US12115339B2 - Interactive guidance for medical devices - Google Patents
Interactive guidance for medical devices Download PDFInfo
- Publication number
- US12115339B2 US12115339B2 US17/930,391 US202217930391A US12115339B2 US 12115339 B2 US12115339 B2 US 12115339B2 US 202217930391 A US202217930391 A US 202217930391A US 12115339 B2 US12115339 B2 US 12115339B2
- Authority
- US
- United States
- Prior art keywords
- user interface
- medical device
- user
- guidance
- application
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000002452 interceptive effect Effects 0.000 title abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 58
- 239000012530 fluid Substances 0.000 claims description 57
- 230000009471 action Effects 0.000 claims description 28
- 238000001802 infusion Methods 0.000 description 182
- 238000004891 communication Methods 0.000 description 35
- 230000008569 process Effects 0.000 description 30
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 24
- 230000004044 response Effects 0.000 description 22
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 21
- 239000008103 glucose Substances 0.000 description 21
- 229940079593 drug Drugs 0.000 description 13
- 239000003814 drug Substances 0.000 description 13
- 102000004877 Insulin Human genes 0.000 description 12
- 108090001061 Insulin Proteins 0.000 description 12
- 229940125396 insulin Drugs 0.000 description 12
- 238000012545 processing Methods 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000008280 blood Substances 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000004962 physiological condition Effects 0.000 description 6
- 238000013500 data storage Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 235000012054 meals Nutrition 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000011394 anticancer treatment Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000009920 chelation Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002483 medication Methods 0.000 description 2
- 229940124583 pain medication Drugs 0.000 description 2
- 208000002815 pulmonary hypertension Diseases 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 235000021074 carbohydrate intake Nutrition 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000006362 insulin response pathway Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M2005/14208—Pressure infusion, e.g. using pumps with a programmable infusion control system, characterised by the infusion program
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3303—Using a biosensor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3546—Range
- A61M2205/3561—Range local, e.g. within room or hospital
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3584—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3592—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/52—General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
- A61M2230/201—Glucose concentration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/172—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/172—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
- A61M5/1723—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/10—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
- G16H20/17—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
Definitions
- Control schemes have been developed that allow insulin infusion pumps to monitor and regulate a user's blood glucose level in a substantially continuous and autonomous manner.
- regulating blood glucose level is still complicated by variations in a user's individual insulin response and daily activities (e.g., exercise, carbohydrate consumption, bolus administration, and the like) in conjunction with variations associated with the devices or components used to implement continuous glucose monitoring and related controls, and potentially other factors that may contribute to variations, uncertainty, or otherwise impair accuracy or reliability. Since many of the variables influencing glucose regulation and control may often be dynamically or periodically changing, some user involvement with the infusion pump may be desirable to achieve the desired performance and outcomes.
- Modern devices may incorporate or support any number of potential features as well as utilizing various user interface(s), which may be unique to a particular device. Therefore, it is desirable for device manufacturers to provide additional consumer education.
- product manuals or guides documenting the various aspects of the device were provided. For some users, printed documentation can be disfavored and neglected.
- medical devices may not be as equipped as other computer devices for providing consumer education features electronically. Though customer service or other manufacturer support may be available by phone or email, many users tend to find invoking such services to be time consuming and inconvenient. Accordingly, there is a need to provide consumer education in a manner that is simple, convenient, and efficient to enable maximizing device performance for optimal patient outcomes.
- the techniques may be practiced using a processor-implemented method; a system comprising one or more processors and one or more processor-readable media; and/or one or more non-transitory processor-readable media.
- FIG. 1 depicts an exemplary embodiment of a patient guidance system
- FIG. 2 is a flow diagram of an exemplary interactive guidance process suitable for use with the patient guidance system of FIG. 1 in one or more exemplary embodiments;
- FIGS. 3 - 8 depict a sequence of graphical user interface displays that may be presented in conjunction with the interactive guidance process of FIG. 2 in one embodiment
- FIGS. 9 - 10 depict another sequence of graphical user interface displays that may be presented in conjunction with the interactive guidance process of FIG. 2 in another embodiment
- FIG. 11 depicts an exemplary embodiment of an infusion system
- FIG. 12 depicts a plan view of an exemplary embodiment of a fluid infusion device suitable for use in the infusion system of FIG. 11 ;
- FIG. 13 is an exploded perspective view of the fluid infusion device of FIG. 12 ;
- FIG. 14 is a cross-sectional view of the fluid infusion device of FIGS. 12 - 13 as viewed along line 14 - 14 in FIG. 13 when assembled with a reservoir inserted in the infusion device;
- FIG. 15 is a block diagram of an exemplary medical device suitable for use in conjunction with the interactive guidance process of FIG. 2 in accordance with one or more exemplary embodiments.
- Exemplary embodiments of the subject matter described herein are implemented in conjunction with medical devices, such as portable electronic medical devices. Although many different applications are possible, the following description focuses on embodiments that incorporate a fluid infusion device (or infusion pump) as part of an infusion system deployment. For the sake of brevity, conventional techniques related to infusion system operation, insulin pump and/or infusion set operation, and other functional aspects of the systems (and the individual operating components of the systems) may not be described in detail here. Examples of infusion pumps may be of the type described in, but not limited to, U.S. Pat. Nos.
- a fluid infusion device includes a motor or other actuation arrangement that is operable to linearly displace a plunger (or stopper) of a reservoir provided within the fluid infusion device to deliver a dosage of fluid, such as insulin, to the body of a user.
- Dosage commands that govern operation of the motor may be generated in an automated manner in accordance with the delivery control scheme associated with a particular operating mode, and the dosage commands may be generated in a manner that is influenced by a current (or most recent) measurement of a physiological condition in the body of the user.
- dosage commands may be generated based on a difference between a current (or most recent) measurement of the interstitial fluid glucose level in the body of the user and a target (or reference) glucose value.
- the rate of infusion may vary as the difference between a current measurement value and the target measurement value fluctuates.
- the subject matter is described herein in the context of the infused fluid being insulin for regulating a glucose level of a user (or patient); however, it should be appreciated that many other fluids may be administered through infusion, and the subject matter described herein is not necessarily limited to use with insulin.
- Exemplary embodiments described herein generally relate to systems and methods of interactively providing guidance information pertaining to a medical device for review or action by a user on an auxiliary device, such as a computer, a smartphone, or the like, to help facilitate the configuration or operation of various features of a medical device.
- the auxiliary device identifies or otherwise determines the user's objective associated with the medical device, such as, for example, what the user wants to accomplish using the medical device, what aspect of the medical device the user has questions about, or the like.
- the auxiliary device also obtains, from the medical device, status information that characterizes, describes, or otherwise corresponds to a current state of a user interface of the medical device.
- the user interface status information may indicate a current graphical user interface (GUI) displayed on a display of the medical device and a current selection or position of a user input element on the display.
- GUI graphical user interface
- the guidance information indicative of the user actions for accomplishing the user's objective is determined and presented or otherwise provided on a display associated with the auxiliary device for review by the user.
- the user may concurrently view the guidance information for accomplishing the objective presented on the auxiliary device while interacting with the medical device in accordance with the guidance information.
- the auxiliary device and the medical device are paired over a communications network, so that the medical device may upload, push, or otherwise transmit updated user interface status information to the auxiliary device substantially in real-time in response to a user input or other interaction with the medical device.
- the guidance information presented on the auxiliary device is dynamically updated to reflect how the user input influenced the user actions for accomplishing the user's objective from the updated user interface state.
- the guidance information on the auxiliary device may be dynamically updated substantially concurrently, allowing the user to move back and forth across displays seamlessly.
- the auxiliary device also obtains operational settings or other device configuration information from the medical device to provide guidance information consistent with the current device setup or other user- or patient-specific configurations. For example, if the user's objective is to administer a bolus using the infusion device, the operational settings information obtained by the auxiliary device may indicate that a bolus wizard feature of the infusion device has not been setup, in which case the guidance information may provide instructions for how to configure or setup the bolus wizard. Conversely, when the operational settings information indicates the bolus wizard feature has been setup and is currently enabled, the guidance information may provide instructions for utilizing the bolus wizard.
- the guidance information may instruct the user for configuring and enabling such features.
- the provided guidance information does not pertain to device features or operating modes that the user has not enabled, configured, or otherwise activated.
- the user may be provided only with guidance information pertinent to both the current device configuration and the user's objective. As such, providing potentially non-pertinent or non-actionable information is avoided, which improves the user experience.
- FIG. 1 depicts an exemplary embodiment of a patient guidance system 100 .
- the patient guidance system 100 includes an infusion device 102 communicatively coupled to an auxiliary device 106 via a network 110 .
- the auxiliary device 106 supports an application 108 that generates and provides guidance information on a display associated with the auxiliary device 108 that includes instructions or other indication of user actions for accomplishing an objective associated with the infusion device 102 based on that objective and the current user interface status for the infusion device 102 received via the network 110 .
- the infusion device 102 is also communicatively coupled to a sensing arrangement 104 to obtain measurement data indicative of a physiological condition in the body of a patient, such as sensor glucose measurement values.
- the infusion device 102 operates autonomously to regulate the patient's glucose level based on the sensor glucose measurement values received from the sensing arrangement 104 .
- the auxiliary device 106 represents an electronic device capable of communicating with the infusion device 102 via communications network 110 .
- the network 110 is realized as a Bluetooth network, a ZigBee network, a wireless local area network (WLAN), or another suitable personal area network or local area network (LAN). That said, in other embodiments, the infusion device 102 and the auxiliary device 106 may communicate via a direct communications interface, such as a wire, cable, infrared, or some other short range communications medium.
- the auxiliary device 106 may be realized as any sort of electronic device capable of communicating with the infusion device 102 via network 110 , such as a mobile telephone, a smartphone, a laptop or notebook computer, a tablet computer, a desktop computer, a personal digital assistant, or the like.
- the auxiliary device 106 may alternatively be referred to herein as a client device.
- the client device 106 includes or is coupled to a display device, such as a monitor, screen, or another conventional electronic display, capable of graphically presenting data and/or information.
- the client device 106 also includes or is otherwise associated with a user input device, such as a keyboard, a mouse, a touchscreen, or the like, capable of receiving input data and/or other information from the user of the client device 106 .
- a user manipulates the client device 106 to execute a client application 108 that communicates with the infusion device 102 via the network 110 using a networking protocol.
- the client application 108 supports establishing a communications session with the infusion device 102 on the network 110 and receiving data and/or information from the infusion device 102 via the communications session.
- the infusion device 102 may execute or otherwise implement a corresponding application or process that supports establishing the communications session with the client application 108 .
- the client application 108 generally represents a software module or another feature that is generated or otherwise implemented by the client device 106 to support the processes described herein.
- the client device 106 includes a processing system and a data storage element (or memory) capable of storing programming instructions for execution by the processing system, that, when read and executed, cause processing system to create, generate, or otherwise facilitate the client application 108 and perform or otherwise support the processes, tasks, operations, and/or functions described herein.
- the processing system may be implemented using any suitable processing system and/or device, such as, for example, one or more processors, central processing units (CPUs), controllers, microprocessors, microcontrollers, processing cores and/or other hardware computing resources configured to support the operation of the processing system described herein.
- the data storage element or memory may be realized as a random access memory (RAM), read only memory (ROM), flash memory, magnetic or optical mass storage, or any other suitable non-transitory short or long term data storage or other computer-readable media, and/or any suitable combination thereof.
- RAM random access memory
- ROM read only memory
- flash memory magnetic or optical mass storage, or any other suitable non-transitory short or long term data storage or other computer-readable media, and/or any suitable combination thereof.
- the infusion device 102 and the client device 106 establish an association (or pairing) with one another over the network 110 to support subsequently establishing a peer-to-peer communication session between the infusion device 102 and the client device 106 via the network 110 .
- the network 110 is realized as a Bluetooth network, wherein the infusion device 102 and the client device 106 are paired with one another (e.g., by obtaining and storing network identification information for one another) by performing a discovery procedure or another suitable pairing procedure.
- the pairing information obtained during the discovery procedure allows either of the infusion device 102 or the client device 106 to initiate the establishment of a secure peer-to-peer communication session via the network 110 .
- the client application 108 is configured to store or otherwise maintain an address and/or other identification information for a remote device 114 on another network 112 .
- the second network 112 may be physically and/or logically distinct from the network 110 , such as, for example, the Internet, a cellular network, a wide area network (WAN), or the like.
- the remote device 114 generally represents a computing device that includes or otherwise implements a support application 116 configured to receive or otherwise obtain the current user interface status information for the infusion device 102 and the current user objective from the client application 108 and present the information to another user operating the remote device 114 for analysis.
- the remote device 114 may be utilized by customer service personnel to provide customer support in the event the patient or user of the client device 108 is having difficulty accomplishing his or her objective with respect to the infusion device 102 , as described in greater detail below in the context of FIG. 2 .
- the remote device 114 may reside at a location that is physically distinct and/or separate from the infusion device 102 , such as, for example, at a facility that is owned and/or operated by or otherwise affiliated with a manufacturer of the infusion device 102 .
- FIG. 1 depicts a simplified representation of a patient guidance system 100 for purposes of explanation and is not intended to limit the subject matter described herein in any way.
- one or more of the devices 102 , 104 , 106 , 114 may be absent from the patient guidance system 100 .
- FIG. 1 depicts a single sensing arrangement 104
- embodiments of the patient guidance system 100 may include multiple different sensing arrangements, which may be configured to sense, measure, or otherwise quantify any number of conditions or characteristics.
- multiple instances of a glucose sensing arrangement 104 may be deployed for redundancy or other purposes (e.g., averaging or other statistical operations).
- additional sensing arrangements 104 may be deployed to measure different physiological conditions of the patient, such as, for example, the patient's heart rate, oxygen levels, or the like.
- the client application 108 may determine what the patient's objective is based on the current state of the infusion device 102 . For example, when the patient manipulates the client device 106 to initiate or open the client application 108 , the client application 108 may establish a communications session with the infusion device 102 via the network 110 , obtain information characterizing the current device state from the infusion device 102 via the network 110 , and then determine a likely patient objective based on the current device state. In this regard, if there is an active alert or notification presented to generated by the infusion device 102 , the client application 108 may determine the patient's objective is to resolve or understand the current alert or notification.
- the client application 108 may determine the patient's objective is to enable or resume delivery. It should be noted that are numerous different potential device statuses and corresponding objectives that may be determined based thereon, and the subject matter described herein is not limited to any particular example described herein.
- the client application 108 may determine what the patient's objective is based on a GUI element selected within the client application 108 .
- the client application 108 may include a selectable GUI element for activating a help feature, and thereby indicate a patient objective indicative of a desire to obtain explanatory information or other help understanding the GUI display currently presented by the infusion device 102 .
- the interactive guidance process 200 continues by obtaining status information indicative of the current state of the display on the medical device, the current state of the user input element(s) associated with the medical device, and the current operational settings or configuration of the medical device (tasks 204 , 206 , 208 ).
- the client application 108 receives or otherwise obtains, from the infusion device 102 via the network 110 , information or data that indicates, identifies, or otherwise describes the current screen, menu, or other GUI display presented on the infusion device 102 .
- the client application 108 also receives or obtains information that indicates or identifies the state of a user input selection (or a mouse, icon, or other graphical representation thereof) on the screen, menu, or other GUI display presented on the infusion device 102 .
- the client application 108 may also obtain information pertaining to preceding user inputs or the sequence of user input selections made prior to performing the interactive guidance process 200 . Additionally, the client application 108 obtains settings or configuration data stored or otherwise maintained onboard the infusion device 102 pertaining to the various modes, features, or other patient-specific or patient-configurable operations supported by the infusion device 102 .
- the current device settings information may indicate the modes or features supported by the infusion device 102 that have been enabled, activated, or configured, which modes or features supported by the infusion device 102 that have been disabled or deactivated, which patient-specific control parameters, variables, or other patient settings for which values have been defined, entered or otherwise provided, and which patient-specific control parameters, variables, or other patient settings for which no values are maintained by the infusion device 102 .
- the interactive guidance process 200 Based on the user's objective, the current user interface status, and the current device settings, the interactive guidance process 200 generates or otherwise provides a guidance GUI display on the auxiliary device that indicates or otherwise explains how the user can achieve the objective given the current user interface status and the current device settings (task 210 ).
- the guidance GUI display on the client device 106 may provide one or more instructions or actions that the user can take from the current GUI display on the infusion device 102 given the current state of the user input(s) associated with the infusion device 102 and the current infusion device settings.
- the guidance information provided by the application 108 on the client device 106 is consistent with (or context-sensitive to) both the current infusion device operational settings and the current patient-specific settings maintained by the infusion device 102 , while also being context-sensitive with respect to the user interfaces of the infusion device 102 to reflect the current GUI display on the infusion device 102 and current state of user interaction with respect to that GUI display on the infusion device 102 .
- the guidance information is not incompatible or inconsistent with current settings maintained by the infusion device 102 , and is also not incompatible or inconsistent with the current user interface status of the infusion device 102 .
- the interactive guidance process 200 After initially providing guidance information, the interactive guidance process 200 continues by monitoring or otherwise waiting for changes in the user interface state of the medical device, an in response to a change in the user interface state, the interactive guidance process 200 receives or otherwise obtains updated user interface status information from the medical device and dynamically updates the guidance information to reflect the change in user interface state (tasks 210 , 212 , 214 ).
- the interactive guidance process 200 receives or otherwise obtains updated user interface status information from the medical device and dynamically updates the guidance information to reflect the change in user interface state (tasks 210 , 212 , 214 ).
