US10837800B2 - Arrangements for magnetic field sensors that act as movement detectors - Google Patents
Arrangements for magnetic field sensors that act as movement detectors Download PDFInfo
- Publication number
- US10837800B2 US10837800B2 US15/945,085 US201815945085A US10837800B2 US 10837800 B2 US10837800 B2 US 10837800B2 US 201815945085 A US201815945085 A US 201815945085A US 10837800 B2 US10837800 B2 US 10837800B2
- Authority
- US
- United States
- Prior art keywords
- magnetic field
- field sensing
- sensing element
- electronic circuit
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
- G01D5/147—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
Definitions
- This invention relates generally to magnetic field sensors, and, more particularly, to magnetic field sensors having a magnet and a substrate with magnetic field sensing elements thereupon, all arranged in a variety of relative positions and all acting as movement detectors.
- Magnetic field sensors generally include a magnetic field sensing element and other electronic components. Some magnetic field sensors also include a permanent magnet in a so-called “back biased” arrangement described more fully below.
- Magnetic field sensors provide an electrical signal representative of a sensed magnetic field.
- a magnetic field sensed by a magnetic field sensor is a magnetic field generated by the magnet.
- the magnetic field generated by the magnet and sensed by the magnetic field sensor varies in accordance with a shape or profile of the moving ferromagnetic object.
- the ferromagnetic object that is sensed can have teeth, as in gear teeth upon a gear.
- passing gear teeth are sensed and by the magnetic field sensor, a rate of which can be indicative of a speed of rotation of the gear.
- An output signal from the magnetic field sensor can indicate the speed of the rotation.
- the output signal from the magnetic field sensor can also indicate a direction of the rotation.
- the output signal from the magnetic field sensor can be indicative of the speed of rotation of the target object and/or the direction of rotation of the target object.
- Magnetic field sensing elements e.g., Hall effect elements
- a relative phase of signals generated by two or more of the magnetic field sensing elements is used to detect the direction of rotation of the ferromagnetic object, e.g., the gear.
- the present inventions provides a magnetic field sensor and associate method in a back-biased arrangement that can achieve an output signal that accurately differentiates between two directions of rotation of a ferromagnetic object, or directions of any movement of a ferromagnetic object, to provide a detected direction, with reduced susceptibility to errors in the detected direction.
- a magnetic field sensor for sensing a movement of an object along a path, a movement line tangent to the path can include a magnet, the magnet comprising a north pole, a south pole, and a magnet axis passing through the north pole and the south pole.
- the magnetic field sensor can also include a semiconductor substrate proximate to the magnet and at a position between the object and the magnet planar surface, the semiconductor substrate having first and second major opposing surfaces, the magnet axis substantially perpendicular to the first opposing surface of the semiconductor substrate, the semiconductor substrate having first and second orthogonal axes on the first opposing surface of the substrate intersecting at a substrate point on the first surface of the substrate, wherein the magnet axis intersects the substrate point, wherein a projection of the movement line onto the first opposing surface of the semiconductor substrate is substantially parallel to the first orthogonal axis on the first surface of the substrate.
- the magnetic field sensor can also include a first magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed along the first or second orthogonal axis, wherein the first magnetic field sensing element comprises an axis of maximum sensitivity substantially perpendicular to the first opposing surface of the substrate.
- the magnetic field sensor can also include a second magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed along the first or second orthogonal axis, wherein the second magnetic field sensing element comprises an axis of maximum sensitivity substantially parallel to the first opposing surface of the substrate, wherein the axis of maximum sensitivity of the second magnetic field sensing element is substantially parallel to the first orthogonal axis, wherein the first magnetic field sensing element is not disposed over or under the second magnetic field sensing element relative to the first surface of the semiconductor substrate.
- FIG. 1 is a block diagram showing a prior art magnetic field sensor proximate to a gear operable to rotate;
- FIG. 2 is a block diagram showing a prior art electronic circuit that can be used in the prior art magnetic field sensor of FIG. 1 ;
- FIG. 3 is a graph showing particular signals within the prior art electronic circuit of FIG. 2 ;
- FIG. 4 is a block diagram showing a side view of another magnetic field sensor having a semiconductor substrate proximate to a gear operable to rotate;
- FIG. 5 is a block diagram showing a top view of an illustrative substrate portion of a magnetic field sensor according to FIG. 4 and having two magnetic field sensing elements and an electronic circuit;
- FIG. 6 is a block diagram showing a top view of an illustrative substrate portion of a magnetic field sensor according to FIG. 4 and having four magnetic field sensing elements and an electronic circuit;
- FIG. 7 is a block diagram showing a side view of a magnetic field sensor according to the substrate portion of the magnetic field sensor of FIG. 5 and showing an effect upon magnetic field lines as a ferromagnetic object passes;
- FIG. 8 is a block diagram showing a side view of a magnetic field sensor according to the substrate portion of the magnetic field sensor of FIG. 6 and showing an effect upon magnetic field lines as a ferromagnetic object passes;
- FIG. 9 is a block diagram showing magnetic field lines, planar Hall effect elements, and vertical Hall effect elements.
- FIG. 10 is a graph showing particular signals within the electronic circuits of FIGS. 5 and 6 ;
- FIG. 11 is a block diagram showing further details of an example of the electronic circuit of FIG. 5 ;
- FIG. 12 is a block diagram showing further details of an example of the electronic circuit of FIG. 6 ;
- FIG. 13 is a block diagram showing a top view of an illustrative substrate portion of a magnetic field sensor according to FIG. 4 and having six magnetic field sensing elements and an electronic circuit;
- FIG. 14 is a block diagram showing further details of an example of the electronic circuit of FIG. 13 ;
- FIG. 15 is a block diagram showing a top view of an illustrative substrate portion of a magnetic field sensor according to FIG. 4 and having four magnetic field sensing elements and an electronic circuit;
- FIG. 16 is a block diagram showing further details of an example of the electronic circuit of FIG. 15 ;
- FIG. 17 is a block diagram showing two magnetoresistance elements coupled in a bridge arrangement that can be used in the magnetic field sensors and electronic circuits of FIGS. 4-9 , and 11 - 16 .
- magnetic field sensing element is used to describe a variety of electronic elements that can sense a magnetic field.
- the magnetic field sensing element can be, but is not limited to, a Hall Effect element, a magnetoresistance element, or a magnetotransistor.
- Hall Effect elements for example, a planar Hall element, a vertical Hall element, and a Circular Vertical Hall (CVH) element.
- magnetoresistance elements for example, a semiconductor magnetoresistance element such as Indium Antimonide (InSb), a giant magnetoresistance (GMR) element, an anisotropic magnetoresistance element (AMR), a tunneling magnetoresistance (TMR) element, and a magnetic tunnel junction (MTJ).
- the magnetic field sensing element may be a single element or, alternatively, may include two or more magnetic field sensing elements arranged in various configurations, e.g., a half bridge or full (Wheatstone) bridge.
- the magnetic field sensing element may be a device made of a type IV semiconductor material such as Silicon (Si) or Germanium (Ge), or a compound semiconductor material like Gallium-Arsenide (GaAs) or an Indium compound, e.g., Indium-Antimonide (InSb), or InGaA.
- a type IV semiconductor material such as Silicon (Si) or Germanium (Ge)
- a compound semiconductor material like Gallium-Arsenide (GaAs) or an Indium compound, e.g., Indium-Antimonide (InSb), or InGaA.
- some of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity substantially parallel to a substrate that supports the magnetic field sensing element, and others of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity substantially perpendicular to a substrate that supports the magnetic field sensing element.
- planar Hall elements tend to have axes of sensitivity substantially perpendicular to a substrate
- metal based or metallic magnetoresistance elements e.g., GMR, TMR, AMR
- vertical Hall elements tend to have axes of sensitivity parallel to a substrate.
- magnetic field sensor is used to describe a circuit that uses a magnetic field sensing element, generally in combination with other circuits.
- Magnetic field sensors are used in a variety of applications, including, but not limited to, an angle sensor that senses an angle of a direction of a magnetic field, a current sensor that senses a magnetic field generated by a current carried by a current-carrying conductor, a magnetic switch that senses the proximity of a ferromagnetic object, a rotation detector that senses passing ferromagnetic articles, for example, magnetic domains of a ring magnet, and a magnetic field sensor that senses a magnetic field density of a magnetic field.
- parallel and perpendicular are used in various contexts herein. It should be understood that the terms parallel and perpendicular do not require exact perpendicularity or exact parallelism, but instead it is intended that normal manufacturing tolerances apply, which tolerances depend upon the context in which the terms are used. In some instances, the term “substantially” is used to modify the terms “parallel” or “perpendicular.” In general, use of the term “substantially” reflects angles that are beyond manufacturing tolerances, for example, within +/ ⁇ ten degrees.
- similar circuits and techniques can be used with other cams or gears disposed upon the engine camshaft, or upon other rotating parts of an engine (e.g., crank shaft, transmission gear, anti-lock braking system (ABS)), or upon rotating parts of a device that is not an engine.
- Other applications may include linear translation sensors or other sensors where the target is not a rotating gear.
- the gear (or target) is not a part of the magnetic field sensors described below.
- the gear can have ferromagnetic gear teeth, which can be soft ferromagnetic objects, but which can also be hard ferromagnetic objects, patterns, or domains which may or may not have actual physical changes in their shape.
- magnetic field sensors that can sense ferromagnetic gear teeth or gear teeth edges upon a gear configured to rotate
- the magnetic field sensors can be used in other applications.
- the other applications include, but are not limited to, sensing ferromagnetic objects upon a structure configured to move linearly.
- baseline and the phrase “baseline level” are used to describe a lowest magnitude (which may be near zero or may be some other magnetic field) of a magnetic field experienced by a magnetic field sensing element within a magnetic field sensor when the magnetic field sensor is operating in a system. In some systems, this lowest magnetic field occurs when a magnetic field sensor is proximate to a gear valley as opposed to a gear tooth.
- a difference between the baseline level and a higher level achieved, for example, when a gear tooth is proximate to a magnetic field sensor is related to an ability of the magnetic field sensor to differentiate between a gear tooth and a valley, and thus, related to accuracy of the magnetic field sensor.
- a baseline level is generated when a magnetic field sensor is proximate to a gear valley and a higher level is achieved when the magnetic field sensor is proximate to a gear tooth
- other physical arrangements are also possible, for example, a reverse arrangement for which a baseline level is generated when a magnetic field sensor is proximate to a gear tooth and a higher level is achieved when the magnetic field sensor is proximate to a gear valley.
- processor is used to describe an electronic circuit that performs a function, an operation, or a sequence of operations.
- the function, operation, or sequence of operations can be hard coded into the electronic circuit or soft coded by way of instructions held in a memory device.
- a “processor” can perform the function, operation, or sequence of operations using digital values or using analog signals.
- the “processor” can be embodied in an application specific integrated circuit (ASIC), which can be an analog ASIC or a digital ASIC. In some embodiments, the “processor” can be embodied in a microprocessor with associated program memory. In some embodiments, the “processor” can be embodied in a discrete electronic circuit, which can be an analog or digital.
- ASIC application specific integrated circuit
- the “processor” can be embodied in a microprocessor with associated program memory.
- the “processor” can be embodied in a discrete electronic circuit, which can be an analog or digital.
- module is used to describe a “processor.”
- a processor can contain internal processors or internal modules that perform portions of the function, operation, or sequence of operations of the processor.
- a module can contain internal processors or internal modules that perform portions of the function, operation, or sequence of operations of the module.
- the term “predetermined,” when referring to a value or signal, is used to refer to a value or signal that is set, or fixed, in the factory at the time of manufacture, or by external means, e.g., programming, thereafter.
- the term “determined,” when referring to a value or signal, is used to refer to a value or signal that is identified by a circuit during operation, after manufacture.
- active electronic component is used to describe an electronic component that has at least one p-n junction.
- a transistor, a diode, and a logic gate are examples of active electronic components.
- a capacitor and a resistor are examples of passive electronic components.
- an example conventional magnetic field sensor 100 is responsive to a gear 114 having gear teeth, e.g., gear teeth 114 a , 114 b , 114 c .
- the magnetic field sensor 100 includes three magnetic field sensing elements 102 , 104 , 106 coupled to an electronic circuit 110 upon a substrate 108 .
- the magnetic field sensing elements 102 , 104 are separated in a direction substantially perpendicular to an axis 116 by a distance between about 1.5 millimeters and about 3.0 millimeters, and the magnetic field sensing element 106 is located midway between the magnetic field sensing elements 102 , 104 .
- the three magnetic field sensing elements 102 , 104 , 106 and an electronic circuit 110 can be disposed upon (i.e., integrated within or upon) a substrate 108 .
- the magnetic field sensing elements 102 , 104 , 106 are shown to be planar Hall effect elements.
- the magnetic field sensor 100 can also include a magnet 112 , resulting in a back-biased arrangement.
- the magnet 112 is configured to generate a magnetic field, which is generally directed along the axis 116 at the position of the magnetic field sensing elements 102 , 104 , 106 .
- the electronic circuit 110 is configured to generate an output signal (not shown).
- An exemplary electronic circuit 110 is described below in conjunction with FIG. 2 . Let it suffice here to say that the electronic circuit 110 generates a difference of signals.
- the magnetic field sensor 100 is an edge detector and not a tooth detector.
- edge detector is not able to identify whether the magnetic field sensor 100 is proximate to a gear tooth or a gear valley. However, the edge detector is able to sense edges of gear teeth as they move past the magnetic field sensor 350 . In contrast, a “tooth detector” is able to identify whether a magnetic field sensor is proximate to a gear tooth or valley.
- the output signal when the gear 114 is rotating, is indicative speed of rotation of the gear 114 and can also be indicative of a direction of rotation of the gear 114 by circuits and techniques described more fully below.
- the magnet 112 can have a central core (not shown).
- the central core (not shown) can be comprised of a soft ferromagnetic material disposed within the magnet 112 .
- An example of a magnet with a core is described in U.S. Pat. No. 6,278,269, entitled “Magnet Structure,” issued Aug. 21, 2001, which patent is assigned to the assignee of the present invention and incorporated herein by reference in its entirety. As described in U.S. Pat. No.
- the pole configuration provided by the magnet with the core lowers the base field (or baseline) of a flux density of the magnetic field at some points above the surface of the core (e.g., to the left of the magnet 112 as shown) when a valley of the gear 114 is proximate to the magnetic field sensor 100 .
- a predetermined baseline e.g., within a range of about +/six hundred Gauss
- the magnetic field sensing elements 102 , 104 , 106 can be achieved with proper design.
- the above-described low baseline which occurs when the magnetic field sensor is proximate to a gear valley, results in the electronic circuit 110 being able to identify gear teeth as they pass by the magnetic field sensor 100 .
- the central core can result in a low baseline when the magnetic field sensing element 102 , 104 , 106 are proximate to a valley in the gear 114 .
- the magnetic field sensor 100 uses three magnetic field sensing elements, generating a respective three differential output signals 102 a , 102 b , and 104 a , 104 b , and 106 a , 106 b .
- pairs of signals representative of the three differential output signals 102 a , 102 b , and 104 a , 104 b , and 106 a , 106 b are subtracted in the electronic circuit 110 .
- the differential nature of the combined signal can result in an even lower combined signal than can achieved by the low baseline alone.
- the three magnetic field sensing elements 102 , 104 , 106 are proximate to a gear tooth, the low combined signal is also achieved. Only when some of the magnetic field sensing elements 102 , 104 , 106 are proximate to a gear tooth and others are proximate to a gear valley, i.e., proximate to a gear edge, is the combined signal increased.
- the magnetic field sensor 100 is an edge detector, and not a tooth detector.
- the differencing of pairs of the three differential signals 102 a , 102 b , and 104 a , 104 b , and 106 a , 106 b results in an improved accuracy of the magnetic field sensor 100 .
- the magnetic field sensor 100 is less influenced by external magnetic fields, i.e., noise magnetic fields and/or by nose electromagnetic field, i.e., by noise electrical signals, that the three magnetic field sensing elements 102 , 104 , 106 may experience in the same way.
- a conventional electronic circuit 140 can include amplifiers 148 , 150 , 152 coupled to receive differential signals 142 a , 142 b , and 144 a , 144 b , and 146 a , 146 b , respectively.
- the differential signal 142 a , 142 b can be the same as or similar to the differential signal 102 a , 102 b
- the differential signal 144 a , 144 b can be the same as or similar to the differential signals 104 a , 104 b
- the differential signal 146 a , 146 b can be the same as or similar to the differential signal 106 a , 106 b generated, respectively, by the magnetic field sensing elements 102 , 104 , 106 of FIG. 1
- the amplifiers 148 , 150 , 152 are configured to generate amplified signals 148 a , 150 a , 152 a , respectively.
- the amplified signals 148 a , 152 a are received by a first differencing module 154 , which is configured to generate a first difference signal 154 a .
- the amplified signals 150 a , 152 a are received by a second differencing module 156 , which is configured to generate a second difference signal 156 a.
- the electronic circuit 140 can include a first automatic gain control/automatic offset control (AGC/AOA) module 160 coupled to receive the first difference signal 154 a .
- the electronic circuit 140 can include a second automatic gain control/automatic offset control (AGC/AOA) module 166 coupled to receive the second difference signal 156 a.
- AGC/AOA automatic gain control/automatic offset control
- the first AGC/AOA module 160 is operable to generate a first calibrated signal 160 a and the second AGC/AOA module 166 is operable to generate a second calibrated signal 166 a .
- the calibrated signals 160 a 166 a can have signal values adjusted in gain so that AC signal components thereof can match in amplitude, and signal values for which DC offset signal components thereof are substantially removed.
- a first rotation detector module 162 a is coupled to receive the first calibrated signal 160 a and a second rotation detector 168 is coupled to receive the second calibrated signal 166 a.
- the rotation detector modules 162 , 166 are operable to convert the calibrated signals 160 a , 166 a from multi-state signals, e.g., analog sinusoid signals, to two-state signals 162 a , 168 a , respectively. This conversion can be accomplished, for example, by comparing the first calibrated signal 160 a with one or more threshold values to generate the first two-state signal 162 a and comparing the second calibrated signal 166 a with another one or more threshold values to generate the second two-state signal 168 a.
- multi-state signals e.g., analog sinusoid signals
- a positive digital-to-analog converter (PDAC) and a negative digital-to-analog converter (NDAC) track positive and negative peaks of magnetic field signal, respectively, for use in generating a threshold signal.
- a varying magnetic field signal is compared to the threshold signal to generate a two-state signal.
- PDAC positive digital-to-analog converter
- NDAC negative digital-to-analog converter
- Other ways to generate the above-described threshold values are described, for example, in U.S. Pat. No. 7,368,904, issued May 6, 2008, and U.S. Pat. No. 7,253,614, issued Aug. 7, 2007, and U.S. Pat. No. 7,772,838, issued Aug. 10, 2010, all of which are assigned to the assignee of the present invention and both of which are incorporated by reference herein in their entirety.
- the two-state signals 162 a , 168 a each have state transitions, rates of which are indicative of a speed of rotation of the gear 114 .
- the two-state signals 162 a , 168 a also have a relative phase, one having state transitions that occur before the other or vice versa.
- a sign (plus or minus) of a relative phase of the two-state signals 162 a , 168 a is indicative of a direction of rotation of the gear 114 .
- phase separation between the two state signals 162 a , 168 a is ultimately determined according to a separation between the magnetic field sensing elements 102 , 104 and a speed of rotation of the gear 114 . In order to keep the substrate 108 small, it is desirable that the separation between the magnetic field sensing elements 102 , 104 is small.
- the magnetic field sensing elements 102 , 104 are separated in a direction substantially perpendicular to the axis 116 by a distance between about 1.5 millimeters and about 3.0 millimeters, and the magnetic field sensing element 106 is located midway between the magnetic field sensing elements 102 , 104 .
- the relative phase between the two-state signals 162 a , 168 a tends to be small, for example, in the range of +/ ⁇ ten to fifteen degrees.
- a speed/direction module 164 is coupled to receive the two-state signals 162 a , 168 a and configured to generate a speed/direction signal 164 a representative of at least one of the speed of rotation or the direction of rotation of the gear.
- first and second graphs 300 , 320 have horizontal axes with scales in units of time in arbitrary units and vertical axes with scales in units of amplitude in arbitrary units.
- a first signal 302 is indicative of the first two-state signal 162 a of FIG. 2 when the gear 114 is rotating in a first direction
- a second signal 304 is indicative of the second two-state signal 168 a of FIG. 2 when the gear 114 is rotating in the first direction.
- Each edge (state transition) of the signals 302 , 304 can be indicative of a gear tooth edge passing by the magnetic field sensor 100 .
- a phase difference 306 indicates a phase difference when the first and second two-state signals are operating in response to the gear 114 rotating in the first direction.
- the same first signal 302 is indicative of the first two-state signal 162 a of FIG. 2 when the gear 114 is rotating in a second different direction
- the same second signal 304 is indicative of the second two-state signal 168 a of FIG. 2 when the gear 114 is rotating in the second direction.
- each edge (state transition) of the signals 302 , 304 can be indicative of a gear tooth edge passing by the magnetic field sensor 100 .
- a phase difference 308 indicates a phase difference when the first and second two-state signals are operating in response to the gear 114 rotating in the second direction.
- phase differences 306 , 308 have opposite signs.
- the signs are indicative of the direction of rotation of the gear 114 .
- phase differences 306 , 308 are fairly small and subject to various noises that can result in a detection of the wrong sign of the phase and a corresponding indication of the wrong direction of rotation of the gear 114 , either intermittently or statically.
- an illustrative magnetic field sensor 400 includes a substrate 402 having a first surface 402 a , a magnetic field sensing element region 404 having magnetic field sensing elements therein and disposed in or upon the first surface 402 a , and an electronic circuit 406 coupled to the magnetic field sensing element region 404 and disposed in or upon the first surface 402 a .
- the substrate 402 is a semiconductor substrate 402 .
- the first surface 402 a can be positioned proximate to a ferromagnetic gear 422 having gear teeth 422 a , 422 b , 422 c , and others.
- the first surface 402 a upon which magnetic field sensing elements are disposed in or upon can be positioned in the other direction, distal from the gear 422 .
- a rotating gear 422 having ferromagnetic gear teeth e.g., 422 a
- an object having ferromagnetic features that move linearly or in some other motion can be used and speed of movement and direction of the movement can be detected with circuits and techniques herein.
- the substrate 402 can be disposed substantially parallel to an x-y plane of axes 420 .
- a magnet 408 can be disposed proximate to the substrate 402 such that a so-called “magnet axis” 424 passes through a north pole 408 a , N, and a south pole 408 b , S in a direction substantially perpendicular to the surface 402 a of the substrate 402 .
- the axis 424 can also pass though an axis of rotation 428 of the gear.
- the magnet axis 424 can insect the surfaces 408 a , 408 b central to the surfaces 408 a , 408 b.
- the magnetic field sensor 400 can rotate in a direction 416 through about +/ ⁇ thirty degrees while maintaining some accuracy.
- the magnetic field sensor 400 can also rotate in a direction 416 though about +/ ⁇ thirty degrees while maintaining some accuracy.
- the gear 422 can rotate in a direction 426 .
- a tangent line 440 can be tangent to the rotation direction 426 .
- a substrate portion of a magnetic field sensor 500 can include a substrate 502 the same as or similar to the substrate 402 of FIG. 4 .
- the substrate 502 can be disposed parallel to the same x-y plane of coordinate axes 540 as indicated by the coordinate axes 420 of FIG. 4
- a surface 502 a of the substrate 502 can be the same as or similar to the surface 402 a of the substrate 402 of FIG. 4 .
- An electronic circuit 516 can be disposed in or upon the surface 502 a of the substrate 502 .
- the electronic circuit 516 can be the same as or similar to the electronic circuit 406 of FIG. 4 .
- a first magnetic field sensing element 504 and a second magnetic field sensing element 508 can be the same as or similar to magnetic field sensing elements in the magnetic field sensing element region 404 of FIG. 4
- a ferromagnetic object can move with a direction substantially parallel to a line 514 , which can be, for example, representative of a line substantially parallel to the tangent line 440 of FIG. 4 .
- the ferromagnetic object can move directly over the substrate point at which the orthogonal axes 530 , 532 intersect.
- the first magnetic field sensing element 504 can be a planar Hall effect element 504 (also sometimes referred to as a horizontal Hall effect element). As described above, the planar Hall effect element 504 has an axis of maximum sensitivity 506 substantially parallel to a z-axis of coordinate axes 540 . The axis of maximum sensitivity 506 is substantially perpendicular to the surface 502 a of the substrate.
- the second magnetic field sensing element 508 can be a vertical Hall effect element 508 .
- the vertical Hall effect element 508 has an axis of maximum sensitivity 510 substantially parallel to the x-axis of the coordinate axes 540 , i.e., substantially parallel to the surface 502 a of the substrate.
- the maximum response axis 506 can be substantially perpendicular to the maximum response axis 510 .
- Electronic signals 512 couple the first and second magnetic field sensing elements 504 , 508 to the electronic circuit 516 .
- a magnet (not shown) can be disposed under the substrate 502 and can have the same orientation and characteristics described below in conjunction with the magnet 408 of FIG. 4 .
- First and second orthogonal axes 530 , 532 are indicative of examples of relative placements of the first and second magnetic field sensing elements 504 , 508 , and also indicative of an example of a relative position of the magnet 408 of FIG. 4 .
- the axis 424 of the magnet can intersect in a z direction (see coordinate axes 540 ) at an intersection of the first and second orthogonal axes 530 , 532 , the intersection also referred to herein as a “substrate point.”
- the first and second magnetic field sensing elements 504 , 508 can be disposed along the first or second orthogonal axes 530 , 532 .
- a center of the first magnetic field sensing element 504 can be disposed along the first orthogonal axis 530 . In some embodiments, the center of the first magnetic field sensing element 504 can be disposed at the intersection of the first and second coordinate axes 530 , 532 .
- a center of second magnetic field sensing element 508 b can be disposed along the first or second orthogonal axis 530 , 540 , here shown to be along the second orthogonal axis 532 .
- other placements of the second magnetic field sensing element 508 are also possible.
- a substrate portion of a magnetic field sensor 600 can include a substrate 602 the same as or similar to the substrate 402 of FIG. 4 .
- the substrate 602 can be disposed parallel to the same x-y plane of coordinate axes 640 as indicated by the coordinate axes 420 of FIG. 4
- a surface 602 a of the substrate 602 can be the same as or similar to the surface 402 a of the substrate 402 of FIG. 4 .
- An electronic circuit 604 can be disposed in or upon the surface 602 a of the substrate 602 .
- the electronic circuit 604 can be the same as or similar to the electronic circuit 406 of FIG. 4 .
- a first magnetic field sensing element 606 , a second magnetic field sensing element 610 , a third magnetic field sensing element 614 , and a fourth magnetic field sensing element 618 can be the same as or similar to magnetic field sensing elements in the magnetic field sensing element region 404 of FIG. 4
- a ferromagnetic object (not shown) can move with a direction substantially parallel to a line 624 , which can be, for example, representative of a line substantially parallel to the tangent line 440 of FIG. 4 .
- the ferromagnetic object can move directly over the substrate point at which the orthogonal axes 630 , 632 intersect.
- the first magnetic field sensing element 606 and the third magnetic field sensing element 614 can be planar Hall effect elements 606 , 614 (also sometimes referred to as horizontal Hall effect elements). As described above, the planar Hall effect element 606 and has an axis of maximum sensitivity 608 and the planar Hall effect element 614 has an axis of maximum sensitivity 616 , both substantially parallel to a z-axis of coordinate axes 540 . The axes of maximum sensitivity 608 , 616 are substantially perpendicular to the surface 602 a of the substrate 602 .
- the second magnetic field sensing element 610 and the fourth magnetic field sensing element 618 can be vertical Hall effect elements 610 , 618 .
- the vertical Hall effect elements 610 , 618 have respective axes of maximum sensitivity 612 , 620 substantially parallel to the x-axis of the coordinate axes 640 , i.e., substantially parallel to the surface 602 a of the substrate.
- the maximum response axes 608 , 616 can be substantially perpendicular to the response axes 612 , 620 .
- Electronic signals 622 a , 622 b couple the first, second, third and fourth magnetic field sensing elements 606 , 610 , 614 , 618 , respectively, to the electronic circuit 604
- a magnet (not shown) can be disposed under the substrate 602 and can have the same orientation and characteristics described below in conjunction with the magnet 408 of FIG. 4 .
- First and second orthogonal axes 630 , 632 are indicative of examples of relative placements of the first, second, third and fourth magnetic field sensing elements 606 , 610 , 614 , 618 , respectively, and also indicative of an example of a relative position of the magnet 408 of FIG. 4 .
- the axis 424 of the magnet can intersect in a z direction (see coordinate axes 640 ) at an intersection of the first and second orthogonal axes 630 , 632 , the intersection also referred to herein as a “substrate point.”
- the first, second, third, and fourth magnetic field sensing elements 608 , 610 , 614 , 618 , respectively, can be disposed along the first or second orthogonal axes 630 , 632 and can also be disposed apart from the substrate point.
- Centers of the first and third magnetic field sensing elements 606 , 614 , respectively, can be disposed along the first orthogonal axis 630 . In some embodiments, a midpoint between centers of the first and third magnetic field sensing elements 606 , 614 , respectively, can be disposed at the intersection of the first and second coordinate axes 630 , 632 .
- Centers of second and fourth magnetic field sensing elements 610 , 618 , respectively, can be disposed along the first or second orthogonal axis 630 , 632 , here shown to be along the first orthogonal axis 630 .
- a midpoint between centers of the second and fourth magnetic field sensing elements 610 , 618 , respectively, can be disposed at the intersection of the first and second coordinate axes 630 , 632 .
- other placements of the second and fourth magnetic field sensing elements 610 , 618 are also possible.
- a magnetic field sensor 700 has a substrate 702 that is the same as or similar to the substrate 502 of FIG. 5 .
