuring oxygen saturation
CN113597280B (en) PPG sensor with high signal-to-noise ratio
CN101849821B (en) Optical fiber near-infrared spectrometer
US20190387972A1 (en) Methods and System for Multi-channel Bio-optical Sensing
US11883167B2 (en) Device to extract physiological information and method therefor
WO2005010568A2 (en) Optical vital signs monitor
JP6293927B2 (en) Sensor
JPH04106748U (en) Optical biomeasuring device
CA2699626A1 (en) Optical device components
KR20200093247A (en) Ppg sensor package
US20090177053A1 (en) Coaxial LED Light Sources
WO2005010567A2 (en) Low profile fiber optic vital signs sensor
US11482034B2 (en) Device and method for physiological parameter detection
KR20200044536A (en) Ppg sensor package
KR102223689B1 (en) Apparatus for measuring bio-information
KR102348195B1 (en) Optical Analyte Monitering System and Method
JP2008289807A (en) Sensing apparatus for biological surface tissue
RU162684U1 (en) HUMAN PULSE WAVE FORM OPTICAL SENSOR
RU2839510C1 (en) Optical sensor of short-wave infrared spectrum for biomedical applications
CN218724745U (en) Infrared thermometer with blood oxygen measuring function
AU2024216430B2 (en) Physiological monitoring system for measuring oxygen saturation
JP2019097771A (en) Pulse oximeter and probe for biological information measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17800470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521085

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017800470

Country of ref document: EP

Effective date: 20190607

OSZAR »