- the interactive guidance process 200 receives or otherwise obtains updated user interface status information from the medical device and dynamically updates the guidance information to reflect the change in user interface state (tasks 210 , 212 , 214 ).
- the corresponding updated status information characterizing the state or location of the user input element(s) associated with the infusion device 102 as well as the current display state of the infusion device 102 is automatically provided to the client application 108
- the loop defined by tasks 210 , 212 , 214 and 216 repeats to dynamically update the guidance GUI display on the client device 106 substantially in real-time as the patient or user interacts with the infusion device 102 until the original objective is accomplished.
- the client application 108 may update the GUI display on the client device 106 to reflect the objective being achieved or to revert back to a default or initial GUI display associated with the client application 108 (e.g., a home page or other landing page).
- the client application 108 may store or otherwise maintain an address and/or other identification information for the remote device 116 on the second network 112 to support establishing a secure communications session over the network 112 for uploading or otherwise transmitting information characterizing the current user objective, the current state of the display on the infusion device 102 , the current state of the user input element(s) associated with the infusion device 102 , and the current settings or configuration of the infusion device 102 .
- the client application 108 may be adapted to allow the user of the client device 106 to input or otherwise provide questions that the user would like answered or otherwise explain the user's perception of the current situation and/or what the user would like to accomplish.
- the client application 108 may include a GUI element (e.g., a button or the like) that enables the user of the client device 106 to initiate a telephone call, a video call, or the like with a user of the remote device 116 .
- a GUI element e.g., a button or the like
- the interactive guidance process 200 may update the guidance GUI display based on feedback received from the remote device (task 222 ).
- the client application 108 may generate or otherwise provide the feedback received from the support application 116 on the guidance GUI display in lieu of the previously presented guidance information or on a separate GUI display (e.g., a pop-up window).
- the support session may be dynamically updated in a similar manner as described above in the context of the loop defined by tasks 210 , 212 , 214 and 216 .
- updated status information from the infusion device 102 may be automatically pushed or uploaded to the support application 118 on the remote device 116 by the client application 108 (e.g., tasks 214 , 220 ), thereby enabling the user at the remote device 116 to monitor the state of the infusion device 102 substantially in real-time as the user interacts with the infusion device 102 and responds to the feedback from the remote device 116 .
- the user of the support application 118 may provide updated feedback or guidance to the client application 108 , which, in turn is presented on the client device 106 (e.g., tasks 220 , 222 ).
- FIGS. 3 - 8 depict an exemplary sequence of GUI displays that may be presented on an infusion device 302 (e.g., infusion device 102 ) and a paired auxiliary device 306 (e.g., client device 106 ) having a guidance application (e.g., client application 108 ) supporting the interactive guidance process 200 of FIG. 2 executing thereon.
- the infusion device 302 includes a display 326 (e.g., display 1226 ) and user input elements 332 , 334 (e.g., user interface elements 1232 , 1234 ) that allow a user to navigate and interact with the GUI displays presented on the display 326 .
- the client device 306 also similarly includes a display having a guidance GUI display 308 generated by the client application 108 presented thereon.
- FIG. 3 depicts a scenario where the infusion device 302 is presenting the main or primary GUI display 304 for the infusion device 302 (e.g., the “Home Screen”).
- the main GUI display 304 may include standard graphical icons for the current date, time, and other physical device status information (e.g., battery level, network connectivity, fluid remaining in the reservoir, and the like) along with graphical representations of the current state of the physiological condition in the body of the user based on measurement data received from a sensor (e.g., sensing arrangement 104 ).
- a sensor e.g., sensing arrangement 104
- the client application 108 may generate an initial GUI display 308 that enables a user to input or otherwise provide indication of his or her objective with respect to the infusion device 302 .
- the initial GUI display 308 may include a list 310 of potential objectives that are selectable by the user.
- the client application 108 revises the user objective to enabling the bolus wizard on the infusion device 302 and then generates an updated guidance GUI display 508 including a list or sequence of actions for the user to take using the input elements 332 , 334 of the infusion device 302 to achieve the objective of enabling the bolus wizard feature.
- the updated guidance GUI display 508 includes a list 510 of user actions ordered sequentially for reaching the bolus wizard setup screen(s) from the “Home Screen.”
- the guidance GUI display 508 indicates which user input elements 332 , 334 on the infusion device 302 should be actuated or manipulated by the user, the ordered sequence in which those user input elements 332 , 334 should be actuated, and the number of times a given user input element 332 , 334 should be actuated before moving on to another user input element 332 , 334 or the next action of the sequence.
- a graphical indicia 512 is also presented on the list 510 at the location of the entry for the step in the sequence that the user currently needs to perform.
- entries that have been performed may be graphically deemphasized to reflect their performance and further indicate, to the user, where the user resides within the sequence of actions.
- the first entry in the list 510 for navigating to the “Home Screen” is graphically deemphasized to reflect the current display status of the display 326 and indicate, to the user, where the user resides within the sequence of actions.
- updated user interface status information is automatically pushed from the infusion device 302 to the client application 108 on the client device 306 for dynamically updating the GUI display.
- the infusion device 302 in response to the user actuating the center button on the directional pad 334 when the Home Screen GUI display 304 is presented, the infusion device 302 updates the display 326 to present the Main Menu GUI display 604 and automatically provides updated status information to the client application 108 on the client device 306 that indicates the center button on the directional pad 334 was actuated and that the Main Menu GUI display 604 is currently presented.
- the client application 108 dynamically generates an updated guidance GUI display 608 that reflects the updated user interface status.
- the second entry in the list 510 for navigating to the “Main Menu” is graphically deemphasized to reflect the current display status of the display 326 and the location of the graphical indicia 512 on the list 510 is updated indicate that the user is now on the third entry within the sequence of actions.
- the entry for navigating to the “Main Menu” is updated to reflect a different user action or different user input element 332 , 334 for reverting back to the preceding GUI display.
- the infusion device 302 in response to the user manipulating the directional pad 334 to navigate through the Main Menu GUI display 604 , the infusion device 302 automatically provides updated user interface status information to the client application 108 that indicates the current user input selection location 704 within the Main Menu GUI display 604 .
- the client application 108 dynamically generates an updated guidance GUI display 708 that reflects a decreased number of user actions with respect to the directional pad 334 for achieving the user's objective from the current user input state 704 .
- the infusion device 302 automatically provides updated user interface status information to the client application 108 .
- the client application 108 dynamically generates an updated guidance GUI display 808 to reflect a different user action.
- the third entry in the list 510 for navigating to the “Options Menu” is graphically deemphasized to indicate that the user is now on the fourth entry within the sequence of actions as well as being updated to reflect a different user action or different user input element 332 , 334 for reverting back to the preceding Main Menu GUI display 604 from the Options Menu GUI display in a similar manner as described above.
- the position of the graphical indicia 512 within the list 510 is also updated to horizontally align with the fourth entry in the list 510 .
- the third entry in the list 510 for navigating to the “Options Menu” is updated (relative to guidance GUI displays 508 , 608 , 708 ) to reflect that the user only needs to actuate the up direction of the directional pad 334 to navigate to the Options Menu GUI display. In this manner, the likelihood of the user proceeding to an incorrect GUI display may be reduced.
- FIGS. 9 - 10 depict another exemplary sequence of GUI displays that may be presented on the client device 306 in concert with the infusion device 302 and the interactive guidance process 200 of FIG. 2 .
- the client application 108 accesses the current device settings information obtained from the infusion device 302 (e.g., task 208 ) to verify or otherwise determine whether a bolus wizard feature has been configured or enabled by the user.
- the client application 108 in response to determining that the current device settings indicate the bolus wizard is configured and enabled, the client application 108 generates a guidance GUI display 908 that enables the user to input or otherwise provide indication of whether he or she would like to utilize the bolus wizard or whether he or she would like to bolus manually.
- the client application 108 in response to selection of a GUI element 912 for using the bolus wizard, the client application 108 generates an updated guidance GUI display 1008 to reflect the user objective of using the bolus wizard.
- the updated guidance GUI display 1008 includes a list 1010 of user actions ordered sequentially for using the bolus wizard.
- FIG. 10 illustrates a list 1010 of user actions ordered sequentially for using the bolus wizard.
- FIG. 10 depicts a scenario after the user has navigated from the Home Screen GUI display 304 to the Main Menu GUI display 604 , with the first entry in the list 1010 for navigating to the “Home Screen” and the second entry in the list 1010 for navigating to the “Main Menu” being graphically deemphasized to reflect the current state of the display 326 in concert with the position of the graphical indicia 512 being updated based on the updated user input selection location 1004 to indicate the user is on the third entry in the list 1010 .
- the list 1010 of actions presented on the guidance GUI display 1008 instructs the user how to further navigate from the Main Menu GUI display to the Bolus Menu GUI display, into the Bolus Wizard GUI display, and from there, what inputs the user should provide and the order in which the user should provide them to achieve delivery of a bolus of fluid using the bolus wizard feature.
- the interactive guidance process 200 may be similarly employed for resolving active alerts, alarms, notifications, or other aspects of the infusion device 102 , 302 .
- the client application 108 may automatically determine the patient's objective is to resolve or understand the current alert or notification and provide a corresponding guidance GUI display that explains the sequence of user actions that may be taken to resolve the alert.
- the guidance GUI display may also include one or more GUI elements that allow the user to change or modify the user objective from what was automatically determined by the client application 108 based on the current display status information.
- the client application 108 may automatically determine the patient's objective is to enable or resume that particular operating mode and provide a corresponding guidance GUI display, which, in turn, may be modified or changed by the user if desired.
- the client application 108 may provide a guidance GUI display that depicts a real-time representation of the GUI display that the pump is currently presenting with callouts, interactive labels, or the like describing what each GUI element on the pump GUI display means or does or other explanatory information regarding the current pump GUI display. Additionally, although not illustrated in FIGS. 3 - 10 , some embodiments of the client application 108 may include a selectable GUI element outside of the list of user actions that allows the user of the client device 106 , 306 to initiate a remote support session as described above in the context of FIG. 2 .
- FIG. 11 depicts one exemplary embodiment of an infusion system 1100 suitable for use with the patient guidance system 100 of FIG. 1 in conjunction with the interactive guidance process 200 of FIGS. 2 - 10 .
- the infusion system 1100 includes, without limitation, a fluid infusion device (or infusion pump) 1102 (e.g., infusion device 102 , 302 ), a sensing arrangement 1104 (e.g., sensing arrangement 104 ), a command control device (CCD) 1106 , and a computer 1108 , which could be realized as any one of the computing devices 106 , 114 , 306 described above.
- a fluid infusion device or infusion pump
- a sensing arrangement 1104 e.g., sensing arrangement 104
- CCD command control device
- computer 1108 which could be realized as any one of the computing devices 106 , 114 , 306 described above.
- the CCD 1106 is realized as a client device 106 , 306 and the computer 1108 is realized as remote device 114 .
- the components of an infusion system 1100 may be realized using different platforms, designs, and configurations, and the embodiment shown in FIG. 11 is not exhaustive or limiting.
- the infusion device 1102 and the sensing arrangement 1104 are secured at desired locations on the body of a user (or patient), as illustrated in FIG. 11 .
- the locations at which the infusion device 1102 and the sensing arrangement 1104 are secured to the body of the user in FIG. 11 are provided only as a representative, non-limiting, example.
- the elements of the infusion system 1100 may be similar to those described in U.S. Pat. No. 8,674,288, the subject matter of which is hereby incorporated by reference in its entirety.
- the infusion device 1102 is designed as a portable medical device suitable for infusing a fluid, a liquid, a gel, or other agent into the body of a user.
- the infused fluid is insulin, although many other fluids may be administered through infusion such as, but not limited to, HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, medications, vitamins, hormones, or the like.
- the fluid may include a nutritional supplement, a dye, a tracing medium, a saline medium, a hydration medium, or the like.
- the sensing arrangement 1104 generally represents the components of the infusion system 1100 configured to sense, detect, measure or otherwise quantify a condition of the user, and may include a sensor, a monitor, or the like, for providing data indicative of the condition that is sensed, detected, measured or otherwise monitored by the sensing arrangement.
- the sensing arrangement 1104 may include electronics and enzymes reactive to a biological or physiological condition of the user, such as a blood glucose level, or the like, and provide data indicative of the blood glucose level to the infusion device 1102 , the CCD 1106 and/or the computer 1108 .
- the infusion device 1102 , the CCD 1106 and/or the computer 1108 may include a display for presenting information or data to the user based on the sensor data received from the sensing arrangement 1104 , such as, for example, a current glucose level of the user, a graph or chart of the user's glucose level versus time, device status indicators, alert messages, or the like.
- the infusion device 1102 , the CCD 1106 and/or the computer 1108 may include electronics and software that are configured to analyze sensor data and operate the infusion device 1102 to deliver fluid to the body of the user based on the sensor data and/or preprogrammed delivery routines.
- one or more of the infusion device 1102 , the sensing arrangement 1104 , the CCD 1106 , and/or the computer 1108 includes a transmitter, a receiver, and/or other transceiver electronics that allow for communication with other components of the infusion system 1100 , so that the sensing arrangement 1104 may transmit sensor data or monitor data to one or more of the infusion device 1102 , the CCD 1106 and/or the computer 1108 .
- the sensing arrangement 1104 may be secured to the body of the user or embedded in the body of the user at a location that is remote from the location at which the infusion device 1102 is secured to the body of the user. In various other embodiments, the sensing arrangement 1104 may be incorporated within the infusion device 1102 . In other embodiments, the sensing arrangement 1104 may be separate and apart from the infusion device 1102 , and may be, for example, part of the CCD 1106 . In such embodiments, the sensing arrangement 1104 may be configured to receive a biological sample, analyte, or the like, to measure a condition of the user.
- the CCD 1106 and/or the computer 1108 may include electronics and other components configured to perform processing, delivery routine storage, and to control the infusion device 1102 in a manner that is influenced by sensor data measured by and/or received from the sensing arrangement 1104 .
- the infusion device 1102 may be made with more simplified electronics.
- the infusion device 1102 may include all control functions, and may operate without the CCD 1106 and/or the computer 1108 .
- the CCD 1106 may be a portable electronic device.
- the infusion device 1102 and/or the sensing arrangement 1104 may be configured to transmit data to the CCD 1106 and/or the computer 1108 for display or processing of the data by the CCD 1106 and/or the computer 1108 .
- the CCD 1106 and/or the computer 1108 may provide information to the user that facilitates the user's subsequent use of the infusion device 1102 .
- the CCD 1106 may provide information to the user to allow the user to determine the rate or dose of medication to be administered into the user's body.
- the CCD 1106 may provide information to the infusion device 1102 to autonomously control the rate or dose of medication administered into the body of the user.
- the sensing arrangement 1104 may be integrated into the CCD 1106 . Such embodiments may allow the user to monitor a condition by providing, for example, a sample of his or her blood to the sensing arrangement 1104 to assess his or her condition.
- the sensing arrangement 1104 and the CCD 1106 may be used for determining glucose levels in the blood and/or body fluids of the user without the use of, or necessity of, a wire or cable connection between the infusion device 1102 and the sensing arrangement 1104 and/or the CCD 1106 .
- the sensing arrangement 1104 and/or the infusion device 1102 are cooperatively configured to utilize a closed-loop system for delivering fluid to the user.
- a closed-loop system for delivering fluid to the user.
- Examples of sensing devices and/or infusion pumps utilizing closed-loop systems may be found at, but are not limited to, the following U.S. Pat. Nos. 6,088,608, 6,119,028, 6,589,229, 6,740,072, 6,827,702, 7,323,142, and 7,402,153, all of which are incorporated herein by reference in their entirety.
- the sensing arrangement 1104 is configured to sense or measure a condition of the user, such as, blood glucose level or the like.
- the infusion device 1102 is configured to deliver fluid in response to the condition sensed by the sensing arrangement 1104 .
- the sensing arrangement 1104 continues to sense or otherwise quantify a current condition of the user, thereby allowing the infusion device 1102 to deliver fluid continuously in response to the condition currently (or most recently) sensed by the sensing arrangement 1104 indefinitely.
- the sensing arrangement 1104 and/or the infusion device 1102 may be configured to utilize the closed-loop system only for a portion of the day, for example only when the user is asleep or awake.
- FIGS. 12 - 14 depict one exemplary embodiment of a fluid infusion device 1200 (or alternatively, infusion pump) suitable for use as an infusion device 102 , 302 , 1102 described above in the context of FIGS. 1 - 11 .
- the fluid infusion device 1200 is a portable medical device designed to be carried or worn by a patient (or user), and the fluid infusion device 1200 may leverage any number of conventional features, components, elements, and characteristics of existing fluid infusion devices, such as, for example, some of the features, components, elements, and/or characteristics described in U.S. Pat. Nos. 6,485,465 and 7,621,893. It should be appreciated that FIGS. 12 - 14 depict some aspects of the infusion device 1200 in a simplified manner; in practice, the infusion device 1200 could include additional elements, features, or components that are not shown or described in detail herein.
- the illustrated embodiment of the fluid infusion device 1200 includes a housing 1202 adapted to receive a fluid-containing reservoir 1205 .
- An opening 1220 in the housing 1202 accommodates a fitting 1223 (or cap) for the reservoir 1205 , with the fitting 1223 being configured to mate or otherwise interface with tubing 1221 of an infusion set 1225 that provides a fluid path to/from the body of the user. In this manner, fluid communication from the interior of the reservoir 1205 to the user is established via the tubing 1221 .