- a planar Hall effect element 704 is the same as or similar to the planar Hall effect element 506 of FIG. 5 .
- a vertical Hall effect element 706 is the same as or similar to the vertical Hall effect element 508 of FIG. 5 .
- a magnet 708 is the same as or similar to the magnet 408 of FIG. 4 .
- An axis 708 a is the same as or similar to the magnet axis 424 of FIG. 4 , passing between north and south poles of the magnet 708 .
- a ferromagnetic target 710 (here shown at two positions 710 a , 710 b ) is shown at two positions relative to the views 700 b , 700 c of the magnetic field sensor 700 .
- a ferromagnetic target In the left view 700 a , a ferromagnetic target is far away and not shown.
- a ferromagnetic target 710 a In the center view 700 b , a ferromagnetic target 710 a is to the left of the view 700 b of the magnetic field sensor 700 .
- the ferromagnetic target 710 b is to the right of the view 700 c of the magnetic field sensor 700 .
- a line of magnetic flux 712 (among many such lines) is substantially parallel to the axis 708 a of the magnet 708 in the view 700 a when no ferromagnetic object is nearby.
- a line of magnetic flux 714 has a head angled to the left as shown in the view 700 b when the ferromagnetic target 710 a is to the left in the view 700 b of the magnetic field sensor 700 .
- a line of magnetic flux 716 has a head angled to the right as shown in the view 700 c when the ferromagnetic target 710 b is to the right in the view 700 c of the magnetic field sensor 700 .
- the magnetic flux changes angle when the ferromagnetic target 710 a , 710 b passes by the magnetic field sensor 700 a , 700 b , 700 c in a direction substantially parallel to an x-axis of the coordinate axes 740 .
- an output signal from the planar Hall effect element 704 has an amplitude responsive to a projection of a sensed magnetic field upon its maximum response axis, i.e., to a projection upon an axis centered with the planar Hall effect element 704 and substantially parallel to the z-axis (i.e., substantially perpendicular to the surface 702 a of the substrate 702 ).
- an output signal from the vertical Hall effect element 704 has an amplitude responsive to a projection of a sensed magnetic field upon its maximum response axis, i.e., to a projection upon an axis centered with the vertical hall effect element 706 and substantially parallel to the x-axis (i.e., substantially parallel to the surface 702 a of the substrate 702 ).
- both the planar Hall effect element 704 and the vertical Hall effect element 706 have respective varying output signals as the ferromagnetic target object 710 a , 710 b passes by in a direction of the x-axis of the coordinate axes 740 . Further explanation of operation of the magnetic field sensor 700 a , 700 b , 700 c is given below.
- the ferromagnetic target object 710 a , 710 b can be representative of a gear tooth on a gear, for example, one of the gear teeth, e.g., 422 b , on the gear 422 of FIG. 4 .
- the ferromagnetic target object 710 a , 710 b can be representative of any other ferromagnetic target object.
- a magnetic field sensor 800 has a substrate 802 that is the same as or similar to the substrate 502 of FIG. 5 .
- a first magnetic field sensing element 804 comprising a planar Hall effect element 804 is the same as or similar to the first magnetic field sensing element 606 of FIG. 6 , i.e., the planar Hall effect element 606 of FIG. 6 .
- a second magnetic field sensing element 806 comprising a vertical Hall effect element 806 is the same as or similar to the second magnetic field sensing element 610 of FIG. 6 , i.e., the vertical Hall effect element 610 of FIG. 6 .
- a third magnetic field sensing element 808 comprising a planar Hall effect element 808 is the same as or similar to the third magnetic field sensing element 614 of FIG. 6 , i.e., the planar Hall effect element 614 of FIG. 6 .
- a fourth magnetic field sensing element 810 comprising a vertical Hall effect element 810 is the same as or similar to the fourth magnetic field sensing element 618 of FIG. 6 , i.e., the vertical Hall effect element 618 of FIG. 6 .
- a magnet 808 is the same as or similar to the magnet 408 of FIG. 4 .
- An axis 812 a is the same as or similar to the magnet axis 424 of FIG. 4 , passing between north and south poles of the magnet 808 .
- a ferromagnetic target 826 (here shown at two positions 826 a , 826 b ) is shown at two positions relative to the views 800 b , 800 c of the magnetic field sensor 800 .
- a ferromagnetic target In the left view 800 a , a ferromagnetic target is far away and not shown.
- a ferromagnetic target 826 a In the center view 800 b , a ferromagnetic target 826 a is to the left of the view 800 b of the magnetic field sensor 800 .
- the ferromagnetic target 826 b is to the right of the view 800 c of the magnetic field sensor 800 .
- Lines of magnetic flux 814 , 816 (among many such lines) have heads symmetrically to the left and to the right, respectively, relative to the axis 812 a of the magnet 812 in the view 800 a when no ferromagnetic object is nearby.
- Lines of magnetic flux 818 , 820 have heads in the view 800 b such that the line of flux 818 is less angled to the left than the line of magnetic flux 814 , when the ferromagnetic target 826 a is to the left in the view 800 b of the magnetic field sensor 800 .
- Lines of magnetic flux 822 , 824 have heads in the view 800 c such that the line of flux 824 is less angled to the right than the line of magnetic flux 816 , when the ferromagnetic target 826 b is to the right in the view 800 c of the magnetic field sensor 800 .
- the magnetic flux changes angles when the ferromagnetic target 810 a , 810 b passes by the magnetic field sensor 800 a , 800 b , 800 c in a direction substantially parallel to an x-axis of the coordinate axes 840 .
- respective output signals from the planar Hall effect elements 804 , 808 have respective amplitudes responsive to projections of respective sensed magnetic fields upon their respective maximum response axes, i.e., to projections upon axes centered with the planar Hall effect elements 804 , 808 and substantially parallel to the z-axis (i.e., substantially perpendicular to the surface 802 a of the substrate 802 ).
- respective output signals from the vertical Hall effect elements 806 , 810 have respective amplitudes responsive to projections of respective sensed magnetic fields upon their respective maximum response axes, i.e., to projections upon axes centered with the vertical Hall effect elements 806 , 810 and substantially parallel to the x-axis (i.e., substantially parallel to the surface 802 a of the substrate 802 ).
- both the planar Hall effect elements 804 , 808 and the vertical Hall effect elements 806 , 810 have varying output signals as the ferromagnetic target object 826 a , 826 b passes by in a direction of the x-axis of the coordinate axes 840 . Further explanation of operation of the magnetic field sensor 800 a , 800 b , 800 c is given below.
- the ferromagnetic target object 826 a , 826 b can be representative of a gear tooth on a gear, for example, one of the gear teeth, e.g., 422 b , on the gear 422 of FIG. 4 .
- the ferromagnetic target object 826 a , 826 b can be representative of any other ferromagnetic target object.
- three views 900 as , 900 b , 900 c show a representation of a vertical Hall effect element 902 with a maximum response axis 902 a and a planar Hall effect element 904 with a maximum response axis 904 a.
- a line of magnetic flux 906 is at a first angle
- a line of magnetic flux 908 is at a second angle
- a line of magnetic flux 910 is at a third angle.
- the three lines of magnetic flux 906 , 908 , 910 are representative of lines of magnetic flux that pass through the vertical Hall effect element 902 (e.g., 706 , 806 , 810 ) and through the planar Hall effect element 904 (e.g., 704 , 804 , 808 ) as the ferromagnetic target objects of FIGS. 7 and 8 pass by respective magnetic field sensor.
- the vertical Hall effect element 902 has an axis of maximum sensitivity 902 a .
- the planar Hall effect element 904 has an axis of maximum sensitivity 904 a.
- the vertical Hall effect element 902 has an output signal proportional to a projection of the magnetic field ( 906 , 908 , 910 ) on the axis of maximum sensitivity 902 a .
- the planar Hall effect element 904 has an output signal proportional to a projection of the magnetic field ( 906 , 908 , 910 ) on the axis of maximum sensitivity 904 a .
- the projections are related to the angles X and Z, respectively, as shown.
- the output signals from the vertical Hall effect element and the planar Hall effect element would be sinusoids that, within extreme limits, are always ninety degrees apart, regardless of the frequency of the sinusoid, i.e., regardless of the speed of motion of the ferromagnetic object, e.g., regardless of the speed of rotation of the gear 422 of FIG. 4 with ferromagnetic teeth.
- first and second graphs 1000 , 1020 have horizontal axes with scales in units of time in arbitrary units and vertical axes with scales in units of amplitude in arbitrary units.
- a first signal 1002 is indicative of a first two-state signal described in conjunction with figures below when the gear 422 of FIG. 4 is rotating in a first direction
- a second signal 1004 is indicative of a second two-state signal described in conjunction with figures below when the gear 422 is rotating in the first direction.
- Each edge (state transition) of the signals 1002 , 1004 can be indicative of a gear tooth edge passing by the magnetic field sensor 400 of FIG. 4
- a phase difference 1006 indicates a phase difference when the first and second two-state signals are operating in response to the gear 422 rotating in the first direction.
- the same first signal 1002 is indicative of the first two-state signal described in conjunction with figures below when the gear 422 is rotating in a second different direction
- the same second signal 1004 is indicative of the second two-state signal described in conjunction with figures below when the gear 422 is rotating in the second direction.
- each edge (state transition) of the signals 1002 , 1004 can be indicative of a gear tooth edge passing by the magnetic field sensor 100 .
- a phase difference 1008 indicates a phase difference when the first and second two-state signals 1002 , 1004 are operating in response to the gear 422 rotating in the second direction.
- phase differences 1006 , 1008 have opposite signs.
- the signs are is indicative of the direction of rotation of the gear 422 .
- phase differences are the result of magnetic field sensor signals described above in FIG. 10 to be ninety degrees apart. Comparing the ninety degree phase differences to the smaller phase difference of FIG. 3 , direction detection is much less subject to various noises that can otherwise result in a detection of the wrong sign of the phase and a corresponding indication of the wrong direction of rotation of the gear 422 .
- phase separations 1006 , 1008 can remain the same for all rotation speed of the gear 422 of FIG. 4
- an electronic circuit 1100 can be the same as the electronic circuit 406 of FIG. 4 when the magnetic field sensor 400 of FIG. 4 includes the substrate portion 500 of FIG. 5 , having two magnetic field sensing element 504 , 508 .
- the first magnetic field sensing element 504 of FIG. 5 provides a differential signal 1102 and the second magnetic field sensing element 508 provides a differential signal 1112 to amplifiers 1104 , 1114 , respectively.
- the differential signals 1102 , 1112 have a ninety degree phase relationship when the gear 422 of FIG. 4 rotates, for all rotational speeds of the gear 422 .
- Amplifiers 1104 , 1114 are coupled to receive the differential signals 1102 , 1112 , respectively, and operable to generate amplified signals 1104 a , 1114 a , which are received by AGC/AOA modules 1106 , 1116 , respectively.
- the AGC/AOA modules 1106 1116 , rotation detector modules 1108 , 1118 , and a speed/direction module 1110 can be the same as and coupled the same way as AGC/AOA modules 160 , 166 , the rotation detector modules 162 , 168 , and the speed/direction module 164 of FIG. 2 .
- Two-state signals 1108 a , 1118 a have +/ ⁇ ninety degree phase relationships described above in conjunction with FIG. 10 .
- the electronic circuit 1100 can provide a so-called “tooth detector” that can sense a presence or absence of proximity of a gear tooth (also valley), even when the gear 422 of FIG. 4 is not rotating.
- an electronic circuit 1200 can be the same as the electronic circuit 406 of FIG. 4 when the magnetic field sensor 400 of FIG. 4 includes the substrate portion 600 of FIG. 6 , having four magnetic field sensing element 606 , 610 , 614 , 618 .
- the first magnetic field sensing element 606 of FIG. 6 provides a differential signal 1202 .
- the third magnetic field sensing element 614 of FIG. 6 provides a differential signal 1214 .
- the second magnetic field sensing element 610 of FIG. 6 provides a differential signal 1218 .
- the fourth magnetic field sensing element 618 of FIG. 6 provides a differential signal 1228 .
- Amplifiers 1204 , 1216 are coupled to receive the differential signals 1202 , 1214 , respectively, and operable to generate amplified signals 1204 a , 1216 a .
- a differencing module 1206 can be coupled to receive the amplified signals 1204 a , 1216 a and operable to generate a first difference signal 1206 a.
- Amplifiers 1220 , 1230 are coupled to receive the differential signals 1218 , 1228 , respectively, and operable to generate amplified signals 1220 a , 1230 a .
- a differencing module 1222 can be coupled to receive the amplified signals 1220 a , 1230 a and operable to generate a second difference signal 1222 a.
- the difference signals 1206 a , 1222 a have a ninety degree phase relationship when the gear 422 of FIG. 4 rotates, for all rotational speeds of the gear 422 .
- AOA/AGC modules 1208 , 1224 are coupled to receive the first and second difference signals 1206 a , 1222 a .
- the AGC/AOA modules 1208 , 1224 , rotation detector modules 1210 , 1226 , and a speed/direction module 1212 can be the same as and coupled the same way as AGC/AOA modules 160 , 166 , the rotation detector modules 162 , 168 , and the speed/direction module 164 of FIG. 2 .
- Two-state signals 1210 a 1226 a have +/ ⁇ ninety degree phase relationships described above in conjunction with FIG. 10 .
- the electronic circuit 1200 due to the differencing of signals, can provide a so-called “edge detector” that can sense an edge of a gear tooth as it passes by.
- a substrate portion of a magnetic field sensor 1300 can include a substrate 1302 the same as or similar to the substrate 402 of FIG. 4 .
- the substrate 1302 can be disposed substantially parallel to the same x-y plane of coordinate axes 1340 as indicated by the coordinate axes 420 of FIG. 4
- a surface 1302 a of the substrate 1302 can be the same as or similar to the surface 402 a of the substrate 402 of FIG. 4 .
- An electronic circuit 1304 can be disposed in or upon the surface 1302 a of the substrate 1302 .
- the electronic circuit 1304 can be the same as or similar to the electronic circuit 406 of FIG. 4 .
- a first magnetic field sensing element 1306 , a second magnetic field sensing element 1310 , a third magnetic field sensing element 1314 , a fourth magnetic field sensing element 1318 , a fifth magnetic field sensing element 1326 , and a sixth magnetic field sensing element 1326 can be the same as or similar to magnetic field sensing elements in the magnetic field sensing element region 404 of FIG. 4
- a ferromagnetic object (not shown) can move with a direction substantially parallel to a line 1328 , which can be, for example, representative of a line substantially parallel to the tangent line 440 of FIG. 4 .
- the ferromagnetic object can move directly over the substrate point at which the orthogonal axes 1330 , 1332 intersect.
- the first magnetic field sensing element 1306 and the third magnetic field sensing element 1314 can be planar Hall effect elements 1306 , 1314 (also sometimes referred to as horizontal Hall effect elements). As described above, the planar Hall effect element 1306 and has an axis of maximum sensitivity 1308 and the planar Hall effect element 1314 has an axis of maximum sensitivity 1316 , both substantially parallel to a z-axis of coordinate axes 1340 . The axes of maximum sensitivity 1308 , 1316 are substantially perpendicular to the surface 1302 a of the substrate 1302 .
- the second magnetic field sensing element 1310 and the fourth magnetic field sensing element 1318 can be a vertical Hall effect elements 1310 , 1318 .
- the vertical Hall effect elements 1310 , 1318 have respective axes of maximum sensitivity 1312 , 1320 substantially parallel to the x-axis of the coordinate axes 1340 , i.e., substantially parallel to the surface 1302 a of the substrate.
- the maximum response axes 1308 , 1316 can be substantially perpendicular to the maximum response axes 1312 , 1318 .
- the fifth magnetic field sensing element 1324 and the sixth magnetic field sensing element 1326 can also be vertical Hall effect elements 1324 , 1326 .
- the vertical Hall effect elements 1324 , 1326 have respective axes of maximum sensitivity 1325 , 1327 substantially parallel to the y-axis of the coordinate axes 1340 , i.e., substantially parallel to the surface 1302 a of the substrate.
- the maximum response axes 1325 , 1327 can be substantially perpendicular to the maximum response axes 1312 , 1320 and substantially perpendicular to the maximum response axes 1308 , 1316 .
- Electronic signals 1322 a , 1322 b couple the first, second, third, fourth, fifth, and sixth fourth magnetic field sensing elements 1306 , 1310 , 1314 , 1318 , 1324 , 1326 , respectively, to the electronic circuit 1304 .
- a magnet (not shown) can be disposed under the substrate 1302 and can have the same orientation and characteristics described below in conjunction with the magnet 408 of FIG. 4 .
- First and second orthogonal axes 1330 , 1332 are indicative of examples of relative placements of the first, second, third, fourth, fifth, and sixth magnetic field sensing elements 1306 , 1310 , 1314 , 1318 , 1324 , 1326 , respectively, and also indicative of an example of a relative position of the magnet 408 of FIG. 4 .
- the axis 424 of the magnet can intersect in a z direction (see coordinate axes 1340 ) at an intersection of the first and second orthogonal axes 1330 , 1332 , the intersection also referred to herein as a “substrate point.”
- the first, second, third, fourth, fifth and sixth magnetic field sensing elements 1308 , 1310 , 1314 , 1318 , 1324 , 1326 respectively, can be disposed along the first or second orthogonal axes 1330 , 1332 and can also be disposed apart from the substrate point.
- Centers of the first and third magnetic field sensing elements 1306 , 1314 , respectively, can be disposed along the first orthogonal axis 1330 .
- a midpoint between centers of the first and third magnetic field sensing elements 1306 , 1314 , respectively, can be disposed at the intersection of the first and second coordinate axes 1330 , 1332 .
- Centers of the second and fourth magnetic field sensing elements 1310 , 1318 , respectively, can be disposed along the first or second orthogonal axis 1330 , 1332 , here shown to be along the first orthogonal axis 1330 .
- a midpoint between centers of the second and fourth magnetic field sensing elements 1310 , 1318 , respectively, can be disposed at the intersection of the first and second coordinate axes 1330 , 1332 .
- other placements of the second and fourth magnetic field sensing elements 1310 , 1318 are also possible.
- Centers of fifth and sixth magnetic field sensing elements 1324 , 1326 can be disposed along the first or second orthogonal axis 1330 , 1332 , here shown to be along the second orthogonal axis 1332 .
- a midpoint between centers of the fifth and sixth magnetic field sensing elements 1324 , 1326 , respectively, can be disposed at the intersection of the first and second coordinate axes 1330 , 1332 .
- other placements of the fifth and sixth magnetic field sensing elements 1324 , 1326 are also possible.
- the fifth and sixth magnetic field sensing elements 1324 , 1326 In response to movement of a ferromagnetic object in a direction parallel to an arrow 1328 , the fifth and sixth magnetic field sensing elements 1324 , 1326 have less response (less change in signal value) than the second and fourth magnetic field sensing elements 1310 , 1318 .
- signals from the fifth and sixth magnetic field sensing elements 1324 , 1326 when combined in particular ways with signals from the second and fourth magnetic field sensing elements 1310 , 1318 , can act as reference signals to reduce various undesirable effects, for example, DC drift with temperature. This arrangement of signal combinations is described below in conjunction with FIG. 14 .
- an electronic circuit 1400 can be the same as or similar to the electronic circuit 406 of FIG. 4 when the magnetic field sensor 400 of FIG. 4 includes the substrate portion 1300 of FIG. 13 , having six magnetic field sensing element 1306 , 1310 , 1314 , 1318 , 1324 , 1326 .
- the first magnetic field sensing element 1306 of FIG. 13 provides a differential signal 1402 .
- the third magnetic field sensing element 1314 of FIG. 13 provides a differential signal 1414 .
- the second magnetic field sensing element 1310 of FIG. 13 provides a differential signal 1418 .
- the fifth magnetic field sensing element 1324 of FIG. 13 provides a differential signal 1430 .
- the fourth magnetic field sensing element 1318 of FIG. 13 provides a differential signal 1434 .
- the sixth magnetic field sensing element 1326 of FIG. 13 provides a differential signal 1438 .
- Amplifiers 1404 , 1416 are coupled to receive the differential signals 1402 , 1414 , respectively, and operable to generate amplified signals 1404 a , 1416 a .
- a differencing module 1406 can be coupled to receive the amplified signals 1404 a , 1416 a and operable to generate a first difference signal 1406 a.
- Amplifiers 1420 , 1432 are coupled to receive the differential signals 1418 , 1430 , respectively, and operable to generate amplified signals 1420 a , 1432 a .
- a differencing module 1422 can be coupled to receive the amplified signals 1420 a , 1432 a and operable to generate a second difference signal 1422 a.
- Amplifiers 1434 , 1440 are coupled to receive the differential signals 1434 , 1438 respectively, and operable to generate amplified signals 1434 a , 1440 a .
- a differencing module 1436 can be coupled to receive the amplified signals 1434 a , 1440 a and operable to generate a third difference signal 1436 a.
- Another differencing module 1424 can be coupled to receive the first and second difference signals 1422 a , 1436 a , respectively and operable to generate a fourth difference signal 1424 a.
- the difference signals 1406 a , 1424 a have a ninety degree phase relationship when the gear 422 of FIG. 4 rotates, for all rotational speeds of the gear 422 .
- AOA/AGC modules 1408 , 1426 are coupled to receive the first and third difference signals 1406 a , 1424 a , respectively.
- the AGC/AOA modules 1408 , 1426 , rotation detector modules 1410 , 1428 , and a speed/direction module 1412 can be the same as and coupled the same way as AGC/AOA modules 160 , 166 , the rotation detector modules 162 , 168 , and the speed/direction module 164 of FIG. 2 .
- Two-state signals 1410 a , 1428 a have +/ ⁇ ninety degree phase relationships described ° below in conjunction with FIG. 10 .
- the difference module 1422 operates to combine the amplified signal 1420 a from the second magnetic field sensing element 1310 with the amplified signal 1432 a from the fifth magnetic field sensing element 1324 .
- the fifth magnetic field sensing element 1324 is relatively insensitive to a ferromagnetic object that moves in the direction of the line 1328 of FIG. 13 .
- the differential arrangement provided by the difference module 1422 can result in a stabilization of the resulting difference signal 1422 a against a variety of undesirable effects.
- both the amplified signal 1420 a and the amplified signal 1432 a may experience a similar change of DC offset voltage, which would be reduced in the difference signal 1422 a since the amplified signal 1420 a and the amplified signal 1432 a would tend to move in the same direction and by the same amount.
- the difference module 1436 operates to combine the amplified signal 1434 a from the fourth magnetic field sensing element 1318 with the amplified signal 1440 a from the sixth magnetic field sensing element 1326 .
- the electronic circuit 1400 due to the differencing of signals, can provide a so-called “edge detector” that can sense an edge of a gear tooth as it passes by.
- a substrate portion of a magnetic field sensor 1500 can include a substrate 1502 the same as or similar to the substrate 402 of FIG. 4 .
- the substrate 1502 can be disposed substantially parallel to the same x-y plane of coordinate axes 1540 as indicated by the coordinate axes 420 of FIG. 4
- a surface 1502 a of the substrate 1502 can be the same as or similar to the surface 402 a of the substrate 402 of FIG. 4 .
- An electronic circuit 1504 can be disposed in or upon the surface 1502 a of the substrate 1502 .
- the electronic circuit 1504 can be the same as or similar to the electronic circuit 406 of FIG. 4 .
- a first magnetic field sensing element 1506 , a second magnetic field sensing element 1510 , a third magnetic field sensing element 1514 , and a fourth magnetic field sensing element 1518 can be the same as or similar to magnetic field sensing elements in the magnetic field sensing element region 404 of FIG. 4
- a ferromagnetic object (not shown) can move with a direction substantially parallel to a line 1524 , which can be, for example, representative of a line substantially parallel to the tangent line 440 of FIG. 4 .
- the ferromagnetic object can move directly over the substrate point at which the orthogonal axes 1530 , 1532 intersect.
- the first, second, third, and fourth magnetic field sensing elements 1506 , 1510 , 1514 , 1518 , respectively, can be vertical Hall effect elements 1506 , 1510 , 1514 , 1518 .
- the first and third magnetic field sensing elements 1506 , 1514 have respective axes of maximum sensitivity 1508 , 1520 substantially parallel to the x-axis of coordinate axes 1540 and also substantially parallel to the surface 1502 a of the substrate 1502 .
- the second and fourth magnetic field sensing elements 1510 , 1518 have respective axes of maximum sensitivity 1512 , 1520 substantially parallel to the y-axis of the coordinate axes 1540 , and also substantially parallel to the surface 1502 a of the substrate 1502 .
- the maximum response axes 1508 , 1516 can be substantially perpendicular to the maximum response axes 1512 , 1518 .
- Electronic signals 1522 described more fully below, couple the first, second, third, and fourth magnetic field sensing elements 1506 , 1510 , 1514 , 1518 , respectively, to the electronic circuit 1504 .
- a magnet (not shown) can be disposed under the substrate 1502 and can have the same orientation and characteristics described below in conjunction with the magnet 408 of FIG. 4 .
- First and second orthogonal axes 1530 , 1532 , respectively, substantially parallel to the first surface 1502 a of the substrate 1502 are indicative of examples of relative placements of the first, second, third, and fourth magnetic field sensing elements 1506 , 1510 , 1514 , 1518 , respectively, and also indicative of an example of a relative position of the magnet 408 of FIG. 4 .
- the axis 424 of the magnet can intersect in a z direction (see coordinate axes 1540 ) at an intersection of the first and second orthogonal axes 1530 , 1532 , the intersection also referred to herein as a “substrate point.”
- the first, second, third, and fourth magnetic field sensing elements 1506 , 1514 , 1510 , 1518 , respectively, can be disposed along the first or second orthogonal axes 1530 , 1532 and can also be disposed apart from the substrate point.
- Centers of the first and third magnetic field sensing elements 1506 , 1514 , respectively, can be disposed along the first orthogonal axis 1530 .
- a midpoint between centers of the first and third magnetic field sensing elements 1506 , 1514 , respectively, can be disposed at the intersection of the first and second coordinate axes 1530 , 1532 .
- Centers of the second and fourth magnetic field sensing elements 1510 , 1518 , respectively, can be disposed along the first or second orthogonal axis 1530 , 1532 , here shown to be along the second orthogonal axis 1532 .
- a midpoint between centers of the second and fourth magnetic field sensing elements 1510 , 1518 , respectively, can be disposed at the intersection of the first and second coordinate axes 1530 , 1532 .
- other placements of the second and fourth magnetic field sensing elements 1510 , 1518 are also possible.
- the second and fourth magnetic field sensing elements 1510 , 1518 In response to movement of a ferromagnetic object in a direction parallel to an arrow 1524 , the second and fourth magnetic field sensing elements 1510 , 1518 have less response (less change in signal value) than the first and third magnetic field sensing elements 1506 , 1514 .
- signals from the second and fourth magnetic field sensing elements 1510 , 1518 when combined in particular ways with signals from the first and third magnetic field sensing elements 1506 , 1514 , respectively, can act as reference signals to reduce various undesirable effects, for example, DC drift with temperature. This arrangement of signal combinations is described below in conjunction with FIG. 16 .
- an electronic circuit 1600 can be the same as the electronic circuit 406 of FIG. 4 when the magnetic field sensor 400 of FIG. 4 includes the magnetic field sensor 1500 of FIG. 15 , having the four magnetic field sensing element 1506 , 1510 , 1514 , 1518 .
- the first magnetic field sensing element 1506 of FIG. 15 provides a differential signal 1602 .
- the second magnetic field sensing element 1510 of FIG. 15 provides a differential signal 1614 .
- the third magnetic field sensing element 1514 of FIG. 15 provides a differential signal 1618 .
- the fourth magnetic field sensing element 1518 of FIG. 15 provides a differential signal 1628 .
- Amplifiers 1604 , 1616 are coupled to receive the differential signals 1602 , 1614 , respectively, and operable to generate amplified signals 1604 a , 1616 a .
- a differencing module 1606 can be coupled to receive the amplified signals 1604 a , 1616 a and operable to generate a first difference signal 1606 a.
- Amplifiers 1620 , 1630 are coupled to receive the differential signals 1618 , 1628 , respectively, and operable to generate amplified signals 1620 a , 1630 a .
- a differencing module 1622 can be coupled to receive the amplified signals 1620 a , 1630 a and operable to generate a second difference signal 1622 a.
- the difference signals 1606 a , 1622 a have a relatively close (i.e., small) phase relationship when the gear 422 of FIG. 4 rotates, for all rotational speeds of the gear 422 .
- advantages of the arrangements of FIGS. 4-14 that provide a ninety degree relationship may not be in the arrangements of FIGS. 15 and 16 .
- other advantages described above in relation to FIGS. 13 and 14 are retained in the arrangements of FIGS. 15 and 16 .
- the second and fourth magnetic field sensing elements 1510 , 1518 of FIG. 15 provide reference voltages to stabilize for a variety of otherwise undesirable effects, e.g., shifting DC offset voltage with temperature.
- AOA/AGC modules 1608 , 1624 are coupled to receive the first and third difference signals 1606 a , 1622 a , respectively.
- the AGC/AOA modules 1608 , 1624 , rotation detector modules 1610 , 1626 , and a speed/direction module 1612 can be the same as and coupled the same way as AGC/AOA modules 160 , 166 , the rotation detector modules 162 , 168 , and the speed/direction module 164 of FIG. 2 .
- Two-state signals 1610 a , 1626 a have a phase relationships described below in conjunction with FIG. 3 .
- the difference module 1606 operates to combine the amplified signal 1604 a from the first magnetic field sensing element 1505 with the amplified signal 1616 a from the second magnetic field sensing element 1510 .
- the second magnetic field sensing element 1510 is relatively insensitive to a ferromagnetic object that moves in the direction of the line 1524 of FIG. 15 .
- the differential arrangement provided by the difference module 1606 can result in a stabilization of the resulting difference signal 1606 a against a variety of undesirable effects.
- both the amplified signal 1604 a and the amplified signal 1616 a may experience s similar change of DC offset voltage, which would be reduced in the difference signal 1606 a since the amplified signal 1604 a and the amplified signal 1616 a would tend to move in the same direction and by the same amount.
- the difference module 1622 operates to combine the amplified signal 1620 a from the third magnetic field sensing element 1514 with the amplified signal 1630 a from the fourth magnetic field sensing element 1518 .
- the electronic circuit 1600 can provide a so-called “tooth detector” that can sense a presence or absence of proximity of a gear tooth (also valley), even when the gear 422 of FIG. 4 is not rotating.
- one or more of the vertical Hall effect elements can be magnetoresistance elements.
- magnetoresistance elements have a maximum response axis that is substantially parallel to a substrate. Thus, all of the above configurations apply to magnetoresistance elements.
- a magnetoresistance element bridge 1700 can be used in place of some of the difference modules described above.
- the magnetoresistance element bridge 1700 can include a first magnetoresistance element 1702 , a second magnetoresistance element 1704 , a first fixed resistor 1706 , and a second fixed resistor 1708 , all coupled in a bridge arrangement between a voltage source 1710 and a reference voltage, e.g., a ground reference voltage.
- a reference voltage e.g., a ground reference voltage.
- a differential signal 1712 , 1714 is generated by the magnetoresistance element bridge 1700 .
- a buffer amplifier 1716 can be coupled to receive the differential signal 1712 , 1714 and operable to generate a buffered signal 1716 a.
- the differential signal 1712 , 1714 operate in much the same way as a difference of signals from two magnetoresistance elements. Compare the magnetoresistance element bridge 1700 , for example, with the difference module 1606 or the difference module 1622 of FIG. 16 . In FIG. 17 , if both of the magnetoresistance elements 1702 , 1704 move in the same way by the same amount, then the differential voltage 1712 , 1714 is unchanged.
- the buffer 1716 can provide enhanced common mode rejection.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/945,085 US10837800B2 (en) | 2016-06-08 | 2018-04-04 | Arrangements for magnetic field sensors that act as movement detectors |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/176,665 US10041810B2 (en) | 2016-06-08 | 2016-06-08 | Arrangements for magnetic field sensors that act as movement detectors |
US15/945,085 US10837800B2 (en) | 2016-06-08 | 2018-04-04 | Arrangements for magnetic field sensors that act as movement detectors |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/176,665 Continuation US10041810B2 (en) | 2016-06-08 | 2016-06-08 | Arrangements for magnetic field sensors that act as movement detectors |
Publications (2)
Publication Number | Publication Date |
---|---|
US20180224300A1 US20180224300A1 (en) | 2018-08-09 |
US10837800B2 true US10837800B2 (en) | 2020-11-17 |
Family
ID=58800938
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/176,665 Active US10041810B2 (en) | 2016-06-08 | 2016-06-08 | Arrangements for magnetic field sensors that act as movement detectors |
US15/945,085 Active 2036-09-14 US10837800B2 (en) | 2016-06-08 | 2018-04-04 | Arrangements for magnetic field sensors that act as movement detectors |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/176,665 Active US10041810B2 (en) | 2016-06-08 | 2016-06-08 | Arrangements for magnetic field sensors that act as movement detectors |
Country Status (2)
Country | Link |
---|---|
US (2) | US10041810B2 (en) |
WO (1) | WO2017213811A1 (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9823092B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
US10041810B2 (en) * | 2016-06-08 | 2018-08-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as movement detectors |
JP2018077108A (en) * | 2016-11-09 | 2018-05-17 | メレキシス テクノロジーズ エス エー | Rotation detecting device |
EP3410075B1 (en) * | 2017-05-30 | 2020-10-07 | MEAS France | Temperature compensation for magnetic field sensing devices and a magnetic field sensing device using the same |
US10809097B2 (en) * | 2017-09-29 | 2020-10-20 | Asahi Kasei Microdevices Corporation | Detector apparatus and detector system |
US11199424B2 (en) | 2018-01-31 | 2021-12-14 | Allegro Microsystems, Llc | Reducing angle error in a magnetic field angle sensor |
US10866117B2 (en) | 2018-03-01 | 2020-12-15 | Allegro Microsystems, Llc | Magnetic field influence during rotation movement of magnetic target |
US10823586B2 (en) | 2018-12-26 | 2020-11-03 | Allegro Microsystems, Llc | Magnetic field sensor having unequally spaced magnetic field sensing elements |
RU195321U1 (en) * | 2019-04-04 | 2020-01-23 | Общество с ограниченной ответственностью "Неро Электроникс" | The conversion unit into an electrical signal of the rotation parameters made in the form of an impeller of a measuring device element |
US11327127B2 (en) * | 2019-07-10 | 2022-05-10 | Allegro Microsystems, Llc | Magnetic field sensor with reduced influence of external stray magnetic fields |
US11175359B2 (en) | 2019-08-28 | 2021-11-16 | Allegro Microsystems, Llc | Reducing voltage non-linearity in a bridge having tunneling magnetoresistance (TMR) elements |
US11280637B2 (en) | 2019-11-14 | 2022-03-22 | Allegro Microsystems, Llc | High performance magnetic angle sensor |
US11237020B2 (en) | 2019-11-14 | 2022-02-01 | Allegro Microsystems, Llc | Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet |
US11125837B2 (en) * | 2020-01-14 | 2021-09-21 | Allegro Microsystems, Llc | Magnetic field sensor offset and gain adjustment |
US11385075B2 (en) | 2020-02-21 | 2022-07-12 | Allegro Microsystems, Llc | Orientation independent magnetic field sensor |
US11408948B2 (en) | 2020-03-18 | 2022-08-09 | Allegro Microsystems, Llc | Linear bridge having nonlinear elements for operation in high magnetic field intensities |
US11467233B2 (en) | 2020-03-18 | 2022-10-11 | Allegro Microsystems, Llc | Linear bridges having nonlinear elements |
US11630168B2 (en) | 2021-02-03 | 2023-04-18 | Allegro Microsystems, Llc | Linear sensor with dual spin valve element having reference layers with magnetization directions different from an external magnetic field direction |
CN114594414A (en) * | 2022-01-28 | 2022-06-07 | 峰岹科技(深圳)股份有限公司 | Rotation detection device, method and rotatable device |
Citations (383)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3195043A (en) | 1961-05-19 | 1965-07-13 | Westinghouse Electric Corp | Hall effect proximity transducer |
US3281628A (en) | 1964-08-14 | 1966-10-25 | Telefunken Patent | Automated semiconductor device method and structure |
US3607528A (en) | 1968-02-08 | 1971-09-21 | James S Gassaway | Magnetic memory members and methods of making the same |
US3661061A (en) | 1969-05-05 | 1972-05-09 | Atomic Energy Commission | Picture position finder |
US3718786A (en) | 1971-08-05 | 1973-02-27 | Tri Line Electric Co Inc | Rotary switch assembly |
DE2518054A1 (en) | 1975-04-23 | 1976-11-04 | Siemens Ag | Detector for linear motion or direction of rotation - with hysteresis switching stage to detect direction of motion has differential stage output in series with hysteresis stage |
US4048670A (en) | 1975-06-30 | 1977-09-13 | Sprague Electric Company | Stress-free hall-cell package |
US4079360A (en) | 1974-07-26 | 1978-03-14 | Sony Corporation | Magnetic field sensing apparatus |
US4188605A (en) | 1978-07-21 | 1980-02-12 | Stout Glenn M | Encapsulated Hall effect device |
US4204317A (en) | 1977-11-18 | 1980-05-27 | The Arnold Engineering Company | Method of making a lead frame |
US4236832A (en) | 1977-06-29 | 1980-12-02 | Tokyo Shibaura Denki Kabushiki Kaisha | Strain insensitive integrated circuit resistor pair |
US4283643A (en) | 1979-05-25 | 1981-08-11 | Electric Power Research Institute, Inc. | Hall sensing apparatus |
US4315523A (en) | 1980-03-06 | 1982-02-16 | American Flow Systems, Inc. | Electronically controlled flow meter and flow control system |
US4370614A (en) * | 1979-07-25 | 1983-01-25 | Fujitsu Fanuc Limited | Speed and direction detector |
US4438347A (en) | 1980-08-13 | 1984-03-20 | Siemens Aktiengesellschaft | Device for changing the electrical circuit configuration of integrated semiconductor circuits |
US4573258A (en) | 1984-01-18 | 1986-03-04 | Atsugi Motor Parts Co., Ltd. | Method of manufacturing motor |
JPS6148777A (en) | 1984-08-16 | 1986-03-10 | エルゲーツエツト・ランデイス・ウント・ギール・ツーク・アクチエンゲゼルシヤフト | Compensator for variation of conversion coefficient of magnetic field sensor |
US4604575A (en) * | 1980-10-21 | 1986-08-05 | Kabushiki Kaisha Sg | Multiple output rotational position detection device |
US4614111A (en) | 1985-02-15 | 1986-09-30 | Wolff George D | Position sensor for fuel injection apparatus |
US4649796A (en) | 1986-06-18 | 1987-03-17 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for setting a projectile fuze during muzzle exit |
US4670715A (en) | 1983-01-28 | 1987-06-02 | Caterpillar Inc. | Frictionally supported gear tooth sensor with self-adjusting air gap |
US4719419A (en) | 1985-07-15 | 1988-01-12 | Harris Graphics Corporation | Apparatus for detecting a rotary position of a shaft |
US4733455A (en) | 1985-08-07 | 1988-03-29 | Victor Company Of Japan, Limited | Method of manufacturing a magnetic head with an MR element |
JPS6384176A (en) | 1986-09-29 | 1988-04-14 | Toshiba Corp | Magnetic field convergence type Hall element and its manufacturing method |
US4745363A (en) | 1986-07-16 | 1988-05-17 | North American Philips Corporation | Non-oriented direct coupled gear tooth sensor using a Hall cell |
US4746859A (en) | 1986-12-22 | 1988-05-24 | Sundstrand Corporation | Power and temperature independent magnetic position sensor for a rotor |
US4758943A (en) | 1985-04-03 | 1988-07-19 | Hightech Network Ab | Method and an apparatus for automatically tuning a process regulator |
US4760285A (en) | 1987-03-30 | 1988-07-26 | Honeywell Inc. | Hall effect device with epitaxal layer resistive means for providing temperature independent sensitivity |
US4769344A (en) | 1984-06-04 | 1988-09-06 | Mitsubishi Denki Kabushiki Kaisha | Method of resin encapsulating a semiconductor device |
US4772929A (en) | 1987-01-09 | 1988-09-20 | Sprague Electric Company | Hall sensor with integrated pole pieces |
JPS63263782A (en) | 1987-04-22 | 1988-10-31 | Hitachi Ltd | magnetoelectric conversion element |
EP0289414A2 (en) | 1987-04-28 | 1988-11-02 | Commissariat A L'energie Atomique | Method and device for the digitization and linearization of a quasi-sinusoidal sensor |
WO1988009026A1 (en) | 1987-05-15 | 1988-11-17 | SSD Limited | Improvements relating to rotary encoders |
US4789826A (en) | 1987-03-19 | 1988-12-06 | Ampex Corporation | System for sensing the angular position of a rotatable member using a hall effect transducer |
JPS63300911A (en) | 1987-05-30 | 1988-12-08 | Yaskawa Electric Mfg Co Ltd | Multirotation type absolute value encoder |
US4796354A (en) | 1986-03-19 | 1989-01-10 | Honda Giken Kogyo Kabushiki Kaisha | Method of manufacturing a position sensor for detecting angular position |
US4823075A (en) | 1987-10-13 | 1989-04-18 | General Electric Company | Current sensor using hall-effect device with feedback |
US4833406A (en) | 1986-04-17 | 1989-05-23 | Household Commercial Financial Services Inc. | Temperature compensated Hall-effect sensor apparatus |
US4874053A (en) * | 1987-06-22 | 1989-10-17 | Hitachi, Ltd. | Torque detecting apparatus |
US4893027A (en) | 1986-09-25 | 1990-01-09 | Gebhard Balluff Fabrik Feinmechanischer Erzeugnisse Gmbh & Co. | Proximity switch insensitive to interference fields |
EP0357013A2 (en) | 1988-09-02 | 1990-03-07 | Honeywell Inc. | Magnetic field measuring circuit |
US4908685A (en) | 1985-05-10 | 1990-03-13 | Asahi Kasei Kogyo Kabushiki Kaisha | Magnetoelectric transducer |
US4910861A (en) | 1988-10-07 | 1990-03-27 | Emerson Electric Co. | Method of manufacturing retention structure for electric motor rotor magnets |
EP0361456A2 (en) | 1988-09-30 | 1990-04-04 | Murata Manufacturing Co., Ltd. | Magnetic sensor |
JPH02116753A (en) | 1988-10-26 | 1990-05-01 | Mitsubishi Electric Corp | Detector for direction of rotation |
JPH02149013A (en) | 1988-11-30 | 1990-06-07 | Toshiba Corp | Oscillation circuit |
US4935698A (en) | 1989-03-03 | 1990-06-19 | Sprague Electric Company | Sensor having dual Hall IC, pole piece and magnet |
US4970411A (en) | 1988-04-21 | 1990-11-13 | Lgz Landis & Gyr Zug Ag | Arrangement for improving the longterm stability of a Hall element |
US4983916A (en) | 1988-01-26 | 1991-01-08 | Yamaha Corporation | Compact magnetic encoder |
JPH0329817A (en) | 1989-06-28 | 1991-02-07 | Fanuc Ltd | Wireless manual encoder |
US5012322A (en) | 1987-05-18 | 1991-04-30 | Allegro Microsystems, Inc. | Semiconductor die and mounting assembly |
US5021493A (en) | 1990-03-21 | 1991-06-04 | The Goodyear Tire & Rubber Company | Rubber composition and tire with component(s) thereof |
US5028868A (en) | 1988-10-11 | 1991-07-02 | Mitsubishi Denki K.K. | Hall effect type sensing device and magnetic circuit device for a hall effect type sensor |
US5038130A (en) | 1990-11-06 | 1991-08-06 | Santa Barbara Research Center | System for sensing changes in a magnetic field |
US5045920A (en) | 1990-06-28 | 1991-09-03 | Allegro Microsystems, Inc. | Dual-Hall ferrous-article-proximity sensor |
US5078944A (en) | 1987-11-02 | 1992-01-07 | Matsushita Electric Industrial Co., Ltd. | Method for making permanent magnet type demagnetizing head |
US5084289A (en) | 1989-02-01 | 1992-01-28 | Korea Food Research Institute | Method for the inhibition of oxidation of edible oils utilizing a fat soluble anti-oxidant and a water soluble anti-oxdant in a reverse micelle system |
DE4031560A1 (en) | 1990-10-05 | 1992-04-09 | Dieter Prof Dr Ing Seitzer | Integrated current sensor for current limiting and measuring - has components sensitive to magnetic field and excitation paths formed by film technique on substrate |
JPH04152688A (en) | 1990-10-17 | 1992-05-26 | Fujitsu Ltd | Magnetoresistance element |
US5121289A (en) | 1990-01-31 | 1992-06-09 | Honeywell Inc. | Encapsulatable sensor assembly |
US5137677A (en) | 1989-03-09 | 1992-08-11 | Mitsubishi Denki K.K. | Hall sensor device and method of producing the same |
US5139973A (en) | 1990-12-17 | 1992-08-18 | Allegro Microsystems, Inc. | Method for making a semiconductor package with the distance between a lead frame die pad and heat spreader determined by the thickness of an intermediary insulating sheet |
EP0504583A1 (en) | 1991-02-18 | 1992-09-23 | ITT Automotive Europe GmbH | Method of and arrangement for detecting a direction of movement, especially a direction of rotation |
US5167896A (en) | 1991-01-16 | 1992-12-01 | Kyowa Electric & Chemical Co., Ltd. | Method of manufacturing a front cabinet for use with a display |
US5168244A (en) | 1991-06-19 | 1992-12-01 | Nec Corporation | Electric circuit fabricated from magneto-resistive elements and active circuit elements |
US5185919A (en) | 1990-11-19 | 1993-02-16 | Ford Motor Company | Method of manufacturing a molded fuel injector |
US5196794A (en) | 1989-03-14 | 1993-03-23 | Mitsubishi Denki K.K. | Hall-effect sensor with integrally molded frame, magnet, flux guide and insulative film |
US5210493A (en) | 1992-02-27 | 1993-05-11 | General Motors Corporation | Method for embedding wires within a powder metal core and sensor assembly produced by such a method |
US5216405A (en) | 1991-01-14 | 1993-06-01 | General Motors Corporation | Package for the magnetic field sensitive device |
WO1993012403A1 (en) | 1991-12-19 | 1993-06-24 | Swf Auto-Electric Gmbh | Sensor of the speed of rotation, in particular of toothed wheels |
US5244834A (en) | 1989-05-10 | 1993-09-14 | Nippondenso Co., Ltd. | Semiconductor device |
US5247278A (en) | 1991-11-26 | 1993-09-21 | Honeywell Inc. | Magnetic field sensing device |
US5247202A (en) | 1991-10-09 | 1993-09-21 | Landis & Gyr Betriebs Ag | Plurality of arrangements each including an ic magnetic field sensor and two ferromagnetic field concentrators, and a procedure for incorporating each arrangement into a package |
US5250925A (en) | 1992-05-11 | 1993-10-05 | General Motors Corporation | Package for speed sensing device having minimum air gap |
US5286426A (en) | 1992-04-01 | 1994-02-15 | Allegro Microsystems, Inc. | Assembling a lead frame between a pair of molding cavity plates |
US5289344A (en) | 1992-10-08 | 1994-02-22 | Allegro Microsystems Inc. | Integrated-circuit lead-frame package with failure-resistant ground-lead and heat-sink means |
CH683469A5 (en) | 1992-07-03 | 1994-03-15 | Landis & Gyr Business Support | Semiconductor wafer contg. magnetic field sensor - is installed between pole shoes of laminated ferromagnetic magnetic flux concentrator to measure magnetic field in proximity |
WO1994008203A1 (en) | 1992-09-29 | 1994-04-14 | Honeywell Inc. | Asymmetrical magnetic position detector |
US5304926A (en) | 1992-04-08 | 1994-04-19 | Honeywell Inc. | Geartooth position sensor with two hall effect elements |
US5329416A (en) | 1993-07-06 | 1994-07-12 | Alliedsignal Inc. | Active broadband magnetic flux rate feedback sensing arrangement |
US5331478A (en) | 1992-10-07 | 1994-07-19 | Silicon Systems, Inc. | Magnetoresistive head amplifier |
US5332965A (en) | 1992-06-22 | 1994-07-26 | Durakool Incorporated | Contactless linear angular position sensor having an adjustable flux concentrator for sensitivity adjustment and temperature compensation |
US5332956A (en) | 1991-11-08 | 1994-07-26 | Gold Star Co., Ltd. | Motor rotation controlling device |
JPH06273437A (en) | 1993-03-22 | 1994-09-30 | Yazaki Corp | Rotation detection apparatus |
GB2276727A (en) | 1993-04-01 | 1994-10-05 | Rolls Royce & Ass | Magnetoresistive magnetometer |
EP0629834A1 (en) | 1992-03-02 | 1994-12-21 | Seiko Epson Corporation | Displacement sensor |
US5412255A (en) | 1991-05-07 | 1995-05-02 | Vdo Adolf Schindling Ag | Switch device suitable for use in automotive vehicles |
US5414355A (en) | 1994-03-03 | 1995-05-09 | Honeywell Inc. | Magnet carrier disposed within an outer housing |
US5424558A (en) | 1993-05-17 | 1995-06-13 | High Yield Technology, Inc. | Apparatus and a method for dynamically tuning a particle sensor in response to varying process conditions |
WO1995018982A1 (en) | 1994-01-11 | 1995-07-13 | Honeywell Inc. | Sensor with magnetoresistive elements |
US5434105A (en) | 1994-03-04 | 1995-07-18 | National Semiconductor Corporation | Process for attaching a lead frame to a heat sink using a glob-top encapsulation |
US5453727A (en) | 1991-07-16 | 1995-09-26 | Asahi Kasai Kogyo Kabushiki Kaisha | Semiconductor sensors and method for fabricating the same |
EP0680103A1 (en) | 1994-04-25 | 1995-11-02 | General Motors Corporation | Magnetic field sensor |
US5469058A (en) | 1992-12-30 | 1995-11-21 | Dunnam; Curt | Feedback enhanced sensor, alternating magnetic field detector |
US5479695A (en) | 1991-05-02 | 1996-01-02 | At&T Corp. | Method of making a multilayer monolithic magnetic component |
US5486759A (en) | 1992-10-21 | 1996-01-23 | Robert Bosch Gmbh | Device for detecting the movement of a movable component and signalling the detected movement over a single line |
US5488294A (en) | 1995-01-18 | 1996-01-30 | Honeywell Inc. | Magnetic sensor with means for retaining a magnet at a precise calibrated position |
WO1996002849A1 (en) | 1994-07-19 | 1996-02-01 | Honeywell Inc. | Temperature compensation circuit for a hall effect element |
US5491633A (en) | 1991-05-20 | 1996-02-13 | General Motors Corporation | Position sensor for electromechanical suspension |
US5497081A (en) | 1992-06-22 | 1996-03-05 | Durakool Incorporated | Mechanically adjustable linear-output angular position sensor |
US5500589A (en) | 1995-01-18 | 1996-03-19 | Honeywell Inc. | Method for calibrating a sensor by moving a magnet while monitoring an output signal from a magnetically sensitive component |
US5500994A (en) | 1993-12-30 | 1996-03-26 | Mabuchi Motor Co., Ltd. | Method of manufacturing a rotor |
JPH0897486A (en) | 1994-09-22 | 1996-04-12 | Hitachi Cable Ltd | Hall sensor |
US5521501A (en) | 1993-06-09 | 1996-05-28 | Institut Fuer Mikrostrukturtechnologie Und Optoelektronik E.V. | Magnetic field sensor constructed from a remagnetization line and one magnetoresistive resistor or a plurality of magnetoresistive resistors |
US5551146A (en) | 1991-07-08 | 1996-09-03 | Murata Manufacturing Co., Ltd. | Method of manufacturing a solid inductor |
US5572058A (en) | 1995-07-17 | 1996-11-05 | Honeywell Inc. | Hall effect device formed in an epitaxial layer of silicon for sensing magnetic fields parallel to the epitaxial layer |
US5581179A (en) | 1995-05-31 | 1996-12-03 | Allegro Microsystems, Inc. | Hall-effect ferrous-article-proximity sensor assembly |
US5581170A (en) | 1994-12-12 | 1996-12-03 | Unitrode Corporation | Battery protector |
US5596272A (en) | 1995-09-21 | 1997-01-21 | Honeywell Inc. | Magnetic sensor with a beveled permanent magnet |
US5621319A (en) | 1995-12-08 | 1997-04-15 | Allegro Microsystems, Inc. | Chopped hall sensor with synchronously chopped sample-and-hold circuit |
DE19539458A1 (en) | 1995-10-24 | 1997-04-30 | Bosch Gmbh Robert | Self-testing Hall sensor, e.g for vehicle steering angle monitor |
US5627315A (en) | 1995-04-18 | 1997-05-06 | Honeywell Inc. | Accelerometer with a cantilever beam formed as part of the housing structure |
US5631557A (en) | 1996-02-16 | 1997-05-20 | Honeywell Inc. | Magnetic sensor with encapsulated magnetically sensitive component and magnet |
US5640090A (en) | 1995-01-31 | 1997-06-17 | Mitsumi Electric Company, Ltd. | Sensor IC |
JPH09166612A (en) | 1995-12-18 | 1997-06-24 | Nissan Motor Co Ltd | Magnetic sensor |
FR2748105A1 (en) | 1996-04-25 | 1997-10-31 | Siemens Automotive Sa | Magnetic sensor for use in automobile shaft, wheel rotational measurements. |
US5691637A (en) | 1992-08-28 | 1997-11-25 | True Position Magnetics, Inc. | Magnetic field position transducer for two or more dimensions |
US5696790A (en) | 1995-10-04 | 1997-12-09 | Tut Systems, Inc. | Method and apparatus for time dependent data transmission |
US5712562A (en) | 1995-10-13 | 1998-01-27 | Bently Nevada Corporation | Encapsulated transducer with an alignment plug and method of manufacture |
US5714102A (en) | 1992-01-02 | 1998-02-03 | International Business Machines Corporation | Method for manufacturing electro-magnetic shield having multiple polymeric layers of differing fill compositions |
JPH1038988A (en) | 1996-07-30 | 1998-02-13 | Yazaki Corp | Integrated magnetoresistive element circuit |
US5719496A (en) | 1995-06-07 | 1998-02-17 | Durakool Incorporated | Dual-element proximity sensor for sensing the direction of rotation of a ferrous target wheel |
DE19634715A1 (en) | 1996-08-28 | 1998-03-05 | Teves Gmbh Alfred | Arrangement for detecting the turning behavior of a wheel |
US5729128A (en) | 1996-11-22 | 1998-03-17 | Honeywell Inc. | Magnetic sensor with a magnetically sensitive component that is movable during calibration and rigidly attachable to a formed magnet |
US5757181A (en) | 1992-06-22 | 1998-05-26 | Durakool Incorporated | Electronic circuit for automatically compensating for errors in a sensor with an analog output signal |
DE19650935A1 (en) | 1996-12-07 | 1998-06-10 | Teves Gmbh Alfred | Method and circuit arrangement for the transmission of speed information and additional data |
US5781005A (en) | 1995-06-07 | 1998-07-14 | Allegro Microsystems, Inc. | Hall-effect ferromagnetic-article-proximity sensor |
US5789915A (en) | 1989-02-17 | 1998-08-04 | Nartron Corporation | Magnetic field energy responsive position sensing apparatus and method |
US5789658A (en) | 1995-10-31 | 1998-08-04 | Siemens Aktiengesellschaft | Adaptation method for correcting tolerances of a transducer wheel |
US5796249A (en) | 1995-03-23 | 1998-08-18 | Institut Fuer Physikalische Hochtechnologle E.V. | Magnetoresistive angular position sensor and rotation speed sensor |
US5818222A (en) | 1995-06-07 | 1998-10-06 | The Cherry Corporation | Method for adjusting ferrous article proximity detector |
US5839185A (en) | 1997-02-26 | 1998-11-24 | Sundstrand Corporation | Method of fabricating a magnetic flux concentrating core |
US5841276A (en) | 1995-05-12 | 1998-11-24 | Nippondenso Co., Ltd | Magnetic gear rotation sensor |
JPH10318784A (en) | 1997-05-20 | 1998-12-04 | Matsushita Electric Ind Co Ltd | Revolution sensor |
JPH10332725A (en) | 1997-04-01 | 1998-12-18 | Denso Corp | Detection signal processing device for rotation sensor |
US5859387A (en) | 1996-11-29 | 1999-01-12 | Allegro Microsystems, Inc. | Semiconductor device leadframe die attach pad having a raised bond pad |
EP0898180A2 (en) | 1997-08-19 | 1999-02-24 | Allegro Microsystems Inc. | Package for a magnetic field sensing device |
JPH1164363A (en) | 1997-08-25 | 1999-03-05 | Aisin Seiki Co Ltd | Rotation detector |
JPH1174142A (en) | 1997-08-27 | 1999-03-16 | Hitachi Metals Ltd | Device for molding cylindrical resin magnet |
US5883567A (en) | 1997-10-10 | 1999-03-16 | Analog Devices, Inc. | Packaged integrated circuit with magnetic flux concentrator |
US5886070A (en) | 1996-07-04 | 1999-03-23 | Aichi Steel Works, Ltd. | Production method for anisotropic resin-bonded magnets |
US5912556A (en) | 1996-11-06 | 1999-06-15 | Honeywell Inc. | Magnetic sensor with a chip attached to a lead assembly within a cavity at the sensor's sensing face |
WO1999049322A1 (en) | 1998-03-20 | 1999-09-30 | Continental Teves Ag & Co. Ohg | Sensor system for detecting movements |
DE19851839A1 (en) | 1998-04-23 | 1999-11-11 | Mitsubishi Electric Corp | Magnetic detector for use with a toothed magnetic material rotating device to determine the angle of rotation |
US6011770A (en) | 1997-12-10 | 2000-01-04 | Texas Instrumental Incorporated | Method and apparatus for high-order bandpass filter with linearly adjustable bandwidth |
US6016055A (en) | 1995-02-02 | 2000-01-18 | Siemens Aktiengesellschaft | Device for increasing the magnetic flux density in the vicinity of a hall sensor cooperating with a magnet wheel |
US6043646A (en) | 1994-08-31 | 2000-03-28 | Siemens Aktiengesellschaft | Proximity switch with magnetic field-sensitive sensor |
JP2000183241A (en) | 1998-12-21 | 2000-06-30 | Sanyo Electric Co Ltd | Semiconductor device and manufacture thereof |
US6136250A (en) | 1998-01-30 | 2000-10-24 | Comair Rotron, Inc. | Apparatus and method of encapsulating motors |
US6169396B1 (en) | 1997-02-19 | 2001-01-02 | Mitsubishi Denki Kabushiki Kaisha | Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration |
US6175233B1 (en) | 1996-10-18 | 2001-01-16 | Cts Corporation | Two axis position sensor using sloped magnets to generate a variable magnetic field and hall effect sensors to detect the variable magnetic field |
US6180041B1 (en) | 1992-07-07 | 2001-01-30 | Nippon Seiki K.K. | Process for manufacturing a pointer |
US6184679B1 (en) | 1995-10-30 | 2001-02-06 | Sentron Ag | Magnetic field sensor comprising two hall elements |
JP2001043475A (en) | 1999-07-27 | 2001-02-16 | Nsk Ltd | Transmitting method for detection signal of sensor |
US6194893B1 (en) | 1998-04-21 | 2001-02-27 | Mitsubishi Denki Kabushiki Kaisha | Magnetic detector for detecting movement of a magnetic member |
US6198373B1 (en) | 1997-08-19 | 2001-03-06 | Taiyo Yuden Co., Ltd. | Wire wound electronic component |
JP2001141738A (en) | 1999-11-18 | 2001-05-25 | Sumitomo Electric Ind Ltd | Rotation sensor and method of manufacturing the same |
US6242905B1 (en) | 1998-04-23 | 2001-06-05 | Siemens Aktiengesellschaft | Method for identifying the direction of rotation of a wheel using hall probes |
US20010002791A1 (en) | 1999-12-07 | 2001-06-07 | Hiroyuki Tsuge | Detected signal processing device for rotating sensor and detected signal outputting method therefor |
JP2001165702A (en) | 1999-12-10 | 2001-06-22 | Sumitomo Electric Ind Ltd | Magnetic variable detection sensor |
DE19961504A1 (en) | 1999-12-20 | 2001-06-28 | Bosch Gmbh Robert | Rotational speed signal error detection method for anti-slip or anti-lock regulation system of vehicle, involves detecting speed change based on specific condition involving pulse width of falling pulses of measurement signal |
US20010009367A1 (en) | 1999-02-26 | 2001-07-26 | Dieter Seitzer | Sensor device to record speed and motion direction of an object, especially rotational speed and direction of a rotating object |
US6278269B1 (en) | 1999-03-08 | 2001-08-21 | Allegro Microsystems, Inc. | Magnet structure |
US6291989B1 (en) | 1999-08-12 | 2001-09-18 | Delphi Technologies, Inc. | Differential magnetic position sensor with adaptive matching for detecting angular position of a toothed target wheel |
US6297627B1 (en) | 1996-01-17 | 2001-10-02 | Allegro Microsystems, Inc. | Detection of passing magnetic articles with a peak-to-peak percentage threshold detector having a forcing circuit and automatic gain control |
US6297628B1 (en) | 1998-11-17 | 2001-10-02 | Honeywell Inc | Magnetoresistive bridge array |
WO2001074139A2 (en) | 2000-04-04 | 2001-10-11 | Honeywell International Inc. | Hall-effect element with integrated offset control and method for operating hall-effect element to reduce null offset |
US6323642B1 (en) | 1997-01-24 | 2001-11-27 | Diamond Electric Mfg. Co., Ltd. | Detector for determining rotational speed and position for an internal combustion engine |
US6351506B1 (en) | 1999-04-19 | 2002-02-26 | National Semiconductor Corporation | Switched capacitor filter circuit having reduced offsets and providing offset compensation when used in a closed feedback loop |
US20020027488A1 (en) | 2000-08-31 | 2002-03-07 | Kambiz Hayat-Dawoodi | Method and system for isolated coupling |
US6356068B1 (en) | 1997-09-15 | 2002-03-12 | Ams International Ag | Current monitor system and a method for manufacturing it |
JP2002117500A (en) | 2000-10-05 | 2002-04-19 | Ntt Data Corp | Flight path setting device and recording medium |
US6392478B1 (en) | 1999-11-23 | 2002-05-21 | U.S. Philips Corporation | Amplification device having an adjustable bandwidth |
JP2002149013A (en) | 2000-11-06 | 2002-05-22 | Minolta Co Ltd | Image forming apparatus |
US20020084923A1 (en) | 2000-12-29 | 2002-07-04 | Jin Li | Method and apparatus for adaptive DC level control |
US6436748B1 (en) | 1999-08-31 | 2002-08-20 | Micron Technology, Inc. | Method for fabricating CMOS transistors having matching characteristics and apparatus formed thereby |
US6437558B2 (en) | 1998-07-31 | 2002-08-20 | Spinix Corporation | Passive solid-state magnetic field sensors and applications therefor |
US6452381B1 (en) | 1997-11-28 | 2002-09-17 | Denso Corporation | Magnetoresistive type position detecting device |
JP2002357920A (en) | 2001-05-31 | 2002-12-13 | Nippon Zeon Co Ltd | Developing method and image forming method |
US6501270B1 (en) | 2000-05-15 | 2002-12-31 | Siemens Vdo Automotive Corporation | Hall effect sensor assembly with cavities for integrated capacitors |
US20030001563A1 (en) | 2001-06-27 | 2003-01-02 | Turner Jason D. | Rotational velocity and direction sensing system |
US6525531B2 (en) | 1996-01-17 | 2003-02-25 | Allegro, Microsystems, Inc. | Detection of passing magnetic articles while adapting the detection threshold |
US20030038675A1 (en) | 2001-08-20 | 2003-02-27 | Gailus Paul H. | Feedback loop with adjustable bandwidth |
US20030062891A1 (en) | 2001-10-02 | 2003-04-03 | Slates Richard Dale | Multi-coil proximity probe system: apparatus and method |
US6545462B2 (en) | 2000-08-21 | 2003-04-08 | Sentron Ag | Sensor for the detection of the direction of a magnetic field having magnetic flux concentrators and hall elements |
US6545457B2 (en) | 2000-07-07 | 2003-04-08 | Sanken Electric Co., Ltd. | Current detector utilizing hall effect |
US6545332B2 (en) | 2001-01-17 | 2003-04-08 | Siliconware Precision Industries Co., Ltd. | Image sensor of a quad flat package |
US20030102909A1 (en) | 2000-07-05 | 2003-06-05 | Mario Motz | Amplifier circuit with offset compensation |
US20030107366A1 (en) | 2001-12-06 | 2003-06-12 | Busch Nicholas F. | Sensor with off-axis magnet calibration |
JP2003177171A (en) | 2001-12-11 | 2003-06-27 | Sumitomo Electric Ind Ltd | Magnetic variable sensor and manufacturing method thereof |
US6590804B1 (en) | 2002-07-16 | 2003-07-08 | Hewlett-Packard Development Company, L.P. | Adjustable current mode differential amplifier |
WO2003069358A2 (en) | 2002-01-31 | 2003-08-21 | Allegro Microsystems, Inc. | Method and apparatus for providing information from a speed and direction sensor |
DE10210184A1 (en) | 2002-03-07 | 2003-09-18 | Philips Intellectual Property | Magnetic field arrangement for detection of the position and rotational velocity of a rotating element has a coil arrangement for generation of an additional time varying magnetic field to reduce finishing tolerance effects |
US20030173955A1 (en) | 2002-03-18 | 2003-09-18 | Hirofumi Uenoyama | Position determination device using magnetoresistive element |
US6653968B1 (en) | 1999-08-06 | 2003-11-25 | Robert Bosch Gmbh | System for generating a signal to superimpose information |
WO2003107018A1 (en) | 2002-06-18 | 2003-12-24 | 旭化成株式会社 | Current measuring method and current measuring device |
US6674679B1 (en) | 2002-10-01 | 2004-01-06 | Hewlett-Packard Development Company, L.P. | Adjustable current mode differential amplifier for multiple bias point sensing of MRAM having equi-potential isolation |
US20040032251A1 (en) | 2002-08-14 | 2004-02-19 | Zimmerman Mike W. | Calibrated, low-profile magnetic sensor |
JP2004055932A (en) | 2002-07-22 | 2004-02-19 | Asahi Kasei Corp | Magnetoelectric conversion element and manufacturing method |
US20040046248A1 (en) | 2002-09-05 | 2004-03-11 | Corning Intellisense Corporation | Microsystem packaging and associated methods |
JP2004093381A (en) | 2002-08-30 | 2004-03-25 | Toshiba Corp | Radiation detector and radiation detecting method |
US20040062362A1 (en) | 2002-09-18 | 2004-04-01 | Yasuyuki Matsuya | Data communication method, data transmitting apparatus, data receiving apparatus, and data transmission program |
WO2004027436A1 (en) | 2002-09-20 | 2004-04-01 | Allegro Microsystems, Inc. | Integrated current sensor |
US20040080314A1 (en) | 2002-10-24 | 2004-04-29 | Mitsubishi Denki Kabushiki Kaisha | Magnetic detection apparatus |
JP2004152688A (en) | 2002-10-31 | 2004-05-27 | Toshiba Plant Systems & Services Corp | Cable connection part and its insulation method |
US20040135220A1 (en) | 2002-12-25 | 2004-07-15 | Sanken Electric Co., Ltd. | Noise-proof semiconductor device having a Hall effect element |
US6770163B1 (en) | 2000-09-08 | 2004-08-03 | Asm Technology Singapore Pte Ltd | Mold and method for encapsulation of electronic device |
EP1443332A1 (en) | 2001-11-01 | 2004-08-04 | Asahi Kasei EMD Corporation | Current sensor and current sensor manufacturing method |
US20040155647A1 (en) | 2003-02-10 | 2004-08-12 | Delphi Technologies Inc. | Position sensing by measuring intensity of magnetic flux passing through an aperture in a movable element |
US6781233B2 (en) | 2001-08-28 | 2004-08-24 | Infineon Technologies Ag | Semiconductor device and converter device with an integrated capacitor |
WO2004072672A1 (en) | 2003-02-11 | 2004-08-26 | Allegro Microsystems, Inc. | Integrated sensor |
US20040174164A1 (en) | 2003-03-03 | 2004-09-09 | Denso Corporation | Magnetic sensor and method for fabricating the same |
US20040184196A1 (en) | 2003-03-18 | 2004-09-23 | Jayasekara Wipul P. | Magnetoresistive sensor having a high resistance soft magnetic layer between sensor stack and shield |
US20040189285A1 (en) | 2003-03-31 | 2004-09-30 | Denso Corporation | Magnetic sensor adjusting method, magnetic sensor adjusting device and magnetic sensor |
DE10314602A1 (en) | 2003-03-31 | 2004-10-21 | Infineon Technologies Ag | Monolithically integrated differential magnetic field sensor device, has layer of permeable material covering two magnetic field sensor elements, parallel to substrate |
US6822443B1 (en) | 2000-09-11 | 2004-11-23 | Albany Instruments, Inc. | Sensors and probes for mapping electromagnetic fields |
JP2004356338A (en) | 2003-05-28 | 2004-12-16 | Res Inst Electric Magnetic Alloys | Thin film magnetic sensor and method of manufacturing the same |
US20040252563A1 (en) | 2003-06-12 | 2004-12-16 | Rohm Co., Ltd. | Magnetic record reproducing device |
JP2004357858A (en) | 2003-06-03 | 2004-12-24 | Samii Kk | Attachment/detachment facilitating mechanism for game board |
US6853178B2 (en) | 2000-06-19 | 2005-02-08 | Texas Instruments Incorporated | Integrated circuit leadframes patterned for measuring the accurate amplitude of changing currents |
WO2005013363A2 (en) | 2003-07-31 | 2005-02-10 | Siemens Aktiengesellschaft | Circuit arrangement placed on a substrate and method for producing the same |
US6896407B2 (en) | 2001-11-05 | 2005-05-24 | Yamatake Corporation | Temperature information detecting device for angle sensor and position detecting device |
US6902951B2 (en) | 2002-10-29 | 2005-06-07 | Infineon Technologies Ag | Electronic device configured as a multichip module, leadframe, panel with leadframe positions, and method for producing the electronic device |
US20050120782A1 (en) | 2003-12-08 | 2005-06-09 | Kokusan Denki Co., Ltd. | Engine rotation information detection device |
US6917321B1 (en) | 2000-05-21 | 2005-07-12 | Analog Devices, Inc. | Method and apparatus for use in switched capacitor systems |
US20050167790A1 (en) | 2003-12-31 | 2005-08-04 | Carsem (M) Sdn.Bhd. | Integrated circuit package with transparent encapsulant and method for making thereof |
US20050179429A1 (en) | 2002-04-18 | 2005-08-18 | Continental Teves, Ag & Co Ohg | Method and device for the detection of local displacements and rotations |
EP1580560A1 (en) | 2004-03-24 | 2005-09-28 | Aisin Seiki Kabushiki Kaisha | Rotation-detecting-apparatus |
US20050225318A1 (en) | 2004-04-08 | 2005-10-13 | Bailey James M | Methods and apparatus for vibration detection |
DE102004017191A1 (en) | 2004-04-07 | 2005-10-27 | Infineon Technologies Ag | Device and method for determining a direction of an object |
JP2005337866A (en) | 2004-05-26 | 2005-12-08 | Asahi Kasei Corp | Magnetic substance detector and semiconductor package |
JP2005345302A (en) | 2004-06-03 | 2005-12-15 | Denso Corp | Rotation detection apparatus and method for manufacturing rotation detection apparatus |
US20050280411A1 (en) | 2004-06-16 | 2005-12-22 | Bicking Robert E | GMR sensor with flux concentrators |
JP2006003096A (en) | 2004-06-15 | 2006-01-05 | Mitsubishi Electric Corp | Magnetic detector |
US20060028204A1 (en) | 2004-08-06 | 2006-02-09 | Denso Corporation | Rotation angle detector |
US20060038559A1 (en) | 2004-08-20 | 2006-02-23 | Honeywell International, Inc. | Magnetically biased eddy current sensor |
EP1637898A1 (en) | 2004-09-16 | 2006-03-22 | Liaisons Electroniques-Mecaniques Lem S.A. | Continuously calibrated magnetic field sensor |
US20060068237A1 (en) | 2004-09-29 | 2006-03-30 | Murphy Michael W | Integrated current sensors for a fuel cell stack |
US7023205B1 (en) | 2000-08-01 | 2006-04-04 | General Dynamics Advanced Information Systems, Inc. | Eddy current sensor capable of sensing through a conductive barrier |
US7031170B2 (en) | 2001-09-28 | 2006-04-18 | Infineon Technologies Ag | Electronic device having a plastic housing and components of a height-structured metallic leadframe and methods for the production of the electronic device |
US7038448B2 (en) | 2001-05-25 | 2006-05-02 | Sentron Ag | Magnetic field sensor |
US20060097715A1 (en) | 2004-10-28 | 2006-05-11 | Denso Corporation | Vertical Hall device and method for adjusting offset voltage of vertical Hall device |
EP1662353A1 (en) | 2004-11-25 | 2006-05-31 | Alcatel | Method and device for recognition of the direction of travel |
US20060125473A1 (en) | 2002-10-07 | 2006-06-15 | Didier Frachon | Variable reluctance position sensor |
EP1679524A1 (en) | 2005-01-11 | 2006-07-12 | Ecole Polytechnique Federale De Lausanne Epfl - Sti - Imm - Lmis3 | Hall sensor and method of operating a Hall sensor |
US20060175674A1 (en) | 2005-02-04 | 2006-08-10 | Allegro Microsystems, Inc. | Integrated sensor having a magnetic flux concentrator |
US20060181263A1 (en) | 2003-08-26 | 2006-08-17 | Allegro Microsystems, Inc. | Current sensor |
US20060202692A1 (en) | 2005-02-23 | 2006-09-14 | Infineon Technologies Ag. | Magnetoresistive sensor element and concept for manufacturing and testing the same |
US7112955B2 (en) | 2001-08-23 | 2006-09-26 | Koninklijke Philips Electronics N.V. | Magnetic sensing device including a magnetoresistive sensor and a supporting magnet |
US7126327B1 (en) | 2005-07-22 | 2006-10-24 | Honeywell International Inc. | Asymmetrical AMR wheatstone bridge layout for position sensor |
US20060238190A1 (en) | 2005-04-21 | 2006-10-26 | Denso Corporation | Rotation detecting device |
US20060261801A1 (en) | 2005-05-20 | 2006-11-23 | Honeywell International Inc. | Magnetoresistive sensor |
JP2007012582A (en) | 2005-05-30 | 2007-01-18 | Internatl Superconductivity Technology Center | RE oxide superconducting wire joining method |
US20070018641A1 (en) * | 2003-09-05 | 2007-01-25 | Nobukazu Hayashi | Magnetic bias film and magnetic sensor using the same |
US7184876B2 (en) | 2004-06-18 | 2007-02-27 | Siemens Vdo Automotive | Device and process for determining the position of an engine |
US7193412B2 (en) | 2004-03-24 | 2007-03-20 | Stoneridge Control Devices, Inc. | Target activated sensor |
US7199579B2 (en) | 2004-03-08 | 2007-04-03 | Allegro Microsystems, Inc. | Proximity detector |
US20070110199A1 (en) | 2005-11-15 | 2007-05-17 | Afshin Momtaz | Receive equalizer with adaptive loops |
US7253614B2 (en) | 2005-03-21 | 2007-08-07 | Allegro Microsystems, Inc. | Proximity detector having a sequential flow state machine |
JP2007218799A (en) | 2006-02-17 | 2007-08-30 | Asahi Kasei Electronics Co Ltd | Semiconductor magnetoresistive element and magnetic sensor module using the same |
US7269992B2 (en) | 2005-06-15 | 2007-09-18 | Honeywell International Inc. | Magnet orientation and calibration for small package turbocharger speed sensor |
US7285952B1 (en) | 2006-02-23 | 2007-10-23 | Denso Corporation | Rotation angle detecting device |
EP1850143A1 (en) | 2005-02-08 | 2007-10-31 | Rohm Co., Ltd. | Magnetic sensor circuit and portable terminal provided with such magnetic sensor circuit |
US7292095B2 (en) | 2006-01-26 | 2007-11-06 | Texas Instruments Incorporated | Notch filter for ripple reduction in chopper stabilized amplifiers |
US7295000B2 (en) | 2004-05-26 | 2007-11-13 | Infineon Technologies Ag | Method for detecting disturbances when determining the rotational speed of a rotor and evaluation circuit |
WO2007138508A1 (en) | 2006-05-30 | 2007-12-06 | Koninklijke Philips Electronics N. V. | Sensor device with adaptive field compensation |
US20070285089A1 (en) | 2006-03-31 | 2007-12-13 | Daihen Corporation | Current detection printed board, voltage detection printed board, current/voltage detection printed board, current/voltage detector, current detector and voltage detector |
US20070290682A1 (en) | 2006-01-13 | 2007-12-20 | Denso Corporation | Magnetic sensor and method for detecting magnetic field |
US7319319B2 (en) | 2001-10-30 | 2008-01-15 | Tt Electronics Technology Limited | Sensing apparatus and method |
WO2008008140A2 (en) | 2006-07-14 | 2008-01-17 | Allegro Microsystems, Inc. | Methods and apparatus for passive attachment of components for integrated circuits |
US20080012558A1 (en) | 2006-07-12 | 2008-01-17 | Werner Rossler | Magnetic field sensor device |
US7323780B2 (en) | 2005-11-10 | 2008-01-29 | International Business Machines Corporation | Electrical interconnection structure formation |
US7325175B2 (en) | 2005-05-04 | 2008-01-29 | Broadcom Corporation | Phase adjust using relative error |
DE102006037226A1 (en) | 2006-08-09 | 2008-02-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Calibratable magnetic 3D-point sensor during measuring operation |
US7345468B2 (en) | 2004-03-02 | 2008-03-18 | Denso Corporation | Detection signal processing circuit and detection signal processing apparatus for a rotation sensor |
US7361531B2 (en) | 2005-11-01 | 2008-04-22 | Allegro Microsystems, Inc. | Methods and apparatus for Flip-Chip-On-Lead semiconductor package |
US7362094B2 (en) | 2006-01-17 | 2008-04-22 | Allegro Microsystems, Inc. | Methods and apparatus for magnetic article detection |
WO2008048379A1 (en) | 2006-10-19 | 2008-04-24 | Allegro Microsystems, Inc. | Chopped hall effect sensor |
US7365530B2 (en) | 2004-04-08 | 2008-04-29 | Allegro Microsystems, Inc. | Method and apparatus for vibration detection |
US20080116884A1 (en) | 2004-03-11 | 2008-05-22 | Rasmus Rettig | Magnet Sensor Arrangement |
US7385394B2 (en) | 2005-06-15 | 2008-06-10 | Infineon Technologies Ag | Integrated magnetic sensor component |
US20080137784A1 (en) | 2006-12-08 | 2008-06-12 | Krone Andrew W | Reducing noise during a gain change |
FR2909756A1 (en) | 2006-12-06 | 2008-06-13 | Bosch Gmbh Robert | Movement detecting system i.e. movement sensor, for wheel of motor vehicle, has high frequency transmission circuit linked to electronic reading circuit for receiving reading signal and sending high frequency signal to transmitting antenna |
US20080237818A1 (en) | 2007-03-29 | 2008-10-02 | Engel Raymond W | Methods and apparatus for multi-stage molding of integrated circuit package |
US20080238410A1 (en) | 2006-10-16 | 2008-10-02 | Ami Semiconductor Belgium Bvba | Auto-calibration of magnetic sensor |
DE102007018238A1 (en) | 2007-04-18 | 2008-10-23 | Robert Bosch Gmbh | Device for detecting the rotational speed of a rotatable part |
JP2008264569A (en) | 1997-10-08 | 2008-11-06 | Kaneka Corp | Balloon catheter and manufacturing method for it |
US20080297954A1 (en) * | 2007-04-19 | 2008-12-04 | Yamaha Corporation | Magnetic sensor and manufacturing method therefor |
WO2008145662A1 (en) | 2007-05-29 | 2008-12-04 | Ecole Polytechnique Federale De Lausanne | Magnetic field sensor for measuring direction of a magnetic field in a plane |
US20090001964A1 (en) | 2007-06-29 | 2009-01-01 | Bernhard Strzalkowski | Integrated Hybrid Current Sensor |
US20090001972A1 (en) | 2007-06-26 | 2009-01-01 | Devon Fernandez | Calibration circuits and methods for proximity detector |
US7474093B2 (en) | 2006-09-25 | 2009-01-06 | Infineon Technologies Ag | Magnetic field sensor apparatus |
US20090058404A1 (en) | 2007-08-30 | 2009-03-05 | Denso Corporation | Rotation detection sensor |
US20090085706A1 (en) | 2007-09-28 | 2009-04-02 | Access Business Group International Llc | Printed circuit board coil |
DE102007041230B3 (en) | 2007-08-31 | 2009-04-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Calibratable multi-dimensional magnetic point sensor and corresponding method and computer program therefor |
US20090105460A1 (en) * | 2002-06-12 | 2009-04-23 | Japan Science And Technology Agency | Antibody and inhibitor, and transfection method or kit using them |
US20090102460A1 (en) * | 2007-07-27 | 2009-04-23 | Melexis Nv Microelectronic Integrated Systems | Position sensor |
US20090102467A1 (en) | 2007-10-22 | 2009-04-23 | Johnson Controls Inc. | Method and apparatus for sensing shaft rotation |
EP2063229A1 (en) | 2007-11-21 | 2009-05-27 | Micronas GmbH | Magnetic field sensor system |
US20090140725A1 (en) | 2007-12-04 | 2009-06-04 | Infineon Technologies Ag | Integrated circuit including sensor having injection molded magnetic material |
US20090146647A1 (en) | 2007-12-05 | 2009-06-11 | Infineon Technologies Ag | System including sensing elements at different distances from vertical magnetic field lines |
US20090152696A1 (en) | 2005-07-08 | 2009-06-18 | Nxp B.V. | Semiconductor device |
US20090206827A1 (en) | 2006-11-21 | 2009-08-20 | Hitachi Metals, Ltd. | Rotation-angle-detecting apparatus, rotating machine, and rotation-angle-detecting method |
US20090212765A1 (en) | 2008-02-26 | 2009-08-27 | Doogue Michael C | Magnetic field sensor with automatic sensitivity adjustment |
US7598601B2 (en) | 2003-08-26 | 2009-10-06 | Allegro Microsystems, Inc. | Current sensor |
US7605647B1 (en) | 2008-04-29 | 2009-10-20 | Allegro Microsystems, Inc. | Chopper-stabilized amplifier and magnetic field sensor |
US7635993B2 (en) | 2004-05-18 | 2009-12-22 | Nxp B.V. | Digital magnetic current sensor and logic |
US20090315543A1 (en) | 2008-06-24 | 2009-12-24 | Magic Technologies, Inc. | Gear tooth sensor (GTS) with magnetoresistive bridge |
US20100026279A1 (en) | 2008-07-31 | 2010-02-04 | Ravi Vig | Apparatus and Method for Providing an Output Signal Indicative of a Speed of Rotation and a Direction of Rotation as a Ferromagnetic Object |
US20100045268A1 (en) | 2008-08-22 | 2010-02-25 | Honeywell International Inc. | Comparator circuit having latching behavior and digital output sensors therefrom |
US20100072988A1 (en) | 2008-09-22 | 2010-03-25 | Infineon Technologies Ag | System that obtains a switching point with the encoder in a static position |
US7694200B2 (en) | 2007-07-18 | 2010-04-06 | Allegro Microsystems, Inc. | Integrated circuit having built-in self-test features |
WO2010065315A1 (en) | 2008-12-05 | 2010-06-10 | Allegro Microsystems, Inc. | Magnetic field sensors and methods for fabricating the magnetic field sensors |
US7764118B2 (en) | 2008-09-11 | 2010-07-27 | Analog Devices, Inc. | Auto-correction feedback loop for offset and ripple suppression in a chopper-stabilized amplifier |
US20100188078A1 (en) | 2009-01-28 | 2010-07-29 | Andrea Foletto | Magnetic sensor with concentrator for increased sensing range |
US7768083B2 (en) | 2006-01-20 | 2010-08-03 | Allegro Microsystems, Inc. | Arrangements for an integrated sensor |
US7769110B2 (en) | 2005-05-13 | 2010-08-03 | Broadcom Corporation | Threshold adjust system and method |
US20100201356A1 (en) | 2009-02-11 | 2010-08-12 | Infineon Technologies Ag | Sensor |
US20100211347A1 (en) | 2009-02-17 | 2010-08-19 | Allegro Microsystems, Inc. | Circuits and Methods for Generating a Self-Test of a Magnetic Field Sensor |
US7800389B2 (en) | 2007-07-13 | 2010-09-21 | Allegro Microsystems, Inc. | Integrated circuit having built-in self-test features |
US7808074B2 (en) | 2005-07-08 | 2010-10-05 | Infineon Technologies Ag | Advanced leadframe having predefined bases for attaching passive components |
US7816905B2 (en) | 2008-06-02 | 2010-10-19 | Allegro Microsystems, Inc. | Arrangements for a current sensing circuit and integrated current sensor |
US20100276769A1 (en) | 2009-04-30 | 2010-11-04 | Infineon Technologies Ag | Semiconductor device |
US7839141B2 (en) | 2007-08-14 | 2010-11-23 | Infineon Technologies Ag | Method of biasing a magneto resistive sensor element |
DE102010016584A1 (en) | 2009-05-20 | 2010-11-25 | Infineon Technologies Ag | Semiconductor device |
US20110018533A1 (en) | 2009-07-22 | 2011-01-27 | Allegro Microsystems, Inc. | Circuits and Methods for Generating a Diagnostic Mode of Operation in a Magnetic Field Sensor |
US20110048102A1 (en) | 2009-08-27 | 2011-03-03 | Devon Fernandez | Circuits and Methods for Calibration of a Motion Detector |
US7936144B2 (en) | 2008-03-06 | 2011-05-03 | Allegro Microsystems, Inc. | Self-calibration algorithms in a small motor driver IC with an integrated position sensor |
US20110127998A1 (en) | 2009-11-30 | 2011-06-02 | Infineon Technologies Ag | Gmr sensor within molded magnetic material employing non-magnetic spacer |
US7956604B2 (en) | 2008-07-09 | 2011-06-07 | Infineon Technologies, Ag | Integrated sensor and magnetic field concentrator devices |
US7961823B2 (en) | 2004-06-02 | 2011-06-14 | Broadcom Corporation | System and method for adjusting multiple control loops using common criteria |
US20110175605A1 (en) | 2010-01-21 | 2011-07-21 | The Industry & Academic Cooperation In Chungnam National University (Iac) | Magnetic Sensor |
US7990209B2 (en) | 2009-06-19 | 2011-08-02 | Allegro Microsystems, Inc. | Switched capacitor notch filter |
US20110267040A1 (en) | 2008-09-24 | 2011-11-03 | Moving Magnet Technologies (Mmt) | Linear or rotary position sensor with a permanent magnet for detecting a ferromagnetic target |
US8058870B2 (en) | 2008-05-30 | 2011-11-15 | Infineon Technologies Ag | Methods and systems for magnetic sensing |
US8063634B2 (en) | 2008-07-31 | 2011-11-22 | Allegro Microsystems, Inc. | Electronic circuit and method for resetting a magnetoresistance element |
US20110291650A1 (en) | 2008-11-27 | 2011-12-01 | Joerg Franke | Semiconductor chip and method for generating pulse edges, assigned synchronously to the movement of a mechanical part |
US20110298448A1 (en) | 2010-06-03 | 2011-12-08 | Allegro Microsystems, Inc. | Motion Sensor, Method, and Computer-Readable Storage Medium Providing a Motion Sensor That Can Rapidly Calibrate Gains |
US8080993B2 (en) | 2008-03-27 | 2011-12-20 | Infineon Technologies Ag | Sensor module with mold encapsulation for applying a bias magnetic field |
GB2481482A (en) | 2011-04-27 | 2011-12-28 | Univ Manchester | Electromagnetic sensor for detecting microstructure of metal target |
EP2402719A1 (en) | 2009-02-26 | 2012-01-04 | Alps Electric Co., Ltd. | Rotation detection device |
US20120007589A1 (en) | 2010-07-07 | 2012-01-12 | Asahi Kasei Microdevices Corporation | Position detecting apparatus |
US20120019236A1 (en) | 2010-07-26 | 2012-01-26 | Radiation Monitoring Devices, Inc. | Eddy current detection |
US8106654B2 (en) | 2008-05-27 | 2012-01-31 | Infineon Technologies Ag | Magnetic sensor integrated circuit device and method |
US8128549B2 (en) | 2007-02-20 | 2012-03-06 | Neuronetics, Inc. | Capacitor failure detection |
EP2466265A2 (en) | 2010-12-15 | 2012-06-20 | Nxp B.V. | Magnetic field sensor |
US20120200290A1 (en) | 2011-02-08 | 2012-08-09 | Infineon Technologies Ag | Low Offset Spinning Current Hall Plate and Method to Operate it |
US20120249133A1 (en) | 2011-04-01 | 2012-10-04 | Allegro Microsystems, Inc. | Differential magnetic field sensor structure for orientation independent measurement |
WO2012148646A1 (en) | 2011-04-27 | 2012-11-01 | Allegro Microsystems, Inc. | Circuits and methods for self-calibrating or self-testing a magnetic field sensor |
DE102011102483A1 (en) | 2011-05-24 | 2012-11-29 | Austriamicrosystems Ag | Method for operating a Hall sensor arrangement and Hall sensor arrangement |
US20130015845A1 (en) | 2011-07-11 | 2013-01-17 | Honeywell International Inc. | Absolute angular position sensor using two magnetoresistive sensors |
US20130035896A1 (en) * | 2010-04-16 | 2013-02-07 | Jtekt Corporation | Rotation angle detection device |
US20130057257A1 (en) | 2011-09-07 | 2013-03-07 | Allegro Microsystems, Inc. | Magnetic field sensing element combining a circular vertical hall magnetic field sensing element with a planar hall element |
US20130080087A1 (en) * | 2011-09-28 | 2013-03-28 | Allegro Microsystems, Inc. | Circuits and Methods for Processing Signals Generated by a Plurality of Magnetic Field Sensing Elements |
US8415946B2 (en) * | 2007-02-21 | 2013-04-09 | Meas Deutschland Gmbh | Arrangement and method for magnetic determination of a linear length or a rotary angle |
US20130113474A1 (en) | 2011-11-04 | 2013-05-09 | Infineon Technologies Ag | Magnetic Sensor Device |
US20130265037A1 (en) | 2012-04-04 | 2013-10-10 | Allegro Microsystems, Inc. | Angle sensor with misalignment detection and correction |
US20130278246A1 (en) | 2012-04-23 | 2013-10-24 | Infineon Technologies Ag | Bias Field Generator and Method |
WO2013169455A1 (en) | 2012-05-10 | 2013-11-14 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensor having integrated coil |
US20130320970A1 (en) | 2012-05-31 | 2013-12-05 | Allegro Microsystems, Inc. | Gear tooth sensor with peak and threshold detectors |
US8610430B2 (en) | 2008-05-30 | 2013-12-17 | Infineon Technologies Ag | Bias field generation for a magneto sensor |
US20130335069A1 (en) | 2012-06-18 | 2013-12-19 | Allegro Microsystems, Inc. | Magnetic Field Sensors and Related Techniques That Can Provide Self-Test Information in a Formatted Output Signal |
US20140084906A1 (en) | 2012-09-26 | 2014-03-27 | Nxp B.V. | Magnetic field sensor system with a biasing magnet producing a spatially symmetric magnetic field within a plane being defined by magnetoresistive sensor elements |
EP2730893A1 (en) | 2011-07-05 | 2014-05-14 | Denso Corporation | Mobile object detecting apparatus |
US8729890B2 (en) | 2011-04-12 | 2014-05-20 | Allegro Microsystems, Llc | Magnetic angle and rotation speed sensor with continuous and discontinuous modes of operation based on rotation speed of a target object |
US20140176126A1 (en) | 2012-12-21 | 2014-06-26 | Allegro Microsystems, Inc. | Magnetic Field Sensor Arrangements and Associated Methods |
US20140175584A1 (en) | 2012-12-21 | 2014-06-26 | Andrea Foletto | Magnetic field sensor and method of fabricating a magnetic field sensor having a plurality of vertical hall elements arranged in at least a portion of a polygonal shape |
US8773124B2 (en) | 2007-05-30 | 2014-07-08 | Infineon Technologies Ag | Magnetic-field sensor |
US20140266176A1 (en) | 2013-03-15 | 2014-09-18 | Allegro Microsystems, Llc | Magnetic Field Sensor and Associated Method That Can Store a Measured Threshold Value in a Memory Device During a Time When The Magnetic Field Sensor is Powered Off |
US8860404B2 (en) | 2012-06-18 | 2014-10-14 | Allegro Microsystems, Llc | Magnetic field sensors and related techniques that can provide a self-test using signals and related thresholds |
US20140336878A1 (en) * | 2011-11-24 | 2014-11-13 | Toyota Jidosha Kabushiki Kaisha | Rotational-angle detection device and electric power-steering device provided with rotational-angle detection device |
US20140347044A1 (en) | 2013-05-24 | 2014-11-27 | Allegro Microsystems, Llc | Magnetic Field Sensor for Detecting a Magnetic Field In Any Direction Above Thresholds |
US20150022187A1 (en) | 2013-07-19 | 2015-01-22 | Allegro Microsystems, Llc | Arrangements for Magnetic Field Sensors That Act as Tooth Detectors |
US9164156B2 (en) | 2011-09-30 | 2015-10-20 | Infineon Technologies Ag | Apparatus having a back-bias magnet and a semiconductor chip element |
US9201123B2 (en) | 2011-11-04 | 2015-12-01 | Infineon Technologies Ag | Magnetic sensor device and a method for fabricating the same |
US20150346289A1 (en) | 2014-04-28 | 2015-12-03 | Infineon Technologies Ag | Hall Effect Sensor Arrangement |
US20150354985A1 (en) | 2013-05-24 | 2015-12-10 | Allegro Microsystems, Llc | Magnetic Field Sensor To Detect A Magnitude Of A Magnetic Field In Any Direction |
US20160123774A1 (en) | 2014-10-31 | 2016-05-05 | Allegro Microsystems, Llc | Magnetic Field Sensor for Sensing a Movement of a Ferromagnetic Target Object |
US9347799B2 (en) | 2013-02-20 | 2016-05-24 | Nxp B.V. | Magnetic field sensor system with a magnetic wheel rotatable around a wheel axis and with magnetic sensor elements being arranged within a plane perpendicular to the wheel axis |
US20160178400A1 (en) * | 2014-12-23 | 2016-06-23 | Allegro Microsystems, Llc | Systems and Methods for Detecting a Magnetic Target by Computing a Barycenter |
US20160231139A1 (en) * | 2015-02-06 | 2016-08-11 | Denso Corporation | Rotation angle detection device |
US20170271399A1 (en) | 2016-03-15 | 2017-09-21 | Texas Instruments Incorporated | Integrated circuit with hall effect and anisotropic magnetoresistive (amr) sensors |
US10041810B2 (en) * | 2016-06-08 | 2018-08-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as movement detectors |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2114148A5 (en) | 1970-11-16 | 1972-06-30 | Crouzet Sa | |
US5912347A (en) | 1996-09-30 | 1999-06-15 | Mallinckrodt Inc. | Process for preparing a morphinan derivative |
WO2006046342A1 (en) | 2004-10-29 | 2006-05-04 | Hitachi, Ltd. | Management system and program of long object |
US7345488B2 (en) | 2005-06-01 | 2008-03-18 | Schweitzer Engineering Laboratories, Inc. | Apparatus and method for determining a faulted phase of a three-phase ungrounded power system |
US7365630B1 (en) | 2007-06-24 | 2008-04-29 | Taipei Multipower Electronics Co., Ltd. | Low magnetic leakage high voltage transformer |
DE102011103248B4 (en) | 2011-06-03 | 2024-08-08 | Volkswagen Aktiengesellschaft | Sensor device and method for monitoring a sensor device |
JP6053332B2 (en) | 2012-05-31 | 2016-12-27 | キヤノン株式会社 | Information processing apparatus, information processing apparatus control method, and program |
-
2016
- 2016-06-08 US US15/176,665 patent/US10041810B2/en active Active
-
2017
- 2017-05-17 WO PCT/US2017/033052 patent/WO2017213811A1/en active Application Filing
-
2018
- 2018-04-04 US US15/945,085 patent/US10837800B2/en active Active
Patent Citations (455)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3195043A (en) | 1961-05-19 | 1965-07-13 | Westinghouse Electric Corp | Hall effect proximity transducer |
US3281628A (en) | 1964-08-14 | 1966-10-25 | Telefunken Patent | Automated semiconductor device method and structure |
US3607528A (en) | 1968-02-08 | 1971-09-21 | James S Gassaway | Magnetic memory members and methods of making the same |
US3661061A (en) | 1969-05-05 | 1972-05-09 | Atomic Energy Commission | Picture position finder |
US3718786A (en) | 1971-08-05 | 1973-02-27 | Tri Line Electric Co Inc | Rotary switch assembly |
US4079360A (en) | 1974-07-26 | 1978-03-14 | Sony Corporation | Magnetic field sensing apparatus |
DE2518054A1 (en) | 1975-04-23 | 1976-11-04 | Siemens Ag | Detector for linear motion or direction of rotation - with hysteresis switching stage to detect direction of motion has differential stage output in series with hysteresis stage |
US4048670A (en) | 1975-06-30 | 1977-09-13 | Sprague Electric Company | Stress-free hall-cell package |
US4236832A (en) | 1977-06-29 | 1980-12-02 | Tokyo Shibaura Denki Kabushiki Kaisha | Strain insensitive integrated circuit resistor pair |
US4204317A (en) | 1977-11-18 | 1980-05-27 | The Arnold Engineering Company | Method of making a lead frame |
US4188605A (en) | 1978-07-21 | 1980-02-12 | Stout Glenn M | Encapsulated Hall effect device |
US4283643A (en) | 1979-05-25 | 1981-08-11 | Electric Power Research Institute, Inc. | Hall sensing apparatus |
US4370614A (en) * | 1979-07-25 | 1983-01-25 | Fujitsu Fanuc Limited | Speed and direction detector |
US4315523A (en) | 1980-03-06 | 1982-02-16 | American Flow Systems, Inc. | Electronically controlled flow meter and flow control system |
US4438347A (en) | 1980-08-13 | 1984-03-20 | Siemens Aktiengesellschaft | Device for changing the electrical circuit configuration of integrated semiconductor circuits |
US4604575A (en) * | 1980-10-21 | 1986-08-05 | Kabushiki Kaisha Sg | Multiple output rotational position detection device |
US4670715A (en) | 1983-01-28 | 1987-06-02 | Caterpillar Inc. | Frictionally supported gear tooth sensor with self-adjusting air gap |
US4573258A (en) | 1984-01-18 | 1986-03-04 | Atsugi Motor Parts Co., Ltd. | Method of manufacturing motor |
US4769344A (en) | 1984-06-04 | 1988-09-06 | Mitsubishi Denki Kabushiki Kaisha | Method of resin encapsulating a semiconductor device |
US4752733A (en) | 1984-08-16 | 1988-06-21 | Jan Petr | Compensating circuit for a magnetic field sensor |
JPS6148777A (en) | 1984-08-16 | 1986-03-10 | エルゲーツエツト・ランデイス・ウント・ギール・ツーク・アクチエンゲゼルシヤフト | Compensator for variation of conversion coefficient of magnetic field sensor |
US4614111A (en) | 1985-02-15 | 1986-09-30 | Wolff George D | Position sensor for fuel injection apparatus |
US4758943A (en) | 1985-04-03 | 1988-07-19 | Hightech Network Ab | Method and an apparatus for automatically tuning a process regulator |
US4908685A (en) | 1985-05-10 | 1990-03-13 | Asahi Kasei Kogyo Kabushiki Kaisha | Magnetoelectric transducer |
US4719419A (en) | 1985-07-15 | 1988-01-12 | Harris Graphics Corporation | Apparatus for detecting a rotary position of a shaft |
US4733455A (en) | 1985-08-07 | 1988-03-29 | Victor Company Of Japan, Limited | Method of manufacturing a magnetic head with an MR element |
US4796354A (en) | 1986-03-19 | 1989-01-10 | Honda Giken Kogyo Kabushiki Kaisha | Method of manufacturing a position sensor for detecting angular position |
US4833406A (en) | 1986-04-17 | 1989-05-23 | Household Commercial Financial Services Inc. | Temperature compensated Hall-effect sensor apparatus |
US4649796A (en) | 1986-06-18 | 1987-03-17 | The United States Of America As Represented By The Secretary Of The Army | Method and apparatus for setting a projectile fuze during muzzle exit |
US4745363A (en) | 1986-07-16 | 1988-05-17 | North American Philips Corporation | Non-oriented direct coupled gear tooth sensor using a Hall cell |
US4893027A (en) | 1986-09-25 | 1990-01-09 | Gebhard Balluff Fabrik Feinmechanischer Erzeugnisse Gmbh & Co. | Proximity switch insensitive to interference fields |
JPS6384176A (en) | 1986-09-29 | 1988-04-14 | Toshiba Corp | Magnetic field convergence type Hall element and its manufacturing method |
US4746859A (en) | 1986-12-22 | 1988-05-24 | Sundstrand Corporation | Power and temperature independent magnetic position sensor for a rotor |
US4772929A (en) | 1987-01-09 | 1988-09-20 | Sprague Electric Company | Hall sensor with integrated pole pieces |
US4789826A (en) | 1987-03-19 | 1988-12-06 | Ampex Corporation | System for sensing the angular position of a rotatable member using a hall effect transducer |
US4760285A (en) | 1987-03-30 | 1988-07-26 | Honeywell Inc. | Hall effect device with epitaxal layer resistive means for providing temperature independent sensitivity |
JPS63263782A (en) | 1987-04-22 | 1988-10-31 | Hitachi Ltd | magnetoelectric conversion element |
EP0289414A2 (en) | 1987-04-28 | 1988-11-02 | Commissariat A L'energie Atomique | Method and device for the digitization and linearization of a quasi-sinusoidal sensor |
WO1988009026A1 (en) | 1987-05-15 | 1988-11-17 | SSD Limited | Improvements relating to rotary encoders |
US5012322A (en) | 1987-05-18 | 1991-04-30 | Allegro Microsystems, Inc. | Semiconductor die and mounting assembly |
JPS63300911A (en) | 1987-05-30 | 1988-12-08 | Yaskawa Electric Mfg Co Ltd | Multirotation type absolute value encoder |
US4874053A (en) * | 1987-06-22 | 1989-10-17 | Hitachi, Ltd. | Torque detecting apparatus |
US4823075A (en) | 1987-10-13 | 1989-04-18 | General Electric Company | Current sensor using hall-effect device with feedback |
US5078944A (en) | 1987-11-02 | 1992-01-07 | Matsushita Electric Industrial Co., Ltd. | Method for making permanent magnet type demagnetizing head |
US4983916A (en) | 1988-01-26 | 1991-01-08 | Yamaha Corporation | Compact magnetic encoder |
US4970411A (en) | 1988-04-21 | 1990-11-13 | Lgz Landis & Gyr Zug Ag | Arrangement for improving the longterm stability of a Hall element |
EP0357013A2 (en) | 1988-09-02 | 1990-03-07 | Honeywell Inc. | Magnetic field measuring circuit |
EP0361456A2 (en) | 1988-09-30 | 1990-04-04 | Murata Manufacturing Co., Ltd. | Magnetic sensor |
US4910861A (en) | 1988-10-07 | 1990-03-27 | Emerson Electric Co. | Method of manufacturing retention structure for electric motor rotor magnets |
US5028868A (en) | 1988-10-11 | 1991-07-02 | Mitsubishi Denki K.K. | Hall effect type sensing device and magnetic circuit device for a hall effect type sensor |
JPH02116753A (en) | 1988-10-26 | 1990-05-01 | Mitsubishi Electric Corp | Detector for direction of rotation |
JPH02149013A (en) | 1988-11-30 | 1990-06-07 | Toshiba Corp | Oscillation circuit |
US5084289A (en) | 1989-02-01 | 1992-01-28 | Korea Food Research Institute | Method for the inhibition of oxidation of edible oils utilizing a fat soluble anti-oxidant and a water soluble anti-oxdant in a reverse micelle system |
US5789915A (en) | 1989-02-17 | 1998-08-04 | Nartron Corporation | Magnetic field energy responsive position sensing apparatus and method |
US4935698A (en) | 1989-03-03 | 1990-06-19 | Sprague Electric Company | Sensor having dual Hall IC, pole piece and magnet |
US5137677A (en) | 1989-03-09 | 1992-08-11 | Mitsubishi Denki K.K. | Hall sensor device and method of producing the same |
US5196794A (en) | 1989-03-14 | 1993-03-23 | Mitsubishi Denki K.K. | Hall-effect sensor with integrally molded frame, magnet, flux guide and insulative film |
US5244834A (en) | 1989-05-10 | 1993-09-14 | Nippondenso Co., Ltd. | Semiconductor device |
JPH0329817A (en) | 1989-06-28 | 1991-02-07 | Fanuc Ltd | Wireless manual encoder |
US5121289A (en) | 1990-01-31 | 1992-06-09 | Honeywell Inc. | Encapsulatable sensor assembly |
US5021493A (en) | 1990-03-21 | 1991-06-04 | The Goodyear Tire & Rubber Company | Rubber composition and tire with component(s) thereof |
US5045920A (en) | 1990-06-28 | 1991-09-03 | Allegro Microsystems, Inc. | Dual-Hall ferrous-article-proximity sensor |
DE4031560A1 (en) | 1990-10-05 | 1992-04-09 | Dieter Prof Dr Ing Seitzer | Integrated current sensor for current limiting and measuring - has components sensitive to magnetic field and excitation paths formed by film technique on substrate |
JPH04152688A (en) | 1990-10-17 | 1992-05-26 | Fujitsu Ltd | Magnetoresistance element |
US5038130A (en) | 1990-11-06 | 1991-08-06 | Santa Barbara Research Center | System for sensing changes in a magnetic field |
US5185919A (en) | 1990-11-19 | 1993-02-16 | Ford Motor Company | Method of manufacturing a molded fuel injector |
US5139973A (en) | 1990-12-17 | 1992-08-18 | Allegro Microsystems, Inc. | Method for making a semiconductor package with the distance between a lead frame die pad and heat spreader determined by the thickness of an intermediary insulating sheet |
US5216405A (en) | 1991-01-14 | 1993-06-01 | General Motors Corporation | Package for the magnetic field sensitive device |
US5167896A (en) | 1991-01-16 | 1992-12-01 | Kyowa Electric & Chemical Co., Ltd. | Method of manufacturing a front cabinet for use with a display |
EP0504583A1 (en) | 1991-02-18 | 1992-09-23 | ITT Automotive Europe GmbH | Method of and arrangement for detecting a direction of movement, especially a direction of rotation |
US5479695A (en) | 1991-05-02 | 1996-01-02 | At&T Corp. | Method of making a multilayer monolithic magnetic component |
US5412255A (en) | 1991-05-07 | 1995-05-02 | Vdo Adolf Schindling Ag | Switch device suitable for use in automotive vehicles |
US5491633A (en) | 1991-05-20 | 1996-02-13 | General Motors Corporation | Position sensor for electromechanical suspension |
US5168244A (en) | 1991-06-19 | 1992-12-01 | Nec Corporation | Electric circuit fabricated from magneto-resistive elements and active circuit elements |
US5551146A (en) | 1991-07-08 | 1996-09-03 | Murata Manufacturing Co., Ltd. | Method of manufacturing a solid inductor |
US5453727A (en) | 1991-07-16 | 1995-09-26 | Asahi Kasai Kogyo Kabushiki Kaisha | Semiconductor sensors and method for fabricating the same |
US5247202A (en) | 1991-10-09 | 1993-09-21 | Landis & Gyr Betriebs Ag | Plurality of arrangements each including an ic magnetic field sensor and two ferromagnetic field concentrators, and a procedure for incorporating each arrangement into a package |
US5332956A (en) | 1991-11-08 | 1994-07-26 | Gold Star Co., Ltd. | Motor rotation controlling device |
US5247278A (en) | 1991-11-26 | 1993-09-21 | Honeywell Inc. | Magnetic field sensing device |
WO1993012403A1 (en) | 1991-12-19 | 1993-06-24 | Swf Auto-Electric Gmbh | Sensor of the speed of rotation, in particular of toothed wheels |
US5714102A (en) | 1992-01-02 | 1998-02-03 | International Business Machines Corporation | Method for manufacturing electro-magnetic shield having multiple polymeric layers of differing fill compositions |
US5210493A (en) | 1992-02-27 | 1993-05-11 | General Motors Corporation | Method for embedding wires within a powder metal core and sensor assembly produced by such a method |
US5315245A (en) | 1992-02-27 | 1994-05-24 | General Motors Corporation | Sensor assembly having embedded wires within a powder metal core and a method therefor |
US5545983A (en) | 1992-03-02 | 1996-08-13 | Seiko Epson Corporation | Displacement sensor with temperature compensation by combining outputs in a predetermined ratio |
EP0629834A1 (en) | 1992-03-02 | 1994-12-21 | Seiko Epson Corporation | Displacement sensor |
US5286426A (en) | 1992-04-01 | 1994-02-15 | Allegro Microsystems, Inc. | Assembling a lead frame between a pair of molding cavity plates |
US5304926A (en) | 1992-04-08 | 1994-04-19 | Honeywell Inc. | Geartooth position sensor with two hall effect elements |
US5250925A (en) | 1992-05-11 | 1993-10-05 | General Motors Corporation | Package for speed sensing device having minimum air gap |
US5818223A (en) | 1992-06-22 | 1998-10-06 | Durakool, Inc. | Rotary position sensor with circular magnet |
US5332965A (en) | 1992-06-22 | 1994-07-26 | Durakool Incorporated | Contactless linear angular position sensor having an adjustable flux concentrator for sensitivity adjustment and temperature compensation |
US5497081A (en) | 1992-06-22 | 1996-03-05 | Durakool Incorporated | Mechanically adjustable linear-output angular position sensor |
US5757181A (en) | 1992-06-22 | 1998-05-26 | Durakool Incorporated | Electronic circuit for automatically compensating for errors in a sensor with an analog output signal |
CH683469A5 (en) | 1992-07-03 | 1994-03-15 | Landis & Gyr Business Support | Semiconductor wafer contg. magnetic field sensor - is installed between pole shoes of laminated ferromagnetic magnetic flux concentrator to measure magnetic field in proximity |
US6180041B1 (en) | 1992-07-07 | 2001-01-30 | Nippon Seiki K.K. | Process for manufacturing a pointer |
US5691637A (en) | 1992-08-28 | 1997-11-25 | True Position Magnetics, Inc. | Magnetic field position transducer for two or more dimensions |
US5341097A (en) | 1992-09-29 | 1994-08-23 | Honeywell Inc. | Asymmetrical magnetic position detector |
WO1994008203A1 (en) | 1992-09-29 | 1994-04-14 | Honeywell Inc. | Asymmetrical magnetic position detector |
US5331478A (en) | 1992-10-07 | 1994-07-19 | Silicon Systems, Inc. | Magnetoresistive head amplifier |
US5289344A (en) | 1992-10-08 | 1994-02-22 | Allegro Microsystems Inc. | Integrated-circuit lead-frame package with failure-resistant ground-lead and heat-sink means |
US5486759A (en) | 1992-10-21 | 1996-01-23 | Robert Bosch Gmbh | Device for detecting the movement of a movable component and signalling the detected movement over a single line |
US5469058A (en) | 1992-12-30 | 1995-11-21 | Dunnam; Curt | Feedback enhanced sensor, alternating magnetic field detector |
JPH06273437A (en) | 1993-03-22 | 1994-09-30 | Yazaki Corp | Rotation detection apparatus |
GB2276727A (en) | 1993-04-01 | 1994-10-05 | Rolls Royce & Ass | Magnetoresistive magnetometer |
US5424558A (en) | 1993-05-17 | 1995-06-13 | High Yield Technology, Inc. | Apparatus and a method for dynamically tuning a particle sensor in response to varying process conditions |
US5521501A (en) | 1993-06-09 | 1996-05-28 | Institut Fuer Mikrostrukturtechnologie Und Optoelektronik E.V. | Magnetic field sensor constructed from a remagnetization line and one magnetoresistive resistor or a plurality of magnetoresistive resistors |
US5329416A (en) | 1993-07-06 | 1994-07-12 | Alliedsignal Inc. | Active broadband magnetic flux rate feedback sensing arrangement |
US5500994A (en) | 1993-12-30 | 1996-03-26 | Mabuchi Motor Co., Ltd. | Method of manufacturing a rotor |
US5477143A (en) | 1994-01-11 | 1995-12-19 | Honeywell Inc. | Sensor with magnetoresistors disposed on a plane which is parallel to and displaced from the magnetic axis of a permanent magnet |
WO1995018982A1 (en) | 1994-01-11 | 1995-07-13 | Honeywell Inc. | Sensor with magnetoresistive elements |
US5414355A (en) | 1994-03-03 | 1995-05-09 | Honeywell Inc. | Magnet carrier disposed within an outer housing |
US5434105A (en) | 1994-03-04 | 1995-07-18 | National Semiconductor Corporation | Process for attaching a lead frame to a heat sink using a glob-top encapsulation |
US5508611A (en) | 1994-04-25 | 1996-04-16 | General Motors Corporation | Ultrathin magnetoresistive sensor package |
EP0680103A1 (en) | 1994-04-25 | 1995-11-02 | General Motors Corporation | Magnetic field sensor |
WO1996002849A1 (en) | 1994-07-19 | 1996-02-01 | Honeywell Inc. | Temperature compensation circuit for a hall effect element |
US6043646A (en) | 1994-08-31 | 2000-03-28 | Siemens Aktiengesellschaft | Proximity switch with magnetic field-sensitive sensor |
JPH0897486A (en) | 1994-09-22 | 1996-04-12 | Hitachi Cable Ltd | Hall sensor |
US5581170A (en) | 1994-12-12 | 1996-12-03 | Unitrode Corporation | Battery protector |
US5500589A (en) | 1995-01-18 | 1996-03-19 | Honeywell Inc. | Method for calibrating a sensor by moving a magnet while monitoring an output signal from a magnetically sensitive component |
US5488294A (en) | 1995-01-18 | 1996-01-30 | Honeywell Inc. | Magnetic sensor with means for retaining a magnet at a precise calibrated position |
US5640090A (en) | 1995-01-31 | 1997-06-17 | Mitsumi Electric Company, Ltd. | Sensor IC |
US6016055A (en) | 1995-02-02 | 2000-01-18 | Siemens Aktiengesellschaft | Device for increasing the magnetic flux density in the vicinity of a hall sensor cooperating with a magnet wheel |
US5796249A (en) | 1995-03-23 | 1998-08-18 | Institut Fuer Physikalische Hochtechnologle E.V. | Magnetoresistive angular position sensor and rotation speed sensor |
US5627315A (en) | 1995-04-18 | 1997-05-06 | Honeywell Inc. | Accelerometer with a cantilever beam formed as part of the housing structure |
US5841276A (en) | 1995-05-12 | 1998-11-24 | Nippondenso Co., Ltd | Magnetic gear rotation sensor |
US5581179A (en) | 1995-05-31 | 1996-12-03 | Allegro Microsystems, Inc. | Hall-effect ferrous-article-proximity sensor assembly |
US5719496A (en) | 1995-06-07 | 1998-02-17 | Durakool Incorporated | Dual-element proximity sensor for sensing the direction of rotation of a ferrous target wheel |
US5781005A (en) | 1995-06-07 | 1998-07-14 | Allegro Microsystems, Inc. | Hall-effect ferromagnetic-article-proximity sensor |
US5818222A (en) | 1995-06-07 | 1998-10-06 | The Cherry Corporation | Method for adjusting ferrous article proximity detector |
US5572058A (en) | 1995-07-17 | 1996-11-05 | Honeywell Inc. | Hall effect device formed in an epitaxial layer of silicon for sensing magnetic fields parallel to the epitaxial layer |
US5596272A (en) | 1995-09-21 | 1997-01-21 | Honeywell Inc. | Magnetic sensor with a beveled permanent magnet |
US5696790A (en) | 1995-10-04 | 1997-12-09 | Tut Systems, Inc. | Method and apparatus for time dependent data transmission |
US5712562A (en) | 1995-10-13 | 1998-01-27 | Bently Nevada Corporation | Encapsulated transducer with an alignment plug and method of manufacture |
DE19539458A1 (en) | 1995-10-24 | 1997-04-30 | Bosch Gmbh Robert | Self-testing Hall sensor, e.g for vehicle steering angle monitor |
US6184679B1 (en) | 1995-10-30 | 2001-02-06 | Sentron Ag | Magnetic field sensor comprising two hall elements |
US5789658A (en) | 1995-10-31 | 1998-08-04 | Siemens Aktiengesellschaft | Adaptation method for correcting tolerances of a transducer wheel |
US5621319A (en) | 1995-12-08 | 1997-04-15 | Allegro Microsystems, Inc. | Chopped hall sensor with synchronously chopped sample-and-hold circuit |
JPH09166612A (en) | 1995-12-18 | 1997-06-24 | Nissan Motor Co Ltd | Magnetic sensor |
US6525531B2 (en) | 1996-01-17 | 2003-02-25 | Allegro, Microsystems, Inc. | Detection of passing magnetic articles while adapting the detection threshold |
US6297627B1 (en) | 1996-01-17 | 2001-10-02 | Allegro Microsystems, Inc. | Detection of passing magnetic articles with a peak-to-peak percentage threshold detector having a forcing circuit and automatic gain control |
US5631557A (en) | 1996-02-16 | 1997-05-20 | Honeywell Inc. | Magnetic sensor with encapsulated magnetically sensitive component and magnet |
FR2748105A1 (en) | 1996-04-25 | 1997-10-31 | Siemens Automotive Sa | Magnetic sensor for use in automobile shaft, wheel rotational measurements. |
US5886070A (en) | 1996-07-04 | 1999-03-23 | Aichi Steel Works, Ltd. | Production method for anisotropic resin-bonded magnets |
JPH1038988A (en) | 1996-07-30 | 1998-02-13 | Yazaki Corp | Integrated magnetoresistive element circuit |
US6339322B1 (en) | 1996-08-28 | 2002-01-15 | Continental Teves Ag & Co., Ohg | System for a detecting wheel rotation |
DE19634715A1 (en) | 1996-08-28 | 1998-03-05 | Teves Gmbh Alfred | Arrangement for detecting the turning behavior of a wheel |
US6175233B1 (en) | 1996-10-18 | 2001-01-16 | Cts Corporation | Two axis position sensor using sloped magnets to generate a variable magnetic field and hall effect sensors to detect the variable magnetic field |
US5912556A (en) | 1996-11-06 | 1999-06-15 | Honeywell Inc. | Magnetic sensor with a chip attached to a lead assembly within a cavity at the sensor's sensing face |
US5729128A (en) | 1996-11-22 | 1998-03-17 | Honeywell Inc. | Magnetic sensor with a magnetically sensitive component that is movable during calibration and rigidly attachable to a formed magnet |
US5859387A (en) | 1996-11-29 | 1999-01-12 | Allegro Microsystems, Inc. | Semiconductor device leadframe die attach pad having a raised bond pad |
US6687644B1 (en) | 1996-12-07 | 2004-02-03 | Continental Teves Ag & Co., Ohg | Method and circuit for transmitting information on rotational speed and additional data |
EP0944888B1 (en) | 1996-12-07 | 2001-10-10 | Continental Teves AG & Co. oHG | Method and circuit for transmitting information on rotational speed and additional data |
DE19650935A1 (en) | 1996-12-07 | 1998-06-10 | Teves Gmbh Alfred | Method and circuit arrangement for the transmission of speed information and additional data |
US6323642B1 (en) | 1997-01-24 | 2001-11-27 | Diamond Electric Mfg. Co., Ltd. | Detector for determining rotational speed and position for an internal combustion engine |
US6169396B1 (en) | 1997-02-19 | 2001-01-02 | Mitsubishi Denki Kabushiki Kaisha | Sensing device for detecting change in an applied magnetic field achieving high accuracy by improved configuration |
US5839185A (en) | 1997-02-26 | 1998-11-24 | Sundstrand Corporation | Method of fabricating a magnetic flux concentrating core |
JPH10332725A (en) | 1997-04-01 | 1998-12-18 | Denso Corp | Detection signal processing device for rotation sensor |
JPH10318784A (en) | 1997-05-20 | 1998-12-04 | Matsushita Electric Ind Co Ltd | Revolution sensor |
US6265865B1 (en) | 1997-08-19 | 2001-07-24 | Allegro Microsystems, Inc. | Single unitary plastic package for a magnetic field sensing device |
US5963028A (en) | 1997-08-19 | 1999-10-05 | Allegro Microsystems, Inc. | Package for a magnetic field sensing device |
US6198373B1 (en) | 1997-08-19 | 2001-03-06 | Taiyo Yuden Co., Ltd. | Wire wound electronic component |
EP0898180A2 (en) | 1997-08-19 | 1999-02-24 | Allegro Microsystems Inc. | Package for a magnetic field sensing device |
DE19838433A1 (en) | 1997-08-25 | 1999-03-25 | Aisin Seiki | Rotation detection device, for use in aircraft or machine tool |
US6242904B1 (en) | 1997-08-25 | 2001-06-05 | Aisin Seiki Kabushiki Kaisha | Rotation detecting device for detecting direction of rotation |
JPH1164363A (en) | 1997-08-25 | 1999-03-05 | Aisin Seiki Co Ltd | Rotation detector |
JPH1174142A (en) | 1997-08-27 | 1999-03-16 | Hitachi Metals Ltd | Device for molding cylindrical resin magnet |
US6356068B1 (en) | 1997-09-15 | 2002-03-12 | Ams International Ag | Current monitor system and a method for manufacturing it |
JP2008264569A (en) | 1997-10-08 | 2008-11-06 | Kaneka Corp | Balloon catheter and manufacturing method for it |
US5883567A (en) | 1997-10-10 | 1999-03-16 | Analog Devices, Inc. | Packaged integrated circuit with magnetic flux concentrator |
US6452381B1 (en) | 1997-11-28 | 2002-09-17 | Denso Corporation | Magnetoresistive type position detecting device |
US6011770A (en) | 1997-12-10 | 2000-01-04 | Texas Instrumental Incorporated | Method and apparatus for high-order bandpass filter with linearly adjustable bandwidth |
US6136250A (en) | 1998-01-30 | 2000-10-24 | Comair Rotron, Inc. | Apparatus and method of encapsulating motors |
WO1999049322A1 (en) | 1998-03-20 | 1999-09-30 | Continental Teves Ag & Co. Ohg | Sensor system for detecting movements |
US6542847B1 (en) | 1998-03-20 | 2003-04-01 | Continental Teves Ag & Co., Ohg | Sensor system for detecting movements |
US6194893B1 (en) | 1998-04-21 | 2001-02-27 | Mitsubishi Denki Kabushiki Kaisha | Magnetic detector for detecting movement of a magnetic member |
US6242905B1 (en) | 1998-04-23 | 2001-06-05 | Siemens Aktiengesellschaft | Method for identifying the direction of rotation of a wheel using hall probes |
US6528992B2 (en) | 1998-04-23 | 2003-03-04 | Mitsubishi Denki Kabushiki Kaisha | Magnetic detector having magnetic field sensing device centrally aligned with magnetic field generator |
DE19851839A1 (en) | 1998-04-23 | 1999-11-11 | Mitsubishi Electric Corp | Magnetic detector for use with a toothed magnetic material rotating device to determine the angle of rotation |
US6437558B2 (en) | 1998-07-31 | 2002-08-20 | Spinix Corporation | Passive solid-state magnetic field sensors and applications therefor |
US6297628B1 (en) | 1998-11-17 | 2001-10-02 | Honeywell Inc | Magnetoresistive bridge array |
JP2000183241A (en) | 1998-12-21 | 2000-06-30 | Sanyo Electric Co Ltd | Semiconductor device and manufacture thereof |
US20010009367A1 (en) | 1999-02-26 | 2001-07-26 | Dieter Seitzer | Sensor device to record speed and motion direction of an object, especially rotational speed and direction of a rotating object |
US6278269B1 (en) | 1999-03-08 | 2001-08-21 | Allegro Microsystems, Inc. | Magnet structure |
US6692676B1 (en) | 1999-03-08 | 2004-02-17 | Allegro Microsystems, Inc. | Method for fabricating a magnet structure |
US6351506B1 (en) | 1999-04-19 | 2002-02-26 | National Semiconductor Corporation | Switched capacitor filter circuit having reduced offsets and providing offset compensation when used in a closed feedback loop |
JP2001043475A (en) | 1999-07-27 | 2001-02-16 | Nsk Ltd | Transmitting method for detection signal of sensor |
US6653968B1 (en) | 1999-08-06 | 2003-11-25 | Robert Bosch Gmbh | System for generating a signal to superimpose information |
US6291989B1 (en) | 1999-08-12 | 2001-09-18 | Delphi Technologies, Inc. | Differential magnetic position sensor with adaptive matching for detecting angular position of a toothed target wheel |
US6436748B1 (en) | 1999-08-31 | 2002-08-20 | Micron Technology, Inc. | Method for fabricating CMOS transistors having matching characteristics and apparatus formed thereby |
JP2001141738A (en) | 1999-11-18 | 2001-05-25 | Sumitomo Electric Ind Ltd | Rotation sensor and method of manufacturing the same |
US6392478B1 (en) | 1999-11-23 | 2002-05-21 | U.S. Philips Corporation | Amplification device having an adjustable bandwidth |
JP2001165951A (en) | 1999-12-07 | 2001-06-22 | Denso Corp | Detected signal processor for rotary sensor and output method for detecting signal of the rotary sensor |
US20010002791A1 (en) | 1999-12-07 | 2001-06-07 | Hiroyuki Tsuge | Detected signal processing device for rotating sensor and detected signal outputting method therefor |
US6492804B2 (en) | 1999-12-07 | 2002-12-10 | Denso Corporation | Detected signal processing device for rotating sensor and detected signal outputting method therefor |
JP2001165702A (en) | 1999-12-10 | 2001-06-22 | Sumitomo Electric Ind Ltd | Magnetic variable detection sensor |
DE19961504A1 (en) | 1999-12-20 | 2001-06-28 | Bosch Gmbh Robert | Rotational speed signal error detection method for anti-slip or anti-lock regulation system of vehicle, involves detecting speed change based on specific condition involving pulse width of falling pulses of measurement signal |
WO2001074139A2 (en) | 2000-04-04 | 2001-10-11 | Honeywell International Inc. | Hall-effect element with integrated offset control and method for operating hall-effect element to reduce null offset |
US6501270B1 (en) | 2000-05-15 | 2002-12-31 | Siemens Vdo Automotive Corporation | Hall effect sensor assembly with cavities for integrated capacitors |
US6917321B1 (en) | 2000-05-21 | 2005-07-12 | Analog Devices, Inc. | Method and apparatus for use in switched capacitor systems |
US6853178B2 (en) | 2000-06-19 | 2005-02-08 | Texas Instruments Incorporated | Integrated circuit leadframes patterned for measuring the accurate amplitude of changing currents |
US20030102909A1 (en) | 2000-07-05 | 2003-06-05 | Mario Motz | Amplifier circuit with offset compensation |
US6545457B2 (en) | 2000-07-07 | 2003-04-08 | Sanken Electric Co., Ltd. | Current detector utilizing hall effect |
US7023205B1 (en) | 2000-08-01 | 2006-04-04 | General Dynamics Advanced Information Systems, Inc. | Eddy current sensor capable of sensing through a conductive barrier |
US6545462B2 (en) | 2000-08-21 | 2003-04-08 | Sentron Ag | Sensor for the detection of the direction of a magnetic field having magnetic flux concentrators and hall elements |
US20020027488A1 (en) | 2000-08-31 | 2002-03-07 | Kambiz Hayat-Dawoodi | Method and system for isolated coupling |
US6770163B1 (en) | 2000-09-08 | 2004-08-03 | Asm Technology Singapore Pte Ltd | Mold and method for encapsulation of electronic device |
US6822443B1 (en) | 2000-09-11 | 2004-11-23 | Albany Instruments, Inc. | Sensors and probes for mapping electromagnetic fields |
JP2002117500A (en) | 2000-10-05 | 2002-04-19 | Ntt Data Corp | Flight path setting device and recording medium |
JP2002149013A (en) | 2000-11-06 | 2002-05-22 | Minolta Co Ltd | Image forming apparatus |
US7190784B2 (en) | 2000-12-29 | 2007-03-13 | Legerity, Inc. | Method and apparatus for adaptive DC level control |
US20020084923A1 (en) | 2000-12-29 | 2002-07-04 | Jin Li | Method and apparatus for adaptive DC level control |
US6545332B2 (en) | 2001-01-17 | 2003-04-08 | Siliconware Precision Industries Co., Ltd. | Image sensor of a quad flat package |
US7038448B2 (en) | 2001-05-25 | 2006-05-02 | Sentron Ag | Magnetic field sensor |
JP2002357920A (en) | 2001-05-31 | 2002-12-13 | Nippon Zeon Co Ltd | Developing method and image forming method |
US20030001563A1 (en) | 2001-06-27 | 2003-01-02 | Turner Jason D. | Rotational velocity and direction sensing system |
US20030038675A1 (en) | 2001-08-20 | 2003-02-27 | Gailus Paul H. | Feedback loop with adjustable bandwidth |
US7112955B2 (en) | 2001-08-23 | 2006-09-26 | Koninklijke Philips Electronics N.V. | Magnetic sensing device including a magnetoresistive sensor and a supporting magnet |
US6781233B2 (en) | 2001-08-28 | 2004-08-24 | Infineon Technologies Ag | Semiconductor device and converter device with an integrated capacitor |
US7031170B2 (en) | 2001-09-28 | 2006-04-18 | Infineon Technologies Ag | Electronic device having a plastic housing and components of a height-structured metallic leadframe and methods for the production of the electronic device |
US20030062891A1 (en) | 2001-10-02 | 2003-04-03 | Slates Richard Dale | Multi-coil proximity probe system: apparatus and method |
US7319319B2 (en) | 2001-10-30 | 2008-01-15 | Tt Electronics Technology Limited | Sensing apparatus and method |
EP1443332A1 (en) | 2001-11-01 | 2004-08-04 | Asahi Kasei EMD Corporation | Current sensor and current sensor manufacturing method |
US6896407B2 (en) | 2001-11-05 | 2005-05-24 | Yamatake Corporation | Temperature information detecting device for angle sensor and position detecting device |
US20030107366A1 (en) | 2001-12-06 | 2003-06-12 | Busch Nicholas F. | Sensor with off-axis magnet calibration |
JP2003177171A (en) | 2001-12-11 | 2003-06-27 | Sumitomo Electric Ind Ltd | Magnetic variable sensor and manufacturing method thereof |
WO2003069358A2 (en) | 2002-01-31 | 2003-08-21 | Allegro Microsystems, Inc. | Method and apparatus for providing information from a speed and direction sensor |
JP2005517928A (en) | 2002-01-31 | 2005-06-16 | アレグロ・マイクロシステムズ・インコーポレーテッド | Method and apparatus for supplying information from speed and direction sensors |
US7026808B2 (en) | 2002-01-31 | 2006-04-11 | Allegro Microsystems, Inc. | Method and apparatus for providing information from a speed and direction sensor |
US6815944B2 (en) | 2002-01-31 | 2004-11-09 | Allegro Microsystems, Inc. | Method and apparatus for providing information from a speed and direction sensor |
DE10210184A1 (en) | 2002-03-07 | 2003-09-18 | Philips Intellectual Property | Magnetic field arrangement for detection of the position and rotational velocity of a rotating element has a coil arrangement for generation of an additional time varying magnetic field to reduce finishing tolerance effects |
US20030173955A1 (en) | 2002-03-18 | 2003-09-18 | Hirofumi Uenoyama | Position determination device using magnetoresistive element |
US20050179429A1 (en) | 2002-04-18 | 2005-08-18 | Continental Teves, Ag & Co Ohg | Method and device for the detection of local displacements and rotations |
US20090105460A1 (en) * | 2002-06-12 | 2009-04-23 | Japan Science And Technology Agency | Antibody and inhibitor, and transfection method or kit using them |
US20060033487A1 (en) | 2002-06-18 | 2006-02-16 | Shuichi Nagano | Current measuring method and current measuring device |
WO2003107018A1 (en) | 2002-06-18 | 2003-12-24 | 旭化成株式会社 | Current measuring method and current measuring device |
US6590804B1 (en) | 2002-07-16 | 2003-07-08 | Hewlett-Packard Development Company, L.P. | Adjustable current mode differential amplifier |
JP2004055932A (en) | 2002-07-22 | 2004-02-19 | Asahi Kasei Corp | Magnetoelectric conversion element and manufacturing method |
US20040032251A1 (en) | 2002-08-14 | 2004-02-19 | Zimmerman Mike W. | Calibrated, low-profile magnetic sensor |
US6798193B2 (en) | 2002-08-14 | 2004-09-28 | Honeywell International Inc. | Calibrated, low-profile magnetic sensor |
JP2004093381A (en) | 2002-08-30 | 2004-03-25 | Toshiba Corp | Radiation detector and radiation detecting method |
US20040046248A1 (en) | 2002-09-05 | 2004-03-11 | Corning Intellisense Corporation | Microsystem packaging and associated methods |
US20040062362A1 (en) | 2002-09-18 | 2004-04-01 | Yasuyuki Matsuya | Data communication method, data transmitting apparatus, data receiving apparatus, and data transmission program |
US6781359B2 (en) | 2002-09-20 | 2004-08-24 | Allegro Microsystems, Inc. | Integrated current sensor |
WO2004027436A1 (en) | 2002-09-20 | 2004-04-01 | Allegro Microsystems, Inc. | Integrated current sensor |
US7265531B2 (en) | 2002-09-20 | 2007-09-04 | Allegro Microsystems, Inc. | Integrated current sensor |
US6674679B1 (en) | 2002-10-01 | 2004-01-06 | Hewlett-Packard Development Company, L.P. | Adjustable current mode differential amplifier for multiple bias point sensing of MRAM having equi-potential isolation |
US20060125473A1 (en) | 2002-10-07 | 2006-06-15 | Didier Frachon | Variable reluctance position sensor |
US20040080314A1 (en) | 2002-10-24 | 2004-04-29 | Mitsubishi Denki Kabushiki Kaisha | Magnetic detection apparatus |
US6902951B2 (en) | 2002-10-29 | 2005-06-07 | Infineon Technologies Ag | Electronic device configured as a multichip module, leadframe, panel with leadframe positions, and method for producing the electronic device |
JP2004152688A (en) | 2002-10-31 | 2004-05-27 | Toshiba Plant Systems & Services Corp | Cable connection part and its insulation method |
US20040135220A1 (en) | 2002-12-25 | 2004-07-15 | Sanken Electric Co., Ltd. | Noise-proof semiconductor device having a Hall effect element |
US20040155647A1 (en) | 2003-02-10 | 2004-08-12 | Delphi Technologies Inc. | Position sensing by measuring intensity of magnetic flux passing through an aperture in a movable element |
US7259545B2 (en) | 2003-02-11 | 2007-08-21 | Allegro Microsystems, Inc. | Integrated sensor |
WO2004072672A1 (en) | 2003-02-11 | 2004-08-26 | Allegro Microsystems, Inc. | Integrated sensor |
US7746056B2 (en) | 2003-02-11 | 2010-06-29 | Allegro Microsystems, Inc. | Integrated sensor |
US7518354B2 (en) | 2003-02-11 | 2009-04-14 | Allegro Microsystems, Inc. | Multi-substrate integrated sensor |
US20040174164A1 (en) | 2003-03-03 | 2004-09-09 | Denso Corporation | Magnetic sensor and method for fabricating the same |
US20040184196A1 (en) | 2003-03-18 | 2004-09-23 | Jayasekara Wipul P. | Magnetoresistive sensor having a high resistance soft magnetic layer between sensor stack and shield |
US20040189285A1 (en) | 2003-03-31 | 2004-09-30 | Denso Corporation | Magnetic sensor adjusting method, magnetic sensor adjusting device and magnetic sensor |
DE10314602A1 (en) | 2003-03-31 | 2004-10-21 | Infineon Technologies Ag | Monolithically integrated differential magnetic field sensor device, has layer of permeable material covering two magnetic field sensor elements, parallel to substrate |
JP2004356338A (en) | 2003-05-28 | 2004-12-16 | Res Inst Electric Magnetic Alloys | Thin film magnetic sensor and method of manufacturing the same |
JP2004357858A (en) | 2003-06-03 | 2004-12-24 | Samii Kk | Attachment/detachment facilitating mechanism for game board |
US20040252563A1 (en) | 2003-06-12 | 2004-12-16 | Rohm Co., Ltd. | Magnetic record reproducing device |
WO2005013363A2 (en) | 2003-07-31 | 2005-02-10 | Siemens Aktiengesellschaft | Circuit arrangement placed on a substrate and method for producing the same |
US7598601B2 (en) | 2003-08-26 | 2009-10-06 | Allegro Microsystems, Inc. | Current sensor |
US20060181263A1 (en) | 2003-08-26 | 2006-08-17 | Allegro Microsystems, Inc. | Current sensor |
US20070018641A1 (en) * | 2003-09-05 | 2007-01-25 | Nobukazu Hayashi | Magnetic bias film and magnetic sensor using the same |
US20050120782A1 (en) | 2003-12-08 | 2005-06-09 | Kokusan Denki Co., Ltd. | Engine rotation information detection device |
US20050167790A1 (en) | 2003-12-31 | 2005-08-04 | Carsem (M) Sdn.Bhd. | Integrated circuit package with transparent encapsulant and method for making thereof |
US7345468B2 (en) | 2004-03-02 | 2008-03-18 | Denso Corporation | Detection signal processing circuit and detection signal processing apparatus for a rotation sensor |
US7199579B2 (en) | 2004-03-08 | 2007-04-03 | Allegro Microsystems, Inc. | Proximity detector |
US7368904B2 (en) | 2004-03-08 | 2008-05-06 | Allegro Microsystems, Inc. | Proximity detector |
US20080116884A1 (en) | 2004-03-11 | 2008-05-22 | Rasmus Rettig | Magnet Sensor Arrangement |
US7193412B2 (en) | 2004-03-24 | 2007-03-20 | Stoneridge Control Devices, Inc. | Target activated sensor |
EP1580560A1 (en) | 2004-03-24 | 2005-09-28 | Aisin Seiki Kabushiki Kaisha | Rotation-detecting-apparatus |
US20050258820A1 (en) * | 2004-04-07 | 2005-11-24 | Bernhard Forster | Apparatus and method for the determination of a direction of an object |
DE102004017191A1 (en) | 2004-04-07 | 2005-10-27 | Infineon Technologies Ag | Device and method for determining a direction of an object |
US7772838B2 (en) | 2004-04-08 | 2010-08-10 | Allegro Microsystems, Inc. | Methods and apparatus for vibration detection |
US7365530B2 (en) | 2004-04-08 | 2008-04-29 | Allegro Microsystems, Inc. | Method and apparatus for vibration detection |
US7592801B2 (en) | 2004-04-08 | 2009-09-22 | Allegro Microsystems, Inc. | Methods and apparatus for vibration detection |
US20050225318A1 (en) | 2004-04-08 | 2005-10-13 | Bailey James M | Methods and apparatus for vibration detection |
US7635993B2 (en) | 2004-05-18 | 2009-12-22 | Nxp B.V. | Digital magnetic current sensor and logic |
US7295000B2 (en) | 2004-05-26 | 2007-11-13 | Infineon Technologies Ag | Method for detecting disturbances when determining the rotational speed of a rotor and evaluation circuit |
JP2005337866A (en) | 2004-05-26 | 2005-12-08 | Asahi Kasei Corp | Magnetic substance detector and semiconductor package |
US7961823B2 (en) | 2004-06-02 | 2011-06-14 | Broadcom Corporation | System and method for adjusting multiple control loops using common criteria |
JP2005345302A (en) | 2004-06-03 | 2005-12-15 | Denso Corp | Rotation detection apparatus and method for manufacturing rotation detection apparatus |
JP2006003096A (en) | 2004-06-15 | 2006-01-05 | Mitsubishi Electric Corp | Magnetic detector |
US7112957B2 (en) | 2004-06-16 | 2006-09-26 | Honeywell International Inc. | GMR sensor with flux concentrators |
US20050280411A1 (en) | 2004-06-16 | 2005-12-22 | Bicking Robert E | GMR sensor with flux concentrators |
US7184876B2 (en) | 2004-06-18 | 2007-02-27 | Siemens Vdo Automotive | Device and process for determining the position of an engine |
US20060028204A1 (en) | 2004-08-06 | 2006-02-09 | Denso Corporation | Rotation angle detector |
US20060038559A1 (en) | 2004-08-20 | 2006-02-23 | Honeywell International, Inc. | Magnetically biased eddy current sensor |
EP1637898A1 (en) | 2004-09-16 | 2006-03-22 | Liaisons Electroniques-Mecaniques Lem S.A. | Continuously calibrated magnetic field sensor |
US7746065B2 (en) | 2004-09-16 | 2010-06-29 | Liaisons Electroniques-Mecaniques Lem S.A. | Continuously calibrated magnetic field sensor |
US20070247141A1 (en) | 2004-09-16 | 2007-10-25 | Liaisons Electroniques-Mecaniques Lem S.A. | Continuosly Calibrated Magnetic Field Sensor |
WO2006056829A1 (en) | 2004-09-16 | 2006-06-01 | Liaisons Electroniques-Mécaniques LEM S.A. | Continuously calibrated magnetic field sensor |
US20060068237A1 (en) | 2004-09-29 | 2006-03-30 | Murphy Michael W | Integrated current sensors for a fuel cell stack |
US20060097715A1 (en) | 2004-10-28 | 2006-05-11 | Denso Corporation | Vertical Hall device and method for adjusting offset voltage of vertical Hall device |
EP1662353A1 (en) | 2004-11-25 | 2006-05-31 | Alcatel | Method and device for recognition of the direction of travel |
EP1679524A1 (en) | 2005-01-11 | 2006-07-12 | Ecole Polytechnique Federale De Lausanne Epfl - Sti - Imm - Lmis3 | Hall sensor and method of operating a Hall sensor |
US7476953B2 (en) | 2005-02-04 | 2009-01-13 | Allegro Microsystems, Inc. | Integrated sensor having a magnetic flux concentrator |
WO2006083479A1 (en) | 2005-02-04 | 2006-08-10 | Allegro Microsystems, Inc. | Integrated sensor having a magnetic flux concentrator |
US20060175674A1 (en) | 2005-02-04 | 2006-08-10 | Allegro Microsystems, Inc. | Integrated sensor having a magnetic flux concentrator |
US7701208B2 (en) | 2005-02-08 | 2010-04-20 | Rohm Co., Ltd. | Magnetic sensor circuit and portable terminal provided with such magnetic sensor circuit |
EP1850143A1 (en) | 2005-02-08 | 2007-10-31 | Rohm Co., Ltd. | Magnetic sensor circuit and portable terminal provided with such magnetic sensor circuit |
US7323870B2 (en) | 2005-02-23 | 2008-01-29 | Infineon Technologies Ag | Magnetoresistive sensor element and method of assembling magnetic field sensor elements with on-wafer functional test |
US20060202692A1 (en) | 2005-02-23 | 2006-09-14 | Infineon Technologies Ag. | Magnetoresistive sensor element and concept for manufacturing and testing the same |
US7253614B2 (en) | 2005-03-21 | 2007-08-07 | Allegro Microsystems, Inc. | Proximity detector having a sequential flow state machine |
US20060238190A1 (en) | 2005-04-21 | 2006-10-26 | Denso Corporation | Rotation detecting device |
US7355388B2 (en) | 2005-04-21 | 2008-04-08 | Denso Corporation | Rotation detecting device using magnetic sensor |
US7325175B2 (en) | 2005-05-04 | 2008-01-29 | Broadcom Corporation | Phase adjust using relative error |
US7769110B2 (en) | 2005-05-13 | 2010-08-03 | Broadcom Corporation | Threshold adjust system and method |
US20060261801A1 (en) | 2005-05-20 | 2006-11-23 | Honeywell International Inc. | Magnetoresistive sensor |
JP2007012582A (en) | 2005-05-30 | 2007-01-18 | Internatl Superconductivity Technology Center | RE oxide superconducting wire joining method |
US7385394B2 (en) | 2005-06-15 | 2008-06-10 | Infineon Technologies Ag | Integrated magnetic sensor component |
US7269992B2 (en) | 2005-06-15 | 2007-09-18 | Honeywell International Inc. | Magnet orientation and calibration for small package turbocharger speed sensor |
US20090152696A1 (en) | 2005-07-08 | 2009-06-18 | Nxp B.V. | Semiconductor device |
US7808074B2 (en) | 2005-07-08 | 2010-10-05 | Infineon Technologies Ag | Advanced leadframe having predefined bases for attaching passive components |
US7126327B1 (en) | 2005-07-22 | 2006-10-24 | Honeywell International Inc. | Asymmetrical AMR wheatstone bridge layout for position sensor |
US7361531B2 (en) | 2005-11-01 | 2008-04-22 | Allegro Microsystems, Inc. | Methods and apparatus for Flip-Chip-On-Lead semiconductor package |
US7323780B2 (en) | 2005-11-10 | 2008-01-29 | International Business Machines Corporation | Electrical interconnection structure formation |
US20070110199A1 (en) | 2005-11-15 | 2007-05-17 | Afshin Momtaz | Receive equalizer with adaptive loops |
US20070290682A1 (en) | 2006-01-13 | 2007-12-20 | Denso Corporation | Magnetic sensor and method for detecting magnetic field |
US7362094B2 (en) | 2006-01-17 | 2008-04-22 | Allegro Microsystems, Inc. | Methods and apparatus for magnetic article detection |
US7768083B2 (en) | 2006-01-20 | 2010-08-03 | Allegro Microsystems, Inc. | Arrangements for an integrated sensor |
US20100237450A1 (en) | 2006-01-20 | 2010-09-23 | Allegro Microsystems, Inc. | Arrangements For An Integrated Sensor |
US7292095B2 (en) | 2006-01-26 | 2007-11-06 | Texas Instruments Incorporated | Notch filter for ripple reduction in chopper stabilized amplifiers |
JP2007218799A (en) | 2006-02-17 | 2007-08-30 | Asahi Kasei Electronics Co Ltd | Semiconductor magnetoresistive element and magnetic sensor module using the same |
US7285952B1 (en) | 2006-02-23 | 2007-10-23 | Denso Corporation | Rotation angle detecting device |
US20070285089A1 (en) | 2006-03-31 | 2007-12-13 | Daihen Corporation | Current detection printed board, voltage detection printed board, current/voltage detection printed board, current/voltage detector, current detector and voltage detector |
WO2007138508A1 (en) | 2006-05-30 | 2007-12-06 | Koninklijke Philips Electronics N. V. | Sensor device with adaptive field compensation |
US20080012558A1 (en) | 2006-07-12 | 2008-01-17 | Werner Rossler | Magnetic field sensor device |
WO2008008140A2 (en) | 2006-07-14 | 2008-01-17 | Allegro Microsystems, Inc. | Methods and apparatus for passive attachment of components for integrated circuits |
US20080013298A1 (en) | 2006-07-14 | 2008-01-17 | Nirmal Sharma | Methods and apparatus for passive attachment of components for integrated circuits |
US20120086090A1 (en) | 2006-07-14 | 2012-04-12 | Allegro Microsystems, Inc. | Methods and apparatus for passive attachment of components for integrated circuits |
DE102006037226A1 (en) | 2006-08-09 | 2008-02-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Calibratable magnetic 3D-point sensor during measuring operation |
US7474093B2 (en) | 2006-09-25 | 2009-01-06 | Infineon Technologies Ag | Magnetic field sensor apparatus |
US20080238410A1 (en) | 2006-10-16 | 2008-10-02 | Ami Semiconductor Belgium Bvba | Auto-calibration of magnetic sensor |
US8134358B2 (en) | 2006-10-16 | 2012-03-13 | Semiconductor Components Industries, Llc | Method of auto calibrating a magnetic field sensor for drift and structure therefor |
WO2008048379A1 (en) | 2006-10-19 | 2008-04-24 | Allegro Microsystems, Inc. | Chopped hall effect sensor |
US20080094055A1 (en) | 2006-10-19 | 2008-04-24 | Gerardo Monreal | Chopped hall effect sensor |
US7425821B2 (en) | 2006-10-19 | 2008-09-16 | Allegro Microsystems, Inc. | Chopped Hall effect sensor |
US20090206827A1 (en) | 2006-11-21 | 2009-08-20 | Hitachi Metals, Ltd. | Rotation-angle-detecting apparatus, rotating machine, and rotation-angle-detecting method |
FR2909756A1 (en) | 2006-12-06 | 2008-06-13 | Bosch Gmbh Robert | Movement detecting system i.e. movement sensor, for wheel of motor vehicle, has high frequency transmission circuit linked to electronic reading circuit for receiving reading signal and sending high frequency signal to transmitting antenna |
US20080137784A1 (en) | 2006-12-08 | 2008-06-12 | Krone Andrew W | Reducing noise during a gain change |
US7729675B2 (en) | 2006-12-08 | 2010-06-01 | Silicon Laboratories Inc. | Reducing noise during a gain change |
US8128549B2 (en) | 2007-02-20 | 2012-03-06 | Neuronetics, Inc. | Capacitor failure detection |
US8415946B2 (en) * | 2007-02-21 | 2013-04-09 | Meas Deutschland Gmbh | Arrangement and method for magnetic determination of a linear length or a rotary angle |
US8143169B2 (en) | 2007-03-29 | 2012-03-27 | Allegro Microsystems, Inc. | Methods for multi-stage molding of integrated circuit package |
WO2008121443A1 (en) | 2007-03-29 | 2008-10-09 | Allegro Microsystems, Inc. | Methods and apparatus for multi-stage molding of integrated circuit package |
US20100330708A1 (en) | 2007-03-29 | 2010-12-30 | Allegro Microsystems, Inc. | Methods for multi-stage molding of integrated circuit package |
US7816772B2 (en) | 2007-03-29 | 2010-10-19 | Allegro Microsystems, Inc. | Methods and apparatus for multi-stage molding of integrated circuit package |
US20080237818A1 (en) | 2007-03-29 | 2008-10-02 | Engel Raymond W | Methods and apparatus for multi-stage molding of integrated circuit package |
DE102007018238A1 (en) | 2007-04-18 | 2008-10-23 | Robert Bosch Gmbh | Device for detecting the rotational speed of a rotatable part |
US20080297954A1 (en) * | 2007-04-19 | 2008-12-04 | Yamaha Corporation | Magnetic sensor and manufacturing method therefor |
WO2008145662A1 (en) | 2007-05-29 | 2008-12-04 | Ecole Polytechnique Federale De Lausanne | Magnetic field sensor for measuring direction of a magnetic field in a plane |
US8773124B2 (en) | 2007-05-30 | 2014-07-08 | Infineon Technologies Ag | Magnetic-field sensor |
US20090001972A1 (en) | 2007-06-26 | 2009-01-01 | Devon Fernandez | Calibration circuits and methods for proximity detector |
US20090001964A1 (en) | 2007-06-29 | 2009-01-01 | Bernhard Strzalkowski | Integrated Hybrid Current Sensor |
US7800389B2 (en) | 2007-07-13 | 2010-09-21 | Allegro Microsystems, Inc. | Integrated circuit having built-in self-test features |
US7694200B2 (en) | 2007-07-18 | 2010-04-06 | Allegro Microsystems, Inc. | Integrated circuit having built-in self-test features |
US20090102460A1 (en) * | 2007-07-27 | 2009-04-23 | Melexis Nv Microelectronic Integrated Systems | Position sensor |
US7839141B2 (en) | 2007-08-14 | 2010-11-23 | Infineon Technologies Ag | Method of biasing a magneto resistive sensor element |
US20090058404A1 (en) | 2007-08-30 | 2009-03-05 | Denso Corporation | Rotation detection sensor |
US20110031960A1 (en) | 2007-08-31 | 2011-02-10 | Hans-Peter Hohe | Calibratable Multidimensional Magnetic Point Sensor |
DE102007041230B3 (en) | 2007-08-31 | 2009-04-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Calibratable multi-dimensional magnetic point sensor and corresponding method and computer program therefor |
US20090085706A1 (en) | 2007-09-28 | 2009-04-02 | Access Business Group International Llc | Printed circuit board coil |
US20090102467A1 (en) | 2007-10-22 | 2009-04-23 | Johnson Controls Inc. | Method and apparatus for sensing shaft rotation |
US8089276B2 (en) | 2007-11-21 | 2012-01-03 | Micronas Gmbh | Magnetic field sensor assembly |
EP2063229A1 (en) | 2007-11-21 | 2009-05-27 | Micronas GmbH | Magnetic field sensor system |
US20090140725A1 (en) | 2007-12-04 | 2009-06-04 | Infineon Technologies Ag | Integrated circuit including sensor having injection molded magnetic material |
US20090146647A1 (en) | 2007-12-05 | 2009-06-11 | Infineon Technologies Ag | System including sensing elements at different distances from vertical magnetic field lines |
US20090212765A1 (en) | 2008-02-26 | 2009-08-27 | Doogue Michael C | Magnetic field sensor with automatic sensitivity adjustment |
WO2009108422A2 (en) | 2008-02-26 | 2009-09-03 | Allegro Microsystems, Inc. | Magnetic field sensor with automatic sensitivity adjustment |
US20110074405A1 (en) | 2008-02-26 | 2011-03-31 | Allegro Microsystems, Inc. | Magnetic Field Sensor with Automatic Sensitivity Adjustment |
US8030918B2 (en) | 2008-02-26 | 2011-10-04 | Allegro Microsystems, Inc. | Magnetic field sensor with automatic sensitivity adjustment |
US7923996B2 (en) | 2008-02-26 | 2011-04-12 | Allegro Microsystems, Inc. | Magnetic field sensor with automatic sensitivity adjustment |
US7936144B2 (en) | 2008-03-06 | 2011-05-03 | Allegro Microsystems, Inc. | Self-calibration algorithms in a small motor driver IC with an integrated position sensor |
US8080993B2 (en) | 2008-03-27 | 2011-12-20 | Infineon Technologies Ag | Sensor module with mold encapsulation for applying a bias magnetic field |
US7605647B1 (en) | 2008-04-29 | 2009-10-20 | Allegro Microsystems, Inc. | Chopper-stabilized amplifier and magnetic field sensor |
US8106654B2 (en) | 2008-05-27 | 2012-01-31 | Infineon Technologies Ag | Magnetic sensor integrated circuit device and method |
US8610430B2 (en) | 2008-05-30 | 2013-12-17 | Infineon Technologies Ag | Bias field generation for a magneto sensor |
US8058870B2 (en) | 2008-05-30 | 2011-11-15 | Infineon Technologies Ag | Methods and systems for magnetic sensing |
US7816905B2 (en) | 2008-06-02 | 2010-10-19 | Allegro Microsystems, Inc. | Arrangements for a current sensing circuit and integrated current sensor |
US20090315543A1 (en) | 2008-06-24 | 2009-12-24 | Magic Technologies, Inc. | Gear tooth sensor (GTS) with magnetoresistive bridge |
US7956604B2 (en) | 2008-07-09 | 2011-06-07 | Infineon Technologies, Ag | Integrated sensor and magnetic field concentrator devices |
US8063634B2 (en) | 2008-07-31 | 2011-11-22 | Allegro Microsystems, Inc. | Electronic circuit and method for resetting a magnetoresistance element |
WO2010014309A1 (en) | 2008-07-31 | 2010-02-04 | Allegro Microsystems, Inc. | Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object |
US20100026279A1 (en) | 2008-07-31 | 2010-02-04 | Ravi Vig | Apparatus and Method for Providing an Output Signal Indicative of a Speed of Rotation and a Direction of Rotation as a Ferromagnetic Object |
US8624588B2 (en) | 2008-07-31 | 2014-01-07 | Allegro Microsystems, Llc | Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object |
US20100045268A1 (en) | 2008-08-22 | 2010-02-25 | Honeywell International Inc. | Comparator circuit having latching behavior and digital output sensors therefrom |
US7764118B2 (en) | 2008-09-11 | 2010-07-27 | Analog Devices, Inc. | Auto-correction feedback loop for offset and ripple suppression in a chopper-stabilized amplifier |
US20100072988A1 (en) | 2008-09-22 | 2010-03-25 | Infineon Technologies Ag | System that obtains a switching point with the encoder in a static position |
US20110267040A1 (en) | 2008-09-24 | 2011-11-03 | Moving Magnet Technologies (Mmt) | Linear or rotary position sensor with a permanent magnet for detecting a ferromagnetic target |
US9116018B2 (en) | 2008-09-24 | 2015-08-25 | Moving Magnet Technologies (Mmt) | Linear or rotary position sensor with a permanent magnet for detecting a ferromagnetic target |
US20110291650A1 (en) | 2008-11-27 | 2011-12-01 | Joerg Franke | Semiconductor chip and method for generating pulse edges, assigned synchronously to the movement of a mechanical part |
US20120013333A1 (en) | 2008-12-05 | 2012-01-19 | Allegro Microsystems, Inc. | Magnetic Field Sensors and Methods for Fabricating the Magnetic Field Sensors |
US20100141249A1 (en) | 2008-12-05 | 2010-06-10 | Virgil Ararao | Magnetic Field Sensors and Methods for Fabricating the Magnetic Field Sensors |
WO2010065315A1 (en) | 2008-12-05 | 2010-06-10 | Allegro Microsystems, Inc. | Magnetic field sensors and methods for fabricating the magnetic field sensors |
US20100188078A1 (en) | 2009-01-28 | 2010-07-29 | Andrea Foletto | Magnetic sensor with concentrator for increased sensing range |
US20100201356A1 (en) | 2009-02-11 | 2010-08-12 | Infineon Technologies Ag | Sensor |
US20100211347A1 (en) | 2009-02-17 | 2010-08-19 | Allegro Microsystems, Inc. | Circuits and Methods for Generating a Self-Test of a Magnetic Field Sensor |
WO2010096367A1 (en) | 2009-02-17 | 2010-08-26 | Allegro Microsystems, Inc. | Circuits and methods for generating a self-test of a magnetic field sensor |
EP2402719A1 (en) | 2009-02-26 | 2012-01-04 | Alps Electric Co., Ltd. | Rotation detection device |
US8253210B2 (en) | 2009-04-30 | 2012-08-28 | Infineon Technologies Ag | Semiconductor device including a magnetic sensor chip |
US20100276769A1 (en) | 2009-04-30 | 2010-11-04 | Infineon Technologies Ag | Semiconductor device |
US8362579B2 (en) | 2009-05-20 | 2013-01-29 | Infineon Technologies Ag | Semiconductor device including a magnetic sensor chip |
DE102010016584A1 (en) | 2009-05-20 | 2010-11-25 | Infineon Technologies Ag | Semiconductor device |
US20100295140A1 (en) | 2009-05-20 | 2010-11-25 | Infineon Technologies Ag | Semiconductor device |
US7990209B2 (en) | 2009-06-19 | 2011-08-02 | Allegro Microsystems, Inc. | Switched capacitor notch filter |
US20110018533A1 (en) | 2009-07-22 | 2011-01-27 | Allegro Microsystems, Inc. | Circuits and Methods for Generating a Diagnostic Mode of Operation in a Magnetic Field Sensor |
WO2011011479A1 (en) | 2009-07-22 | 2011-01-27 | Allegro Microsystems, Inc. | Circuits and methods for generating a diagnostic mode of operation in a magnetic field sensor |
US20110048102A1 (en) | 2009-08-27 | 2011-03-03 | Devon Fernandez | Circuits and Methods for Calibration of a Motion Detector |
US20110127998A1 (en) | 2009-11-30 | 2011-06-02 | Infineon Technologies Ag | Gmr sensor within molded magnetic material employing non-magnetic spacer |
US20110175605A1 (en) | 2010-01-21 | 2011-07-21 | The Industry & Academic Cooperation In Chungnam National University (Iac) | Magnetic Sensor |
US20130035896A1 (en) * | 2010-04-16 | 2013-02-07 | Jtekt Corporation | Rotation angle detection device |
US20110298448A1 (en) | 2010-06-03 | 2011-12-08 | Allegro Microsystems, Inc. | Motion Sensor, Method, and Computer-Readable Storage Medium Providing a Motion Sensor That Can Rapidly Calibrate Gains |
US20120007589A1 (en) | 2010-07-07 | 2012-01-12 | Asahi Kasei Microdevices Corporation | Position detecting apparatus |
US20120019236A1 (en) | 2010-07-26 | 2012-01-26 | Radiation Monitoring Devices, Inc. | Eddy current detection |
EP2466265A2 (en) | 2010-12-15 | 2012-06-20 | Nxp B.V. | Magnetic field sensor |
US20120200290A1 (en) | 2011-02-08 | 2012-08-09 | Infineon Technologies Ag | Low Offset Spinning Current Hall Plate and Method to Operate it |
US20120249133A1 (en) | 2011-04-01 | 2012-10-04 | Allegro Microsystems, Inc. | Differential magnetic field sensor structure for orientation independent measurement |
US8729890B2 (en) | 2011-04-12 | 2014-05-20 | Allegro Microsystems, Llc | Magnetic angle and rotation speed sensor with continuous and discontinuous modes of operation based on rotation speed of a target object |
US20120274314A1 (en) | 2011-04-27 | 2012-11-01 | Allegro Microsystems, Inc. | Circuits and Methods for Self-Calibrating or Self-Testing a Magnetic Field Sensor |
GB2481482A (en) | 2011-04-27 | 2011-12-28 | Univ Manchester | Electromagnetic sensor for detecting microstructure of metal target |
WO2012148646A1 (en) | 2011-04-27 | 2012-11-01 | Allegro Microsystems, Inc. | Circuits and methods for self-calibrating or self-testing a magnetic field sensor |
DE102011102483A1 (en) | 2011-05-24 | 2012-11-29 | Austriamicrosystems Ag | Method for operating a Hall sensor arrangement and Hall sensor arrangement |
EP2730893A1 (en) | 2011-07-05 | 2014-05-14 | Denso Corporation | Mobile object detecting apparatus |
US20130015845A1 (en) | 2011-07-11 | 2013-01-17 | Honeywell International Inc. | Absolute angular position sensor using two magnetoresistive sensors |
US8922206B2 (en) | 2011-09-07 | 2014-12-30 | Allegro Microsystems, Llc | Magnetic field sensing element combining a circular vertical hall magnetic field sensing element with a planar hall element |
US20130057257A1 (en) | 2011-09-07 | 2013-03-07 | Allegro Microsystems, Inc. | Magnetic field sensing element combining a circular vertical hall magnetic field sensing element with a planar hall element |
US20130080087A1 (en) * | 2011-09-28 | 2013-03-28 | Allegro Microsystems, Inc. | Circuits and Methods for Processing Signals Generated by a Plurality of Magnetic Field Sensing Elements |
US9164156B2 (en) | 2011-09-30 | 2015-10-20 | Infineon Technologies Ag | Apparatus having a back-bias magnet and a semiconductor chip element |
US9201123B2 (en) | 2011-11-04 | 2015-12-01 | Infineon Technologies Ag | Magnetic sensor device and a method for fabricating the same |
US20130113474A1 (en) | 2011-11-04 | 2013-05-09 | Infineon Technologies Ag | Magnetic Sensor Device |
US20140336878A1 (en) * | 2011-11-24 | 2014-11-13 | Toyota Jidosha Kabushiki Kaisha | Rotational-angle detection device and electric power-steering device provided with rotational-angle detection device |
US20130265037A1 (en) | 2012-04-04 | 2013-10-10 | Allegro Microsystems, Inc. | Angle sensor with misalignment detection and correction |
US20130278246A1 (en) | 2012-04-23 | 2013-10-24 | Infineon Technologies Ag | Bias Field Generator and Method |
WO2013169455A1 (en) | 2012-05-10 | 2013-11-14 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensor having integrated coil |
US20130320970A1 (en) | 2012-05-31 | 2013-12-05 | Allegro Microsystems, Inc. | Gear tooth sensor with peak and threshold detectors |
US20130335069A1 (en) | 2012-06-18 | 2013-12-19 | Allegro Microsystems, Inc. | Magnetic Field Sensors and Related Techniques That Can Provide Self-Test Information in a Formatted Output Signal |
US8860404B2 (en) | 2012-06-18 | 2014-10-14 | Allegro Microsystems, Llc | Magnetic field sensors and related techniques that can provide a self-test using signals and related thresholds |
US20140084906A1 (en) | 2012-09-26 | 2014-03-27 | Nxp B.V. | Magnetic field sensor system with a biasing magnet producing a spatially symmetric magnetic field within a plane being defined by magnetoresistive sensor elements |
US20140176126A1 (en) | 2012-12-21 | 2014-06-26 | Allegro Microsystems, Inc. | Magnetic Field Sensor Arrangements and Associated Methods |
US20140175584A1 (en) | 2012-12-21 | 2014-06-26 | Andrea Foletto | Magnetic field sensor and method of fabricating a magnetic field sensor having a plurality of vertical hall elements arranged in at least a portion of a polygonal shape |
US9347799B2 (en) | 2013-02-20 | 2016-05-24 | Nxp B.V. | Magnetic field sensor system with a magnetic wheel rotatable around a wheel axis and with magnetic sensor elements being arranged within a plane perpendicular to the wheel axis |
US20140266176A1 (en) | 2013-03-15 | 2014-09-18 | Allegro Microsystems, Llc | Magnetic Field Sensor and Associated Method That Can Store a Measured Threshold Value in a Memory Device During a Time When The Magnetic Field Sensor is Powered Off |
US20150354985A1 (en) | 2013-05-24 | 2015-12-10 | Allegro Microsystems, Llc | Magnetic Field Sensor To Detect A Magnitude Of A Magnetic Field In Any Direction |
US20140347044A1 (en) | 2013-05-24 | 2014-11-27 | Allegro Microsystems, Llc | Magnetic Field Sensor for Detecting a Magnetic Field In Any Direction Above Thresholds |
US20150022187A1 (en) | 2013-07-19 | 2015-01-22 | Allegro Microsystems, Llc | Arrangements for Magnetic Field Sensors That Act as Tooth Detectors |
US20150346289A1 (en) | 2014-04-28 | 2015-12-03 | Infineon Technologies Ag | Hall Effect Sensor Arrangement |
US20160123774A1 (en) | 2014-10-31 | 2016-05-05 | Allegro Microsystems, Llc | Magnetic Field Sensor for Sensing a Movement of a Ferromagnetic Target Object |
US20160178400A1 (en) * | 2014-12-23 | 2016-06-23 | Allegro Microsystems, Llc | Systems and Methods for Detecting a Magnetic Target by Computing a Barycenter |
US20160231139A1 (en) * | 2015-02-06 | 2016-08-11 | Denso Corporation | Rotation angle detection device |
US20170271399A1 (en) | 2016-03-15 | 2017-09-21 | Texas Instruments Incorporated | Integrated circuit with hall effect and anisotropic magnetoresistive (amr) sensors |
US10041810B2 (en) * | 2016-06-08 | 2018-08-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as movement detectors |
Non-Patent Citations (266)
Title |
---|
21st Century Letter dated Mar. 14, 2019 regarding Voluntary Amendment and Substantive for KR Pat. Appl. No. 10-2016-7004180; 1 page. |
21st Century Listing of Pending Claims filed on Mar. 14, 2019 regarding Voluntary Amendment and Substantive Examination for KR Pat. No. 10-2016-7004180; 13 pages. |
Ahn et al., "A New Toroidal-Meander Type Integrated Inductor With a Multilevel Meander Magnetic Core", IEEE Transactions on Magnetics, vol. 30, No. 1, Jan. 1994, pp. 73-79. |
Allegro "Two-Wire True Zero Speed Miniature Differential Peak-Detecting Gear Tooth Sensor;" ATS645LSH; 2004; Allegro MicroSystems, Inc., Worcester, MA 01615; pp. 1-14. |
Allegro Microsystems, Inc. Data Sheet A1341; "High Precision, Highly Programmable Linear Hall Effect Sensor IC with EEPROM, Output Protocols SENT and PWM, and Advanced Output Linearization Capabilities;" May 17, 2010; 46 pages. |
Allegro Microsystems, Inc. Data Sheet ATS601LSG; "Non-TPOS, Tooth Detecting Speed Sensor;" Nov. 1, 2011; 9 pages. |
Allegro Microsystems, Inc., "Gear-Tooth Sensor for Automotive Applications," Aug. 3, 2001. |
Allegro MicroSystems, Inc., Hall-Effect IC Applications Guide, http://www.allegromicro.com/en/Products/Design/an/an27701.pdf, Copyright 1987, 1997, pp. 1-36. |
Alllegro "True Zero-Speed Low-Jitter High Accuracy Gear Tooth Sensor;" ATS625LSG; 2005; Allegro MicroSystems, Inc. Worcester, MA 01615; pp. 1-21. |
Amended Claims in response to official communication filed on Nov. 17, 2017 regarding Div. EP Patent Application No. 16192498.0; 7 pages. |
Amendment filed on Apr. 11, 2017 for U.S. Appl. No. 13/946,380; 18 pages. |
Amendment under PCT Article 19 filed on Oct. 5, 2010 in PCT/US2010/024256; 18 pages, 18 pages. |
Ausserlechner et al.; "Compensation of the Piezo-Hall Effect in Integrated Hall Sensors on (100)-Si;" IEEE Sensors Journal, vol. 7, No. 11; Nov. 2007; ISBN: 1530-437X; pp. 1475-1482. |
Ausserlechner et al.; "Drift of Magnetic Sensitivity of Small Hall Sensors Due to Moisture Absorbed by the IC-Package;" Proceedings of IEEE Sensors, 2004; vol. 1; Oct. 24, 2004; ISBN:0-7803-8692-2; pp. 455-458. |
Ausserlechner; "Limits of Offset Cancellation by the Principle of Spinning Current Hall Probe;" Proceedings of IEEE Sensors; Oct. 2004; pp. 1117-1120. |
Ausserlechner; "The piezo-Hall effect in n-silicon for arbitrary crystal orientation;" Proceedings of IEEE Sensors; vol. 3; Oct. 24, 2004; ISBN: 0-7803-8692-2; pp. 1149-1152. |
Bahreyni, et al.; "A Resonant Micromachined Magnetic Field Sensor;" IEEE Sensors Journal; vol. 7, No. 9, Sep. 2007; pp. 1326-1334. |
Barrettino, et al.; "CMOS-Based Monolithic Controllers for Smart Sensors Comprising Micromembranes and Microcantilevers;" IEEE Transactions on Circuits and Systems-I Regular Papers vol. 54, No. 1; Jan. 2007; pp. 141-152. |
Baschirotto et al.; "Development and Analysis of PCB Vector 2-D Magnetic Field Sensor System for Electronic Compass;" IEEE Sensors Journal vol. 6, No. 2; Apr. 2006; pp. 365-371. |
Bilotti et al.; "Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation;" IEEE Journal of Solid-State Circuits; vol. 32, Issue 6; Jun. 1997; pp. 829-836. |
Bowers et al., "Microfabrication and Process Integration of Powder-Based Permanent Magnets", Interdisciplinary Microsystems Group, Dept. Electrical and Computer Engineering, University of Florida, USA; Technologies for Future Micro-Nano Manufacturing Workshop, Napa, California, Aug. 8-10, 2011, pp. 162-165. |
Chinese First Office Action (with English translation) dated Aug. 29, 2012; for Chinese Pat. App. No. 200980106535.4; 8 pages. |
Chinese Notice of Allowance (with English translation) dated Jul. 4, 2011; for Chinese Pat. App. No. 200880008895.3; 4 pages. |
Chinese Notice of Completing Formalities for Patent Registration (with English translation); dated Mar. 6, 2013; for Chinese Pat. App. No. 200920783766.7; 4 pages. |
Chinese Office Action (with English translation) dated Sep. 9, 2010; for Chinese Pat. App. No. 200880008895.3; 12 pages. |
Chinese Response to Office Action received Mar. 28, 2011; for Chinese Pat. App. No. 200880008895.3; 7 pages. |
Chinese Second Office Action (with English translation) dated Apr. 15, 2013; for Chinese Pat. App. No. 200980106535.4; 9 pages. |
Corrected Notice of Allowability dated Aug. 9, 2013; for U.S. Appl. No. 12/840,324; 6 pages. |
Corrected Notice of Allowability dated Jul. 17, 2013; for U.S. Appl. No. 12/840,324; 7 pages. |
DCMD Instruction letter dated Feb. 13, 2019 for KR Pat. Appl. No. 10-2016-7004180; 2 pages. |
Demierre, et al.; "Reference Magnetic Actuator for Self-Calibration of a Very Small Hall Sensor Array;" Sensors and Actuators A97-98; Apr. 2002; pp. 39-46. |
Dwyer, "Back-Biased Packaging Advances (SE, SG & SH versus SA & SB)," http://www.allegromicro.com/en/Products/Desion/packaging_advances/index.asp, Copyright 2008, pp. 1-5. |
Email from NTD Patent and Trademark Office dated Jun. 11, 2012; for Chinese Pat. App. No. 200920783766.7; 2 pages. |
EP Official Communication; dated Feb. 23, 2012; for EP. Pat. App. No. 10739429.8; 2 pages. |
EP Response filed on Dec. 9, 2016 to Official Communication dated Oct. 14, 2016 regarding European Pat. Appl. No. 14742067.3; 23 pages. |
European Board of Appeals Datasheet for the Decision dated Nov. 22, 2007; for European Pat. App. No. 03 710 766.1; 22 pages. |
European Board of Appeals Decision dated Feb. 28, 2005; for European Pat. App. No. 03 710 766.1; 14 pages. |
European Communication for the Board of Appeals dated Apr. 30, 2009; for European Pat. App. No. 03 710 766.1; 2 pages. |
European Decision to Grant Patent dated Sep. 5, 2013; for European Pat. App. No. 10739429.8; 2 pages. |
European Examination Report dated Mar. 5, 2020 for European Application No. 14742067.3; 7 Pages. |
European Preliminary Amendment from the Board of Appeal dated May 26, 2009; for European Pat. App. No. 03 710 766.1; pages. |
European Response to Written Opinion dated Apr. 18, 2011; for European Pat. App. No. 09789890.2; 11 pages. |
European Search Report dated Apr. 5, 2017 for EP Pat. Appl. No. 16192498.0; 10 pages. |
European Search Report dated Jul. 4, 2011; for European Pat. App. No. 13169661.9; 11 pages. |
Final Office Action dated Dec. 15, 2015; for U.S. Appl. No. 13/946,380; 36 pages. |
Final Office Action dated Feb. 12, 2013; for U.S. Appl. No. 12/840,324; 19 pages. |
Final Office Action dated Jan. 12, 2017 for U.S. Appl. No. 13/946,380; 32 pages. |
Final Office Action dated Jul. 1, 2013; for U.S. Appl. No. 12/183,367; 6 pages. |
Final Office Action dated Jul. 23, 2013; for U.S. Appl. No. 12/183,367; 8 pages. |
Final Office Action dated Jul. 26, 2018 for U.S. Appl. No. 15/655,135; 38 Pages. |
Final Office Action dated May 10, 2012; for U.S. Appl. No. 12/328,798; 17 pages. |
Final Office Action dated May 2, 2013; for U.S. Appl. No. 12/183,367; 15 pages. |
Frick, et al.; "CMOS Microsystem for AC Current Measurement with Galvanic Isolation;" IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; pp. 752-760. |
Halg; "Piezo-Hall Coefficients of n-Type Silicon;" Journal of Applied Physics; vol. 64, No. 1; Jul. 1, 1988; pp. 276-282. |
Honeywell International, Inc., "Hall Effect Sensing and Application," Micro Switch Sensing and Control, Chapter 3, http://content.honeywell.com/sensing/prodinfo/solidstate/technical/hallbook.pdf, date unavailable but believed to be before Jan. 2008, pp. 9-18. |
Hosticka; "CMOS Sensor Systems;" Sensors and Actuators A66; Apr. 1998; pp. 335-341. |
Infineon Product Brief, TLE 4941plusC, Differential Hall IC for Wheel Speed Sensing, Oct. 2010, www.infineon.com/sensors, 2 pages. |
Infineon Technologies; "Differential Two-Wire Hall Effect Sensor IC;" TLE4942 Preliminary Data Sheet; Jun. 2000; pp. 1-13. |
International Search Report and Written Opinion dated Nov. 4, 2014 for Int'l PCT Application PCT/US2014/044993; 13 pages. |
International Search Report and Written Opinion dated Oct. 28, 2014 for Int'l PCT Application PCT/US2014/044991; 12 pages. |
Japanese First Office Action (English translation); for Japanese Pat. App. No. 2010-201028; 5 pages. |
Japanese First Office Action (with English translation) dated May 3, 2012; for Chinese Pat. App. No. 200920783766.7; 13 pages. |
Japanese Notice of Allowance dated Nov. 8, 2011; for Japanese Pat. App. No. 2009-568426; 3 pages. |
Japanese Notice of Reasons for Rejection (English translation) for Japanese Pat. App. No. 2010-547666; 4 pages. |
Japanese Notice of Reasons for Rejection; dated Jul. 16, 2013; for Japanese Pat. App. No. 2011-539582; 3 pages. |
Japanese Response to First Office Action (with English translation); for Japanese Pat. App. No. 2010-201028; 10 pages. |
Japanese Second Office Action (English translation) dated Aug. 7, 2013; for Japanese Pat. App. No. 2010-201028; 3 pages. |
Japanese Second Office Action dated Jan. 18, 2013; for Chinese Pat. App. No. 200920783766.7; 8 pages. |
Johnson et al., "Hybrid Hall Effect Device," Appl. Phys. Lett., vol. 71, No. 7, Aug. 1997, pp. 974-976. |
Kanda et al.; "The Piezo-Hall Effect in n-Silicon;" 22nd International Conference on the Physics of Semiconductors; vol. 1, Jan. 1995; pp. 89-92. |
Kapser et al.; "Integrated GMR Based Wheel Speed Sensor for Automotive Applications;" IEEE 2007 Conference on Sensors; Oct. 2007; pp. 848-851. |
Krammerer et al.: "A Hall effect sensors network insensitive to mechanical stress;" Proceedings of IEEE Sensors; vol. 3, Oct. 2004; pp. 1071-1074. |
Lagorce et al.; "Magnetic and Mechanical Properties of Micromachined Strontium Ferrite/Polyimide Composites;" Journal of Microelectromechanical Systems; vol. 6, No. 4; Dec. 1997; pp. 307-312. |
Lequesne et al.; "High-Accuracy Magnetic Position Encoder Concept;" IEEE Transactions on Industry Applications; vol. 35, No. 3; May/Jun. 1999; pp. 568-576. |
Letter from NTD Patent & Trademark Agency Limited dated Mar. 28, 2011; for Chinese Pat. App. No. 200880008895.3; 1 page. |
Letter from NTD Patent & Trademark Agency Limited dated Oct. 13, 2010; for Chinese Pat. App. No. 200880008895.3; 2 pages. |
Letter from NTD Patent and Trademark Agency dated Feb. 6, 2013; for Chinese Pat. App. No. 200920783766.7; 2 pages. |
Letter from NTD Patent and Trademark Agency dated Jul. 11, 2013; for Chinese Pat. App. No. 200980106535.4; 1 pages. |
Letter from NTD Patent and Trademark Agency dated Mar. 21, 2013; for Chinese Pat. App. No. 200920783766.7; 1 page. |
Letter from NTD Patent and Trademark Office dated Jan. 19, 2013; for Chinese Pat. App. No. 200980106535.4; 1 page. |
Letter from NTD Patent and Trademark Office dated May 21, 2013; for Chinese Pat. App. No. 200980106535.4; 2 pages. |
Letter from NTD Patent and Trademark Office dated Oct. 10, 2012; for Chinese Pat. App. No. 200980106535.4; 2 pages. |
Letter from NTD Patent and Trademark Office dated Oct. 18, 2012; for Chinese Pat. App. No. 200920783766.7; 1 pages. |
Letter from Yuasa and Hara dated Apr. 23, 2009; Japanese Response to Second Office Action filed Mar. 25, 2009; for JP Pat. App. No. 2009-568426; 8 pages. |
Letter from Yuasa and Hara dated Aug. 16, 2013; for Japanese Pat. App. No. 2011-539582; 3 pages. |
Letter from Yuasa and Hara dated Aug. 7, 2013; for Japanese Pat. App. No. 2010-201028; 4 pages. |
Letter from Yuasa and Hara dated Dec. 12, 2008; Japanese Second Office Action; for JP Pat. App. No. 2009-568426; 4 pages. |
Letter from Yuasa and Hara dated Jan. 17, 2011; Japanese Third Office Action dated Feb. 16, 2011; for JP Pat. App. No. 2009-568426; 5 pages. |
Letter from Yuasa and Hara dated Jul. 26, 2012; for Japanese Pat. App. No. 2010-201028; 5 pages. |
Letter from Yuasa and Hara dated Jun. 4, 2008; Japanese First Office Action dated Apr. 7, 2008; for JP Pat. App. No. 2009-568426; 5 pages. |
Letter from Yuasa and Hara dated Jun. 9, 2011; Japanese Response to Third Office Action filed May 13, 2011; for JP Pat. App. No. 2009-568426; 27 pages. |
Letter from Yuasa and Hara dated May 27, 2013; for Japanese Pat. App. No. 2010-547666; 2 pages. |
Letter from Yuasa and Hara dated Oct. 16, 2012; for Japanese Pat. App. No. 2010-201028; 2 pages. |
Letter from Yuasa and Hara dated Oct. 21, 2008; Japanese Response to First Office Action filed Sep. 22, 2008; for JP Pat. App. No. 2009-568426; 14 pages. |
Letter to NTD Patent and Trademark Agency dated Feb. 6, 2013; for Chinese Pat. App. No. 200920783766.7; 2 pages. |
Letter to NTD Patent and Trademark Agency dated Jun. 19, 2013; for Chinese Pat. App. No. 200980106535.4; 11 pages. |
Letter to NTD Patent and Trademark Office dated Aug. 29, 2012; for Chinese Pat. App. No. 200920783766.7; 20 pages. |
Letter to NTD Patent and Trademark Office dated Dec. 11, 2012; for Chinese Pat. App. No. 200980106535.4; 8 pages. |
Magnani et al.; "Mechanical Stress Measurement Electronics Based on Piezo-Resistive and Piezo-Hall Effects;" 9th International Conference on Electronics, Circuits and Systems 2002; vol. 1; SBN: 0-7803-7596-3; Dec. 2002; pp. 363-366. |
Manic et al.; "Short and Long-Term Stability Problems of Hall Plates in Plastic Packages;" IEEE 38th Annual International Reliability Physics Symposium; Apr. 2000; pp. 225-230. |
Manic; "Drift in Silicon Integrated Sensors and Circuits Due to the Thermo-Mechanical Stresses;" Lausanne, École Polytechnique Fédérale De Lausanne 2000; Part 1 of 2; 74 pages. |
Manic; "Drift in Silicon Integrated Sensors and Circuits Due to the Thermo-Mechanical Stresses;" Lausanne, École Polytechnique Fédérale De Lausanne 2000; Part 2 of 2; 102 pages. |
Melexis Microelectronic Systems, Hall Applications Guide, Section 3-Applications,1997 (48 pages). |
Melexis Microelectronic Systems, Hall Applications Guide, Section 3—Applications,1997 (48 pages). |
Motz et al.; "An Integrated Magnetic Sensor with Two Continuous-Time ΔΣ-Converters and Stress Compensation Capability;" IEEE International Solid-State Circuits Conference; Digest of Technical Papers; Feb. 6, 2006; ISBN: 1-4244-0079-1; pp. 1151-1160. |
Motz, et al.; "A Chopped Hall Sensor with Small Jitter and Programmable "True Power-On" Function;" IEEE Journal of Solid-State Circuits; vol. 40, No. 7; Jul. 2005; pp. 1533-1540. |
Motz, et al.; "An Integrated Hall Sensor Platform Design for Position, Angle and Current Sensing;" IEEE Sensors 2006; Exco, Daegu, Korea / Oct. 22-25, 2006; pp. 1008-1011. |
Munter; "A Low-offset Spinning-current Hall Plate;" Sensors and Actuators A21-A23; 1990; pp. 742-746. |
Munter; "Electronic Circuitry for a Smart Spinning-current Hall Plate with Low Offset;" Sensors and Actuators A; Jun. 1991;.pp. 747-751. |
Non-final office action dated Jan. 26, 2018 for U.S. Appl. No. 15/655,135; 50 pages. |
Notice of Allowance dated Dec. 10, 2012; for U.S. Appl. No. 12/706,318; 9 pages. |
Notice of Allowance dated Feb. 11, 2011; for U.S. Appl. No. 12/037,393; 8 pages. |
Notice of Allowance dated Feb. 21, 2013; for U.S. Appl. No. 13/241,380; 9 pages. |
Notice of Allowance dated Jul. 13, 2017 for U.S. Appl. No. 13/946,380; 11 pages. |
Notice of Allowance dated Jul. 19, 2011; for U.S. Appl. No. 12/959,672; 8 pages. |
Notice of Allowance dated Jun. 27, 2011; for U.S. Appl. No. 12/959,672; 8 pages. |
Notice of Allowance dated Mar. 1, 2013; for U.S. Appl. No. 12/328,798; 10 pages. |
Notice of Allowance dated Mar. 20, 2018 for U.S. Appl. No. 15/176,665; 8 pages. |
Notice of Allowance dated May 24, 2013; for U.S. Appl. No. 12/840,324; 12 pages. |
Notice of Allowance dated Nov. 3, 2010; for U.S. Appl. No. 12/037,393; 7 pages. |
Notice of Allowance dated Oct. 26, 2012; for U.S. Appl. No. 12/328,798; 13 pages. |
Notice of Allowance dated Oct. 28, 2013; for U.S. Appl. No. 13/095,371; 19 pages. |
Notice of Allowance dated Oct. 29, 2012; for U.S. Appl. No. 13/241,380; 23 pages. |
Notice of Allowance dated Sep. 6, 2013; for U.S. Appl. No. 12/183,367; 7 pages. |
Office Action dated Aug. 26, 2016 for U.S. Appl. No. 13/946,380, 40 pages. |
Office Action dated Dec. 14, 2009; for U.S. Appl. No. 12/328,798; 20 pages. |
Office Action dated Feb. 2, 2011; for U.S. Appl. No. 12/959,672; 13 pages. |
Office Action dated Feb. 22, 2012; for U.S. Appl. No. 13/241,380; 23 pages. |
Office Action dated Jan. 18, 2013; for U.S. Appl. No. 12/360,889; 7 pages. |
Office Action dated Jul. 14, 2016 for U.S. Appl. No. 14/529,594; 94 pages. |
Office Action dated Jul. 19, 2012; for U.S. Appl. No. 13/241,380; 18 pages. |
Office Action dated Jul. 28, 2016 for U.S. Appl. No. 14/529,669; 78 pages. |
Office Action dated Jul. 6, 2012; for U.S. Appl. No. 12/706,318; 29 pages. |
Office Action dated Jul. 9, 2015; for U.S. Appl. No. 13/946,380; 63 pages. |
Office Action dated Jun. 11, 2013; for U.S. Appl. No. 13/095,371; 31 pages. |
Office Action dated Jun. 28, 2013; for U.S. Appl. No. 12/360,889; 7 pages. |
Office Action dated Jun. 30, 2010; for U.S. Appl. No. 12/037,393; 21 pages. |
Office Action dated Jun. 7, 2012; for U.S. Appl. No. 12/360,889; 9 pages. |
Office Action dated May 12, 2011; for U.S. Appl. No. 12/183,367; 17 pages. |
Office Action dated May 19, 2017 for U.S. Appl. No. 13/946,380; 20 pages. |
Office Action dated May 24, 2010; for U.S. Appl. No. 12/328,798; 22 pages. |
Office Action dated Oct. 20, 2011; for U.S. Appl. No. 12/183,367; 11 pages. |
Office Action dated Oct. 20, 2017 for U.S. Appl. No. 15/176,665; 22 pages. |
Office Action dated Oct. 31, 2011; for U.S. Appl. No. 12/328,798; 23 pages. |
Office Action dated Sep. 11, 2012; for U.S. Appl. No. 12/840,324; 30 pages. |
Office Action in U.S. Appl. No. 13/468,478 dated Jan. 15, 2014, 36 pages. |
Office Action/Restriction Requirement dated Apr. 12, 2012; for U.S. Appl. No. 12/183,367; 6 pages. |
Office Action/Restriction Requirement dated May 14, 2010; for U.S. Appl. No. 12/037,393; 6 pages. |
Office Action/Restriction Requirement dated Oct. 23, 2009; for U.S. Appl. No. 12/328,798; 7 pages. |
Oniku et al., "High-Energy-Density Permanent Micromagnets Formed From Heterogeneous Magnetic Powder Mixtures", Interdisciplinary Microsystems Group, Dept. of Electrical and Computer Engineering, University of FL, Gainesville, FL 32611, USA; Preprint of MEMS 2012 Conf. Paper; Jan. 2012; 4 pages. |
Oniku et al.; "High-Energy-Density Permanent Micromagnets Formed From Heterogeneous Magnetic Powder Mixtures;" IEEE 25th International Conference on Micro Electro Mechanical Systems, Jan. 2012; 4 pages. |
Park et al.: "Batch-Fabricated Microinductors with Electroplated Magnetically Anisotropic and Laminated Alloy Cores", IEEE Transactions on Magnetics, vol. 35, No. 5, Sep. 1999, 10 pages. |
Park et al.; "Ferrite-Based Integrated Planar Inductors and Transformers Fabricated at Low Temperature;" IEEE Transactions on Magnetics; vol. 33, No. 5; Sep. 1997; pp. 3322-3324. |
Partin et al.; "Temperature Stable Hall Effect Sensors;" IEEE Sensors Journal, vol. 6, No. 1; Feb. 2006; pp. 106-110. |
Pastre, et al.; "A Hall Sensor Analog Front End for Current Measurement with Continuous Gain Calibration;" IEEE Sensors Journal; vol. 7, No. 5; May 2007; pp. 860-867. |
Pastre, et al.; "A Hall Sensor-Based Current Measurement Microsystem With Continuous Gain Calibration;" Research in Microelectronics and Electronics, IEEE vol. 2; Jul. 25, 2005; ISBN: 0-7803-9345-7; pp. 95-98. |
PCT International Preliminary Report and Written Opinion on Patentability of the ISA dated Aug. 7, 2007; for PCT/US2006/000363; 9 pages. |
PCT International Preliminary Report on Patentability and Written Opinion dated Sep. 10, 2010 for PCT/US2009/031776. |
PCT International Preliminary Report on Patentability and Written Opinion for PCT/US2009/048237 dated Feb. 10, 2011, 8 pages. |
PCT International Preliminary Report on Patentability and Written Opinion of the ISA dated Jan. 28, 2016; for PCT Pat. App. No. PCT/US2014/044236; 17 pages. |
PCT International Preliminary Report on Patentability and Written Opinion of the ISA dated Sep. 1, 2011; for PCT Pat. App. No. PCT/US2010/024256; 9 pages. |
PCT International Preliminary Report on Patentability and Written Opinion of the ISA; dated Feb. 2, 2012; for PCT Pat. App. No. PCT/US2010/042694; 11 pages. |
PCT International Preliminary Report on Patentability and Written Opinion of the ISA; dated Jun. 7, 2011; for PCT Pat. App. No. PCT/US2009/065044; 7 pages. |
PCT International Preliminary Report on Patentability for PCT/US2008/053551; dated Oct. 8, 2009; 7 pages. |
PCT International Search Report and Written Opinion of the ISA dated Aug. 3, 2016; for PCT Application No. PCT/US2015/055230; 12 pages. |
PCT International Search Report and Written Opinion of the ISA dated Dec. 23, 2015; for PCT Pat. App. No. PCT/US2015/055233; 12 pages. |
PCT International Search Report and Written Opinion of the ISA dated Feb. 4, 2016; for PCT Pat. App. No. PCT/US2015/055474; 15 pages. |
PCT International Search Report and Written Opinion of the ISA dated Jan. 15, 2016; for PCT Pat. App. No. PCT/US2015/055236; 12 pages. |
PCT Invitation to Pay Additional Fees and Partial Search Report dated Nov. 4, 2014; for PCT Pat. App. No. PCT/US2014/044236; 6 pages. |
PCT Search Report and the Written Opinion of the ISA dated Jul. 17, 2013; for PCT/US2013/037065; 13 pages. |
PCT Search Report and Written Opinion for PCT/US2009/065044 dated Jan. 7, 2010; 11 pages. |
PCT Search Report and Written Opinion for PCT/US2017/033052 dated Jul. 28, 2017; 11 pages. |
PCT Search Report and Written Opinion of the ISA dated Dec. 19, 2014; for PCT Pat. App. No. PCT/US2014/044236; 23 pages. |
PCT Search Report and Written Opinion of the ISA for PCT Pat. App. No. PCT/US2012/032315; dated Jun. 22, 2012; 16 pages. |
PCT Search Report and Written Opinion of the ISA for PCT/US2008/053551; dated Jul. 15, 2008; 11 pages. |
PCT Search Report and Written Opinion of the ISA for PCT/US2010/024256 dated Aug. 11, 2010; 11 pages. |
PCT Search Report and Written Opinion of the ISA for PCT/US2010/042694 dated Sep. 27, 2010; 13 pages. |
PCT Search Report dated Nov. 19, 2003 for PCT Pat. App. No. PCT/US03/02489; 5 pages. |
PCT Search Report for PCT/US2006/000363 dated May 11, 2006. |
PCT Search Report of the ISA for PCT/US2009/031776 dated Oct. 23, 2009. |
PCT Search Report of the ISA for PCT/US2009/048237 dated Aug. 25, 2009; 2 pages. |
Popovic; "Sensor Microsystems;" Proc. 20th International Conference on Microelectronics (MWIL 95); vol. 2, NIS, Serbia, Sep. 12-14, 1995; pp. 531-537. |
Randhawa; "Monolithic Integrated Hall Devices in Silicon Circuits;" Microelectronics Journal; vol. 12, No. 6; Sep. 14-17, 1981; pp. 24-29. |
Request for Continued Examination dated Aug. 9, 2012; for U.S. Appl. No. 12/328,798; 1 page. |
Request for Continued Examination dated Jan. 24, 2013; for U.S. Appl. No. 12/328,798; 3 pages. |
Request for Continued Examination dated Jan. 24, 2013; for U.S. Appl. No. 13/241,380; 3 pages. |
Request for Continued Examination dated Jan. 25, 2011; for U.S. Appl. No. 12/037,393; 1 page. |
Request for Continued Examination dated Jul. 12, 2011; for U.S. Appl. No. 12/959,672; 2 pages. |
Request for Continued Examination filed Apr. 12, 2015; for U.S. Appl. No. 13/946,380; 2 pages. |
Request for Continued Examination filed on Apr. 11, 2017 for U.S. Appl. No. 13/946,380; 3 pages. |
Response filed Nov. 9, 2015; to Office Action dated Jul. 9, 2015; for U.S. Appl. No. 13/946,380; 26 pages. |
Response filed on Nov. 9, 2016 to the Non-Final Office Action dated Aug. 26, 2016; for U.S. Appl. No. 13/946,380; 19 pages. |
Response to Chinese First Office Action dated Aug. 29, 2012; for Chinese Pat. App. No. 200980106535.4; 12 pages. |
Response to Chinese Second Office Action dated Aug. 29, 2012; for Chinese Pat. App. No. 200980106535.4; 12 pages. |
Response to EP Official Communication dated Feb. 23, 2012 for EP. Pat. App. No. 10739429.8; filed on Sep. 4, 2012, 21 pages. |
Response to European Search Report filed Nov. 17, 2017 for European Application No. 16192498.0; 75 pages. |
Response to Final Office Action dated Feb. 12, 2013; for U.S. Appl. No. 12/840,324; 12 pages. |
Response to Final Office Action dated Jul. 26, 2018 for U.S. Appl. No. 15/655,135, filed Oct. 11, 2018; 21 Pages. |
Response to Final Office Action dated May 10, 2012; for U.S. Appl. No. 12/328,798; 6 pages. |
Response to Final Office Action dated May 2, 2013; for U.S. Appl. No. 12/183,367; 8 pages. |
Response to Final Office Action filed on Apr. 12, 2016, dated Dec. 15, 2015; for U.S. Appl. No. 13/946,380; 17 pages. |
Response to Japanese First Office Action dated May 3, 2013; for Chinese Pat. App. No. 200920783766.7; 9 pages. |
Response to Japanese Second Office Action (with English translation) dated Jan. 18, 2013; for Chinese Pat. App. No. 200920783766.7; 7 pages. |
Response to Notice to File Corrected Application Papers dated Aug. 28, 2017 and filed on Aug. 29, 2017 for U.S. Appl. No. 13/946,380; 3 pages. |
Response to Office Action dated Dec. 14, 2009; for U.S. Appl. No. 12/328,798; 22 pages. |
Response to Office Action dated Feb. 2, 2011; for U.S. Appl. No. 12/959,672; 8 pages. |
Response to Office Action dated Feb. 22, 2012; for U.S. Appl. No. 13/241,380; 16 pages. |
Response to Office Action dated Jan. 18, 2013; for U.S. Appl. No. 12/360,889; 6 pages. |
Response to Office Action dated Jul. 19, 2012; for U.S. Appl. No. 13/241,380; 6 pages. |
Response to Office Action dated Jul. 23, 2013; for U.S. Appl. No. 12/183,367; 13 pages. |
Response to Office Action dated Jul. 6, 2012; for U.S. Appl. No. 12/706,318; 12 pages. |
Response to Office Action dated Jun. 11, 2013; for U.S. Appl. No. 13/095,371; 25 pages. |
Response to Office Action dated Jun. 28, 2013; for U.S. Appl. No. 12/360,889; 15 pages. |
Response to Office Action dated Jun. 30, 2010; for U.S. Appl. No. 12/037,393; 34 pages. |
Response to Office Action dated Jun. 7, 2012; for U.S. Appl. No. 12/360,889; 11 pages. |
Response to Office Action dated May 12, 2011; for U.S. Appl. No. 12/183,367; 13 pages. |
Response to Office Action dated May 24, 2010; for U.S. Appl. No. 12/328,798; 23 pages. |
Response to Office Action dated Oct. 20, 2011; for U.S. Appl. No. 12/183,367; 15 pages. |
Response to Office Action dated Oct. 31, 2011; for U.S. Appl. No. 12/328,798; 14 pages. |
Response to Office Action dated Sep. 11, 2012; for U.S. Appl. No. 12/840,324; 15 pages. |
Response to Office Action filed Jan. 11, 2018 for U.S. Appl. No. 15/176,665; 18 pages. |
Response to Office Action filed on Jun. 22, 2017 for U.S. Appl. No. 13/946,380; 8 pages. |
Response to Office Action filed on Nov. 9, 2016 for U.S. Appl. No. 13/946,380; 19 pages. |
Response to Office Action/Restriction Requirement dated Apr. 12, 2013; for U.S. Appl. No. 12/183,367;2 pages. |
Response to Office Action/Restriction Requirement dated May 14, 2010; for U.S. Appl. No. 12/037,393; 1 pages. |
Response to Office Action/Restriction Requirement dated Oct. 23, 2009; for U.S. Appl. No. 12/328,798; 1 page. |
Response to U.S. Non-Final Office Action dated Jan. 26, 2018 for U.S. Appl. No. 15/655,135; Response filed Apr. 3, 2018; 20 pages. |
Robert Bosch GMBH Stuttgart; "Active Sensor for ABS/ASR/VDC-Systems with 2-Wire-Current Interface;" Specification TLE4941/TLE4942; Version 5; Jun. 25, 2000; 44 pages. |
Ruther et al.; "Integrated CMOS-Based Sensor Array for Mechanical Stress Mapping;" 5th IEEE Conference on Sensors, Oct. 2007; pp. 1131-1134. |
Ruther et al.; "Thermomagnetic Residual Offset in Integrated Hall Plates;" IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; pp. 693-699. |
Sargent; "Switched-capacitor IC controls feedback loop;" EDN; Design Ideas; Feb. 17, 2000; pp. 154 and 156. |
Schneider; "Temperature Calibration of CMOS Magnetic Vector Probe for Contactless Angle Measurement System," IEDM 1996 pp. 533-536. |
Schott et al.; "Linearizing Integrated Hall Devices;" 1997 International Conference on Solid-State Sensors and Actuators, Jun. 16-19, 1997; pp. 393-396. |
Schott, et al.; "CMOS Single-Chip Electronic Compass with Microcontroller;" IEEE Journal of Solid-State Circuits; vol. 42, No. 12; Dec. 2007; pp. 2923-2933. |
Simon et al.; "Autocalibration of Silicon Hall Devices;" 8th International Conference on Solid-State Sensors and Actuators; vol. 2; Jun. 25, 1995; pp. 237-240. |
Smith et al.; "Low Magnetic Field Sensing with GMR Sensors;" Sensor Magazine; Part 1; Sep. 1999; http://archives.sensorsmag.com/articies/0999/76mail.shtml; pp. 1-8. |
Smith et al.; "Low Magnetic Field Sensing with GMR Sensors;" Sensor Magazine; Part 2; Oct. 1999; http://archives.sensorsmag.com/artcles/1099/84/mail.shtml; pp. 1-11. |
Steiner et al.; "Double-Hall Sensor with Self-Compensated Offset;" International Electron Devices Meeting; Dec. 7, 1997; ISBN: 0-7803-4100-7; pp. 911-914. |
Steiner et al.; Offset Reduction in Hall Devices by Continuous Spinning Current Method; Sensors and Actuators A66; 1998; pp. 167-172. |
Stellrecht et al.; Characterization of Hygroscopic Swelling Behavior of Mold Compounds and Plastic Packages; IEEE Transactions on Components and Packaging Technologies; vol. 27, No. 3; Sep. 2004; pp. 499-506. |
Supplemental Response to Office Action dated Jul. 6, 2012; for U.S. Appl. No. 12/706,318; 12 pages. |
Supplemental Response to Restriction Requirement dated Feb. 6, 2013; for U.S. Appl. No. 12/183,367; 2 pages. |
Tian et al.; "Multiple Sensors on Pulsed Eddy-Current Detection for 3-D Subsurface Crack Assessment;" IEEE Sensors Journal, vol. 5, No. 1; Feb. 2005; pp. 90-96. |
Trontelj et al; "CMOS Integrated Magnetic Field Source Used as a Reference in Magnetic Field Sensors on Common Substrate;" WEP 1-6; IMTC; May 1994; pp. 461-463. |
U.S. Appl. No. 12/840,324, filed Jul. 21, 2010, Cesaretti et al. |
U.S. Appl. No. 12/959,672, filed Dec. 3, 2010, Doogue et al. |
U.S. Appl. No. 12/968,353, filed Dec. 15, 2010, Donovan et al. |
U.S. Appl. No. 13/095,371, filed Apr. 27, 2011, Cesaretti et al. |
U.S. Appl. No. 13/350,970, filed Jan. 16, 2012, Milano et al. |
U.S. Appl. No. 13/398,127, filed Feb. 16, 2012, Cesaeretti et al. |
U.S. Appl. No. 13/424,618, filed Mar. 20, 2012, Doogue et al. |
U.S. Appl. No. 13/439,094, filed Apr. 4, 2012, Friedrich et al. |
U.S. Appl. No. 13/526,106, filed Jun. 18, 2012, Vig et al. |
U.S. Appl. No. 13/748,999, filed Jan. 24, 2013, Vig et al. |
U.S. Appl. No. 13/871,131, filed Apr. 26, 2013, David et al. |
U.S. Appl. No. 13/946,010, filed Jul. 19, 2013, David et al. |
U.S. Appl. No. 13/946,400, filed Jul. 19, 2013, David et al. |
U.S. Appl. No. 13/946,417, filed Jul. 19, 2013, Burdette et al. |
U.S. Appl. No. 13/946,830, filed Jul. 19, 2013, Taylor et al. |
U.S. Appl. No. 14/529,577, filed Oct. 31, 2014, Foletto et al. |
U.S. Appl. No. 14/529,594, filed Oct. 31, 2014, Drouin et al. |
U.S. Appl. No. 14/529,606, filed Oct. 31, 2014, Foletto et al. |
U.S. Appl. No. 14/529,669, filed Oct. 31, 2014, David et al. |
U.S. Appl. No. 15/176,665, filed Jun. 8, 2016, Vig et al. |
Wu, et al.; "A Chopper Current-Feedback Instrumentation Amplifier with a 1mHz 1/f Noise Corner and an AC-Coupled Ripple-Reduction Loop;" IEEE International Solid-State Circuits Conference; Feb. 10, 2009; pp. 322-324. |
Zou et al.; "Three-Dimensional Die Surface Stress Measurements in Delaminated and Non-Delaminated Plastic Packages;" 48th Electronic Components and Technology Conference; May 25, 1998; pp. 1223-1234. |
Also Published As
Publication number | Publication date |
---|---|
WO2017213811A1 (en) | 2017-12-14 |
US10041810B2 (en) | 2018-08-07 |
US20170356761A1 (en) | 2017-12-14 |
US20180224300A1 (en) | 2018-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10837800B2 (en) | Arrangements for magnetic field sensors that act as movement detectors | |
US10260905B2 (en) | Arrangements for magnetic field sensors to cancel offset variations | |
US9719806B2 (en) | Magnetic field sensor for sensing a movement of a ferromagnetic target object | |
US11307054B2 (en) | Magnetic field sensor providing a movement detector | |
US9823090B2 (en) | Magnetic field sensor for sensing a movement of a target object | |
US9664497B2 (en) | Magnetic field sensor and method for sensing relative location of the magnetic field sensor and a target object along a movement line | |
US10215590B2 (en) | Magnetic field sensor for sensing a proximity and/or a location of an object | |
EP3469313B1 (en) | Magnetic field sensor for sensing a proximity of an object | |
US10323958B2 (en) | Assembly using a magnetic field sensor for detecting a rotation and a linear movement of an object | |
EP4107532B1 (en) | Orientation independent magnetic field sensor | |
US11237020B2 (en) | Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet | |
US11022464B2 (en) | Back-biased magnetic field sensor having one or more magnetoresistance elements | |
US10976183B2 (en) | Magnetic field sensor and method having reduced false switching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: ALLEGRO MICROSYSTEMS, LLC, NEW HAMPSHIRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VIG, RAVI;DAVID, PAUL A.;SHOEMAKER, ERIC G.;SIGNING DATES FROM 20160525 TO 20160531;REEL/FRAME:045512/0853 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP., ISSUE FEE NOT PAID |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
AS | Assignment |
Owner name: MIZUHO BANK LTD., AS COLLATERAL AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ALLEGRO MICROSYSTEMS, LLC;REEL/FRAME:053957/0620 Effective date: 20200930 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT, NEW YORK Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ALLEGRO MICROSYSTEMS, LLC;REEL/FRAME:053957/0874 Effective date: 20200930 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: ALLEGRO MICROSYSTEMS, LLC, NEW HAMPSHIRE Free format text: RELEASE OF SECURITY INTEREST IN PATENTS (R/F 053957/0620);ASSIGNOR:MIZUHO BANK, LTD., AS COLLATERAL AGENT;REEL/FRAME:064068/0360 Effective date: 20230621 Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS THE COLLATERAL AGENT, MARYLAND Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:ALLEGRO MICROSYSTEMS, LLC;REEL/FRAME:064068/0459 Effective date: 20230621 |
|
AS | Assignment |
Owner name: ALLEGRO MICROSYSTEMS, LLC, NEW HAMPSHIRE Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 053957/FRAME 0874;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT;REEL/FRAME:065420/0572 Effective date: 20231031 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |