US5696790A - Method and apparatus for time dependent data transmission - Google Patents
Method and apparatus for time dependent data transmission Download PDFInfo
- Publication number
- US5696790A US5696790A US08/538,847 US53884795A US5696790A US 5696790 A US5696790 A US 5696790A US 53884795 A US53884795 A US 53884795A US 5696790 A US5696790 A US 5696790A
- Authority
- US
- United States
- Prior art keywords
- signal
- duration
- amplitude
- states
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 14
- 230000005540 biological transmission Effects 0.000 title abstract description 8
- 230000036962 time dependent Effects 0.000 title 1
- 230000007704 transition Effects 0.000 claims abstract description 10
- 230000001788 irregular Effects 0.000 abstract description 8
- 230000007246 mechanism Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/38—Synchronous or start-stop systems, e.g. for Baudot code
- H04L25/40—Transmitting circuits; Receiving circuits
- H04L25/49—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
- H04L25/493—Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems by transition coding, i.e. the time-position or direction of a transition being encoded before transmission
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/02—Digital function generators
- G06F1/025—Digital function generators for functions having two-valued amplitude, e.g. Walsh functions
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L12/2838—Distribution of signals within a home automation network, e.g. involving splitting/multiplexing signals to/from different paths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2803—Home automation networks
- H04L2012/284—Home automation networks characterised by the type of medium used
- H04L2012/2845—Telephone line
Definitions
- the invention relates to the field of encoding and decoding digital data for transmission.
- the amplitude of the received signal is sensed under control of a clock signal synchronized with the transmitter. If the interval for transmitting a bit is T, the maximum frequency of the fundamental is 1/THz. The minimum frequency is also 1/THz, and the time to transmit a bit is T or 1/T bits per second. As will be seen the present invention departs from this technique and in effect, instead of measuring amplitude at a predetermined time, measures time at a predetermined amplitude.
- FIG. 1 illustrates the telephone wiring found in a typical home. Most often the telephone wiring comprises twisted pair lines which connect to a central office at a single connection 10. From connection 10 a plurality of twisted pair lines fan out as shown to numerous phone jacks in the home. For instance, line 11 illustrates 50' of line connected to a phone jack which jack is connected to both a telephone and a computer. Another line 12 is coupled to a computer. A 60' line 13 is connected to a jack 15 which in turn is connected to two other lines. One of these lines is connected to a telephone, computer and printer while the other line is unterminated. One other 14 line is connected to jack 16 which in turn is connected to a telephone.
- LAN local area network
- the twisted pair lines interconnecting these three computers as can be seen have an irregular topology making it difficult to transmit a typical Ethernet or similar signal. Note for instance, at least one of the lines is unterminated while another is terminated in only a telephone. Also the lines themselves may have different characteristics since, for instance, they could have been installed at different times with different qualities of cable.
- the present invention is designed to provide a method and apparatus for allowing the computers and printer of FIG. 1 to operate in a LAN independently and transparently to the operation of ordinary telephone service while sharing the same lines.
- a method for transmitting data where data is transmitted by at least two states comprises using a first signal having a first duration to represent one digital state and a second signal having a second duration different than the first duration to represent a second digital state.
- the first and second signals transition through a predetermined electrical condition such as zero volts for each transmitted data state without a time delay between the first and second signals.
- the signal changes from one polarity to the next for each bit.
- the first signal and second signal have different amplitudes such that the product of the first amplitude and first duration approximately equals the product of the second amplitude and second duration. This assures that there is no DC component.
- the duration of the signals are pseudorandomly dithered to spread the spectrum of the transmitted data thereby reducing the effects on the transmitted signal caused by narrow band signals.
- one of the signals may have half the duration of the other and the zero crossing of the signal is detected. Each time the signal crosses zero volts a receiver determines whether the period between the last crossing and the present crossing is one of the two intervals.
- the intervals may be selected so that signals on networks with irregular topology and other anomalies which would ordinarily not be suitable for more traditional encoding will nonetheless be accurately detected.
- FIG. 1 is a plan view of a home used to illustrate the irregular topology that might be found in such an environment.
- FIG. 2 is a series of waveforms which show the encoding of the present invention.
- FIG. 3 is a block diagram of an encoder used to encode the waveforms illustrated in FIG. 2.
- FIG. 4 illustrates alternate waveforms which may be used with the present invention.
- FIG. 5 is a block diagram of an encoder used to provide the waveforms of FIG. 4.
- FIG. 6 is a block diagram of a decoder used to decode the waveforms of FIG. 4.
- a method and apparatus for encoding and decoding binary data for transmitting and receiving the data particularly in a network having irregular topography as well as other networks is disclosed.
- numerous specific details are set forth such as specific time intervals in order to provide a thorough understanding of the present invention. It will be apparent that the present invention may be practiced without these specific details. In other instances, well-known circuits are shown in block diagram form, in order not to unnecessarily obscure the present invention.
- a digital bit stream comprising "1000110" is shown encoded to illustrate the general teachings of the present invention.
- a binary 1 is encoded with a first signal 21 having a duration of four units (e.g., 16 microseconds) and a binary 0 is encoded with a signal 22 having a duration of two units (e.g., 8 microseconds).
- a transition from one polarity to the other polarity for each binary bit encoded there is a first signal 21 of a first polarity having a duration equal to four units followed by the signal 22 of opposite polarity having a duration, for the example illustrated, of two units.
- a signal 23 which is of opposite polarity of the signal 22, is of two units in duration since it represents a binary 0. This is followed by the signal 24 which is again two units because it represents a binary 0. Following this there are two signals 25 and 26 each of four units in duration and of opposite polarity to one another representing the next two binary 1s in the bit stream. Finally, the signal 27 is shown which represents the final binary 0, this pulse is of opposite polarity to signal 26 and is two units in duration.
- the waveform on line 20 it is a relatively simple task to discern the difference between a signal having a duration of four units versus one having a duration of two units. Even in a network with irregular topology, measuring the duration as opposed to the amplitude of a signal is much easier. For instance, to decode the digital information for the waveform shown on line 20, zero crossings (0 volts) can be detected and a counter used to determine whether four time units or two time units occurred between zero crossings.
- this technique detects a predetermined electrical condition such as 0 volts and then determines the time. Because of noise found in the system, typically a sign change in the derivation of the signal is detected, or other well-known techniques may be used.
- the time can be selected to accommodate the difficulties encountered in a particular network e.g., each unit of the duration shown on line 20 can represent milliseconds as opposed to microseconds for some networks.
- the data rate is data dependent, for example, a string of binary ones will take longer to transmit than a string of binary zeros. While this may have some disadvantages, for instance requiring more buffering of data before transmission, it is not a significant disadvantage when compared to the gains such as no requirement for an absolute clock or time base.
- a zero DC component can be assured by selecting different amplitudes as shown on time line 30 of FIG. 2.
- the waveform on line 30 again represents the encoding of the binary bit stream "100110".
- a binary 1 is represented by a signal of four units in duration and a binary 0 by a signal of two units in duration.
- the amplitudes of the signals representing a binary 1 and the binary 0 are different.
- the amplitude of the signal representing a binary 1 is two units whereas the amplitude of the signal representing a binary 0 is four units.
- the product of the amplitude and duration for the signal representing the binary 1 is equal to the product of the amplitude and duration of the signal representing the binary 0. Since there is a transition from one polarity to the other for each digital signal, the net DC component is always zero for every two signals. That is, specifically referring to the waveform on line 30, the amplitude multiplied by the time interval for the two signals indicated by the arrow 31 are equal, as are the areas indicated by the arrow 32.
- encoding for the bit stream "1000110" is illustrated with a binary 1 represented by a signal having a nominal duration of the four units and a binary 0 by a signal having a nominal duration of two units.
- the duration is randomly modulated; that is, the duration is pseudorandomly increased or decreased by a relatively small amount (e.g., less than one unit for the example shown).
- This pseudorandom increasing and decreasing of the duration is referred to as dithering.
- the dithering has the effect of spreading the frequency spectrum of the signals being transmitted. In so doing, the effect, for example, of an interfering narrow band signal is lessened.
- the signal 41 representing a binary 1 is shortened in duration (e.g, one-half unit).
- the dotted line 42 represents the full four units for the signal 41 to show the amount that the signal 41 is shortened.
- the signal 43 is two units in duration, that is, it is not dithered.
- the signal 44 on the other hand, is longer in duration as indicated by the dotted line 45.
- the following signal 46 representing the binary one is shortened in duration as indicated by the dotted line 47.
- the dithering illustrated on line 40 may be used in conjunction with the "zero DC" waveform shown on line 30 of FIG. 2.
- FIG. 3 illustrates a circuit which may be used to provide the dithered waveform of line 40 of FIG. 2.
- the data to be encoded is coupled to a register 50.
- the register 50 provides buffering to compensate for the differences in data in and data out rates.
- Each data bit to be encoded is coupled on line 59 to a MUX 53.
- the data (binary 1 or binary 0) selects an overflow signal from either the counter 51 or the counter 52.
- the output of the MUX is coupled to a driver 54 which provides the output signal as will be discussed in more detail.
- the two nominal durations for the waveform on line 40 of FIG. 2 are determined by the counters 51 and 52.
- a clock signal on line 60 is coupled to the counters through the gates 56 and 57 as will be described causing the counters to count.
- the MUX selects the overflow signal from one of the two counters. If counter 51 is selected, it overflows after a reset in half the time required for the counter 52 to overflow. Thus, depending on which counter is selected, an overflow will occur in either a first duration or a second duration where one duration is twice the length of the other.
- the duration as mentioned, is selected by whether the register 50 is outputting a binary 1 or a binary 0. (A single counter may be used with a bit inserted into the counter for the shorted duration, this also eliminates the MUX.)
- the clock signal on line 60 is 1 MHz.
- This clock is coupled to one input terminal of AND gate 57.
- the inverting terminal of the AND gate 57 is coupled to a pseudorandom generator 55.
- the output of the AND gate 57 is coupled to one input terminal of an OR gate 56.
- the other input to the OR gate 56 is also coupled to the pseudorandom generator 55.
- the output of the OR gate 56 is used to clock the counters 51 and 52.
- the pseudorandom generator 55 is also coupled to receive the clock signal on line 60. This generator pseudorandomly produces pulses on line 61 which are skewed in time with respect to the clock signal on line 60. In contrast, pseudorandom generator 55 produces pseudorandom pulses on line 62 which are synchronized with the clock signal on line 60.
- a pulse on line 62 acts to block the clock on line 60 from passing through gate 57 causing the counters 51 and 52 to skip a count. This lengthens the signals by one count such as shown on line 40 of FIG. 2. On the other hand, a signal on line 61 causes an extra count in the counters 51 and 52 thereby shortening the duration of the signals.
- the first interval comprises 4 microseconds, the second interval 4.25 microseconds with each additional interval being 0.25 microseconds longer, the longest interval being 7.75 microseconds.
- a first pulse 71 defines the beginning of the first interval.
- pulse 72 indicates the end of the first interval this time is defined as equaling nibble 0000.
- a 7.25 microseconds duration is shown corresponding to the nibble 1101.
- the next duration, defined between the pulses 71 and 74 is 6.25 microseconds, corresponding to the nibble 1001.
- a 7.75 microsecond duration occurs corresponding to the nibble 1111.
- the waveform corresponding to the pulses shown on line 70 is illustrated with the first signal 81 being a positive going signal having a duration of 4 microseconds. This is followed by a change in polarity to the signal 82 which has a duration of 7.25 microseconds. Then the signal 83 with a positive amplitude and a duration of 6.25 microseconds occurs and finally the signal 84 with a negative amplitude and a duration of 7.75 microseconds is shown.
- the amplitudes of the various signals shown on line 80 may be selected so that the duration of a particular signal multiplied by its amplitude is equal to a constant. This eliminates the DC component. Additionally, dithering may be used providing the dithering is relatively small when compared to the 0.25 microsecond difference in times used for distinguishing one signal from the other for the embodiment of FIG. 4.
- a shift register 90 receives the data and a clocking signal.
- the shift register 90 receives the data in serial form and then couples four bits at a time to the first-in-first-out (FIFO) register 91.
- Each nibble corresponds to the bits shown between the pulses on line 70 of FIG. 4.
- the pulse-out generator 92 after counting 4 microseconds additionally counts a number of 0.25 microsecond periods corresponding to the value of the 4 bits.
- the generator 92 receives the 4 MHz clock to enable it to count.
- the receiver of FIG. 6 receives the waveform such as shown on line 80 of FIG. 4 and decodes it.
- the input data is coupled to a deskewing circuit 100 as well as to a carrier detect circuit not shown for detecting the presence of the data carrying signal.
- the deskewing circuit 100 aligns the transitions from one polarity to the next with the clock signal to enable the counter 102 to properly operate.
- a transition of the input signal causes a counter 102 to be loaded, for example with all binary zeros (or all binary ones if the output data from the circuit of FIG. 5 is inverted).
- the counter then counts until the next transition of the received signal is detected. When that transition is detected, the output of the data is coupled to a latch 104.
- the counter 102 is an 8 bit counter.
- the lower 4 bits of the count corresponds to the 4 microseconds minimum interval period (16 counts).
- the latch 104 the first 4 bits are ignored and the remaining 4 bits are coupled to the FIFO 105.
- This FIFO represents the 4 bit code such as shown on line 70 of FIG. 4.
- the encoding and decoding of the present invention may be used in a LAN such as shown in FIG. 1.
- Transmission on this network can be made to be transparent to ordinary telephone signals. Normally the telephone signals including the ringing occurs below 20 KHz.
- each of the nodes connected to the LAN, such as the computer and printer shown in FIG. 1 are coupled through a high pass filter with a pass frequency of 20 KHz, they will be isolated from the normal telephone signals. For example, a simple two pole, two zero high pass filter will only pass approximately 10 millivolts from an inordinately large ringing voltage of 100 volts at 20 Hz.
- the LAN of FIG. 1 may be coupled to one of the computers through a modem operating within the normal telephony voice band so that the LAN within the home of FIG. 1 may communicate through the common carrier network.
- Another advantage of the disclosed encoding/decoding is that the entire mechanism is self clocking, that is for example, no phase lock loop is required at the receiver. Additionally, equalization is much less difficult since the disclosed encoding/decoding need only deal with timing and signal conditions for a relatively short period.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Dc Digital Transmission (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/538,847 US5696790A (en) | 1995-10-04 | 1995-10-04 | Method and apparatus for time dependent data transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/538,847 US5696790A (en) | 1995-10-04 | 1995-10-04 | Method and apparatus for time dependent data transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
US5696790A true US5696790A (en) | 1997-12-09 |
Family
ID=24148670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/538,847 Expired - Lifetime US5696790A (en) | 1995-10-04 | 1995-10-04 | Method and apparatus for time dependent data transmission |
Country Status (1)
Country | Link |
---|---|
US (1) | US5696790A (en) |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999013576A1 (en) * | 1997-09-08 | 1999-03-18 | Tut Systems, Inc. | Method and apparatus for encoding and decoding a bit sequence for transmission over pots wiring |
US5963539A (en) * | 1997-09-08 | 1999-10-05 | Tut Systems, Inc. | Method and apparatus for detecting collisions on a network |
US6087860A (en) * | 1998-10-14 | 2000-07-11 | Advanced Micro Devices, Inc. | Apparatus and method for generating an envelope for data signals using CMOS |
WO2000079731A1 (en) * | 1999-06-21 | 2000-12-28 | Advanced Micro Devices, Inc. | Adaptive energy detector gain control in physical layer transceiver for home telephone wire network |
US6320900B1 (en) | 1998-10-30 | 2001-11-20 | Compaq Computer Corporation | Methods and arrangements for transmitting high speed data over reduced bandwidth communication resources |
EP1175053A2 (en) * | 2000-07-18 | 2002-01-23 | Integrated Memory Logic, Inc. | Inter-chip communication using a combination of transition and level coding |
US6349133B1 (en) | 1998-04-15 | 2002-02-19 | Premisenet Incorporated | Method and system for interfacing a telephony network and a digital data stream |
US6381288B1 (en) | 1998-10-30 | 2002-04-30 | Compaq Information Technologies Group, L.P. | Method and apparatus for recovering data from a differential phase shift keyed signal |
US6393050B1 (en) | 1998-10-30 | 2002-05-21 | Compaq Information Technologies Group, L.P. | Transmit/receive switch for 10BASE-T home network |
US6430199B1 (en) | 1998-03-27 | 2002-08-06 | Telcordia Technologies, Inc. | Method and system for distributing telephone and broadband services over the copper pairs within a service location |
US6470053B1 (en) | 1998-10-30 | 2002-10-22 | Compaq Information Technologies Group, L.P. | Methods and arrangements for transmitting data over twisted pair wire using RF modulation techniques |
US6473252B1 (en) | 1998-12-23 | 2002-10-29 | And Yet, Inc. | Biphasic multiple level storage method |
US6522662B1 (en) | 1998-10-30 | 2003-02-18 | Compaq Information Technologies Group, L.P. | Method and apparatus for providing a 10BASE-T compatible home network over a single twisted-pair phone line |
US6556581B1 (en) | 1998-10-30 | 2003-04-29 | Hewlett-Packard Development Company, L.P. | Ethernet to phase shift key converter |
US6563816B1 (en) | 1998-11-17 | 2003-05-13 | Cisco Technology Inc. | Virtual loop carrier system with gateway protocol mediation |
US6678321B1 (en) | 1998-09-15 | 2004-01-13 | Tut Systems, Inc. | Method and apparatus for transmitting and receiving a symbol over pots wiring using a multi-cycle waveform |
US6721790B1 (en) * | 2000-03-09 | 2004-04-13 | Avinta Communications, Inc | User settable unified workstation identification system |
US6735217B1 (en) | 1998-09-15 | 2004-05-11 | Tut Systems, Inc. | Method and apparatus for detecting collisions on a network using multi-cycle waveform pulses |
US6771774B1 (en) | 1999-12-02 | 2004-08-03 | Tut Systems, Inc. | Filter arrangement for shaping a pulse propagated over pots wiring, and a method of manufacturing the same |
US20050040814A1 (en) * | 2002-01-31 | 2005-02-24 | Ravi Vig | Method and apparatus for providing information from a speed and direction sensor |
US20050078021A1 (en) * | 2003-10-10 | 2005-04-14 | Cohen Daniel S. | Dual phase pulse modulation encoder circuit |
US20050078019A1 (en) * | 2003-10-10 | 2005-04-14 | Cohen Daniel S. | Dual phase pulse modulation system |
US20050078018A1 (en) * | 2003-10-10 | 2005-04-14 | Cohen Daniel S. | Dual phase pulse modulation decoder circuit |
US20050225319A1 (en) * | 2004-04-08 | 2005-10-13 | Bailey James M | Method and apparatus for vibration detection |
US7006523B2 (en) | 1998-07-28 | 2006-02-28 | Serconet Ltd. | Local area network of serial intelligent cells |
US20060208729A1 (en) * | 2005-03-21 | 2006-09-21 | Allegro Microsystems, Inc. | Proximity detector having a sequential flow state machine |
US7164694B1 (en) | 1998-11-17 | 2007-01-16 | Cisco Technology, Inc. | Virtual loop carrier system with gateway protocol mediation |
US7197028B2 (en) | 2000-04-18 | 2007-03-27 | Serconet Ltd. | Telephone communication system over a single telephone line |
US20070253478A1 (en) * | 2004-04-16 | 2007-11-01 | Kongsberg Automotive Ab | Method and System for Transmission of Information |
US7317793B2 (en) | 2003-01-30 | 2008-01-08 | Serconet Ltd | Method and system for providing DC power on local telephone lines |
US7436842B2 (en) | 2001-10-11 | 2008-10-14 | Serconet Ltd. | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US7483524B2 (en) | 1999-07-20 | 2009-01-27 | Serconet, Ltd | Network for telephony and data communication |
US20090066435A1 (en) * | 2007-09-11 | 2009-03-12 | And Yet, Inc. | Time modulation with cosine function |
US7522714B2 (en) | 2000-03-20 | 2009-04-21 | Serconet Ltd. | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US7542554B2 (en) | 2001-07-05 | 2009-06-02 | Serconet, Ltd | Telephone outlet with packet telephony adapter, and a network using same |
US7587001B2 (en) | 2006-01-11 | 2009-09-08 | Serconet Ltd. | Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting |
US7633966B2 (en) | 2000-04-19 | 2009-12-15 | Mosaid Technologies Incorporated | Network combining wired and non-wired segments |
US7656904B2 (en) | 2003-03-13 | 2010-02-02 | Mosaid Technologies Incorporated | Telephone system having multiple distinct sources and accessories therefor |
US20100026279A1 (en) * | 2008-07-31 | 2010-02-04 | Ravi Vig | Apparatus and Method for Providing an Output Signal Indicative of a Speed of Rotation and a Direction of Rotation as a Ferromagnetic Object |
US7686653B2 (en) | 2003-09-07 | 2010-03-30 | Mosaid Technologies Incorporated | Modular outlet |
US20100181993A1 (en) * | 2009-01-19 | 2010-07-22 | Devon Fernandez | Direction detection sensor |
US7848396B1 (en) * | 2004-03-12 | 2010-12-07 | Marvell International Ltd. | Methods, algorithms, software, circuits, receivers, and systems for increasing bandwidth and/or recording density in data communication and data storage systems |
EP2273380A1 (en) * | 2003-08-22 | 2011-01-12 | 4Links Limited | Communication system using embedded synchronisation |
US7873058B2 (en) | 2004-11-08 | 2011-01-18 | Mosaid Technologies Incorporated | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US7912143B1 (en) | 1998-12-23 | 2011-03-22 | And Yet, Inc. | Biphase multiple level communications |
US8175649B2 (en) | 2008-06-20 | 2012-05-08 | Corning Mobileaccess Ltd | Method and system for real time control of an active antenna over a distributed antenna system |
DE102008046136B4 (en) * | 2007-09-07 | 2012-10-18 | Infineon Technologies Ag | Electronic system, and method for transmitting a signal |
US8325759B2 (en) | 2004-05-06 | 2012-12-04 | Corning Mobileaccess Ltd | System and method for carrying a wireless based signal over wiring |
US20120313798A1 (en) * | 2009-07-28 | 2012-12-13 | Ecole Polytechnique Federale De Lausanne | Encoding and Decoding Information |
TWI395427B (en) * | 2009-06-19 | 2013-05-01 | ||
US8582598B2 (en) | 1999-07-07 | 2013-11-12 | Mosaid Technologies Incorporated | Local area network for distributing data communication, sensing and control signals |
US8594133B2 (en) | 2007-10-22 | 2013-11-26 | Corning Mobileaccess Ltd. | Communication system using low bandwidth wires |
US8754640B2 (en) | 2012-06-18 | 2014-06-17 | Allegro Microsystems, Llc | Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal |
US8897215B2 (en) | 2009-02-08 | 2014-11-25 | Corning Optical Communications Wireless Ltd | Communication system using cables carrying ethernet signals |
US9184960B1 (en) | 2014-09-25 | 2015-11-10 | Corning Optical Communications Wireless Ltd | Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
US9329057B2 (en) | 2012-05-31 | 2016-05-03 | Allegro Microsystems, Llc | Gear tooth sensor with peak and threshold detectors |
US9338823B2 (en) | 2012-03-23 | 2016-05-10 | Corning Optical Communications Wireless Ltd | Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
US9719806B2 (en) | 2014-10-31 | 2017-08-01 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a movement of a ferromagnetic target object |
US9720054B2 (en) | 2014-10-31 | 2017-08-01 | Allegro Microsystems, Llc | Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element |
US9810519B2 (en) | 2013-07-19 | 2017-11-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as tooth detectors |
US9817078B2 (en) | 2012-05-10 | 2017-11-14 | Allegro Microsystems Llc | Methods and apparatus for magnetic sensor having integrated coil |
US9823090B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a movement of a target object |
US9823092B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
US10012518B2 (en) | 2016-06-08 | 2018-07-03 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a proximity of an object |
US10041810B2 (en) | 2016-06-08 | 2018-08-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as movement detectors |
US10145908B2 (en) | 2013-07-19 | 2018-12-04 | Allegro Microsystems, Llc | Method and apparatus for magnetic sensor producing a changing magnetic field |
US10260905B2 (en) | 2016-06-08 | 2019-04-16 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors to cancel offset variations |
US10310028B2 (en) | 2017-05-26 | 2019-06-04 | Allegro Microsystems, Llc | Coil actuated pressure sensor |
US10324141B2 (en) | 2017-05-26 | 2019-06-18 | Allegro Microsystems, Llc | Packages for coil actuated position sensors |
US10361890B2 (en) * | 2014-12-04 | 2019-07-23 | Stmicroelectronics (Rousset) Sas | Transmission and reception methods for a binary signal on a serial link |
US10495485B2 (en) | 2016-05-17 | 2019-12-03 | Allegro Microsystems, Llc | Magnetic field sensors and output signal formats for a magnetic field sensor |
US10495700B2 (en) | 2016-01-29 | 2019-12-03 | Allegro Microsystems, Llc | Method and system for providing information about a target object in a formatted output signal |
US10495699B2 (en) | 2013-07-19 | 2019-12-03 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target |
US10641842B2 (en) | 2017-05-26 | 2020-05-05 | Allegro Microsystems, Llc | Targets for coil actuated position sensors |
US10656170B2 (en) | 2018-05-17 | 2020-05-19 | Allegro Microsystems, Llc | Magnetic field sensors and output signal formats for a magnetic field sensor |
US10712403B2 (en) | 2014-10-31 | 2020-07-14 | Allegro Microsystems, Llc | Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element |
US10823586B2 (en) | 2018-12-26 | 2020-11-03 | Allegro Microsystems, Llc | Magnetic field sensor having unequally spaced magnetic field sensing elements |
US10837943B2 (en) | 2017-05-26 | 2020-11-17 | Allegro Microsystems, Llc | Magnetic field sensor with error calculation |
US10866117B2 (en) | 2018-03-01 | 2020-12-15 | Allegro Microsystems, Llc | Magnetic field influence during rotation movement of magnetic target |
US10955306B2 (en) | 2019-04-22 | 2021-03-23 | Allegro Microsystems, Llc | Coil actuated pressure sensor and deformable substrate |
US10986165B2 (en) | 2004-01-13 | 2021-04-20 | May Patents Ltd. | Information device |
US10996289B2 (en) | 2017-05-26 | 2021-05-04 | Allegro Microsystems, Llc | Coil actuated position sensor with reflected magnetic field |
US11029176B2 (en) | 2019-05-07 | 2021-06-08 | Allegro Microsystems, Llc | System and method for vibration detection with no loss of position information using a magnetic field sensor |
US11061084B2 (en) | 2019-03-07 | 2021-07-13 | Allegro Microsystems, Llc | Coil actuated pressure sensor and deflectable substrate |
US11125590B2 (en) | 2019-05-07 | 2021-09-21 | Allegro Microsystems, Llc | System and method for vibration detection with direction change response immunity using a magnetic field sensor |
US11237020B2 (en) | 2019-11-14 | 2022-02-01 | Allegro Microsystems, Llc | Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet |
US11255700B2 (en) | 2018-08-06 | 2022-02-22 | Allegro Microsystems, Llc | Magnetic field sensor |
US11262422B2 (en) | 2020-05-08 | 2022-03-01 | Allegro Microsystems, Llc | Stray-field-immune coil-activated position sensor |
US11280637B2 (en) | 2019-11-14 | 2022-03-22 | Allegro Microsystems, Llc | High performance magnetic angle sensor |
US11428755B2 (en) | 2017-05-26 | 2022-08-30 | Allegro Microsystems, Llc | Coil actuated sensor with sensitivity detection |
US11493361B2 (en) | 2021-02-26 | 2022-11-08 | Allegro Microsystems, Llc | Stray field immune coil-activated sensor |
US11578997B1 (en) | 2021-08-24 | 2023-02-14 | Allegro Microsystems, Llc | Angle sensor using eddy currents |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4817115A (en) * | 1987-02-27 | 1989-03-28 | Telxon Corporation | Encoding and decoding system for electronic data communication system |
-
1995
- 1995-10-04 US US08/538,847 patent/US5696790A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4817115A (en) * | 1987-02-27 | 1989-03-28 | Telxon Corporation | Encoding and decoding system for electronic data communication system |
Cited By (205)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5963595A (en) * | 1997-09-08 | 1999-10-05 | Tut Systems, Inc. | Method and apparatus for encoding and decoding a bit sequence for transmission over POTS wiring |
US5963539A (en) * | 1997-09-08 | 1999-10-05 | Tut Systems, Inc. | Method and apparatus for detecting collisions on a network |
WO1999013576A1 (en) * | 1997-09-08 | 1999-03-18 | Tut Systems, Inc. | Method and apparatus for encoding and decoding a bit sequence for transmission over pots wiring |
US6381213B1 (en) | 1997-09-08 | 2002-04-30 | Tut Systems, Inc. | Method and apparatus for detecting collisions on a network |
US6430199B1 (en) | 1998-03-27 | 2002-08-06 | Telcordia Technologies, Inc. | Method and system for distributing telephone and broadband services over the copper pairs within a service location |
US6349133B1 (en) | 1998-04-15 | 2002-02-19 | Premisenet Incorporated | Method and system for interfacing a telephony network and a digital data stream |
US7852874B2 (en) | 1998-07-28 | 2010-12-14 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US8908673B2 (en) | 1998-07-28 | 2014-12-09 | Conversant Intellectual Property Management Incorporated | Local area network of serial intelligent cells |
US7016368B2 (en) | 1998-07-28 | 2006-03-21 | Serconet, Ltd. | Local area network of serial intelligent cells |
US7653015B2 (en) | 1998-07-28 | 2010-01-26 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US8885660B2 (en) | 1998-07-28 | 2014-11-11 | Conversant Intellectual Property Management Incorporated | Local area network of serial intelligent cells |
US7424031B2 (en) | 1998-07-28 | 2008-09-09 | Serconet, Ltd. | Local area network of serial intelligent cells |
US8885659B2 (en) | 1998-07-28 | 2014-11-11 | Conversant Intellectual Property Management Incorporated | Local area network of serial intelligent cells |
US8325636B2 (en) | 1998-07-28 | 2012-12-04 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US7035280B2 (en) | 1998-07-28 | 2006-04-25 | Serconet Ltd. | Local area network of serial intelligent cells |
US7830858B2 (en) | 1998-07-28 | 2010-11-09 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US8270430B2 (en) | 1998-07-28 | 2012-09-18 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US7978726B2 (en) | 1998-07-28 | 2011-07-12 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US7095756B2 (en) | 1998-07-28 | 2006-08-22 | Serconet, Ltd. | Local area network of serial intelligent cells |
US7221679B2 (en) | 1998-07-28 | 2007-05-22 | Serconet Ltd. | Local area network of serial intelligent cells |
US7965735B2 (en) | 1998-07-28 | 2011-06-21 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US7292600B2 (en) | 1998-07-28 | 2007-11-06 | Serconet Ltd. | Local area network of serial intellegent cells |
US7187695B2 (en) | 1998-07-28 | 2007-03-06 | Serconet Ltd. | Local area network of serial intelligent cells |
US8867523B2 (en) | 1998-07-28 | 2014-10-21 | Conversant Intellectual Property Management Incorporated | Local area network of serial intelligent cells |
US7006523B2 (en) | 1998-07-28 | 2006-02-28 | Serconet Ltd. | Local area network of serial intelligent cells |
US7986708B2 (en) | 1998-07-28 | 2011-07-26 | Mosaid Technologies Incorporated | Local area network of serial intelligent cells |
US6735217B1 (en) | 1998-09-15 | 2004-05-11 | Tut Systems, Inc. | Method and apparatus for detecting collisions on a network using multi-cycle waveform pulses |
US6678321B1 (en) | 1998-09-15 | 2004-01-13 | Tut Systems, Inc. | Method and apparatus for transmitting and receiving a symbol over pots wiring using a multi-cycle waveform |
US6087860A (en) * | 1998-10-14 | 2000-07-11 | Advanced Micro Devices, Inc. | Apparatus and method for generating an envelope for data signals using CMOS |
US6556581B1 (en) | 1998-10-30 | 2003-04-29 | Hewlett-Packard Development Company, L.P. | Ethernet to phase shift key converter |
US6522662B1 (en) | 1998-10-30 | 2003-02-18 | Compaq Information Technologies Group, L.P. | Method and apparatus for providing a 10BASE-T compatible home network over a single twisted-pair phone line |
US6470053B1 (en) | 1998-10-30 | 2002-10-22 | Compaq Information Technologies Group, L.P. | Methods and arrangements for transmitting data over twisted pair wire using RF modulation techniques |
US6393050B1 (en) | 1998-10-30 | 2002-05-21 | Compaq Information Technologies Group, L.P. | Transmit/receive switch for 10BASE-T home network |
US6320900B1 (en) | 1998-10-30 | 2001-11-20 | Compaq Computer Corporation | Methods and arrangements for transmitting high speed data over reduced bandwidth communication resources |
US6381288B1 (en) | 1998-10-30 | 2002-04-30 | Compaq Information Technologies Group, L.P. | Method and apparatus for recovering data from a differential phase shift keyed signal |
US6915521B1 (en) | 1998-11-17 | 2005-07-05 | Cisco Technology, Inc. | Virtual loop carrier system with cobra interface for gateway control |
US6982993B1 (en) | 1998-11-17 | 2006-01-03 | Cisco Technology, Inc. | Virtual loop carrier system with network clock recovery |
US8085787B1 (en) | 1998-11-17 | 2011-12-27 | Cisco Technology, Inc. | Virtual loop carrier system with automatic configuration of ATM endpoints |
US7164694B1 (en) | 1998-11-17 | 2007-01-16 | Cisco Technology, Inc. | Virtual loop carrier system with gateway protocol mediation |
US6563816B1 (en) | 1998-11-17 | 2003-05-13 | Cisco Technology Inc. | Virtual loop carrier system with gateway protocol mediation |
US6731627B1 (en) | 1998-11-17 | 2004-05-04 | Cisco Technology, Inc. | Virtual loop carrier system |
US7912143B1 (en) | 1998-12-23 | 2011-03-22 | And Yet, Inc. | Biphase multiple level communications |
US6473252B1 (en) | 1998-12-23 | 2002-10-29 | And Yet, Inc. | Biphasic multiple level storage method |
US6819760B1 (en) | 1999-06-21 | 2004-11-16 | Advanced Micro Devices, Inc. | Adaptive energy detector gain control in physical layer transceiver for home telephone wire network |
WO2000079731A1 (en) * | 1999-06-21 | 2000-12-28 | Advanced Micro Devices, Inc. | Adaptive energy detector gain control in physical layer transceiver for home telephone wire network |
US8582598B2 (en) | 1999-07-07 | 2013-11-12 | Mosaid Technologies Incorporated | Local area network for distributing data communication, sensing and control signals |
US8929523B2 (en) | 1999-07-20 | 2015-01-06 | Conversant Intellectual Property Management Inc. | Network for telephony and data communication |
US7483524B2 (en) | 1999-07-20 | 2009-01-27 | Serconet, Ltd | Network for telephony and data communication |
US8351582B2 (en) | 1999-07-20 | 2013-01-08 | Mosaid Technologies Incorporated | Network for telephony and data communication |
US7492875B2 (en) | 1999-07-20 | 2009-02-17 | Serconet, Ltd. | Network for telephony and data communication |
US7522713B2 (en) | 1999-07-20 | 2009-04-21 | Serconet, Ltd. | Network for telephony and data communication |
US6771774B1 (en) | 1999-12-02 | 2004-08-03 | Tut Systems, Inc. | Filter arrangement for shaping a pulse propagated over pots wiring, and a method of manufacturing the same |
US6721790B1 (en) * | 2000-03-09 | 2004-04-13 | Avinta Communications, Inc | User settable unified workstation identification system |
US7522714B2 (en) | 2000-03-20 | 2009-04-21 | Serconet Ltd. | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US8363797B2 (en) | 2000-03-20 | 2013-01-29 | Mosaid Technologies Incorporated | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US8855277B2 (en) | 2000-03-20 | 2014-10-07 | Conversant Intellectual Property Managment Incorporated | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US7715534B2 (en) | 2000-03-20 | 2010-05-11 | Mosaid Technologies Incorporated | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
US7197028B2 (en) | 2000-04-18 | 2007-03-27 | Serconet Ltd. | Telephone communication system over a single telephone line |
US7466722B2 (en) | 2000-04-18 | 2008-12-16 | Serconet Ltd | Telephone communication system over a single telephone line |
US8223800B2 (en) | 2000-04-18 | 2012-07-17 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US8000349B2 (en) | 2000-04-18 | 2011-08-16 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US7593394B2 (en) | 2000-04-18 | 2009-09-22 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US8559422B2 (en) | 2000-04-18 | 2013-10-15 | Mosaid Technologies Incorporated | Telephone communication system over a single telephone line |
US7397791B2 (en) | 2000-04-18 | 2008-07-08 | Serconet, Ltd. | Telephone communication system over a single telephone line |
US8873575B2 (en) | 2000-04-19 | 2014-10-28 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US8867506B2 (en) | 2000-04-19 | 2014-10-21 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US8982904B2 (en) | 2000-04-19 | 2015-03-17 | Conversant Intellectual Property Management Inc. | Network combining wired and non-wired segments |
US8873586B2 (en) | 2000-04-19 | 2014-10-28 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US8848725B2 (en) | 2000-04-19 | 2014-09-30 | Conversant Intellectual Property Management Incorporated | Network combining wired and non-wired segments |
US7633966B2 (en) | 2000-04-19 | 2009-12-15 | Mosaid Technologies Incorporated | Network combining wired and non-wired segments |
US8982903B2 (en) | 2000-04-19 | 2015-03-17 | Conversant Intellectual Property Management Inc. | Network combining wired and non-wired segments |
EP1175053A3 (en) * | 2000-07-18 | 2003-10-01 | Integrated Memory Logic, Inc. | Inter-chip communication using a combination of transition and level coding |
EP1175053A2 (en) * | 2000-07-18 | 2002-01-23 | Integrated Memory Logic, Inc. | Inter-chip communication using a combination of transition and level coding |
US7542554B2 (en) | 2001-07-05 | 2009-06-02 | Serconet, Ltd | Telephone outlet with packet telephony adapter, and a network using same |
US7680255B2 (en) | 2001-07-05 | 2010-03-16 | Mosaid Technologies Incorporated | Telephone outlet with packet telephony adaptor, and a network using same |
US8761186B2 (en) | 2001-07-05 | 2014-06-24 | Conversant Intellectual Property Management Incorporated | Telephone outlet with packet telephony adapter, and a network using same |
US7769030B2 (en) | 2001-07-05 | 2010-08-03 | Mosaid Technologies Incorporated | Telephone outlet with packet telephony adapter, and a network using same |
US8472593B2 (en) | 2001-07-05 | 2013-06-25 | Mosaid Technologies Incorporated | Telephone outlet with packet telephony adaptor, and a network using same |
US7889720B2 (en) | 2001-10-11 | 2011-02-15 | Mosaid Technologies Incorporated | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US7860084B2 (en) | 2001-10-11 | 2010-12-28 | Mosaid Technologies Incorporated | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US7953071B2 (en) | 2001-10-11 | 2011-05-31 | Mosaid Technologies Incorporated | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US7436842B2 (en) | 2001-10-11 | 2008-10-14 | Serconet Ltd. | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US7453895B2 (en) | 2001-10-11 | 2008-11-18 | Serconet Ltd | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US7026808B2 (en) * | 2002-01-31 | 2006-04-11 | Allegro Microsystems, Inc. | Method and apparatus for providing information from a speed and direction sensor |
US20050040814A1 (en) * | 2002-01-31 | 2005-02-24 | Ravi Vig | Method and apparatus for providing information from a speed and direction sensor |
US8787562B2 (en) | 2003-01-30 | 2014-07-22 | Conversant Intellectual Property Management Inc. | Method and system for providing DC power on local telephone lines |
US7702095B2 (en) | 2003-01-30 | 2010-04-20 | Mosaid Technologies Incorporated | Method and system for providing DC power on local telephone lines |
US8107618B2 (en) | 2003-01-30 | 2012-01-31 | Mosaid Technologies Incorporated | Method and system for providing DC power on local telephone lines |
US7317793B2 (en) | 2003-01-30 | 2008-01-08 | Serconet Ltd | Method and system for providing DC power on local telephone lines |
US7738453B2 (en) | 2003-03-13 | 2010-06-15 | Mosaid Technologies Incorporated | Telephone system having multiple sources and accessories therefor |
US7656904B2 (en) | 2003-03-13 | 2010-02-02 | Mosaid Technologies Incorporated | Telephone system having multiple distinct sources and accessories therefor |
US8238328B2 (en) | 2003-03-13 | 2012-08-07 | Mosaid Technologies Incorporated | Telephone system having multiple distinct sources and accessories therefor |
US7867035B2 (en) | 2003-07-09 | 2011-01-11 | Mosaid Technologies Incorporated | Modular outlet |
EP2273380A1 (en) * | 2003-08-22 | 2011-01-12 | 4Links Limited | Communication system using embedded synchronisation |
US8092258B2 (en) | 2003-09-07 | 2012-01-10 | Mosaid Technologies Incorporated | Modular outlet |
US7686653B2 (en) | 2003-09-07 | 2010-03-30 | Mosaid Technologies Incorporated | Modular outlet |
US8591264B2 (en) | 2003-09-07 | 2013-11-26 | Mosaid Technologies Incorporated | Modular outlet |
US8360810B2 (en) | 2003-09-07 | 2013-01-29 | Mosaid Technologies Incorporated | Modular outlet |
US8235755B2 (en) | 2003-09-07 | 2012-08-07 | Mosaid Technologies Incorporated | Modular outlet |
WO2005038479A3 (en) * | 2003-10-10 | 2005-12-01 | Atmel Corp | Dual phase pulse modulation decoder circuit |
US20050078018A1 (en) * | 2003-10-10 | 2005-04-14 | Cohen Daniel S. | Dual phase pulse modulation decoder circuit |
WO2005039054A3 (en) * | 2003-10-10 | 2005-08-04 | Atmel Corp | Dual phase pulse modulation encoder circuit |
WO2005036805A3 (en) * | 2003-10-10 | 2005-07-21 | Atmel Corp | Dual phase pulse modulation system |
US7103110B2 (en) * | 2003-10-10 | 2006-09-05 | Atmel Corporation | Dual phase pulse modulation encoder circuit |
US20050078021A1 (en) * | 2003-10-10 | 2005-04-14 | Cohen Daniel S. | Dual phase pulse modulation encoder circuit |
US20050078019A1 (en) * | 2003-10-10 | 2005-04-14 | Cohen Daniel S. | Dual phase pulse modulation system |
WO2005038479A2 (en) * | 2003-10-10 | 2005-04-28 | Atmel Corporation | Dual phase pulse modulation decoder circuit |
US6947493B2 (en) * | 2003-10-10 | 2005-09-20 | Atmel Corporation | Dual phase pulse modulation decoder circuit |
US7260151B2 (en) * | 2003-10-10 | 2007-08-21 | Atmel Corporation | Dual phase pulse modulation system |
US10986165B2 (en) | 2004-01-13 | 2021-04-20 | May Patents Ltd. | Information device |
US10986164B2 (en) | 2004-01-13 | 2021-04-20 | May Patents Ltd. | Information device |
US11032353B2 (en) | 2004-01-13 | 2021-06-08 | May Patents Ltd. | Information device |
US11095708B2 (en) | 2004-01-13 | 2021-08-17 | May Patents Ltd. | Information device |
US7848396B1 (en) * | 2004-03-12 | 2010-12-07 | Marvell International Ltd. | Methods, algorithms, software, circuits, receivers, and systems for increasing bandwidth and/or recording density in data communication and data storage systems |
US7365530B2 (en) | 2004-04-08 | 2008-04-29 | Allegro Microsystems, Inc. | Method and apparatus for vibration detection |
US20090102469A1 (en) * | 2004-04-08 | 2009-04-23 | Bailey James M | Methods and Apparatus for Vibration Detection |
US20090153137A1 (en) * | 2004-04-08 | 2009-06-18 | Bailey James M | Methods and Apparatus for Vibration Detection |
US20080164871A1 (en) * | 2004-04-08 | 2008-07-10 | Bailey James M | Methods and apparatus for vibration detection |
US7592801B2 (en) | 2004-04-08 | 2009-09-22 | Allegro Microsystems, Inc. | Methods and apparatus for vibration detection |
US20050225319A1 (en) * | 2004-04-08 | 2005-10-13 | Bailey James M | Method and apparatus for vibration detection |
US7622914B2 (en) | 2004-04-08 | 2009-11-24 | Allegro Microsystems, Inc. | Methods and apparatus for vibration detection |
US7772838B2 (en) | 2004-04-08 | 2010-08-10 | Allegro Microsystems, Inc. | Methods and apparatus for vibration detection |
US20070253478A1 (en) * | 2004-04-16 | 2007-11-01 | Kongsberg Automotive Ab | Method and System for Transmission of Information |
US8325759B2 (en) | 2004-05-06 | 2012-12-04 | Corning Mobileaccess Ltd | System and method for carrying a wireless based signal over wiring |
US7873058B2 (en) | 2004-11-08 | 2011-01-18 | Mosaid Technologies Incorporated | Outlet with analog signal adapter, a method for use thereof and a network using said outlet |
US20060208729A1 (en) * | 2005-03-21 | 2006-09-21 | Allegro Microsystems, Inc. | Proximity detector having a sequential flow state machine |
US7253614B2 (en) | 2005-03-21 | 2007-08-07 | Allegro Microsystems, Inc. | Proximity detector having a sequential flow state machine |
US7587001B2 (en) | 2006-01-11 | 2009-09-08 | Serconet Ltd. | Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting |
US8184681B2 (en) | 2006-01-11 | 2012-05-22 | Corning Mobileaccess Ltd | Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting |
US7813451B2 (en) | 2006-01-11 | 2010-10-12 | Mobileaccess Networks Ltd. | Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting |
DE102008046136B4 (en) * | 2007-09-07 | 2012-10-18 | Infineon Technologies Ag | Electronic system, and method for transmitting a signal |
US20090066435A1 (en) * | 2007-09-11 | 2009-03-12 | And Yet, Inc. | Time modulation with cosine function |
US8044744B2 (en) | 2007-09-11 | 2011-10-25 | And Yet, Inc. | Time modulation with cosine function |
US8594133B2 (en) | 2007-10-22 | 2013-11-26 | Corning Mobileaccess Ltd. | Communication system using low bandwidth wires |
US9813229B2 (en) | 2007-10-22 | 2017-11-07 | Corning Optical Communications Wireless Ltd | Communication system using low bandwidth wires |
US9549301B2 (en) | 2007-12-17 | 2017-01-17 | Corning Optical Communications Wireless Ltd | Method and system for real time control of an active antenna over a distributed antenna system |
US8175649B2 (en) | 2008-06-20 | 2012-05-08 | Corning Mobileaccess Ltd | Method and system for real time control of an active antenna over a distributed antenna system |
US8994369B2 (en) | 2008-07-31 | 2015-03-31 | Allegro Microsystems, Llc | Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object |
US20100026279A1 (en) * | 2008-07-31 | 2010-02-04 | Ravi Vig | Apparatus and Method for Providing an Output Signal Indicative of a Speed of Rotation and a Direction of Rotation as a Ferromagnetic Object |
US9151771B2 (en) | 2008-07-31 | 2015-10-06 | Allegro Microsystems, Llc | Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object |
US8624588B2 (en) | 2008-07-31 | 2014-01-07 | Allegro Microsystems, Llc | Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation as a ferromagnetic object |
US8022692B2 (en) | 2009-01-19 | 2011-09-20 | Allegro Microsystems, Inc. | Direction detection sensor |
US20100181993A1 (en) * | 2009-01-19 | 2010-07-22 | Devon Fernandez | Direction detection sensor |
US8897215B2 (en) | 2009-02-08 | 2014-11-25 | Corning Optical Communications Wireless Ltd | Communication system using cables carrying ethernet signals |
TWI395427B (en) * | 2009-06-19 | 2013-05-01 | ||
US8941512B2 (en) * | 2009-07-28 | 2015-01-27 | Ecole Polytechnique Federale De Lausanne (Epfl) | Encoding and decoding information |
US20120313798A1 (en) * | 2009-07-28 | 2012-12-13 | Ecole Polytechnique Federale De Lausanne | Encoding and Decoding Information |
US9948329B2 (en) | 2012-03-23 | 2018-04-17 | Corning Optical Communications Wireless, LTD | Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
US10141959B2 (en) | 2012-03-23 | 2018-11-27 | Corning Optical Communications Wireless Ltd | Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
US9338823B2 (en) | 2012-03-23 | 2016-05-10 | Corning Optical Communications Wireless Ltd | Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
US9817078B2 (en) | 2012-05-10 | 2017-11-14 | Allegro Microsystems Llc | Methods and apparatus for magnetic sensor having integrated coil |
US11680996B2 (en) | 2012-05-10 | 2023-06-20 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensor having integrated coil |
US9329057B2 (en) | 2012-05-31 | 2016-05-03 | Allegro Microsystems, Llc | Gear tooth sensor with peak and threshold detectors |
US8754640B2 (en) | 2012-06-18 | 2014-06-17 | Allegro Microsystems, Llc | Magnetic field sensors and related techniques that can provide self-test information in a formatted output signal |
US9810519B2 (en) | 2013-07-19 | 2017-11-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as tooth detectors |
US11313924B2 (en) | 2013-07-19 | 2022-04-26 | Allegro Microsystems, Llc | Method and apparatus for magnetic sensor producing a changing magnetic field |
US12061246B2 (en) | 2013-07-19 | 2024-08-13 | Allegro Microsystems, Llc | Method and apparatus for magnetic sensor producing a changing magnetic field |
US10145908B2 (en) | 2013-07-19 | 2018-12-04 | Allegro Microsystems, Llc | Method and apparatus for magnetic sensor producing a changing magnetic field |
US10254103B2 (en) | 2013-07-19 | 2019-04-09 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as tooth detectors |
US10495699B2 (en) | 2013-07-19 | 2019-12-03 | Allegro Microsystems, Llc | Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target |
US10670672B2 (en) | 2013-07-19 | 2020-06-02 | Allegro Microsystems, Llc | Method and apparatus for magnetic sensor producing a changing magnetic field |
US9515855B2 (en) | 2014-09-25 | 2016-12-06 | Corning Optical Communications Wireless Ltd | Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
US9253003B1 (en) | 2014-09-25 | 2016-02-02 | Corning Optical Communications Wireless Ltd | Frequency shifting a communications signal(S) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
US9184960B1 (en) | 2014-09-25 | 2015-11-10 | Corning Optical Communications Wireless Ltd | Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
US9719806B2 (en) | 2014-10-31 | 2017-08-01 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a movement of a ferromagnetic target object |
US9823092B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
US9720054B2 (en) | 2014-10-31 | 2017-08-01 | Allegro Microsystems, Llc | Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element |
US9823090B2 (en) | 2014-10-31 | 2017-11-21 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a movement of a target object |
US11307054B2 (en) | 2014-10-31 | 2022-04-19 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
US10753768B2 (en) | 2014-10-31 | 2020-08-25 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
US10753769B2 (en) | 2014-10-31 | 2020-08-25 | Allegro Microsystems, Llc | Magnetic field sensor providing a movement detector |
US10712403B2 (en) | 2014-10-31 | 2020-07-14 | Allegro Microsystems, Llc | Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element |
US10616006B2 (en) * | 2014-12-04 | 2020-04-07 | Stmicroelectronics (Rousset) Sas | Transmission and reception methods for a binary signal on a serial link |
US10361890B2 (en) * | 2014-12-04 | 2019-07-23 | Stmicroelectronics (Rousset) Sas | Transmission and reception methods for a binary signal on a serial link |
US10495700B2 (en) | 2016-01-29 | 2019-12-03 | Allegro Microsystems, Llc | Method and system for providing information about a target object in a formatted output signal |
US10495485B2 (en) | 2016-05-17 | 2019-12-03 | Allegro Microsystems, Llc | Magnetic field sensors and output signal formats for a magnetic field sensor |
US10260905B2 (en) | 2016-06-08 | 2019-04-16 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors to cancel offset variations |
US10012518B2 (en) | 2016-06-08 | 2018-07-03 | Allegro Microsystems, Llc | Magnetic field sensor for sensing a proximity of an object |
US10837800B2 (en) | 2016-06-08 | 2020-11-17 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as movement detectors |
US10041810B2 (en) | 2016-06-08 | 2018-08-07 | Allegro Microsystems, Llc | Arrangements for magnetic field sensors that act as movement detectors |
US11768256B2 (en) | 2017-05-26 | 2023-09-26 | Allegro Microsystems, Llc | Coil actuated sensor with sensitivity detection |
US10310028B2 (en) | 2017-05-26 | 2019-06-04 | Allegro Microsystems, Llc | Coil actuated pressure sensor |
US11428755B2 (en) | 2017-05-26 | 2022-08-30 | Allegro Microsystems, Llc | Coil actuated sensor with sensitivity detection |
US10996289B2 (en) | 2017-05-26 | 2021-05-04 | Allegro Microsystems, Llc | Coil actuated position sensor with reflected magnetic field |
US10837943B2 (en) | 2017-05-26 | 2020-11-17 | Allegro Microsystems, Llc | Magnetic field sensor with error calculation |
US11320496B2 (en) | 2017-05-26 | 2022-05-03 | Allegro Microsystems, Llc | Targets for coil actuated position sensors |
US10324141B2 (en) | 2017-05-26 | 2019-06-18 | Allegro Microsystems, Llc | Packages for coil actuated position sensors |
US11073573B2 (en) | 2017-05-26 | 2021-07-27 | Allegro Microsystems, Llc | Packages for coil actuated position sensors |
US10641842B2 (en) | 2017-05-26 | 2020-05-05 | Allegro Microsystems, Llc | Targets for coil actuated position sensors |
US10649042B2 (en) | 2017-05-26 | 2020-05-12 | Allegro Microsystems, Llc | Packages for coil actuated position sensors |
US11313700B2 (en) | 2018-03-01 | 2022-04-26 | Allegro Microsystems, Llc | Magnetic field influence during rotation movement of magnetic target |
US10866117B2 (en) | 2018-03-01 | 2020-12-15 | Allegro Microsystems, Llc | Magnetic field influence during rotation movement of magnetic target |
US10656170B2 (en) | 2018-05-17 | 2020-05-19 | Allegro Microsystems, Llc | Magnetic field sensors and output signal formats for a magnetic field sensor |
US11255700B2 (en) | 2018-08-06 | 2022-02-22 | Allegro Microsystems, Llc | Magnetic field sensor |
US11686599B2 (en) | 2018-08-06 | 2023-06-27 | Allegro Microsystems, Llc | Magnetic field sensor |
US10823586B2 (en) | 2018-12-26 | 2020-11-03 | Allegro Microsystems, Llc | Magnetic field sensor having unequally spaced magnetic field sensing elements |
US11061084B2 (en) | 2019-03-07 | 2021-07-13 | Allegro Microsystems, Llc | Coil actuated pressure sensor and deflectable substrate |
US10955306B2 (en) | 2019-04-22 | 2021-03-23 | Allegro Microsystems, Llc | Coil actuated pressure sensor and deformable substrate |
US11125590B2 (en) | 2019-05-07 | 2021-09-21 | Allegro Microsystems, Llc | System and method for vibration detection with direction change response immunity using a magnetic field sensor |
US11029176B2 (en) | 2019-05-07 | 2021-06-08 | Allegro Microsystems, Llc | System and method for vibration detection with no loss of position information using a magnetic field sensor |
US11237020B2 (en) | 2019-11-14 | 2022-02-01 | Allegro Microsystems, Llc | Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet |
US11280637B2 (en) | 2019-11-14 | 2022-03-22 | Allegro Microsystems, Llc | High performance magnetic angle sensor |
US11262422B2 (en) | 2020-05-08 | 2022-03-01 | Allegro Microsystems, Llc | Stray-field-immune coil-activated position sensor |
US11493361B2 (en) | 2021-02-26 | 2022-11-08 | Allegro Microsystems, Llc | Stray field immune coil-activated sensor |
US11578997B1 (en) | 2021-08-24 | 2023-02-14 | Allegro Microsystems, Llc | Angle sensor using eddy currents |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5696790A (en) | Method and apparatus for time dependent data transmission | |
KR890005366B1 (en) | Alternate mark invert transceiver with switchable detection and digital precompresation | |
CA1198780A (en) | Self-clocking binary receiver | |
US5315299A (en) | Multiplex data communicating apparatus applicable to automotive vehicle | |
US5963595A (en) | Method and apparatus for encoding and decoding a bit sequence for transmission over POTS wiring | |
US5377227A (en) | Adaptive data recovery for spread spectrum systems | |
CN101431390B (en) | Circuit and method for data serial transmission | |
JPH0459819B2 (en) | ||
US7405650B2 (en) | Device with improved serial communication | |
US6031472A (en) | Encoding/detection method for digital data transmitter with a signal having multiple levels | |
EP1897307B1 (en) | Method and apparatus for increasing data transfer rates through a communication channel | |
US6944804B1 (en) | System and method for measuring pseudo pixel error rate | |
US5742135A (en) | System for maintaining polarity synchronization during AMI data transfer | |
US20040235265A1 (en) | System and method for balancing capacitively coupled signal lines | |
EP1649653B1 (en) | System and apparatus for encoding using different waveforms | |
JPH01503345A (en) | Method and apparatus for adaptive equalization of pulse signals | |
US5058131A (en) | Transmitting high-bandwidth signals on coaxial cable | |
US7535964B2 (en) | Self-clocked two-level differential signaling methods and apparatus | |
US20070069927A1 (en) | Method of transmitting a serial bit-stream and electronic transmitter for transmitting a serial bit-stream | |
CN100426679C (en) | Oversampling technique to reduce jitter | |
US7912143B1 (en) | Biphase multiple level communications | |
RU2205445C1 (en) | For data transmission device | |
WO2001061954A1 (en) | Serial communication system | |
RU2197061C2 (en) | Data transmission method | |
US5870437A (en) | Apparatus and method for detecting end of serial bit stream |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: TRANSAMERICA BUSINESS CREDIT CORPORATION, ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNOR:TUT SYSTEMS, INC.;REEL/FRAME:009693/0125 Effective date: 19981218 |
|
AS | Assignment |
Owner name: TUT SYSTEMS, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TUT SYSTEMS, INC.;REEL/FRAME:009731/0593 Effective date: 19990104 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNOR:TUT SYSTEMS, INC.;REEL/FRAME:016069/0834 Effective date: 20040923 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REFU | Refund |
Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R2553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, IL Free format text: SECURITY AGREEMENT;ASSIGNORS:ARRIS GROUP, INC.;ARRIS ENTERPRISES, INC.;ARRIS SOLUTIONS, INC.;AND OTHERS;REEL/FRAME:030498/0023 Effective date: 20130417 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, ILLINOIS Free format text: SECURITY AGREEMENT;ASSIGNORS:ARRIS GROUP, INC.;ARRIS ENTERPRISES, INC.;ARRIS SOLUTIONS, INC.;AND OTHERS;REEL/FRAME:030498/0023 Effective date: 20130417 |
|
AS | Assignment |
Owner name: ARRIS ENTERPRISES, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARRIS TECHNOLOGY, INC;REEL/FRAME:037328/0341 Effective date: 20151214 |
|
AS | Assignment |
Owner name: ACADIA AIC, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: 4HOME, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: CCE SOFTWARE LLC, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: BIG BAND NETWORKS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: GENERAL INSTRUMENT AUTHORIZATION SERVICES, INC., P Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: GENERAL INSTRUMENT CORPORATION, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: ARRIS SOLUTIONS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: NETOPIA, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: ARRIS ENTERPRISES, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: IMEDIA CORPORATION, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: ARRIS GROUP, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: ARRIS KOREA, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: BROADBUS TECHNOLOGIES, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: ARRIS HOLDINGS CORP. OF ILLINOIS, INC., PENNSYLVAN Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: GIC INTERNATIONAL HOLDCO LLC, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: JERROLD DC RADIO, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: GIC INTERNATIONAL CAPITAL LLC, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: MOTOROLA WIRELINE NETWORKS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: MODULUS VIDEO, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: SUNUP DESIGN SYSTEMS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: POWER GUARD, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: UCENTRIC SYSTEMS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: AEROCAST, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: QUANTUM BRIDGE COMMUNICATIONS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: SETJAM, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: NEXTLEVEL SYSTEMS (PUERTO RICO), INC., PENNSYLVANI Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: LEAPSTONE SYSTEMS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: GENERAL INSTRUMENT INTERNATIONAL HOLDINGS, INC., P Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: THE GI REALTY TRUST 1996, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: TEXSCAN CORPORATION, PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: GENERAL INSTRUMENT AUTHORIZATION SERVICES, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: GENERAL INSTRUMENT INTERNATIONAL HOLDINGS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: NEXTLEVEL SYSTEMS (PUERTO RICO), INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 Owner name: ARRIS HOLDINGS CORP. OF ILLINOIS, INC., PENNSYLVANIA Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:048825/0294 Effective date: 20190404 |
|
AS | Assignment |
Owner name: ARRIS ENTERPRISES, INC., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ARRIS TECHNOLOGY, INC.;REEL/FRAME:060791/0583 Effective date: 20151214 |