- the illustrated fluid infusion device 1200 includes a human-machine interface (HMI) 1230 (or user interface) that includes elements 1232 , 1234 that can be manipulated by the user to administer a bolus of fluid (e.g., insulin), to change therapy settings, to change user preferences, to select display features, and the like.
- HMI human-machine interface
- the infusion device also includes a display element 1226 , such as a liquid crystal display (LCD) or another suitable display element, that can be used to present various types of information or data to the user, such as, without limitation: the current glucose level of the patient; the time; a graph or chart of the patient's glucose level versus time; device status indicators; etc.
- LCD liquid crystal display
- the housing 1202 is formed from a substantially rigid material having a hollow interior 1014 adapted to allow an electronics assembly 1204 , a sliding member (or slide) 1206 , a drive system 1208 , a sensor assembly 1210 , and a drive system capping member 1212 to be disposed therein in addition to the reservoir 1205 , with the contents of the housing 1202 being enclosed by a housing capping member 1216 .
- the opening 1220 , the slide 1206 , and the drive system 1208 are coaxially aligned in an axial direction (indicated by arrow 1218 ), whereby the drive system 1208 facilitates linear displacement of the slide 1206 in the axial direction 1218 to dispense fluid from the reservoir 1205 (after the reservoir 1205 has been inserted into opening 1220 ), with the sensor assembly 1210 being configured to measure axial forces (e.g., forces aligned with the axial direction 1218 ) exerted on the sensor assembly 1210 responsive to operating the drive system 1208 to displace the slide 1206 .
- axial forces e.g., forces aligned with the axial direction 1218
- the sensor assembly 1210 may be utilized to detect one or more of the following: an occlusion in a fluid path that slows, prevents, or otherwise degrades fluid delivery from the reservoir 1205 to a user's body; when the reservoir 1205 is empty; when the slide 1206 is properly seated with the reservoir 1205 ; when a fluid dose has been delivered; when the infusion pump 1200 is subjected to shock or vibration; when the infusion pump 1200 requires maintenance.
- the fluid-containing reservoir 1205 may be realized as a syringe, a vial, a cartridge, a bag, or the like.
- the infused fluid is insulin, although many other fluids may be administered through infusion such as, but not limited to, HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, medications, vitamins, hormones, or the like.
- the reservoir 1205 typically includes a reservoir barrel 1219 that contains the fluid and is concentrically and/or coaxially aligned with the slide 1206 (e.g., in the axial direction 1218 ) when the reservoir 1205 is inserted into the infusion pump 1200 .
- the end of the reservoir 1205 proximate the opening 1220 may include or otherwise mate with the fitting 1223 , which secures the reservoir 1205 in the housing 1202 and prevents displacement of the reservoir 1205 in the axial direction 1218 with respect to the housing 1202 after the reservoir 1205 is inserted into the housing 1202 .
- the fitting 1223 extends from (or through) the opening 1220 of the housing 1202 and mates with tubing 1221 to establish fluid communication from the interior of the reservoir 1205 (e.g., reservoir barrel 1219 ) to the user via the tubing 1221 and infusion set 1225 .
- the opposing end of the reservoir 1205 proximate the slide 1206 includes a plunger 1217 (or stopper) positioned to push fluid from inside the barrel 1219 of the reservoir 1205 along a fluid path through tubing 1221 to a user.
- the slide 1206 is configured to mechanically couple or otherwise engage with the plunger 1217 , thereby becoming seated with the plunger 1217 and/or reservoir 1205 .
- Fluid is forced from the reservoir 1205 via tubing 1221 as the drive system 1208 is operated to displace the slide 1206 in the axial direction 1218 toward the opening 1220 in the housing 1202 .
- the drive system 1208 includes a motor assembly 1207 and a drive screw 1209 .
- the motor assembly 1207 includes a motor that is coupled to drive train components of the drive system 1208 that are configured to convert rotational motor motion to a translational displacement of the slide 1206 in the axial direction 1218 , and thereby engaging and displacing the plunger 1217 of the reservoir 1205 in the axial direction 1218 .
- the motor assembly 1207 may also be powered to translate the slide 1206 in the opposing direction (e.g., the direction opposite direction 1218 ) to retract and/or detach from the reservoir 1205 to allow the reservoir 1205 to be replaced.
- the motor assembly 1207 includes a brushless DC (BLDC) motor having one or more permanent magnets mounted, affixed, or otherwise disposed on its rotor.
- BLDC brushless DC
- the motor may be realized as a solenoid motor, an AC motor, a stepper motor, a piezoelectric caterpillar drive, a shape memory actuator drive, an electrochemical gas cell, a thermally driven gas cell, a bimetallic actuator, or the like.
- the drive train components may comprise one or more lead screws, cams, ratchets, jacks, pulleys, pawls, clamps, gears, nuts, slides, bearings, levers, beams, stoppers, plungers, sliders, brackets, guides, bearings, supports, bellows, caps, diaphragms, bags, heaters, or the like.
- the illustrated embodiment of the infusion pump utilizes a coaxially aligned drive train
- the motor could be arranged in an offset or otherwise non-coaxial manner, relative to the longitudinal axis of the reservoir 1205 .
- the drive screw 1209 mates with threads 1402 internal to the slide 1206 .
- the motor assembly 1207 is powered and operated, the drive screw 1209 rotates, and the slide 1206 is forced to translate in the axial direction 1218 .
- the infusion pump 1200 includes a sleeve 1211 to prevent the slide 1206 from rotating when the drive screw 1209 of the drive system 1208 rotates.
- rotation of the drive screw 1209 causes the slide 1206 to extend or retract relative to the drive motor assembly 1207 .
- the slide 1206 contacts the plunger 1217 to engage the reservoir 1205 and control delivery of fluid from the infusion pump 1200 .
- the shoulder portion 1215 of the slide 1206 contacts or otherwise engages the plunger 1217 to displace the plunger 1217 in the axial direction 1218 .
- the slide 1206 may include a threaded tip 1213 capable of being detachably engaged with internal threads 1404 on the plunger 1217 of the reservoir 1205 , as described in detail in U.S. Pat. Nos. 6,248,093 and 6,485,465, which are incorporated by reference herein.
- the electronics assembly 1204 includes control electronics 1224 coupled to the display element 1226 , with the housing 1202 including a transparent window portion 1228 that is aligned with the display element 1226 to allow the display 1226 to be viewed by the user when the electronics assembly 1204 is disposed within the interior 1014 of the housing 1202 .
- the control electronics 1224 generally represent the hardware, firmware, processing logic and/or software (or combinations thereof) configured to control operation of the motor assembly 1207 and/or drive system 1208 . Whether such functionality is implemented as hardware, firmware, a state machine, or software depends upon the particular application and design constraints imposed on the embodiment.
- control electronics 1224 includes one or more programmable controllers that may be programmed to control operation of the infusion pump 1200 .
- the motor assembly 1207 includes one or more electrical leads 1236 adapted to be electrically coupled to the electronics assembly 1204 to establish communication between the control electronics 1224 and the motor assembly 1207 .
- a motor driver e.g., a power converter
- the motor actuates the drive train components of the drive system 1208 to displace the slide 1206 in the axial direction 1218 to force fluid from the reservoir 1205 along a fluid path (including tubing 1221 and an infusion set), thereby administering doses of the fluid contained in the reservoir 1205 into the user's body.
- the power supply is realized one or more batteries contained within the housing 1202 .
- the power supply may be a solar panel, capacitor, AC or DC power supplied through a power cord, or the like.
- the control electronics 1224 may operate the motor of the motor assembly 1207 and/or drive system 1208 in a stepwise manner, typically on an intermittent basis; to administer discrete precise doses of the fluid to the user according to programmed delivery profiles.
- the user interface 1230 includes HMI elements, such as buttons 1232 and a directional pad 1234 , that are formed on a graphic keypad overlay 1231 that overlies a keypad assembly 1233 , which includes features corresponding to the buttons 1232 , directional pad 1234 or other user interface items indicated by the graphic keypad overlay 1231 .
- HMI elements such as buttons 1232 and a directional pad 1234 , that are formed on a graphic keypad overlay 1231 that overlies a keypad assembly 1233 , which includes features corresponding to the buttons 1232 , directional pad 1234 or other user interface items indicated by the graphic keypad overlay 1231 .
- the keypad assembly 1233 When assembled, the keypad assembly 1233 is coupled to the control electronics 1224 , thereby allowing the HMI elements 1232 , 1234 to be manipulated by the user to interact with the control electronics 1224 and control operation of the infusion pump 1200 , for example, to administer a bolus of insulin, to change therapy settings, to change user preferences, to select display features, to set or disable alarms and reminders, and the like.
- the control electronics 1224 maintains and/or provides information to the display 1226 regarding program parameters, delivery profiles, pump operation, alarms, warnings, statuses, or the like, which may be adjusted using the HMI elements 1232 , 1234 .
- the HMI elements 1232 , 1234 may be realized as physical objects (e.g., buttons, knobs, joysticks, and the like) or virtual objects (e.g., using touch-sensing and/or proximity-sensing technologies).
- the display 1226 may be realized as a touch screen or touch-sensitive display, and in such embodiments, the features and/or functionality of the HMI elements 1232 , 1234 may be integrated into the display 1226 and the HMI 1230 may not be present.
- the electronics assembly 1204 may also include alert generating elements coupled to the control electronics 1224 and suitably configured to generate one or more types of feedback, such as, without limitation: audible feedback; visual feedback; haptic (physical) feedback; or the like.
- the sensor assembly 1210 includes a back plate structure 1250 and a loading element 1260 .
- the loading element 1260 is disposed between the capping member 1212 and a beam structure 1270 that includes one or more beams having sensing elements disposed thereon that are influenced by compressive force applied to the sensor assembly 1210 that deflects the one or more beams, as described in greater detail in U.S. Pat. No. 8,474,332, which is incorporated by reference herein.
- the back plate structure 1250 is affixed, adhered, mounted, or otherwise mechanically coupled to the bottom surface 1238 of the drive system 1208 such that the back plate structure 1250 resides between the bottom surface 1238 of the drive system 1208 and the housing cap 1216 .
- the drive system capping member 1212 is contoured to accommodate and conform to the bottom of the sensor assembly 1210 and the drive system 1208 .
- the drive system capping member 1212 may be affixed to the interior of the housing 1202 to prevent displacement of the sensor assembly 1210 in the direction opposite the direction of force provided by the drive system 1208 (e.g., the direction opposite direction 1218 ).
- the sensor assembly 1210 is positioned between the motor assembly 1207 and secured by the capping member 1212 , which prevents displacement of the sensor assembly 1210 in a downward direction opposite the direction of arrow 1218 , such that the sensor assembly 1210 is subjected to a reactionary compressive force when the drive system 1208 and/or motor assembly 1207 is operated to displace the slide 1206 in the axial direction 1218 in opposition to the fluid pressure in the reservoir 1205 .
- the compressive force applied to the sensor assembly 1210 is correlated with the fluid pressure in the reservoir 1205 .
- electrical leads 1240 are adapted to electrically couple the sensing elements of the sensor assembly 1210 to the electronics assembly 1204 to establish communication to the control electronics 1224 , wherein the control electronics 1224 are configured to measure, receive, or otherwise obtain electrical signals from the sensing elements of the sensor assembly 1210 that are indicative of the force applied by the drive system 1208 in the axial direction 1218 .
- FIG. 15 depicts an exemplary embodiment of a medical device 1500 suitable for use as the infusion device 102 , 302 , 1102 , 1200 in conjunction with the interactive guidance process 200 of FIGS. 2 - 10 .
- the illustrated medical device 1500 includes, without limitation, a control module 1502 , a communications interface 1504 , a display device 1506 , a user interface 1508 , and a data storage element (or memory) 1510 .
- the control module 1502 is coupled to the communications interface 1504 , the memory 1510 , the display device 1506 , and the memory 1006 , and the control module 1502 is suitably configured to support the operations, tasks, and/or processes described herein.
- FIG. 15 is a simplified representation of a medical device 1500 for purposes of explanation and is not intended to limit the subject matter described herein in any way.
- the communications interface 1504 generally represents the hardware, circuitry, logic, firmware and/or other components of the medical device 1500 that are coupled to the control module 1502 and configured to support communications sessions between the medical device 1500 and an auxiliary device (e.g., devices 106 , 306 , 1106 ) via a network (e.g., network 110 ).
- the communications interface 1504 may include or otherwise be coupled to one or more transceiver modules capable of supporting wireless communications.
- the communications interface 1504 may be configured to support wired communications to/from the auxiliary device.
- the display device 1506 may be realized as any sort of electronic display capable of graphically displaying information or other data associated with operation of the medical device 1500 under control of the control module 1502 .
- the user interface 1508 generally includes one or more user input devices configured to allow a patient or other user to interact with the medical device 1500 and the GUI displays presented on the display device 1506 .
- the user interface 1508 may include or be realized as one or more of the following user input devices: a keypad, touchpad, keyboard, mouse, touch panel (or touchscreen), joystick, knob, line select key or another suitable device adapted to receive input from a user, such as a microphone, audio transducer, audio sensor, or another audio input device.
- the control module 1502 generally represents the hardware, circuitry, logic, firmware and/or other component of the medical device 1500 configured to determine dosage commands for operating medical device 1500 (e.g., by operating an actuation arrangement to deliver fluid to the body of a patient) and perform various additional tasks, operations, functions and/or operations described herein.
- control module 1502 implements or otherwise executes an application that supports establishing communications sessions with a guidance application on an auxiliary device and automatically pushing or uploading status information, settings information, and the like to the guidance application asynchronously or in another substantially real-time manner.
- control module 1502 may be implemented or realized with a general purpose processor, a microprocessor, a controller, a microcontroller, a state machine, a content addressable memory, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
- steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by the control module 1502 , or in any practical combination thereof.
- control module 1502 includes or otherwise accesses the data storage element or memory 1510 , which may be realized using any sort of non-transitory computer-readable medium capable of storing programming instructions for execution by the control module 1502 .
- the computer-executable programming instructions when read and executed by the control module 1502 , cause the control module 1502 to implement or otherwise generate the guidance communications application and perform tasks, operations, functions, and processes described herein.
- the memory 1510 may also store or otherwise maintain settings information for the medical device 1500 including, but not limited to, data indicating which modes or features of the medical device 1500 have been configured, data indicating which modes or features of the medical device 1500 have not been configured, data indicating which modes or features of the medical device 1500 are enabled or activated, data indicating which modes or features of the medical device 1500 have been disabled or deactivated, variables, parameters, or other values that have been programmed, configured, entered, or otherwise established for use by a particular mode or feature of the medical device 1500 , and any patient-specific variables, parameters, or other values that have been programmed, configured, entered or otherwise established for use by a particular mode or feature of the medical device 1500 .
- the settings information may include configuration data for an operating mode of the medical device 1500 , configuration data for a feature of the medical device 1500 , or values or data for other patient-specific settings, parameters, or variables.
- the settings information could include a value for a basal rate, a patient-specific insulin sensitivity factor, a patient-specific insulin-to-carbohydrate ratio, a patient-specific total daily insulin requirement, or the like.
- the control module 1502 in response to establishing a communications session with an auxiliary device via the communications interface 1504 , is configured to identify or otherwise obtain status information characterizing the current state of the display device 1506 and the user interface 1508 and the settings information stored by the memory 1510 and transmit the settings information and the status information to the auxiliary device via the communications session.
- the control module 1502 automatically identifies or obtains updated status information characterizing the updated state of the display device 1506 and the user interface 1508 responsive to the user input and automatically pushes, uploads, or otherwise transmits the updated status information to the auxiliary device, which, in turn, allows the auxiliary device to dynamically update any guidance information presented to a user at the auxiliary device.
- the guidance information may include a sequence of one or more user actions with respect to the user interface 1508 for operating the medical device 1500 to deliver a bolus of fluid, configuring or enabling an operating mode or feature of the medical device 1500 (e.g., a closed-loop operating mode, a bolus wizard feature, or the like), programming patient-specific variables, parameters, or other settings into the medical device 1500 , and/or the like, with the sequence of user actions being dynamically updated to reflect or distinguish those user actions that have already been performed.
- an operating mode or feature of the medical device 1500 e.g., a closed-loop operating mode, a bolus wizard feature, or the like
- programming patient-specific variables, parameters, or other settings into the medical device 1500 e.g., a closed-loop operating mode, a bolus wizard feature, or the like
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Primary Health Care (AREA)
- Epidemiology (AREA)
- Medical Informatics (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Diabetes (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
Description
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/930,391 US12115339B2 (en) | 2016-11-28 | 2022-09-07 | Interactive guidance for medical devices |
US18/882,120 US20250001068A1 (en) | 2016-11-28 | 2024-09-11 | Interactive guidance for medical devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/362,642 US20180150614A1 (en) | 2016-11-28 | 2016-11-28 | Interactive patient guidance for medical devices |
US17/930,391 US12115339B2 (en) | 2016-11-28 | 2022-09-07 | Interactive guidance for medical devices |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/362,642 Continuation US20180150614A1 (en) | 2016-11-28 | 2016-11-28 | Interactive patient guidance for medical devices |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/882,120 Continuation US20250001068A1 (en) | 2016-11-28 | 2024-09-11 | Interactive guidance for medical devices |
Publications (2)
Publication Number | Publication Date |
---|---|
US20230005588A1 US20230005588A1 (en) | 2023-01-05 |
US12115339B2 true US12115339B2 (en) | 2024-10-15 |
Family
ID=62190304
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/362,642 Abandoned US20180150614A1 (en) | 2016-11-28 | 2016-11-28 | Interactive patient guidance for medical devices |
US17/930,391 Active US12115339B2 (en) | 2016-11-28 | 2022-09-07 | Interactive guidance for medical devices |
US18/882,120 Pending US20250001068A1 (en) | 2016-11-28 | 2024-09-11 | Interactive guidance for medical devices |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/362,642 Abandoned US20180150614A1 (en) | 2016-11-28 | 2016-11-28 | Interactive patient guidance for medical devices |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/882,120 Pending US20250001068A1 (en) | 2016-11-28 | 2024-09-11 | Interactive guidance for medical devices |
Country Status (1)
Country | Link |
---|---|
US (3) | US20180150614A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2973100B1 (en) * | 2013-03-15 | 2018-10-10 | Gambro Lundia AB | Extracorporeal blood treatment fluids interface |
CN105013032B (en) | 2014-03-31 | 2018-06-22 | 甘布罗伦迪亚股份公司 | Extracorporeal blood treatment system and the method for the system |
AU2017335762B2 (en) | 2016-09-27 | 2022-03-17 | Bigfoot Biomedical, Inc. | Medicine injection and disease management systems, devices, and methods |
US20180150614A1 (en) | 2016-11-28 | 2018-05-31 | Medtronic Minimed, Inc. | Interactive patient guidance for medical devices |
CN109922716A (en) | 2016-12-12 | 2019-06-21 | 比格福特生物医药公司 | The alarm of medicament delivery device and vigilant and relevant system and method |
USD836769S1 (en) | 2016-12-12 | 2018-12-25 | Bigfoot Biomedical, Inc. | Insulin delivery controller |
USD839294S1 (en) | 2017-06-16 | 2019-01-29 | Bigfoot Biomedical, Inc. | Display screen with graphical user interface for closed-loop medication delivery |
US11389088B2 (en) | 2017-07-13 | 2022-07-19 | Bigfoot Biomedical, Inc. | Multi-scale display of blood glucose information |
USD863343S1 (en) | 2017-09-27 | 2019-10-15 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US20190311798A1 (en) * | 2018-04-10 | 2019-10-10 | Sutter Health | Computing Devices with Improved User Interfaces for Applications |
WO2020037471A1 (en) * | 2018-08-20 | 2020-02-27 | 深圳迈瑞科技有限公司 | Monitoring information output method, infusion pumps, display device, and storage medium |
US11243969B1 (en) * | 2020-02-07 | 2022-02-08 | Hitps Llc | Systems and methods for interaction between multiple computing devices to process data records |
USD1013544S1 (en) | 2022-04-29 | 2024-02-06 | Biolinq Incorporated | Wearable sensor |
USD1012744S1 (en) | 2022-05-16 | 2024-01-30 | Biolinq Incorporated | Wearable sensor with illuminated display |
USD1035004S1 (en) | 2023-02-28 | 2024-07-09 | Biolinq Incorporated | Wearable sensor |
USD1068516S1 (en) | 2023-02-28 | 2025-04-01 | Biolinq Incorporated | Wearable sensor |
Citations (232)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631847A (en) | 1966-03-04 | 1972-01-04 | James C Hobbs | Method and apparatus for injecting fluid into the vascular system |
US4212738A (en) | 1977-03-28 | 1980-07-15 | Akzo N.V. | Artificial kidney |
US4270532A (en) | 1977-12-28 | 1981-06-02 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
US4282872A (en) | 1977-12-28 | 1981-08-11 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
US4373527A (en) | 1979-04-27 | 1983-02-15 | The Johns Hopkins University | Implantable, programmable medication infusion system |
US4395259A (en) | 1980-09-22 | 1983-07-26 | Siemens Aktiengesellschaft | Device for the infusion of fluids into the human or animal body |
US4433072A (en) | 1978-12-15 | 1984-02-21 | Hospal-Sodip, S.A. | Mixtures of polymers for medical use |
US4443218A (en) | 1982-09-09 | 1984-04-17 | Infusaid Corporation | Programmable implantable infusate pump |
US4494950A (en) | 1982-01-19 | 1985-01-22 | The Johns Hopkins University | Plural module medication delivery system |
US4542532A (en) | 1984-03-09 | 1985-09-17 | Medtronic, Inc. | Dual-antenna transceiver |
US4550731A (en) | 1984-03-07 | 1985-11-05 | Cordis Corporation | Acquisition circuit for cardiac pacer |
US4559037A (en) | 1977-12-28 | 1985-12-17 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
US4562751A (en) | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US4671288A (en) | 1985-06-13 | 1987-06-09 | The Regents Of The University Of California | Electrochemical cell sensor for continuous short-term use in tissues and blood |
US4678408A (en) | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US4685903A (en) | 1984-01-06 | 1987-08-11 | Pacesetter Infusion, Ltd. | External infusion pump apparatus |
US4731051A (en) | 1979-04-27 | 1988-03-15 | The Johns Hopkins University | Programmable control means for providing safe and controlled medication infusion |
US4731726A (en) | 1986-05-19 | 1988-03-15 | Healthware Corporation | Patient-operated glucose monitor and diabetes management system |
US4781798A (en) | 1985-04-19 | 1988-11-01 | The Regents Of The University Of California | Transparent multi-oxygen sensor array and method of using same |
US4803625A (en) | 1986-06-30 | 1989-02-07 | Buddy Systems, Inc. | Personal health monitor |
US4809697A (en) | 1987-10-14 | 1989-03-07 | Siemens-Pacesetter, Inc. | Interactive programming and diagnostic system for use with implantable pacemaker |
US4826810A (en) | 1983-12-16 | 1989-05-02 | Aoki Thomas T | System and method for treating animal body tissues to improve the dietary fuel processing capabilities thereof |
US4871351A (en) | 1984-09-28 | 1989-10-03 | Vladimir Feingold | Implantable medication infusion system |
GB2218831A (en) | 1988-05-17 | 1989-11-22 | Mark John Newland | Personal medical apparatus |
US4898578A (en) | 1988-01-26 | 1990-02-06 | Baxter International Inc. | Drug infusion system with calculator |
US4982872A (en) | 1988-12-15 | 1991-01-08 | Avery Donald J | Film-encapsulated-structure container for food, beverages and other consumable products and method for making of same |
US4998578A (en) | 1988-01-11 | 1991-03-12 | Lanxide Technology Company, Lp | Method of making metal matrix composites |
US5003298A (en) | 1986-01-15 | 1991-03-26 | Karel Havel | Variable color digital display for emphasizing position of decimal point |
US5011468A (en) | 1987-05-29 | 1991-04-30 | Retroperfusion Systems, Inc. | Retroperfusion and retroinfusion control apparatus, system and method |
US5019974A (en) | 1987-05-01 | 1991-05-28 | Diva Medical Systems Bv | Diabetes management system and apparatus |
US5050612A (en) | 1989-09-12 | 1991-09-24 | Matsumura Kenneth N | Device for computer-assisted monitoring of the body |
US5078683A (en) | 1990-05-04 | 1992-01-07 | Block Medical, Inc. | Programmable infusion system |
US5080653A (en) | 1990-04-16 | 1992-01-14 | Pacesetter Infusion, Ltd. | Infusion pump with dual position syringe locator |
US5097122A (en) | 1990-04-16 | 1992-03-17 | Pacesetter Infusion, Ltd. | Medication infusion system having optical motion sensor to detect drive mechanism malfunction |
US5100380A (en) | 1984-02-08 | 1992-03-31 | Abbott Laboratories | Remotely programmable infusion system |
US5101814A (en) | 1989-08-11 | 1992-04-07 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5108819A (en) | 1990-02-14 | 1992-04-28 | Eli Lilly And Company | Thin film electrical component |
US5153827A (en) | 1989-01-30 | 1992-10-06 | Omni-Flow, Inc. | An infusion management and pumping system having an alarm handling system |
US5165407A (en) | 1990-04-19 | 1992-11-24 | The University Of Kansas | Implantable glucose sensor |
US5247434A (en) | 1991-04-19 | 1993-09-21 | Althin Medical, Inc. | Method and apparatus for kidney dialysis |
US5262305A (en) | 1991-03-04 | 1993-11-16 | E. Heller & Company | Interferant eliminating biosensors |
US5262035A (en) | 1989-08-02 | 1993-11-16 | E. Heller And Company | Enzyme electrodes |
US5264105A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5264104A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5284140A (en) | 1992-02-11 | 1994-02-08 | Eli Lilly And Company | Acrylic copolymer membranes for biosensors |
US5299571A (en) | 1993-01-22 | 1994-04-05 | Eli Lilly And Company | Apparatus and method for implantation of sensors |
US5307263A (en) | 1992-11-17 | 1994-04-26 | Raya Systems, Inc. | Modular microprocessor-based health monitoring system |
US5320725A (en) | 1989-08-02 | 1994-06-14 | E. Heller & Company | Electrode and method for the detection of hydrogen peroxide |
US5322063A (en) | 1991-10-04 | 1994-06-21 | Eli Lilly And Company | Hydrophilic polyurethane membranes for electrochemical glucose sensors |
US5338157A (en) | 1992-09-09 | 1994-08-16 | Pharmacia Deltec, Inc. | Systems and methods for communicating with ambulatory medical devices such as drug delivery devices |
US5341291A (en) | 1987-12-09 | 1994-08-23 | Arch Development Corporation | Portable medical interactive test selector having plug-in replaceable memory |
US5339821A (en) | 1992-02-13 | 1994-08-23 | Seta Co., Ltd. | Home medical system and medical apparatus for use therewith |
US5350411A (en) | 1993-06-28 | 1994-09-27 | Medtronic, Inc. | Pacemaker telemetry system |
US5357427A (en) | 1993-03-15 | 1994-10-18 | Digital Equipment Corporation | Remote monitoring of high-risk patients using artificial intelligence |
US5356786A (en) | 1991-03-04 | 1994-10-18 | E. Heller & Company | Interferant eliminating biosensor |
US5368562A (en) | 1993-07-30 | 1994-11-29 | Pharmacia Deltec, Inc. | Systems and methods for operating ambulatory medical devices such as drug delivery devices |
US5371687A (en) | 1992-11-20 | 1994-12-06 | Boehringer Mannheim Corporation | Glucose test data acquisition and management system |
US5370622A (en) | 1994-04-28 | 1994-12-06 | Minimed Inc. | Proctective case for a medication infusion pump |
US5376070A (en) | 1992-09-29 | 1994-12-27 | Minimed Inc. | Data transfer system for an infusion pump |
US5391250A (en) | 1994-03-15 | 1995-02-21 | Minimed Inc. | Method of fabricating thin film sensors |
US5390671A (en) | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
DE4329229A1 (en) | 1993-08-25 | 1995-03-09 | Meditech Medizintechnik Gmbh | Adaptive controlled pump control, in particular for adaptive patient-controlled analgesia (APCA) |
US5411647A (en) | 1992-11-23 | 1995-05-02 | Eli Lilly And Company | Techniques to improve the performance of electrochemical sensors |
US5482473A (en) | 1994-05-09 | 1996-01-09 | Minimed Inc. | Flex circuit connector |
US5497772A (en) | 1993-11-19 | 1996-03-12 | Alfred E. Mann Foundation For Scientific Research | Glucose monitoring system |
US5505709A (en) | 1994-09-15 | 1996-04-09 | Minimed, Inc., A Delaware Corporation | Mated infusion pump and syringe |
WO1996020745A1 (en) | 1995-01-06 | 1996-07-11 | Abbott Laboratories | Medicinal fluid pump having multiple stored protocols |
US5543326A (en) | 1994-03-04 | 1996-08-06 | Heller; Adam | Biosensor including chemically modified enzymes |
US5569186A (en) | 1994-04-25 | 1996-10-29 | Minimed Inc. | Closed loop infusion pump system with removable glucose sensor |
US5569187A (en) | 1994-08-16 | 1996-10-29 | Texas Instruments Incorporated | Method and apparatus for wireless chemical supplying |
US5573506A (en) | 1994-11-25 | 1996-11-12 | Block Medical, Inc. | Remotely programmable infusion system |
WO1996036389A1 (en) | 1995-05-15 | 1996-11-21 | Ivac Medical Systems, Inc. | Automated infusion system with dose rate calculator |
WO1996037246A1 (en) | 1995-05-26 | 1996-11-28 | Minimed Inc. | Medication infusion device with blood glucose data input |
US5582593A (en) | 1994-07-21 | 1996-12-10 | Hultman; Barry W. | Ambulatory medication delivery system |
US5586553A (en) | 1995-02-16 | 1996-12-24 | Minimed Inc. | Transcutaneous sensor insertion set |
EP0319268B1 (en) | 1987-12-04 | 1997-01-08 | IVAC MEDICAL SYSTEMS, Inc. | Clinical configuration of multimode medication infusion system |
US5593852A (en) | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
US5594638A (en) | 1993-12-29 | 1997-01-14 | First Opinion Corporation | Computerized medical diagnostic system including re-enter function and sensitivity factors |
US5593390A (en) | 1994-03-09 | 1997-01-14 | Visionary Medical Products, Inc. | Medication delivery device with a microprocessor and characteristic monitor |
US5609060A (en) | 1995-04-28 | 1997-03-11 | Dentsleeve Pty Limited | Multiple channel perfused manometry apparatus and a method of operation of such a device |
US5626144A (en) | 1994-05-23 | 1997-05-06 | Enact Health Management Systems | System for monitoring and reporting medical measurements |
US5630710A (en) | 1994-03-09 | 1997-05-20 | Baxter International Inc. | Ambulatory infusion pump |
WO1997021456A1 (en) | 1995-12-12 | 1997-06-19 | The University Of Melbourne | Field programmable intravenous infusion system |
US5660176A (en) | 1993-12-29 | 1997-08-26 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system |
US5665222A (en) | 1995-10-11 | 1997-09-09 | E. Heller & Company | Soybean peroxidase electrochemical sensor |
EP0806738A1 (en) | 1996-05-07 | 1997-11-12 | Société D'Etudes Techniques - S E T | Neural networks arrangement for the determination of a substance dosage to administer to a patient |
US5687734A (en) | 1994-10-20 | 1997-11-18 | Hewlett-Packard Company | Flexible patient monitoring system featuring a multiport transmitter |
US5750926A (en) | 1995-08-16 | 1998-05-12 | Alfred E. Mann Foundation For Scientific Research | Hermetically sealed electrical feedthrough for use with implantable electronic devices |
WO1998020439A1 (en) | 1996-11-08 | 1998-05-14 | Roman Linda L | System for providing comprehensive health care and support |
US5754111A (en) | 1995-09-20 | 1998-05-19 | Garcia; Alfredo | Medical alerting system |
US5764159A (en) | 1994-02-16 | 1998-06-09 | Debiotech S.A. | Apparatus for remotely monitoring controllable devices |
WO1998024358A2 (en) | 1996-12-04 | 1998-06-11 | Enact Health Management Systems | System for downloading and reporting medical information |
US5779665A (en) | 1997-05-08 | 1998-07-14 | Minimed Inc. | Transdermal introducer assembly |
US5788669A (en) | 1995-11-22 | 1998-08-04 | Sims Deltec, Inc. | Pump tracking system |
US5791344A (en) | 1993-11-19 | 1998-08-11 | Alfred E. Mann Foundation For Scientific Research | Patient monitoring system |
US5800420A (en) | 1994-11-04 | 1998-09-01 | Elan Medical Technologies Limited | Analyte-controlled liquid delivery device and analyte monitor |
US5807336A (en) | 1996-08-02 | 1998-09-15 | Sabratek Corporation | Apparatus for monitoring and/or controlling a medical device |
US5814015A (en) | 1995-02-24 | 1998-09-29 | Harvard Clinical Technology, Inc. | Infusion pump for at least one syringe |
WO1998042407A1 (en) | 1997-03-27 | 1998-10-01 | Medtronic, Inc. | Concepts to implement medconnect |
US5822715A (en) | 1997-01-10 | 1998-10-13 | Health Hero Network | Diabetes management system and method for controlling blood glucose |
US5832448A (en) | 1996-10-16 | 1998-11-03 | Health Hero Network | Multiple patient monitoring system for proactive health management |
WO1998049659A2 (en) | 1997-04-25 | 1998-11-05 | Sekura Ronald D | Prescription compliance device and method of using device |
US5840020A (en) | 1996-02-12 | 1998-11-24 | Nokia Mobile Phones, Ltd. | Monitoring method and a monitoring equipment |
EP0880936A2 (en) | 1997-05-29 | 1998-12-02 | Koji Akai | Monitoring physical condition of a patient by telemetry |
WO1998059487A1 (en) | 1997-06-23 | 1998-12-30 | Enact Health Management Systems | Improved system for downloading and reporting medical information |
US5861018A (en) | 1996-05-28 | 1999-01-19 | Telecom Medical Inc. | Ultrasound transdermal communication system and method |
WO1999008183A1 (en) | 1997-08-11 | 1999-02-18 | Electronic Monitoring Systems, Inc. | Remote monitoring system |
WO1999010801A1 (en) | 1997-08-22 | 1999-03-04 | Apex Inc. | Remote computer control system |
US5879163A (en) | 1996-06-24 | 1999-03-09 | Health Hero Network, Inc. | On-line health education and feedback system using motivational driver profile coding and automated content fulfillment |
US5885245A (en) | 1996-08-02 | 1999-03-23 | Sabratek Corporation | Medical apparatus with remote virtual input device |
WO1999018532A1 (en) | 1997-10-07 | 1999-04-15 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US5897493A (en) | 1997-03-28 | 1999-04-27 | Health Hero Network, Inc. | Monitoring system for remotely querying individuals |
US5899855A (en) | 1992-11-17 | 1999-05-04 | Health Hero Network, Inc. | Modular microprocessor-based health monitoring system |
WO1999022236A1 (en) | 1997-10-27 | 1999-05-06 | Nokia Mobile Phones Limited | Calibration of measured physical parameters |
US5904708A (en) | 1998-03-19 | 1999-05-18 | Medtronic, Inc. | System and method for deriving relative physiologic signals |
US5913310A (en) | 1994-05-23 | 1999-06-22 | Health Hero Network, Inc. | Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game |
US5917346A (en) | 1997-09-12 | 1999-06-29 | Alfred E. Mann Foundation | Low power current to frequency converter circuit for use in implantable sensors |
US5918603A (en) | 1994-05-23 | 1999-07-06 | Health Hero Network, Inc. | Method for treating medical conditions using a microprocessor-based video game |
US5933136A (en) | 1996-12-23 | 1999-08-03 | Health Hero Network, Inc. | Network media access control system for encouraging patient compliance with a treatment plan |
US5935099A (en) | 1992-09-09 | 1999-08-10 | Sims Deltec, Inc. | Drug pump systems and methods |
US5940801A (en) | 1994-04-26 | 1999-08-17 | Health Hero Network, Inc. | Modular microprocessor-based diagnostic measurement apparatus and method for psychological conditions |
US5960403A (en) | 1992-11-17 | 1999-09-28 | Health Hero Network | Health management process control system |
US5972199A (en) | 1995-10-11 | 1999-10-26 | E. Heller & Company | Electrochemical analyte sensors using thermostable peroxidase |
US5978236A (en) | 1997-01-31 | 1999-11-02 | Silverline Power Conversion Llc | Uninterruptible power supply with direction of DC electrical energy depending on predetermined ratio |
US5999848A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Daisy chainable sensors and stimulators for implantation in living tissue |
US5999849A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Low power rectifier circuit for implantable medical device |
US6009339A (en) | 1997-02-27 | 1999-12-28 | Terumo Cardiovascular Systems Corporation | Blood parameter measurement device |
US6032119A (en) | 1997-01-16 | 2000-02-29 | Health Hero Network, Inc. | Personalized display of health information |
WO2000010628A2 (en) | 1998-08-18 | 2000-03-02 | Minimed Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US6043437A (en) | 1996-12-20 | 2000-03-28 | Alfred E. Mann Foundation | Alumina insulation for coating implantable components and other microminiature devices |
WO2000019887A1 (en) | 1998-10-08 | 2000-04-13 | Minimed Inc. | Telemetered characteristic monitor system |
US6081736A (en) | 1997-10-20 | 2000-06-27 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems adapted for long term use |
US6088608A (en) | 1997-10-20 | 2000-07-11 | Alfred E. Mann Foundation | Electrochemical sensor and integrity tests therefor |
US6101478A (en) | 1997-04-30 | 2000-08-08 | Health Hero Network | Multi-user remote health monitoring system |
US6103033A (en) | 1998-03-04 | 2000-08-15 | Therasense, Inc. | Process for producing an electrochemical biosensor |
WO2000048112A2 (en) * | 1999-02-10 | 2000-08-17 | Baxter International, Inc. | Medical apparatus using selective graphical interface |
US6119028A (en) | 1997-10-20 | 2000-09-12 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces |
US6120676A (en) | 1997-02-06 | 2000-09-19 | Therasense, Inc. | Method of using a small volume in vitro analyte sensor |
US6134461A (en) | 1998-03-04 | 2000-10-17 | E. Heller & Company | Electrochemical analyte |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6183412B1 (en) | 1997-10-02 | 2001-02-06 | Micromed Technology, Inc. | Implantable pump system |
US6248093B1 (en) | 1998-10-29 | 2001-06-19 | Minimed Inc. | Compact pump drive system |
US6259937B1 (en) | 1997-09-12 | 2001-07-10 | Alfred E. Mann Foundation | Implantable substrate sensor |
US20010044731A1 (en) | 2000-05-18 | 2001-11-22 | Coffman Damon J. | Distributed remote asset and medication management drug delivery system |
US20020013518A1 (en) | 2000-05-19 | 2002-01-31 | West Kenneth G. | Patient monitoring system |
US20020055857A1 (en) | 2000-10-31 | 2002-05-09 | Mault James R. | Method of assisting individuals in lifestyle control programs conducive to good health |
US6408330B1 (en) | 1997-04-14 | 2002-06-18 | Delahuerga Carlos | Remote data collecting and address providing method and apparatus |
US6424847B1 (en) | 1999-02-25 | 2002-07-23 | Medtronic Minimed, Inc. | Glucose monitor calibration methods |
WO2002058537A2 (en) | 2001-01-02 | 2002-08-01 | Therasense, Inc. | Analyte monitoring device and methods of use |
US20020137997A1 (en) | 1999-02-25 | 2002-09-26 | Minimed Inc. | Test plug and cable for a glucose monitor |
US20020161288A1 (en) | 2000-02-23 | 2002-10-31 | Medtronic Minimed, Inc. | Real time self-adjusting calibration algorithm |
US6484045B1 (en) | 2000-02-10 | 2002-11-19 | Medtronic Minimed, Inc. | Analyte sensor and method of making the same |
US6485465B2 (en) | 2000-03-29 | 2002-11-26 | Medtronic Minimed, Inc. | Methods, apparatuses, and uses for infusion pump fluid pressure and force detection |
WO2003001329A2 (en) | 2001-06-20 | 2003-01-03 | Power Medical Interventions, Inc. | A method and system for integrated medical tracking |
US6503381B1 (en) | 1997-09-12 | 2003-01-07 | Therasense, Inc. | Biosensor |
US20030060765A1 (en) | 2000-02-16 | 2003-03-27 | Arthur Campbell | Infusion device menu structure and method of using the same |
US6553263B1 (en) | 1999-07-30 | 2003-04-22 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US20030078560A1 (en) | 2001-09-07 | 2003-04-24 | Miller Michael E. | Method and system for non-vascular sensor implantation |
US6558320B1 (en) | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6560741B1 (en) | 1999-02-24 | 2003-05-06 | Datastrip (Iom) Limited | Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same |
US6558351B1 (en) | 1999-06-03 | 2003-05-06 | Medtronic Minimed, Inc. | Closed loop system for controlling insulin infusion |
US6579690B1 (en) | 1997-12-05 | 2003-06-17 | Therasense, Inc. | Blood analyte monitoring through subcutaneous measurement |
US6589229B1 (en) | 2000-07-31 | 2003-07-08 | Becton, Dickinson And Company | Wearable, self-contained drug infusion device |
US6591125B1 (en) | 2000-06-27 | 2003-07-08 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US6592745B1 (en) | 1998-10-08 | 2003-07-15 | Therasense, Inc. | Method of using a small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US20030144581A1 (en) | 1999-02-12 | 2003-07-31 | Cygnus, Inc. | Devices and methods for frequent measurement of an analyte present in a biological system |
US6605201B1 (en) | 1999-11-15 | 2003-08-12 | Therasense, Inc. | Transition metal complexes with bidentate ligand having an imidazole ring and sensor constructed therewith |
US20030152823A1 (en) | 1998-06-17 | 2003-08-14 | Therasense, Inc. | Biological fuel cell and methods |
EP1338295A1 (en) | 2002-02-26 | 2003-08-27 | Lifescan, Inc. | Systems for remotely controlling medication infusion and analyte monitoring |
US6616819B1 (en) | 1999-11-04 | 2003-09-09 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US20030176183A1 (en) | 2001-04-02 | 2003-09-18 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
US6623501B2 (en) | 2000-04-05 | 2003-09-23 | Therasense, Inc. | Reusable ceramic skin-piercing device |
US20030208113A1 (en) | 2001-07-18 | 2003-11-06 | Mault James R | Closed loop glycemic index system |
WO2003094090A2 (en) | 2002-04-30 | 2003-11-13 | Baxter International Inc. | System and method for identifying data streams associated with medical equipment |
US6654625B1 (en) | 1999-06-18 | 2003-11-25 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US20030220552A1 (en) | 1999-07-01 | 2003-11-27 | Medtronic Minimed, Inc. | Reusable analyte sensor site and method of using the same |
US6671554B2 (en) | 2001-09-07 | 2003-12-30 | Medtronic Minimed, Inc. | Electronic lead for a medical implant device, method of making same, and method and apparatus for inserting same |
US6676816B2 (en) | 2001-05-11 | 2004-01-13 | Therasense, Inc. | Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes |
US6689265B2 (en) | 1995-10-11 | 2004-02-10 | Therasense, Inc. | Electrochemical analyte sensors using thermostable soybean peroxidase |
US20040061232A1 (en) | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Multilayer substrate |
US20040061234A1 (en) | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | High reliability multlayer circuit substrates and methods for their formation |
US20040064156A1 (en) | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Method and apparatus for enhancing the integrity of an implantable sensor device |
US20040064133A1 (en) | 2002-09-27 | 2004-04-01 | Medtronic-Minimed | Implantable sensor method and system |
US20040074785A1 (en) | 2002-10-18 | 2004-04-22 | Holker James D. | Analyte sensors and methods for making them |
US6728576B2 (en) | 2001-10-31 | 2004-04-27 | Medtronic, Inc. | Non-contact EKG |
US6733471B1 (en) | 1998-03-16 | 2004-05-11 | Medtronic, Inc. | Hemostatic system and components for extracorporeal circuit |
US20040093167A1 (en) | 2002-11-08 | 2004-05-13 | Braig James R. | Analyte detection system with software download capabilities |
US20040097796A1 (en) | 2001-04-27 | 2004-05-20 | Medoptix | Method and system of monitoring a patient |
US6740072B2 (en) | 2001-09-07 | 2004-05-25 | Medtronic Minimed, Inc. | System and method for providing closed loop infusion formulation delivery |
US20040102683A1 (en) | 2002-04-16 | 2004-05-27 | Khanuja Sukhwant Singh | Method and apparatus for remotely monitoring the condition of a patient |
US6746582B2 (en) | 2000-05-12 | 2004-06-08 | Therasense, Inc. | Electrodes with multilayer membranes and methods of making the electrodes |
US6747556B2 (en) | 2001-07-31 | 2004-06-08 | Medtronic Physio-Control Corp. | Method and system for locating a portable medical device |
US6752787B1 (en) | 1999-06-08 | 2004-06-22 | Medtronic Minimed, Inc., | Cost-sensitive application infusion device |
US20040122353A1 (en) | 2002-12-19 | 2004-06-24 | Medtronic Minimed, Inc. | Relay device for transferring information between a sensor system and a fluid delivery system |
US20040167465A1 (en) | 2002-04-30 | 2004-08-26 | Mihai Dan M. | System and method for medical device authentication |
US6817990B2 (en) | 1998-10-29 | 2004-11-16 | Medtronic Minimed, Inc. | Fluid reservoir piston |
US6827702B2 (en) | 2001-09-07 | 2004-12-07 | Medtronic Minimed, Inc. | Safety limits for closed-loop infusion pump control |
US20050038680A1 (en) | 2002-12-19 | 2005-02-17 | Mcmahon Kevin Lee | System and method for glucose monitoring |
US20050038331A1 (en) | 2003-08-14 | 2005-02-17 | Grayson Silaski | Insertable sensor assembly having a coupled inductor communicative system |
US20050055244A1 (en) * | 2003-07-18 | 2005-03-10 | Janet Mullan | Wireless medical communication system and method |
US6892085B2 (en) | 1999-02-25 | 2005-05-10 | Medtronic Minimed, Inc. | Glucose sensor package system |
US6916159B2 (en) | 2002-10-09 | 2005-07-12 | Therasense, Inc. | Device and method employing shape memory alloy |
US20050154271A1 (en) | 2003-11-19 | 2005-07-14 | Andrew Rasdal | Integrated receiver for continuous analyte sensor |
WO2005065538A2 (en) | 2003-12-31 | 2005-07-21 | Medtronic Minimed, Inc. | System for monitoring physiological characteristics |
US6932584B2 (en) | 2002-12-26 | 2005-08-23 | Medtronic Minimed, Inc. | Infusion device and driving mechanism and process for same with actuator for multiple infusion uses |
US6932894B2 (en) | 2001-05-15 | 2005-08-23 | Therasense, Inc. | Biosensor membranes composed of polymers containing heterocyclic nitrogens |
US20050192557A1 (en) | 2004-02-26 | 2005-09-01 | Dexcom | Integrated delivery device for continuous glucose sensor |
EP1631036A2 (en) | 2004-08-27 | 2006-03-01 | NTT DoCoMo, Inc. | Device authentication in a service control system |
US20060238333A1 (en) | 2003-03-21 | 2006-10-26 | Welch Allyn Protocol, Inc. | Personal status physiologic monitor system and architecture and related monitoring methods |
US7153263B2 (en) | 2000-07-13 | 2006-12-26 | Ge Medical Systems Information Technologies, Inc. | Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities |
US7153289B2 (en) | 1994-11-25 | 2006-12-26 | I-Flow Corporation | Remotely programmable infusion system |
US20060293571A1 (en) | 2005-06-23 | 2006-12-28 | Skanda Systems | Distributed architecture for remote patient monitoring and caring |
US20070088521A1 (en) | 2003-04-08 | 2007-04-19 | Ram Shmueli | Portable wireless gateway for remote medical examination |
US20070135866A1 (en) | 2005-12-14 | 2007-06-14 | Welch Allyn Inc. | Medical device wireless adapter |
US7323142B2 (en) | 2001-09-07 | 2008-01-29 | Medtronic Minimed, Inc. | Sensor substrate and method of fabricating same |
US20080154503A1 (en) | 2004-02-19 | 2008-06-26 | Koninklijke Philips Electronics N.V. | Method and Associated System for Wireless Medical Monitoring and Patient Monitoring Device |
US7396330B2 (en) | 2003-01-07 | 2008-07-08 | Triage Data Networks | Wireless, internet-based medical-diagnostic system |
US7402153B2 (en) | 1997-06-09 | 2008-07-22 | Medtronic Minimed, Inc. | Closed-loop method for controlling insulin infusion |
US20090036750A1 (en) * | 2007-05-25 | 2009-02-05 | The Charles Stark Draper Laboratory, Inc. | Integration and control of medical devices in a clinical environment |
US20090081951A1 (en) | 2004-11-16 | 2009-03-26 | Koninklijke Philips Electronics N.V. | Time synchronization in wireless ad hoc networks of medical devices and sensors |
US20090082635A1 (en) | 2004-11-12 | 2009-03-26 | Koninklijke Philips Electronics N.V. | Message integrity for secure communication of wireless medical devices |
US20090088197A1 (en) * | 2007-09-28 | 2009-04-02 | Palm, Inc. | Synchronized Helper System Using Paired Computing Device |
US7621893B2 (en) | 1998-10-29 | 2009-11-24 | Medtronic Minimed, Inc. | Methods and apparatuses for detecting occlusions in an ambulatory infusion pump |
US20120174022A1 (en) * | 2010-12-31 | 2012-07-05 | Sandhu Kulbir S | Automated catheter guidance system |
US8474332B2 (en) | 2010-10-20 | 2013-07-02 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8674288B2 (en) | 2010-03-24 | 2014-03-18 | Medtronic Minimed, Inc. | Motor assembly sensor capture systems and methods |
US20140210600A1 (en) | 2013-01-30 | 2014-07-31 | Stefan Lautenschlaeger | Method, mobile application and medical system to determine assistive information for a medical apparatus |
US20150057807A1 (en) | 2013-08-21 | 2015-02-26 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US20150057634A1 (en) | 2013-08-21 | 2015-02-26 | Medtronic Minimed, Inc. | Systems and methods for updating medical devices |
US20150151050A1 (en) * | 2013-12-02 | 2015-06-04 | Asante Solutions, Inc. | Infusion Pump System and Method |
US20180150614A1 (en) | 2016-11-28 | 2018-05-31 | Medtronic Minimed, Inc. | Interactive patient guidance for medical devices |
US20210146041A1 (en) * | 2013-12-26 | 2021-05-20 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
-
2016
- 2016-11-28 US US15/362,642 patent/US20180150614A1/en not_active Abandoned
-
2022
- 2022-09-07 US US17/930,391 patent/US12115339B2/en active Active
-
2024
- 2024-09-11 US US18/882,120 patent/US20250001068A1/en active Pending
Patent Citations (280)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3631847A (en) | 1966-03-04 | 1972-01-04 | James C Hobbs | Method and apparatus for injecting fluid into the vascular system |
US4212738A (en) | 1977-03-28 | 1980-07-15 | Akzo N.V. | Artificial kidney |
US4282872A (en) | 1977-12-28 | 1981-08-11 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
US4270532A (en) | 1977-12-28 | 1981-06-02 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
US4559037A (en) | 1977-12-28 | 1985-12-17 | Siemens Aktiengesellschaft | Device for the pre-programmable infusion of liquids |
US4433072A (en) | 1978-12-15 | 1984-02-21 | Hospal-Sodip, S.A. | Mixtures of polymers for medical use |
US4373527A (en) | 1979-04-27 | 1983-02-15 | The Johns Hopkins University | Implantable, programmable medication infusion system |
US4373527B1 (en) | 1979-04-27 | 1995-06-27 | Univ Johns Hopkins | Implantable programmable medication infusion system |
US4731051A (en) | 1979-04-27 | 1988-03-15 | The Johns Hopkins University | Programmable control means for providing safe and controlled medication infusion |
US4395259A (en) | 1980-09-22 | 1983-07-26 | Siemens Aktiengesellschaft | Device for the infusion of fluids into the human or animal body |
US4494950A (en) | 1982-01-19 | 1985-01-22 | The Johns Hopkins University | Plural module medication delivery system |
US4443218A (en) | 1982-09-09 | 1984-04-17 | Infusaid Corporation | Programmable implantable infusate pump |
US4826810A (en) | 1983-12-16 | 1989-05-02 | Aoki Thomas T | System and method for treating animal body tissues to improve the dietary fuel processing capabilities thereof |
US4685903A (en) | 1984-01-06 | 1987-08-11 | Pacesetter Infusion, Ltd. | External infusion pump apparatus |
US4678408A (en) | 1984-01-06 | 1987-07-07 | Pacesetter Infusion, Ltd. | Solenoid drive apparatus for an external infusion pump |
US4562751A (en) | 1984-01-06 | 1986-01-07 | Nason Clyde K | Solenoid drive apparatus for an external infusion pump |
US5100380A (en) | 1984-02-08 | 1992-03-31 | Abbott Laboratories | Remotely programmable infusion system |
US4550731A (en) | 1984-03-07 | 1985-11-05 | Cordis Corporation | Acquisition circuit for cardiac pacer |
US4542532A (en) | 1984-03-09 | 1985-09-17 | Medtronic, Inc. | Dual-antenna transceiver |
US4871351A (en) | 1984-09-28 | 1989-10-03 | Vladimir Feingold | Implantable medication infusion system |
US4781798A (en) | 1985-04-19 | 1988-11-01 | The Regents Of The University Of California | Transparent multi-oxygen sensor array and method of using same |
US4671288A (en) | 1985-06-13 | 1987-06-09 | The Regents Of The University Of California | Electrochemical cell sensor for continuous short-term use in tissues and blood |
US5003298A (en) | 1986-01-15 | 1991-03-26 | Karel Havel | Variable color digital display for emphasizing position of decimal point |
US4731726A (en) | 1986-05-19 | 1988-03-15 | Healthware Corporation | Patient-operated glucose monitor and diabetes management system |
US4803625A (en) | 1986-06-30 | 1989-02-07 | Buddy Systems, Inc. | Personal health monitor |
US5019974A (en) | 1987-05-01 | 1991-05-28 | Diva Medical Systems Bv | Diabetes management system and apparatus |
US5011468A (en) | 1987-05-29 | 1991-04-30 | Retroperfusion Systems, Inc. | Retroperfusion and retroinfusion control apparatus, system and method |
US4809697A (en) | 1987-10-14 | 1989-03-07 | Siemens-Pacesetter, Inc. | Interactive programming and diagnostic system for use with implantable pacemaker |
EP0319268B1 (en) | 1987-12-04 | 1997-01-08 | IVAC MEDICAL SYSTEMS, Inc. | Clinical configuration of multimode medication infusion system |
US5341291A (en) | 1987-12-09 | 1994-08-23 | Arch Development Corporation | Portable medical interactive test selector having plug-in replaceable memory |
US4998578A (en) | 1988-01-11 | 1991-03-12 | Lanxide Technology Company, Lp | Method of making metal matrix composites |
US4898578A (en) | 1988-01-26 | 1990-02-06 | Baxter International Inc. | Drug infusion system with calculator |
GB2218831A (en) | 1988-05-17 | 1989-11-22 | Mark John Newland | Personal medical apparatus |
US4982872A (en) | 1988-12-15 | 1991-01-08 | Avery Donald J | Film-encapsulated-structure container for food, beverages and other consumable products and method for making of same |
US5643212A (en) | 1989-01-30 | 1997-07-01 | Coutre; James E. | Infusion pump management system for suggesting an adapted course of therapy |
US5153827A (en) | 1989-01-30 | 1992-10-06 | Omni-Flow, Inc. | An infusion management and pumping system having an alarm handling system |
US5317506A (en) | 1989-01-30 | 1994-05-31 | Abbott Laboratories | Infusion fluid management system |
US5320725A (en) | 1989-08-02 | 1994-06-14 | E. Heller & Company | Electrode and method for the detection of hydrogen peroxide |
US5264104A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5262035A (en) | 1989-08-02 | 1993-11-16 | E. Heller And Company | Enzyme electrodes |
US5264105A (en) | 1989-08-02 | 1993-11-23 | Gregg Brian A | Enzyme electrodes |
US5101814A (en) | 1989-08-11 | 1992-04-07 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5050612A (en) | 1989-09-12 | 1991-09-24 | Matsumura Kenneth N | Device for computer-assisted monitoring of the body |
US5403700A (en) | 1990-02-14 | 1995-04-04 | Eli Lilly And Company | Method of making a thin film electrical component |
US5108819A (en) | 1990-02-14 | 1992-04-28 | Eli Lilly And Company | Thin film electrical component |
US5097122A (en) | 1990-04-16 | 1992-03-17 | Pacesetter Infusion, Ltd. | Medication infusion system having optical motion sensor to detect drive mechanism malfunction |
US5080653A (en) | 1990-04-16 | 1992-01-14 | Pacesetter Infusion, Ltd. | Infusion pump with dual position syringe locator |
US5165407A (en) | 1990-04-19 | 1992-11-24 | The University Of Kansas | Implantable glucose sensor |
US5078683A (en) | 1990-05-04 | 1992-01-07 | Block Medical, Inc. | Programmable infusion system |
US5262305A (en) | 1991-03-04 | 1993-11-16 | E. Heller & Company | Interferant eliminating biosensors |
US6881551B2 (en) | 1991-03-04 | 2005-04-19 | Therasense, Inc. | Subcutaneous glucose electrode |
US6514718B2 (en) | 1991-03-04 | 2003-02-04 | Therasense, Inc. | Subcutaneous glucose electrode |
US5356786A (en) | 1991-03-04 | 1994-10-18 | E. Heller & Company | Interferant eliminating biosensor |
US5247434A (en) | 1991-04-19 | 1993-09-21 | Althin Medical, Inc. | Method and apparatus for kidney dialysis |
US5322063A (en) | 1991-10-04 | 1994-06-21 | Eli Lilly And Company | Hydrophilic polyurethane membranes for electrochemical glucose sensors |
US5284140A (en) | 1992-02-11 | 1994-02-08 | Eli Lilly And Company | Acrylic copolymer membranes for biosensors |
US5339821A (en) | 1992-02-13 | 1994-08-23 | Seta Co., Ltd. | Home medical system and medical apparatus for use therewith |
US5338157B1 (en) | 1992-09-09 | 1999-11-02 | Sims Deltec Inc | Systems and methods for communicating with ambulat |
US5338157A (en) | 1992-09-09 | 1994-08-16 | Pharmacia Deltec, Inc. | Systems and methods for communicating with ambulatory medical devices such as drug delivery devices |
US5485408A (en) | 1992-09-09 | 1996-01-16 | Sims Deltec, Inc. | Pump simulation apparatus |
US5935099A (en) | 1992-09-09 | 1999-08-10 | Sims Deltec, Inc. | Drug pump systems and methods |
US5376070A (en) | 1992-09-29 | 1994-12-27 | Minimed Inc. | Data transfer system for an infusion pump |
US5899855A (en) | 1992-11-17 | 1999-05-04 | Health Hero Network, Inc. | Modular microprocessor-based health monitoring system |
US5307263A (en) | 1992-11-17 | 1994-04-26 | Raya Systems, Inc. | Modular microprocessor-based health monitoring system |
US5960403A (en) | 1992-11-17 | 1999-09-28 | Health Hero Network | Health management process control system |
US5371687A (en) | 1992-11-20 | 1994-12-06 | Boehringer Mannheim Corporation | Glucose test data acquisition and management system |
US5411647A (en) | 1992-11-23 | 1995-05-02 | Eli Lilly And Company | Techniques to improve the performance of electrochemical sensors |
US5299571A (en) | 1993-01-22 | 1994-04-05 | Eli Lilly And Company | Apparatus and method for implantation of sensors |
US5357427A (en) | 1993-03-15 | 1994-10-18 | Digital Equipment Corporation | Remote monitoring of high-risk patients using artificial intelligence |
US5350411A (en) | 1993-06-28 | 1994-09-27 | Medtronic, Inc. | Pacemaker telemetry system |
US5368562A (en) | 1993-07-30 | 1994-11-29 | Pharmacia Deltec, Inc. | Systems and methods for operating ambulatory medical devices such as drug delivery devices |
DE4329229A1 (en) | 1993-08-25 | 1995-03-09 | Meditech Medizintechnik Gmbh | Adaptive controlled pump control, in particular for adaptive patient-controlled analgesia (APCA) |
US5497772A (en) | 1993-11-19 | 1996-03-12 | Alfred E. Mann Foundation For Scientific Research | Glucose monitoring system |
US5660163A (en) | 1993-11-19 | 1997-08-26 | Alfred E. Mann Foundation For Scientific Research | Glucose sensor assembly |
US5791344A (en) | 1993-11-19 | 1998-08-11 | Alfred E. Mann Foundation For Scientific Research | Patient monitoring system |
US6162611A (en) | 1993-12-02 | 2000-12-19 | E. Heller & Company | Subcutaneous glucose electrode |
US6329161B1 (en) | 1993-12-02 | 2001-12-11 | Therasense, Inc. | Subcutaneous glucose electrode |
US6121009A (en) | 1993-12-02 | 2000-09-19 | E. Heller & Company | Electrochemical analyte measurement system |
US5965380A (en) | 1993-12-02 | 1999-10-12 | E. Heller & Company | Subcutaneous glucose electrode |
US5593852A (en) | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
US6083710A (en) | 1993-12-02 | 2000-07-04 | E. Heller & Company | Electrochemical analyte measurement system |
US5594638A (en) | 1993-12-29 | 1997-01-14 | First Opinion Corporation | Computerized medical diagnostic system including re-enter function and sensitivity factors |
US5868669A (en) | 1993-12-29 | 1999-02-09 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system |
US5660176A (en) | 1993-12-29 | 1997-08-26 | First Opinion Corporation | Computerized medical diagnostic and treatment advice system |
US5764159A (en) | 1994-02-16 | 1998-06-09 | Debiotech S.A. | Apparatus for remotely monitoring controllable devices |
US5543326A (en) | 1994-03-04 | 1996-08-06 | Heller; Adam | Biosensor including chemically modified enzymes |
US5630710A (en) | 1994-03-09 | 1997-05-20 | Baxter International Inc. | Ambulatory infusion pump |
US5925021A (en) | 1994-03-09 | 1999-07-20 | Visionary Medical Products, Inc. | Medication delivery device with a microprocessor and characteristic monitor |
US5593390A (en) | 1994-03-09 | 1997-01-14 | Visionary Medical Products, Inc. | Medication delivery device with a microprocessor and characteristic monitor |
US5390671A (en) | 1994-03-15 | 1995-02-21 | Minimed Inc. | Transcutaneous sensor insertion set |
US5391250A (en) | 1994-03-15 | 1995-02-21 | Minimed Inc. | Method of fabricating thin film sensors |
US5569186A (en) | 1994-04-25 | 1996-10-29 | Minimed Inc. | Closed loop infusion pump system with removable glucose sensor |
US5940801A (en) | 1994-04-26 | 1999-08-17 | Health Hero Network, Inc. | Modular microprocessor-based diagnostic measurement apparatus and method for psychological conditions |
US5370622A (en) | 1994-04-28 | 1994-12-06 | Minimed Inc. | Proctective case for a medication infusion pump |
US5482473A (en) | 1994-05-09 | 1996-01-09 | Minimed Inc. | Flex circuit connector |
US5626144A (en) | 1994-05-23 | 1997-05-06 | Enact Health Management Systems | System for monitoring and reporting medical measurements |
US5918603A (en) | 1994-05-23 | 1999-07-06 | Health Hero Network, Inc. | Method for treating medical conditions using a microprocessor-based video game |
US5913310A (en) | 1994-05-23 | 1999-06-22 | Health Hero Network, Inc. | Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game |
US5704366A (en) | 1994-05-23 | 1998-01-06 | Enact Health Management Systems | System for monitoring and reporting medical measurements |
US5582593A (en) | 1994-07-21 | 1996-12-10 | Hultman; Barry W. | Ambulatory medication delivery system |
US5569187A (en) | 1994-08-16 | 1996-10-29 | Texas Instruments Incorporated | Method and apparatus for wireless chemical supplying |
US5505709A (en) | 1994-09-15 | 1996-04-09 | Minimed, Inc., A Delaware Corporation | Mated infusion pump and syringe |
US5687734A (en) | 1994-10-20 | 1997-11-18 | Hewlett-Packard Company | Flexible patient monitoring system featuring a multiport transmitter |
US5800420A (en) | 1994-11-04 | 1998-09-01 | Elan Medical Technologies Limited | Analyte-controlled liquid delivery device and analyte monitor |
US7153289B2 (en) | 1994-11-25 | 2006-12-26 | I-Flow Corporation | Remotely programmable infusion system |
US5573506A (en) | 1994-11-25 | 1996-11-12 | Block Medical, Inc. | Remotely programmable infusion system |
US5871465A (en) | 1994-11-25 | 1999-02-16 | I-Flow Corporation | Remotely programmable infusion system |
WO1996020745A1 (en) | 1995-01-06 | 1996-07-11 | Abbott Laboratories | Medicinal fluid pump having multiple stored protocols |
US5685844A (en) | 1995-01-06 | 1997-11-11 | Abbott Laboratories | Medicinal fluid pump having multiple stored protocols |
US5586553A (en) | 1995-02-16 | 1996-12-24 | Minimed Inc. | Transcutaneous sensor insertion set |
US5814015A (en) | 1995-02-24 | 1998-09-29 | Harvard Clinical Technology, Inc. | Infusion pump for at least one syringe |
US5609060A (en) | 1995-04-28 | 1997-03-11 | Dentsleeve Pty Limited | Multiple channel perfused manometry apparatus and a method of operation of such a device |
WO1996036389A1 (en) | 1995-05-15 | 1996-11-21 | Ivac Medical Systems, Inc. | Automated infusion system with dose rate calculator |
US5772635A (en) | 1995-05-15 | 1998-06-30 | Alaris Medical Systems, Inc. | Automated infusion system with dose rate calculator |
WO1996037246A1 (en) | 1995-05-26 | 1996-11-28 | Minimed Inc. | Medication infusion device with blood glucose data input |
US5665065A (en) | 1995-05-26 | 1997-09-09 | Minimed Inc. | Medication infusion device with blood glucose data input |
US5750926A (en) | 1995-08-16 | 1998-05-12 | Alfred E. Mann Foundation For Scientific Research | Hermetically sealed electrical feedthrough for use with implantable electronic devices |
US5754111A (en) | 1995-09-20 | 1998-05-19 | Garcia; Alfredo | Medical alerting system |
US5665222A (en) | 1995-10-11 | 1997-09-09 | E. Heller & Company | Soybean peroxidase electrochemical sensor |
US5972199A (en) | 1995-10-11 | 1999-10-26 | E. Heller & Company | Electrochemical analyte sensors using thermostable peroxidase |
US6689265B2 (en) | 1995-10-11 | 2004-02-10 | Therasense, Inc. | Electrochemical analyte sensors using thermostable soybean peroxidase |
US5788669A (en) | 1995-11-22 | 1998-08-04 | Sims Deltec, Inc. | Pump tracking system |
WO1997021456A1 (en) | 1995-12-12 | 1997-06-19 | The University Of Melbourne | Field programmable intravenous infusion system |
US5840020A (en) | 1996-02-12 | 1998-11-24 | Nokia Mobile Phones, Ltd. | Monitoring method and a monitoring equipment |
EP0806738A1 (en) | 1996-05-07 | 1997-11-12 | Société D'Etudes Techniques - S E T | Neural networks arrangement for the determination of a substance dosage to administer to a patient |
US5861018A (en) | 1996-05-28 | 1999-01-19 | Telecom Medical Inc. | Ultrasound transdermal communication system and method |
US5879163A (en) | 1996-06-24 | 1999-03-09 | Health Hero Network, Inc. | On-line health education and feedback system using motivational driver profile coding and automated content fulfillment |
US5807336A (en) | 1996-08-02 | 1998-09-15 | Sabratek Corporation | Apparatus for monitoring and/or controlling a medical device |
US5885245A (en) | 1996-08-02 | 1999-03-23 | Sabratek Corporation | Medical apparatus with remote virtual input device |
US5832448A (en) | 1996-10-16 | 1998-11-03 | Health Hero Network | Multiple patient monitoring system for proactive health management |
US6246992B1 (en) | 1996-10-16 | 2001-06-12 | Health Hero Network, Inc. | Multiple patient monitoring system for proactive health management |
WO1998020439A1 (en) | 1996-11-08 | 1998-05-14 | Roman Linda L | System for providing comprehensive health care and support |
WO1998024358A2 (en) | 1996-12-04 | 1998-06-11 | Enact Health Management Systems | System for downloading and reporting medical information |
US6043437A (en) | 1996-12-20 | 2000-03-28 | Alfred E. Mann Foundation | Alumina insulation for coating implantable components and other microminiature devices |
US6472122B1 (en) | 1996-12-20 | 2002-10-29 | Medtronic Minimed, Inc. | Method of applying insulation for coating implantable components and other microminiature devices |
US5933136A (en) | 1996-12-23 | 1999-08-03 | Health Hero Network, Inc. | Network media access control system for encouraging patient compliance with a treatment plan |
US5956501A (en) | 1997-01-10 | 1999-09-21 | Health Hero Network, Inc. | Disease simulation system and method |
US5822715A (en) | 1997-01-10 | 1998-10-13 | Health Hero Network | Diabetes management system and method for controlling blood glucose |
US6032119A (en) | 1997-01-16 | 2000-02-29 | Health Hero Network, Inc. | Personalized display of health information |
US5978236A (en) | 1997-01-31 | 1999-11-02 | Silverline Power Conversion Llc | Uninterruptible power supply with direction of DC electrical energy depending on predetermined ratio |
US6143164A (en) | 1997-02-06 | 2000-11-07 | E. Heller & Company | Small volume in vitro analyte sensor |
US6120676A (en) | 1997-02-06 | 2000-09-19 | Therasense, Inc. | Method of using a small volume in vitro analyte sensor |
US6607658B1 (en) | 1997-02-06 | 2003-08-19 | Therasense, Inc. | Integrated lancing and measurement device and analyte measuring methods |
US6009339A (en) | 1997-02-27 | 1999-12-28 | Terumo Cardiovascular Systems Corporation | Blood parameter measurement device |
WO1998042407A1 (en) | 1997-03-27 | 1998-10-01 | Medtronic, Inc. | Concepts to implement medconnect |
US5997476A (en) | 1997-03-28 | 1999-12-07 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US5897493A (en) | 1997-03-28 | 1999-04-27 | Health Hero Network, Inc. | Monitoring system for remotely querying individuals |
US6408330B1 (en) | 1997-04-14 | 2002-06-18 | Delahuerga Carlos | Remote data collecting and address providing method and apparatus |
WO1998049659A2 (en) | 1997-04-25 | 1998-11-05 | Sekura Ronald D | Prescription compliance device and method of using device |
US6101478A (en) | 1997-04-30 | 2000-08-08 | Health Hero Network | Multi-user remote health monitoring system |
US5779665A (en) | 1997-05-08 | 1998-07-14 | Minimed Inc. | Transdermal introducer assembly |
EP0880936A2 (en) | 1997-05-29 | 1998-12-02 | Koji Akai | Monitoring physical condition of a patient by telemetry |
US7402153B2 (en) | 1997-06-09 | 2008-07-22 | Medtronic Minimed, Inc. | Closed-loop method for controlling insulin infusion |
WO1998059487A1 (en) | 1997-06-23 | 1998-12-30 | Enact Health Management Systems | Improved system for downloading and reporting medical information |
WO1999008183A1 (en) | 1997-08-11 | 1999-02-18 | Electronic Monitoring Systems, Inc. | Remote monitoring system |
WO1999010801A1 (en) | 1997-08-22 | 1999-03-04 | Apex Inc. | Remote computer control system |
US5999848A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Daisy chainable sensors and stimulators for implantation in living tissue |
US6893545B2 (en) | 1997-09-12 | 2005-05-17 | Therasense, Inc. | Biosensor |
US5917346A (en) | 1997-09-12 | 1999-06-29 | Alfred E. Mann Foundation | Low power current to frequency converter circuit for use in implantable sensors |
US5999849A (en) | 1997-09-12 | 1999-12-07 | Alfred E. Mann Foundation | Low power rectifier circuit for implantable medical device |
US6503381B1 (en) | 1997-09-12 | 2003-01-07 | Therasense, Inc. | Biosensor |
US20060229694A1 (en) | 1997-09-12 | 2006-10-12 | Alfred E. Mann Foundation For Scientific Research | Substrate sensor |
US6259937B1 (en) | 1997-09-12 | 2001-07-10 | Alfred E. Mann Foundation | Implantable substrate sensor |
US6183412B1 (en) | 1997-10-02 | 2001-02-06 | Micromed Technology, Inc. | Implantable pump system |
WO1999018532A1 (en) | 1997-10-07 | 1999-04-15 | Health Hero Network, Inc. | Networked system for interactive communication and remote monitoring of individuals |
US6081736A (en) | 1997-10-20 | 2000-06-27 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems adapted for long term use |
US6119028A (en) | 1997-10-20 | 2000-09-12 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces |
US6088608A (en) | 1997-10-20 | 2000-07-11 | Alfred E. Mann Foundation | Electrochemical sensor and integrity tests therefor |
WO1999022236A1 (en) | 1997-10-27 | 1999-05-06 | Nokia Mobile Phones Limited | Calibration of measured physical parameters |
US6579690B1 (en) | 1997-12-05 | 2003-06-17 | Therasense, Inc. | Blood analyte monitoring through subcutaneous measurement |
US6134461A (en) | 1998-03-04 | 2000-10-17 | E. Heller & Company | Electrochemical analyte |
US20030088166A1 (en) | 1998-03-04 | 2003-05-08 | Therasense, Inc. | Electrochemical analyte sensor |
US20030188427A1 (en) | 1998-03-04 | 2003-10-09 | Therasense, Inc. | Process for producing an electrochemical biosensor |
US6484046B1 (en) | 1998-03-04 | 2002-11-19 | Therasense, Inc. | Electrochemical analyte sensor |
US6103033A (en) | 1998-03-04 | 2000-08-15 | Therasense, Inc. | Process for producing an electrochemical biosensor |
US6733471B1 (en) | 1998-03-16 | 2004-05-11 | Medtronic, Inc. | Hemostatic system and components for extracorporeal circuit |
US5904708A (en) | 1998-03-19 | 1999-05-18 | Medtronic, Inc. | System and method for deriving relative physiologic signals |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6565509B1 (en) | 1998-04-30 | 2003-05-20 | Therasense, Inc. | Analyte monitoring device and methods of use |
US20030152823A1 (en) | 1998-06-17 | 2003-08-14 | Therasense, Inc. | Biological fuel cell and methods |
US20040073095A1 (en) | 1998-08-18 | 2004-04-15 | Minimed Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
WO2000010628A2 (en) | 1998-08-18 | 2000-03-02 | Minimed Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US6641533B2 (en) | 1998-08-18 | 2003-11-04 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6554798B1 (en) | 1998-08-18 | 2003-04-29 | Medtronic Minimed, Inc. | External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities |
US20040263354A1 (en) | 1998-10-08 | 2004-12-30 | Minimed, Inc. | Telemetered characteristic monitor system and method of using the same |
US20030199744A1 (en) | 1998-10-08 | 2003-10-23 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
WO2000019887A1 (en) | 1998-10-08 | 2000-04-13 | Minimed Inc. | Telemetered characteristic monitor system |
US6618934B1 (en) | 1998-10-08 | 2003-09-16 | Therasense, Inc. | Method of manufacturing small volume in vitro analyte sensor |
US6592745B1 (en) | 1998-10-08 | 2003-07-15 | Therasense, Inc. | Method of using a small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US6809653B1 (en) | 1998-10-08 | 2004-10-26 | Medtronic Minimed, Inc. | Telemetered characteristic monitor system and method of using the same |
US6817990B2 (en) | 1998-10-29 | 2004-11-16 | Medtronic Minimed, Inc. | Fluid reservoir piston |
US6248093B1 (en) | 1998-10-29 | 2001-06-19 | Minimed Inc. | Compact pump drive system |
US7621893B2 (en) | 1998-10-29 | 2009-11-24 | Medtronic Minimed, Inc. | Methods and apparatuses for detecting occlusions in an ambulatory infusion pump |
US20040158193A1 (en) * | 1999-02-10 | 2004-08-12 | Baxter International Inc. | Medical apparatus using selective graphical interface |
WO2000048112A2 (en) * | 1999-02-10 | 2000-08-17 | Baxter International, Inc. | Medical apparatus using selective graphical interface |
US20030144581A1 (en) | 1999-02-12 | 2003-07-31 | Cygnus, Inc. | Devices and methods for frequent measurement of an analyte present in a biological system |
US6560741B1 (en) | 1999-02-24 | 2003-05-06 | Datastrip (Iom) Limited | Two-dimensional printed code for storing biometric information and integrated off-line apparatus for reading same |
US6424847B1 (en) | 1999-02-25 | 2002-07-23 | Medtronic Minimed, Inc. | Glucose monitor calibration methods |
US6892085B2 (en) | 1999-02-25 | 2005-05-10 | Medtronic Minimed, Inc. | Glucose sensor package system |
US20020137997A1 (en) | 1999-02-25 | 2002-09-26 | Minimed Inc. | Test plug and cable for a glucose monitor |
US6558351B1 (en) | 1999-06-03 | 2003-05-06 | Medtronic Minimed, Inc. | Closed loop system for controlling insulin infusion |
US6752787B1 (en) | 1999-06-08 | 2004-06-22 | Medtronic Minimed, Inc., | Cost-sensitive application infusion device |
US20040111017A1 (en) | 1999-06-18 | 2004-06-10 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US6654625B1 (en) | 1999-06-18 | 2003-11-25 | Therasense, Inc. | Mass transport limited in vivo analyte sensor |
US20030220552A1 (en) | 1999-07-01 | 2003-11-27 | Medtronic Minimed, Inc. | Reusable analyte sensor site and method of using the same |
US6553263B1 (en) | 1999-07-30 | 2003-04-22 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
US6616819B1 (en) | 1999-11-04 | 2003-09-09 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US6942518B2 (en) | 1999-11-04 | 2005-09-13 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US6749740B2 (en) | 1999-11-04 | 2004-06-15 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US6605200B1 (en) | 1999-11-15 | 2003-08-12 | Therasense, Inc. | Polymeric transition metal complexes and uses thereof |
US6605201B1 (en) | 1999-11-15 | 2003-08-12 | Therasense, Inc. | Transition metal complexes with bidentate ligand having an imidazole ring and sensor constructed therewith |
US6558320B1 (en) | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6484045B1 (en) | 2000-02-10 | 2002-11-19 | Medtronic Minimed, Inc. | Analyte sensor and method of making the same |
US20030060765A1 (en) | 2000-02-16 | 2003-03-27 | Arthur Campbell | Infusion device menu structure and method of using the same |
US20020161288A1 (en) | 2000-02-23 | 2002-10-31 | Medtronic Minimed, Inc. | Real time self-adjusting calibration algorithm |
US6895263B2 (en) | 2000-02-23 | 2005-05-17 | Medtronic Minimed, Inc. | Real time self-adjusting calibration algorithm |
US6485465B2 (en) | 2000-03-29 | 2002-11-26 | Medtronic Minimed, Inc. | Methods, apparatuses, and uses for infusion pump fluid pressure and force detection |
US6659980B2 (en) | 2000-03-29 | 2003-12-09 | Medtronic Minimed Inc | Methods, apparatuses, and uses for infusion pump fluid pressure and force detection |
US6623501B2 (en) | 2000-04-05 | 2003-09-23 | Therasense, Inc. | Reusable ceramic skin-piercing device |
US6746582B2 (en) | 2000-05-12 | 2004-06-08 | Therasense, Inc. | Electrodes with multilayer membranes and methods of making the electrodes |
US20010044731A1 (en) | 2000-05-18 | 2001-11-22 | Coffman Damon J. | Distributed remote asset and medication management drug delivery system |
US6544173B2 (en) | 2000-05-19 | 2003-04-08 | Welch Allyn Protocol, Inc. | Patient monitoring system |
US20020013518A1 (en) | 2000-05-19 | 2002-01-31 | West Kenneth G. | Patient monitoring system |
US6591125B1 (en) | 2000-06-27 | 2003-07-08 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US7153263B2 (en) | 2000-07-13 | 2006-12-26 | Ge Medical Systems Information Technologies, Inc. | Wireless LAN architecture for integrated time-critical and non-time-critical services within medical facilities |
US6589229B1 (en) | 2000-07-31 | 2003-07-08 | Becton, Dickinson And Company | Wearable, self-contained drug infusion device |
US20020055857A1 (en) | 2000-10-31 | 2002-05-09 | Mault James R. | Method of assisting individuals in lifestyle control programs conducive to good health |
WO2002058537A2 (en) | 2001-01-02 | 2002-08-01 | Therasense, Inc. | Analyte monitoring device and methods of use |
US20030176183A1 (en) | 2001-04-02 | 2003-09-18 | Therasense, Inc. | Blood glucose tracking apparatus and methods |
US20040097796A1 (en) | 2001-04-27 | 2004-05-20 | Medoptix | Method and system of monitoring a patient |
US6676816B2 (en) | 2001-05-11 | 2004-01-13 | Therasense, Inc. | Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes |
US6932894B2 (en) | 2001-05-15 | 2005-08-23 | Therasense, Inc. | Biosensor membranes composed of polymers containing heterocyclic nitrogens |
WO2003001329A2 (en) | 2001-06-20 | 2003-01-03 | Power Medical Interventions, Inc. | A method and system for integrated medical tracking |
US20030208113A1 (en) | 2001-07-18 | 2003-11-06 | Mault James R | Closed loop glycemic index system |
US6747556B2 (en) | 2001-07-31 | 2004-06-08 | Medtronic Physio-Control Corp. | Method and system for locating a portable medical device |
US6671554B2 (en) | 2001-09-07 | 2003-12-30 | Medtronic Minimed, Inc. | Electronic lead for a medical implant device, method of making same, and method and apparatus for inserting same |
US6827702B2 (en) | 2001-09-07 | 2004-12-07 | Medtronic Minimed, Inc. | Safety limits for closed-loop infusion pump control |
US6740072B2 (en) | 2001-09-07 | 2004-05-25 | Medtronic Minimed, Inc. | System and method for providing closed loop infusion formulation delivery |
US20030078560A1 (en) | 2001-09-07 | 2003-04-24 | Miller Michael E. | Method and system for non-vascular sensor implantation |
US7323142B2 (en) | 2001-09-07 | 2008-01-29 | Medtronic Minimed, Inc. | Sensor substrate and method of fabricating same |
US6728576B2 (en) | 2001-10-31 | 2004-04-27 | Medtronic, Inc. | Non-contact EKG |
EP1338295A1 (en) | 2002-02-26 | 2003-08-27 | Lifescan, Inc. | Systems for remotely controlling medication infusion and analyte monitoring |
US20040102683A1 (en) | 2002-04-16 | 2004-05-27 | Khanuja Sukhwant Singh | Method and apparatus for remotely monitoring the condition of a patient |
US20040167465A1 (en) | 2002-04-30 | 2004-08-26 | Mihai Dan M. | System and method for medical device authentication |
WO2003094090A2 (en) | 2002-04-30 | 2003-11-13 | Baxter International Inc. | System and method for identifying data streams associated with medical equipment |
US20040061234A1 (en) | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | High reliability multlayer circuit substrates and methods for their formation |
US20040061232A1 (en) | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Multilayer substrate |
US20040064156A1 (en) | 2002-09-27 | 2004-04-01 | Medtronic Minimed, Inc. | Method and apparatus for enhancing the integrity of an implantable sensor device |
US20040064133A1 (en) | 2002-09-27 | 2004-04-01 | Medtronic-Minimed | Implantable sensor method and system |
US6916159B2 (en) | 2002-10-09 | 2005-07-12 | Therasense, Inc. | Device and method employing shape memory alloy |
US20040074785A1 (en) | 2002-10-18 | 2004-04-22 | Holker James D. | Analyte sensors and methods for making them |
US20040093167A1 (en) | 2002-11-08 | 2004-05-13 | Braig James R. | Analyte detection system with software download capabilities |
US20050038680A1 (en) | 2002-12-19 | 2005-02-17 | Mcmahon Kevin Lee | System and method for glucose monitoring |
US20040122353A1 (en) | 2002-12-19 | 2004-06-24 | Medtronic Minimed, Inc. | Relay device for transferring information between a sensor system and a fluid delivery system |
US6932584B2 (en) | 2002-12-26 | 2005-08-23 | Medtronic Minimed, Inc. | Infusion device and driving mechanism and process for same with actuator for multiple infusion uses |
US7396330B2 (en) | 2003-01-07 | 2008-07-08 | Triage Data Networks | Wireless, internet-based medical-diagnostic system |
US20060238333A1 (en) | 2003-03-21 | 2006-10-26 | Welch Allyn Protocol, Inc. | Personal status physiologic monitor system and architecture and related monitoring methods |
US20070088521A1 (en) | 2003-04-08 | 2007-04-19 | Ram Shmueli | Portable wireless gateway for remote medical examination |
US20050055244A1 (en) * | 2003-07-18 | 2005-03-10 | Janet Mullan | Wireless medical communication system and method |
US20050038331A1 (en) | 2003-08-14 | 2005-02-17 | Grayson Silaski | Insertable sensor assembly having a coupled inductor communicative system |
US20050154271A1 (en) | 2003-11-19 | 2005-07-14 | Andrew Rasdal | Integrated receiver for continuous analyte sensor |
WO2005065538A2 (en) | 2003-12-31 | 2005-07-21 | Medtronic Minimed, Inc. | System for monitoring physiological characteristics |
US20080154503A1 (en) | 2004-02-19 | 2008-06-26 | Koninklijke Philips Electronics N.V. | Method and Associated System for Wireless Medical Monitoring and Patient Monitoring Device |
US20050192557A1 (en) | 2004-02-26 | 2005-09-01 | Dexcom | Integrated delivery device for continuous glucose sensor |
EP1631036A2 (en) | 2004-08-27 | 2006-03-01 | NTT DoCoMo, Inc. | Device authentication in a service control system |
US20090082635A1 (en) | 2004-11-12 | 2009-03-26 | Koninklijke Philips Electronics N.V. | Message integrity for secure communication of wireless medical devices |
US20090081951A1 (en) | 2004-11-16 | 2009-03-26 | Koninklijke Philips Electronics N.V. | Time synchronization in wireless ad hoc networks of medical devices and sensors |
US20060293571A1 (en) | 2005-06-23 | 2006-12-28 | Skanda Systems | Distributed architecture for remote patient monitoring and caring |
US20070135866A1 (en) | 2005-12-14 | 2007-06-14 | Welch Allyn Inc. | Medical device wireless adapter |
US20090036750A1 (en) * | 2007-05-25 | 2009-02-05 | The Charles Stark Draper Laboratory, Inc. | Integration and control of medical devices in a clinical environment |
US20090088197A1 (en) * | 2007-09-28 | 2009-04-02 | Palm, Inc. | Synchronized Helper System Using Paired Computing Device |
US8674288B2 (en) | 2010-03-24 | 2014-03-18 | Medtronic Minimed, Inc. | Motor assembly sensor capture systems and methods |
US8474332B2 (en) | 2010-10-20 | 2013-07-02 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US20120174022A1 (en) * | 2010-12-31 | 2012-07-05 | Sandhu Kulbir S | Automated catheter guidance system |
US20140210600A1 (en) | 2013-01-30 | 2014-07-31 | Stefan Lautenschlaeger | Method, mobile application and medical system to determine assistive information for a medical apparatus |
US20150057807A1 (en) | 2013-08-21 | 2015-02-26 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US20150057634A1 (en) | 2013-08-21 | 2015-02-26 | Medtronic Minimed, Inc. | Systems and methods for updating medical devices |
US20150151050A1 (en) * | 2013-12-02 | 2015-06-04 | Asante Solutions, Inc. | Infusion Pump System and Method |
US20210146041A1 (en) * | 2013-12-26 | 2021-05-20 | Tandem Diabetes Care, Inc. | Integration of infusion pump with remote electronic device |
US20180150614A1 (en) | 2016-11-28 | 2018-05-31 | Medtronic Minimed, Inc. | Interactive patient guidance for medical devices |
Non-Patent Citations (93)
Title |
---|
(Animas Corporation, 1999). Animas . . . bringing new life to insulin therapy. |
(Intensive Diabetes Management, 1995). Insulin Infusion Pump Therapy. pp. 66-78. |
(Medtronic MiniMed, 2002). Medtronic MiniMed Meal Bolus Calculator and Correction Bolus Calculator. International Version. |
(Medtronic MiniMed, 2002). The 508 Insulin Pump A Tradition of Excellence. |
(MiniMed Inc., 1999). Insulin Pump Comparison / Pump Therapy Will Change Your Life. |
(MiniMed Inc., 1999). MiniMed 508 Flipchart Guide to Insulin Pump Therapy. |
(MiniMed Inc., 2000). MiniMed® Now [I] Can Meal Bolus Calculator / MiniMed® Now [I] Can Correction Bolus Calculator. |
(MiniMed Inc., 2000). Now [I] Can MiniMed Diabetes Management. |
(MiniMed Inc., 2000). Now [I] Can MiniMed Pump Therapy. |
(MiniMed International, 1998). MiniMed 507C Insulin Pump For those who appreciate the difference. |
(MiniMed Technologies, 1994). MiniMed 506 Insulin Pump User's Guide. |
(MiniMed Technologies, 1994). MiniMedTm Dosage Calculator Initial Meal Bolus Guidelines / MiniMed TM Dosage Calculator Initial Basal Rate Guidelines Percentage Method. 4 pages. |
(MiniMed, 1996). FAQ: The Practical Things . . . pp. 1-4. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054546/www.minimed.comffiles/faq_pract.htm. |
(MiniMed, 1996). MiniMedTm 507 Insulin Pump User's Guide. |
(MiniMed, 1996). The MiniMed 506. 7 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054527/www.minimed.com/files/506_pic.htm. |
(MiniMed, 1997). MiniMed 507 Specifications. 2 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234841/www.minimed.com/files/mmn075.htm. |
(MiniMed, 1997). MiniMedTM 507 Insulin Pump User's Guide. |
(MiniMed, 1997). Wanted: a Few Good Belt Clips! 1 page. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234559/www.minimed.comffiles/mmn002.htm. |
(MiniMed, 1998). MiniMed 507C Insulin Pump User's Guide. |
(MiniMed, 2000). MiniMed® 508 User's Guide. |
Abel , et al., "Experience with an implantable glucose sensor as a prerequiste of an artificial beta cell", Biomed. Biochim. Acta 43 (1984) 5, pp. 577-584. |
Bindra, Dilbir S., et al., "Design and in Vitro Studies of a Needle-Type Glucose Sensor for a Subcutaneous Monitoring", American Chemistry Society, 1991, 63, pp. 1692-1696. |
Bode , et al., "Reduction in Severe Hypoglycemia with Long-Term Continuous Subcutaneous Insulin Infusion in Type I Diabetes", Diabetes Care, vol. 19, No. 4, 324-327 (1996). |
Boguslavsky, Leonid , et al., "Applications of redox polymers in biosensors", Sold State Ionics 60, 1993, pp. 189-197. |
Boland , Teens Pumping it Up! Insulin Pump Therapy Guide for Adolescents. 2nd Edition. (1998). |
Brackenridge , "Carbohydrate Gram Counting A Key to Accurate Mealtime Boluses in Intensive Diabetes Therapy", Practical Diabetology, vol. 11, No. 2, pp. 22-28. (1992). |
Brackenridge , et al., Counting Carbohydrates How to Zero in on Good Control. MiniMed Technologies Inc. (1995). |
Disetronic H-TRON® plus Quick Start Manual. |
Disetronic H-TRON® plus Reference Manual. |
Disetronic My Choice H-TRONplus Insulin Pump Reference Manual. |
Disetronic My ChoiceTM D-TRONTm Insulin Pump Reference Manual. |
Farkas-Hirsch , et al., Continuous Subcutaneous Insulin Infusion: A Review of the Past and Its Implementation for the Future. Diabetes Spectrum From Research to Practice, vol. 7, No. 2, pp. 80-84, 136-138. (1994). |
Geise, Robert J., et al., "Electropolymerized 1,3-diaminobenzene for the construction of a 1,1′-dimethylferrocene mediated glucose biosensor", Analytica Chimica Acta, 281, 1993, pp. 467-473. |
Gernet , et al., "A Planar Glucose Enzyme Electrode", Sensors and Actuators, 17, 1989, pp. 537-540. |
Gernet , et al., "Fabrication and Characterization of a Planar Electromechanical Cell and its Application as a Glucose Sensor", Sensors and Actuators, 18, 1989, pp. 59-70. |
Gorton , et al., "Amperometric Biosensors Based on an Apparent Direct Electron Transfer Between Electrodes and Immobilized Peroxiases", Analyst, Aug. 1991, vol. 117, pp. 1235-1241. |
Gorton , et al., "Amperometric Glucose Sensors Based on Immobilized Glucose-Oxidizing Enymes and Chemically Modified Electrodes", Analytica Chimica Acta, 249, 1991, pp. 43-54. |
Gough , et al., "Two-Dimensional Enzyme Electrode Sensor for Glucose", Analytical Chemistry, vol. 57, No. 5, 1985, pp. 2351-2357. |
Gregg, Brian A., et al., "Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications", Analytical Chemistry, 62, pp. 258-263. |
Gregg, Brian A., et al., "Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone", The Journal of Physical Chemistry, vol. 95, No. 15, 1991, pp. 5970-5975. |
Harte RP, Glynn LG, Broderick BJ, Rodriguez-Molinero A, Baker PM, McGuiness B, O'Sullivan L, Diaz M, Quinlan LR, ÓLaighin G. "Human centred design considerations for connected health devices for the older adult." J Pers Med. Jun. 4, 2014;4(2):245-81. (Year: 2014). * |
Hashiguchi, Yasuhiro MD, et al., "Development of a Miniaturized Glucose Monitoring System by Combining a Needle-Type Glucose Sensor With Microdialysis Sampling Method", Diabetes Care, vol. 17, No. 5, May 1994, pp. 387-389. |
Heller, Adam , "Electrical Wiring of Redox Enzymes", Acc. Chem. Res., vol. 23, No. 5, May 1990, pp. 128-134. |
Hirsch , et al., Intensive Insulin Therapy for Treatment of Type I Diabetes. Diabetes Care, vol. 13, No. 12, pp. 1265-1283. (1990). |
International Search Report dated Oct. 31, 2002; International Application No. PCT/US2002/03299; 3 pages. |
Jobst, Gerhard , et al., "Thin-Film Microbiosensors for Glucose-Lactate Monitoring", Analytical Chemistry, vol. 68, No. 18, Sep. 15, 1996, pp. 3173-3179. |
Johnson , et al., "In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue", Biosensors & Bioelectronics, 7, 1992, pp. 709-714. |
Jonsson , et al., "An Electromechanical Sensor for Hydrogen Peroxide Based on Peroxidase Adsorbed on a Spectrographic Graphite Electrode", Electroanalysis, 1989, pp. 465-468. |
Kanapieniene , et al., "Miniature Glucose Biosensor with Extended Linearity", Sensors and Actuators, B.10, 1992, pp. 37-40. |
Kawamori, Ryuzo , et al., "Perfect Normalization of Excessive Glucagon Responses to Intraveneous Arginine in Human Diabetes Mellitus With the Artificial Beta-Cell", Diabetes vol. 29, Sep. 1980, pp. 762-765. |
Kimura , et al., "An Immobilized Enzyme Membrane Fabrication Method", Biosensors 4, 1988, pp. 41-52. |
Koudelka , et al., "In-vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors", Biosensors & Bioelectronics 6, 1991, pp. 31-36. |
Koudelka , et al., "Planar Amperometric Enzyme-Based Glucose Microelectrode", Sensors & Actuators, 18, 1989, pp. 157-165. |
Kulkarni , et al., Carbohydrate Counting A Primer for Insulin Pump Users to Zero in on GoodControl. MiniMed Inc. (1999). |
Marcus , et al., "Insulin Pump Therapy Acceptable Alternative to Injection Therapy", Postgraduate Medicine, vol. 99, No. 3, pp. 125-142. (1996). |
Mastrototaro, John J., et al., "An electroenzymatic glucose sensor fabricated on a flexible substrate", Sensors & Actuators, B. 5, 1991, pp. 139-144. |
Mastrototaro, John J., et al., "An Electroenzymatic Sensor Capable of 72 Hour Continuous Monitoring of Subcutaneous Glucose", 14th Annual International Diabetes Federation Congress, Washington D.C., Jun. 23-28, 1991. |
McKean, Brian D., et al., "A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors", IEEE Transactions on Biomedical Engineering, Vo. 35, No. 7, Jul. 1988, pp. 526-532. |
Monroe , et al., "Novel Implantable Glucose Sensors", ACL, Dec. 1989, pp. 8-16. |
Morff, Robert J., et al., "Microfabrication of Reproducible, Economical, Electroenzymatic Glucose Sensors", Annuaal International Conference of teh IEEE Engineering in Medicine and Biology Society, Vo. 12, No. 2, 1990, pp. 483-484. |
Moussy, Francis , "Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating", Analytical Chemistry, vol. 65, No. 15, Aug. 1, 1993, pp. 2072-2077. |
Nakamoto , et al., "A Lift-Off Method for Patterning Enzyme-Immobilized Membranes in Multi-Biosensors", Sensors and Actuators 13, 1988, pp. 165-172. |
Nishida, Kenro , et al., "Clinical applications of teh wearable artifical endocrine pancreas with the newly designed heedle-type glucose sensor", Elsevier Sciences B.V., 1994, pp. 353-358. |
Nishida, Kenro , et al., "Development of a ferrocene-mediated needle-type glucose sensor covereed with newly designd biocompatible membrane, 2-methacryloyloxyethylphosphorylcholine-co-n-butyl nethacrylate", Medical Progress Through Technology, vol. 21, 1995, pp. 91-103. |
Poitout , et al., "A glucose monitoring system for on line estimation oin man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue adn a wearable control unit", Diabetologia, vol. 36, 1991, pp. 658-663. |
Reach , "A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors", Biosensors 2,1986, pp. 211-220. |
Reed , et al., Voice of the Diabetic, vol. 11, No. 3, pp. 1-38. (1996). |
Shaw , et al., "In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients", Biosensors & Bioelectronics 6, 1991, pp. 401-406. |
Shichiri , "A Needle-Type Glucose Sensor—A Valuable Tool Not Only For a Self-Blood Glucose Monitoring but for a Wearable Artifiical Pancreas", Life Support Systems Proceedings, XI Annual Meeting ESAO, Alpbach-Innsbruck, Austria, Sep. 1984, pp. 7-9. |
Shichiri , et al., "Membrane design for extending the long-life of an implantable glucose sensor", Nutr. Metab., vol. 2, No. 4, 1989, pp. 309-313. |
Shichiri , et al., "n Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers", Hormone and Metabolic Research, Supplement Series vol. No. 20, 1988, pp. 17-20. |
Shichiri, Motoaki , et al., "An artificial endocrine pancreas—problems awaiting solution for long-term clinical applications of a glucose sensor", Frontiers Med. Biol. Engng., 1991, vol. 3, No. 4, pp. 283-292. |
Shichiri, Motoaki , et al., "Closed-Loop Glycemic Control with a Wearable Artificial Endocrine Pancreas—Variations in Daily Insulin Requirements to Glycemic Response", Diabetes, vol. 33, Dec. 1984, pp. 1200-1202. |
Shichiri, Motoaki , et al., "Glycaemic Control in a Pacreatectomized Dogs with a Wearable Artificial Endocrine Pancreas", Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, Motoaki , et al., "Normalization of the Paradoxic Secretion of Glucagon in Diabetes Who Were Controlled by the Artificial Beta Cell", Diabetes, vol. 28, Apr. 1979, pp. 272-275. |
Shichiri, Motoaki , et al., "Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A useful Tool for Blood Glucose Monitoring in Diabetic Individuals", Diabetes Care, vol. 9, No. 3, May-Jun. 1986, pp. 298-301. |
Shichiri, Motoaki , et al., "The Wearable Artificial Endocrine Pancreas with a Needle-Type Glucose Sensor: Perfect Glycemic Control in Ambulatory Diabetes", Acta Paediatr Jpn 1984, vol. 26, pp. 359-370. |
Shichiri, Motoaki , et al., "Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor", The Lancet, Nov. 20, 1982, pp. 1129-1131. |
Shinkai, Seiji , "Molecular Recognition of Mono- and Di-saccharides by Phenylboronic Acids in Solvent Extraction and as a Monolayer", J. Chem. Soc., Chem. Commun., 1991, pp. 1039-1041. |
Shults, Mark C., "A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors", IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, Oct. 1994, pp. 937-942. |
Skyler , et al., Continuous Subcutaneous Insulin Infusion [CSII] With External Devices: Current Status. Update in Drug Delivery Systems, Chapter 13, pp. 163-183. Futura Publishing Company. (1989). |
Skyler , et al., The Insulin Pump Therapy Book Insights from the Experts. MiniMed Technologies. (1995). |
Sternberg, Robert , et al., "Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors", Biosensors, vol. 4, 1988, pp. 27-40. |
Strowig , "Initiation and Management of Insulin Pump Therapy", The Diabetes Educator, vol. 19, No. 1, pp. 50-60. (1993). |
Tamiya , et al., "Micro Glucose Sensors using Electron Mediators Immobilized on a Polypyrrole-Modified Electrode", Sensors and Actuators, vol. 18, 1989, pp. 297-307. |
Tsukagoshi, Kazuhiko , et al., "Specific Complexation with Mono- and Disaccharides that can be Detected by Circular Dichroism", J. Org. Chem., vol. 56, 1991, pp. 4089-4091. |
Ubran , et al., "Miniaturized thin-film biosensors using covalently immobilized glucose oxidase", Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562. |
Urban , et al., "Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applciations,", Biosensors & Bioelectronics, vol. 7, 1992, pp. 733-739. |
Velho , et al., "In vivo calibration of a subcutaneous glucose sensor for determination of subcutaneous glucose kinetics", Diab. Nutr. Metab., vol. 3, 1988, pp. 227-233. |
Walsh , et al., Pumping Insulin: The Art of Using an Insulin Pump. Published by MiniMed⋅ Technologies. (1989). |
Wang, Joseph , et al., "Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin", Analytical Chemistry, vol. 73, 2001, pp. 844-847. |
Yamasaki, Yoshimitsu , et al., "Direct Measurement of Whole Blood Glucose by a Needle-Type Sensor", Clinics Chimica Acta, vol. 93, 1989, pp. 93-98. |
Yokoyama , et al., "Integrated Biosensor for Glucose and Galactose", Analytica Chimica Acta, vol. 218, 1989, pp. 137-142. |
Also Published As
Publication number | Publication date |
---|---|
US20230005588A1 (en) | 2023-01-05 |
US20250001068A1 (en) | 2025-01-02 |
US20180150614A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12115339B2 (en) | Interactive guidance for medical devices | |
US12059552B2 (en) | Configurable target glucose values | |
US11367528B2 (en) | Proactive image-based infusion device delivery adjustments | |
US11826548B2 (en) | Efficient confirmation of blood glucose measurements | |
US11712520B2 (en) | Infusion devices and related meal bolus adjustment methods | |
US11872372B2 (en) | Identification of sites for sensing arrangements | |
CN107787232B (en) | Infusion device for treatment recommendation | |
US12144961B2 (en) | Extensible infusion devices and related methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: MEDTRONIC MINIMED, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOKOLOVSKYY, DMYTRO Y.;COUMBE, SHAWN A.;MILLER, MARIA DIANA;REEL/FRAME:061037/0907 Effective date: 20161121 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |