US6728576B2 - Non-contact EKG - Google Patents
Non-contact EKG Download PDFInfo
- Publication number
- US6728576B2 US6728576B2 US10/004,045 US404501A US6728576B2 US 6728576 B2 US6728576 B2 US 6728576B2 US 404501 A US404501 A US 404501A US 6728576 B2 US6728576 B2 US 6728576B2
- Authority
- US
- United States
- Prior art keywords
- electrode
- external device
- data
- electrodes
- imd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37235—Aspects of the external programmer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37252—Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37252—Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
- A61N1/37282—Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data characterised by communication with experts in remote locations using a network
Definitions
- the present invention relates generally to implantable medical devices such as pacemakers and more particularly to a method and apparatus to acquire electrocardiographic data, waveform tracings, and other physiologic data displayable by a programmer from an implantable medical device patient without the need for, or use of, surface (skin) contacting electrodes.
- the electrocardiogram is commonly used in medicine to determine the status of the electrical conduction system of the human heart.
- ECG recording device is commonly attached to the patient via ECG leads connected to pads arrayed on the patient's body so as to generate a recording that displays the cardiac waveforms in any one of 12 possible vectors.
- Such systems employ detection of the occurrence of the P-wave and R-wave, analysis of the rate, regularity, and onset of variations in the rate of recurrence of the P-wave and R-wave, the morphology of the P-wave and R-wave and the direction of propagation of the depolarization represented by the P-wave and R-wave in the heart.
- the detection, analysis and storage of such EGM data within implanted medical devices are well known in the art.
- Acquisition and use of ECG tracing(s) has generally been limited to the use of an external ECG recording machine attached to the patient via surface electrodes of one sort or another.
- the aforementioned ECG systems that utilize detection and analysis of the PQRST complex are all dependent upon the spatial orientation and number of electrodes available in or around the heart to pick up the depolarization wave front.
- implantable medical device systems As the functional sophistication and complexity of implantable medical device systems increased over the years, it has become increasingly more important for such systems to include a system for facilitating communication between one implanted device and another implanted device and/or an external device, for example, a programming console, monitoring system, or the like.
- an external device for example, a programming console, monitoring system, or the like.
- the implanted device For diagnostic purposes, it is desirable that the implanted device be able to communicate information regarding the device's operational status and the patient's condition to the physician or clinician.
- State of the art implantable devices are available that transmit a digitized electrical signal to display electrical cardiac activity (e.g., an ECG, EGM, or the like) for storage and/or analysis by an external device.
- ECG electrical cardiac activity
- EGM electrical cardiac activity
- the cardiologist has several tools from which to choose.
- Such tools include twelve-lead electrocardiograms, exercise stress electrocardiograms, Holter monitoring, radioisotope imaging, coronary angiography, myocardial biopsy, and blood serum enzyme tests.
- the twelve-lead electrocardiogram is generally the first procedure used to determine cardiac status prior to implanting a pacing system; thereafter, the physician will normally use an ECG available through the programmer to check the pacemaker's efficacy after implantation.
- ECG tracings are placed into the patient's records and used for comparison to more recent tracings. It must be noted, however, that whenever an ECG recording is required (whether through a direct connection to an ECG recording device or to a pacemaker programmer), external electrodes and leads must be used.
- Electrodes attached externally to the body are a major source of signal quality problems and analysis errors because of susceptibility to interference such as muscle noise, power line interference, high frequency communication equipment interference, and baseline shift from respiration or motion. Signal degradation also occurs due to contact problems, ECG waveform artifacts, and patient discomfort. Externally attached electrodes are subject to motion artifacts from positional changes and the relative displacement between the skin and the electrodes. Furthermore, external electrodes require special skin preparation to ensure adequate electrical contact. Such preparation, along with positioning the electrode and attachment of the ECG lead to the electrode needlessly prolongs the pacemaker follow-up session.
- the primary implementation for multiple electrode systems in the prior art is vector cardiography from ECG signals taken from multiple chest and limb electrodes. This is a technique whereby the direction of depolarization of the heart is monitored, as well as the amplitude, generally similar to the disclosure in U.S. Pat. No. 4,121,576 to Greensite.
- U.S. Pat. No. 4,082,086 to Page, et al. discloses a four electrode orthogonal array that may be applied to the patient's skin both for convenience and to ensure the precise orientation of one electrode to the other.
- U.S. Pat. No. 3,983,867 to Case describes a vector cardiography system employing ECG electrodes disposed on the patient in normal locations and a hex axial reference system orthogonal display for displaying ECG signals of voltage versus time generated across sampled bipolar electrode pairs.
- U.S. Pat. No. 5,331,966 to Bennett discloses a method and apparatus for providing an enhanced capability of detecting and gathering electrical cardiac signals via an array of relatively closely spaced subcutaneous electrodes (located on the body of an implanted device).
- the present invention encompasses a non-tissue contacting electrode system for the sensing of physiologic signals from a patient that may be implemented during the implant and/or follow-up of an implantable medical device (IMD) via an external programmer or other monitoring instrument.
- IMD implantable medical device
- These sensing systems are electrically connected to the circuitry of the external device and detect cardiac depolarization waveforms displayable as electrocardiographic tracings on the instrument screen when the programming head is positioned above an implanted device, such as a pacemaker, so equipped with a non-tissue contacting electrode system.
- the present invention provides a method and apparatus that may be implemented for use in conjunction with the aforementioned medical devices to provide an enhanced capability of detecting and gathering electrical cardiac signals via non-tissue contacting sensors.
- the present invention enables the physician or medical technician to perform follow-up regiments that, in turn, eliminate the time it takes to attach external adhesive electrodes to the patient's skin. Such timesavings can reduce the cost of follow-up, as well as making it possible for the physician or medical technician to see more patients during each day.
- other uses include: Holter monitoring with event storage, arrhythmia detection and monitoring, capture detection, ischemia detection and monitoring (S-T elevation and depression on the ECG), changes in QT interval (i.e., QT variability), transtelephonic monitoring, web-enabled remote patient management and chronic remote patient care.
- FIG. 1 is an illustration of a body-implantable device system in accordance with one embodiment of the invention, including a hermetically sealed device implanted in a patient and an external programming unit.
- FIG. 2 is a view of the external programming unit of FIG. 1 .
- FIG. 3 is a block diagram of the body-implantable system of FIG. 1 .
- FIG. 4 is a view of the external programming unit of FIG. 1 being used to program and/or interrogate the implanted device of FIG. 1 .
- FIG. 5 is a diagram of the communication head from the programmer unit of FIG. 2 encompassing a capacitive pickup electrode sensor.
- FIG. 6 is a display of an ECG tracing from a capacitive, non-tissue contacting sensor.
- FIG. 7 is a diagram of the communication head from the programmer unit of FIG. 2 encompassing a non-acoustic pulse-echo radar monitor sensor.
- FIG. 8 is a display of an ECG tracing from a non-acoustic, pulse-echo radar, non-tissue contacting sensor.
- FIG. 9 is a block diagram representing data collection and measurement system using sensors in accordance with the present invention.
- FIG. 1 is an illustration of an implantable medical device system adapted for use in accordance with the present invention.
- the medical device system shown in FIG. 1 includes an implantable device 10 —a pacemaker in this embodiment—which has been implanted in a patient 12 .
- pacemaker 10 is housed within a hermetically sealed, biologically inert outer casing, which may itself be conductive so as to serve as an indifferent electrode in the pacemaker's pacing/sensing circuit.
- One or more pacemaker leads, collectively identified with reference numeral 14 in FIG. 1 are electrically coupled to pacemaker 10 in a conventional manner and extend into the patient's heart 16 via a vein 18 .
- leads 14 Disposed generally near the distal end of leads 14 are one or more exposed conductive electrodes for receiving electrical cardiac signals and/or for delivering electrical pacing stimuli to heart 16 .
- leads 14 may be implanted with its distal end situated in the atrium and/or ventricle of heart 16 .
- an external programming unit 20 for non-invasive communication with implanted device 10 via uplink and downlink communication channels 24 , to be hereinafter described in further detail.
- a programming head 22 in accordance with conventional medical device programming systems, for facilitating two-way communication between implanted device 10 and programmer 20 .
- a programming head such as that depicted in FIG. 1 is positioned on the patient's body over the implant site of the device, such that one or more antennae within the head can send RF signals to, and receive RF signals from, an antenna disposed within the hermetic enclosure of the implanted device or disposed within the connector block of the device, in accordance with common practice in the art.
- FIG. 2 there is shown a perspective view of programming unit 20 in accordance with the presently disclosed invention.
- programmer 20 includes a processing unit (not shown in the Figures) that in accordance with the presently disclosed invention is a personal computer type motherboard, e.g., a computer motherboard including an Intel Pentium 3 microprocessor and related circuitry such as digital memory.
- a personal computer type motherboard e.g., a computer motherboard including an Intel Pentium 3 microprocessor and related circuitry such as digital memory.
- programmer 20 comprises an outer housing 52 , which is preferably made of thermal plastic or another suitably rugged yet relatively lightweight material.
- a carrying handle, designated generally as 54 in FIG. 2 is integrally formed into the front of housing 52 . With handle 54 , programmer 20 can be carried like a briefcase.
- Display screen 50 is disposed on the upper surface of housing 52 .
- Display screen 50 folds down into a closed position (not shown) when programmer 20 is not in use, thereby reducing the size of programmer 20 and protecting the display surface of display 50 during transportation and storage thereof.
- a floppy disk drive is disposed within housing 52 and is accessible via a disk insertion slot (not shown).
- a hard disk drive is also disposed within housing 52 , and it is contemplated that a hard disk drive activity indicator, (e.g., an LED, not shown) could be provided to give a visible indication of hard disk activation.
- programmer 20 is equipped with an internal printer (not shown) so that a hard copy of a patient's ECG or of graphics displayed on the programmer's display screen 50 can be generated.
- printers such as the AR-100 printer available from General Scanning Co., are known and commercially available.
- Articulating display screen 50 is preferably of the LCD or electro-luminescent type, characterized by being relatively thin as compared, for example, a cathode ray tube (CRT) or the like.
- CRT cathode ray tube
- Display screen 50 is operatively coupled to the computer circuitry disposed within housing 52 and is adapted to provide a visual display of graphics and/or data under control of the internal computer.
- FIG. 3 is a block diagram of the electronic circuitry that makes up pulse generator 10 in accordance with the presently disclosed invention.
- pacemaker 10 comprises a primary stimulation control circuit 120 for controlling the device's pacing and sensing functions.
- the circuitry associated with stimulation control circuit 120 may be of conventional design, in accordance, for example, with what is disclosed U.S. Pat. No. 5,052,388 issued to Sivula et al., “Method and apparatus for implementing activity sensing in a pulse generator.”
- U.S. Pat. No. 5,052,388 issued to Sivula et al. “Method and apparatus for implementing activity sensing in a pulse generator.”
- certain components of pulse generator 10 are conventional in their design and operation, such components will not be described herein in detail, as it is believed that design and implementation of such components would be a matter of routine to those of ordinary skill in the art.
- stimulation control circuit 120 in FIG. 3 includes sense amplifier circuitry 124 , stimulating pulse output circuitry 126 , a crystal clock 128 , a random-access memory and read-only memory (RAM/ROM) unit 130 , and a central processing unit (CPU) 132 , all of which are well-known in the art.
- sense amplifier circuitry 124 stimulating pulse output circuitry 126
- crystal clock 128 a random-access memory and read-only memory (RAM/ROM) unit 130
- RAM/ROM random-access memory and read-only memory
- CPU central processing unit
- Pacemaker 10 also includes internal communication circuit 134 so that it is capable of communicating with external programmer/control unit 20 , as described in FIG. 2 in greater detail.
- pulse generator 10 is coupled to one or more leads 14 which, when implanted, extend transvenously between the implant site of pulse generator 10 and the patient's heart 16 , as previously noted with reference to FIG. 1 .
- leads 14 which, when implanted, extend transvenously between the implant site of pulse generator 10 and the patient's heart 16 , as previously noted with reference to FIG. 1 .
- the connections between leads 14 and the various internal components of pulse generator 10 are facilitated by means of a conventional connector block assembly 11 , shown in FIG. 1 .
- the coupling of the conductors of leads and internal electrical components of pulse generator 10 may be facilitated by means of a lead interface circuit 122 which functions, in a multiplexer-like manner, to selectively and dynamically establish necessary connections between various conductors in leads 14 , including, for example, atrial tip and ring electrode conductors ATIP and ARING and ventricular tip and ring electrode conductors VTIP and VRING, and individual electrical components of pulse generator 10 , as would be familiar to those of ordinary skill in the art.
- the specific connections between leads 14 and the various components of pulse generator 10 are not shown in FIG.
- leads 14 will necessarily be coupled, either directly or indirectly, to sense amplifier circuitry 124 and stimulating pulse output circuit 126 , in accordance with common practice, such that cardiac electrical signals may be conveyed to sensing circuitry 124 , and such that stimulating pulses may be delivered to cardiac tissue, via leads 14 .
- the protection circuitry commonly included in implanted devices to protect, for example, the sensing circuitry of the device from high voltage stimulating pulses.
- crystal oscillator circuit 128 in the presently preferred embodiment a 32,768-Hz crystal controlled oscillator, provides main timing clock signals to stimulation control circuit 120 .
- the lines over which such clocking signals are provided to the various timed components of pulse generator 10 e.g., microprocessor 132 ) are omitted from FIG. 3 for the sake of clarity.
- pulse generator 10 depicted in FIG. 3 are powered by means of a battery (not shown) which is contained within the hermetic enclosure of pacemaker 10 , in accordance with common practice in the art. For the sake of clarity in the Figures, the battery and the connections between it and the other components of pulse generator 10 are not shown.
- Stimulating pulse output circuit 126 which functions to generate cardiac stimuli under control of signals issued by CPU 132 , may be, for example, of the type disclosed in U.S. Pat. No. 4,476,868 to Thompson, entitled “Body Stimulator Output Circuit,” which patent is hereby incorporated by reference herein in its entirety. Again, however, it is believed that those of ordinary skill in the art could select from among many various types of prior art pacing output circuits that would be suitable for the purposes of practicing the present invention.
- pacemaker 10 may include numerous other components and subsystems, for example, activity sensors and associated circuitry. The presence or absence of such additional components in pacemaker 10 , however, is not believed to be pertinent to the present invention, which relates primarily to the implementation and operation of communication subsystem 134 in pacemaker 10 , and an associated communication subsystem in external unit 20 .
- the programming head 22 depicted in FIG. 4 possesses a pair of push button switches 150 and 152 labeled INTERROGATE and PROGRAM respectively.
- the physician places the programmer head over IMD 20 and depresses one or the other of the two buttons as shown in FIG. 4, and those depressed buttons control the overall function of the programmer circuitry of FIG. 2 .
- Communication channel function and status to IMD 10 (not shown) is indicated via LED 54 .
- FIG. 5 depicts programming head 22 with 3 electrodes 230 shown positioned on the surface facing the patient. Note that 1 to 3 electrodes 230 may be used with this invention.
- IMD 10 is shown in relief under the programming head 22 , positioned to receive and transmit RF telemetry from/to IMD 10 .
- Electrodes 230 are as substantially described in PCT application WO 01/16607, ELECTRIC FIELD SENSOR, by Brun del Re, et al, incorporated by reference in its entirety.
- the Brun del Re '607 application describes an electric field sensor employing a capacitive pickup electrode in a voltage divider network connected to a body emanating an electric field.
- the system is relatively insensitive to variations in the separation gap between electrode and body, reducing sensor motion artifacts in the output signal and stabilizing its low frequency response.
- the pick-up electrode may be positioned at a “stand off” location, spaced from intimate contact with the surface of the body. Human body-generated electrical signals may be acquired without use of conductive gels and suction-based electrodes, without direct electrical contact to the body and even through layers of clothing.
- One electrode 230 may be used as a signal pickup, however, optionally, two or more electrodes 230 may be used to differentially pickup the physiologic signal. Also by using multiple electrodes, the larger of two or more signals may be selected for an increased signal to noise ratio.
- sensor(s) 230 may be attached to the programmer 20 via a separate cable such as 56 of FIG. 2 .
- sensor(s) 230 may be connected to the patient via an adhesive strip and cable 56 .
- FIG. 6 displays an ECG tracing 301 , superimposed upon a grid 300 , taken during an acute study from a human patient utilizing the sensor 230 of FIG. 5, showing a p-wave 302 , a QRS complex 304 , and a T-wave 306 .
- These signals may be used to enable the follow-up clinician or technician to rapidly and accurately determine IMD function vis-a-vis proper sensing, atrial and ventricular capture, A-V delay function, rate response parameters, multi-site pacing parameters and other functions/operations as per described in the hereinabove mentioned, and incorporated by reference, '169 pending application.
- FIG. 7 depicts programming head 22 with a sensor 240 positioned on the surface facing the patient.
- IMD 10 is shown in relief under the programming head 22 , positioned correctly for the reception and transmission of RF telemetry from/to IMD 10 .
- Sensor 240 is as substantially described in U.S. Pat. Nos. 5,573,012, 5,966,090 and 5,986,600 by McEwan, incorporated by reference in their entireties.
- the McEwan '012, '090, and '600 patents describe a non-acoustic pulse-echo radar monitor, employed in a repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that corresponds to the heart motion.
- the antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement.
- the monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path.
- the pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna.
- the gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna.
- the monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung.
- the sensor 240 may be attached to programmer 20 via a separate cable such as 56 of FIG. 2 .
- the sensor 240 may be connected to the patient via an adhesive strip and cable 56 .
- sensor 240 may be attached to programmer 20 with signal pickup when the patient is positioned within 1 meter in front of programmer 20 .
- FIG. 8 displays a physiologic waveform 402 , superimposed upon a grid 400 , taken during an acute study from a human patient utilizing the sensor 240 of FIG. 7 .
- the composite signal 402 is low pass filtered to remove the cardiac signal component with the respiration signal 404 remaining.
- Respiration signal 404 consists of respiration rate (frequency of breathing) and tidal volume (amplitude). This signal may be used by the follow-up clinician or technician to monitor and/or optimize the performance of respiration-based rate responsive pacemakers, such as substantially described in U.S. Pat. No. 4,919,136 to Alt, incorporated herein by reference in its entirety.
- this signal may be used to monitor and/or optimize emphysema, edema or CHF patients as described in U.S. Pat. Nos. 5,957,861 to Combs, et al, and U.S. Pat. No. 5,876,353 to Riff, incorporated herein by reference in their entireties.
- the composite signal 402 is high pass filtered to remove the tidal volume signal component with the cardiac signal 406 remaining.
- the cardiac component may be used to enable the follow-up clinician or technician to rapidly and accurately determine IMD function vis-a-vis proper sensing, atrial and ventricular capture, A-V delay function, rate response parameters, multi-site pacing parameters and other functions/operations as per described in the hereinabove mentioned, and incorporated by reference, '169 pending application.
- the cardiac signal 406 may be additionally used to detect and assess acute ischemia via ST segment elevation and depression such as described in U.S. Pat. Nos. 6,115,628, 6,115,630 and 6,128,526, all to Stadler et al.
- the Stadler et al. '628, '630, and '526 patents are incorporated herein by reference in their entireties.
- Cardiac signal 406 may additionally be used to measure and assess QT variability as described in U.S. Pat. No. 5,560,368 to Berger.
- the Berger '368 patent is herein incorporated by reference in its entirety.
- the cardiac signal 406 may additionally be used to remotely monitor and transmit EKG signals from a patient's home without wrist electrodes or tape-on electrodes as described in U.S. Pat. No. 5,467,773 to Bergelson, et al.
- the Bergelson '773 patent is incorporated herein by reference in its entirety.
- These signals may be transmitted via cellular means or, alternatively, by the Internet to a remote monitoring station as described in U.S. Pat. Nos. 5,752,976 and, 6,292,698 to Duffin et al., U.S. Pat. No. 6,083,248 to Thompson;
- FIG. 9 is a representation of a data management system in which data collected using the sensors of the present invention is remotely transferred using a data transfer medium 510 such as, for example, but not limited to, a modem, cable, fiber optics or equivalent, via network system 512 to PC 514 at the remote station.
- the system also enables direct data archival in server 516 .
- the system is structured to enable physicians and other healthcare providers to use their PC at remote locations to access and review patient physiologic data collected by sensors 230 (FIG. 5) via telemetry head 22 , transferred and reviewed at programmer 20 .
- the data from programmer 20 could be transferred as discussed hereinabove, for review at PC 514 and storage and retrieval at 516 .
- the system is capable to provide transtelephonic monitoring or Web-enabled remote patient management to promote chronic remote patient care.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Abstract
A non-tissue contacting electrode system senses physiologic signals from a patient during implant and/or followup of an implantable medical device (IMD) via an external programmer or other monitoring instrument. These sensing systems are electrically connected to the circuitry of the external device and detect cardiac depolarization waveforms displayable as electrocardiographic tracings on the instrument screen when the programming head is positioned above an implanted pacemaker (or other implanted device) so equipped with a non-tissue contacting electrode system. The structure and system provide an enhanced capability for detecting and gathering physiological signals from a patient with minimally invasive patient contact.
Description
The present invention relates generally to implantable medical devices such as pacemakers and more particularly to a method and apparatus to acquire electrocardiographic data, waveform tracings, and other physiologic data displayable by a programmer from an implantable medical device patient without the need for, or use of, surface (skin) contacting electrodes.
The electrocardiogram (ECG) is commonly used in medicine to determine the status of the electrical conduction system of the human heart. As practiced the ECG recording device is commonly attached to the patient via ECG leads connected to pads arrayed on the patient's body so as to generate a recording that displays the cardiac waveforms in any one of 12 possible vectors.
The history of the ECG dates back to 1842 when the Italian physicist, Carlo Matteucci discovered that each heartbeat was accompanied by a detectable electric signal. In 1878, two British physiologists, John Burden Sanderson and Frederick Page, determined that the heart signal consisted of, at least, two phases, the QRS (ventricular depolarization) and the repolarization or T-wave. It was not until 1893, however, that Willem Einthoven introduced the term ‘electrocardiogram’ at a meeting of the Dutch Medical Association, although he later disavowed he was the originator of the term.
Einthoven may, however, be called the father of electrocardiography, since he won the Nobel Prize for his achievements in 1924. It was he who finally dissected a heart and named all of the cardiac waveforms (P, Q, R, S, T) that commonly appear on an ECG tracing from a ‘normal’ person.
Einthoven and other medical practitioners of that time were aware of only three vectors (I, II, and III) that are achieved by placement of the ECG electrodes on specific body sites. The remaining nine sites were discovered later in the twentieth century. In 1938, American Heart Association and the Cardiac Society of Great Britain defined the standard positions (I-III) and wiring of the chest leads V1-V6. The ‘V’ stands for voltage. Finally, in 1942, Emanuel Goldberger added the augmented limb leads aVR, aVL and aVF to Einthoven's three limb leads and the six chest leads thereby creating the 12-lead electrocardiogram that is routinely used today for cardiac diagnostic purposes.
Since the implantation of the first cardiac pacemaker, implantable medical device technology has advanced with the development of sophisticated, programmable cardiac pacemakers, pacemaker-cardioverter-defibrillator arrhythmia control devices and drug administration devices designed to detect arrhythmias and apply appropriate therapies. The detection and discrimination between various arrhythmic episodes in order to trigger the delivery of an appropriate therapy is of considerable interest. Prescription for implantation and programming of the implanted device are based on the analysis of the PQRST electrocardiogram (ECG) that currently requires externally attached electrodes and the electrogram (EGM) that requires implanted pacing leads. The waveforms are usually separated for such analysis into the P-wave and R-wave in systems that are designed to detect the depolarization of the atrium and ventricle respectively. Such systems employ detection of the occurrence of the P-wave and R-wave, analysis of the rate, regularity, and onset of variations in the rate of recurrence of the P-wave and R-wave, the morphology of the P-wave and R-wave and the direction of propagation of the depolarization represented by the P-wave and R-wave in the heart. The detection, analysis and storage of such EGM data within implanted medical devices are well known in the art. Acquisition and use of ECG tracing(s), on the other hand, has generally been limited to the use of an external ECG recording machine attached to the patient via surface electrodes of one sort or another.
The aforementioned ECG systems that utilize detection and analysis of the PQRST complex are all dependent upon the spatial orientation and number of electrodes available in or around the heart to pick up the depolarization wave front.
As the functional sophistication and complexity of implantable medical device systems increased over the years, it has become increasingly more important for such systems to include a system for facilitating communication between one implanted device and another implanted device and/or an external device, for example, a programming console, monitoring system, or the like. For diagnostic purposes, it is desirable that the implanted device be able to communicate information regarding the device's operational status and the patient's condition to the physician or clinician. State of the art implantable devices are available that transmit a digitized electrical signal to display electrical cardiac activity (e.g., an ECG, EGM, or the like) for storage and/or analysis by an external device. The surface ECG, in fact, has remained the standard diagnostic tool since the very beginning of pacing and remains so today.
To diagnose and measure cardiac events, the cardiologist has several tools from which to choose. Such tools include twelve-lead electrocardiograms, exercise stress electrocardiograms, Holter monitoring, radioisotope imaging, coronary angiography, myocardial biopsy, and blood serum enzyme tests. Of these, the twelve-lead electrocardiogram (ECG) is generally the first procedure used to determine cardiac status prior to implanting a pacing system; thereafter, the physician will normally use an ECG available through the programmer to check the pacemaker's efficacy after implantation. Such ECG tracings are placed into the patient's records and used for comparison to more recent tracings. It must be noted, however, that whenever an ECG recording is required (whether through a direct connection to an ECG recording device or to a pacemaker programmer), external electrodes and leads must be used.
Another possible approach is described in pending applications Ser. No. 09/749,169, Leadless Fully Automatic Pacemaker Follow-Up filed Dec. 27, 2000; Ser. No. 09/696,365, Multilayer Ceramic Electrodes For Sensing Cardiac Depolarization Signals, filed Oct. 25, 2000; Ser. No. 09/697,438, Surround Shroud Connector and Electrode Housings For A Subcutaneous Electrode Array and Leadless ECGs, filed Oct. 26, 2000; Ser. No. 09/703,152, Subcutaneous Spiral Electrode For Sensing Electrical Signals of the Heart, filed Oct. 31, 2000; Ser. No. 09/736,640, Atrial Aware VVI—A Method For Atrial Synchronous Ventricular (VDD/R) Pacing Using the Subcutaneous Electrode Array and a Standard Pacing Lead, filed Dec. 14, 2000; Ser. No. 09/850,331, Subcutaneous Sensing Feedthrough/ Electrode Assembly, filed May 7, 2000; and Ser. No. 09/721,275, System And Method For Deriving a Virtual ECG IR EGM Signal, filed Nov. 22, 2000; whereby a subcutaneous leadless pseudo EKG is sensed from the can of the IMD and transmitted to an external programmer via telemetry. The '169, '365, '438, '152, '640, '331, and '275 applications are incorporated herein by reference in their entireties.
In the art known to the inventors and current practice there are noticeable limitations. For example, electrocardiogram analysis performed using existing external or body surface ECG systems can be limited by mechanical problems and poor signal quality. Electrodes attached externally to the body are a major source of signal quality problems and analysis errors because of susceptibility to interference such as muscle noise, power line interference, high frequency communication equipment interference, and baseline shift from respiration or motion. Signal degradation also occurs due to contact problems, ECG waveform artifacts, and patient discomfort. Externally attached electrodes are subject to motion artifacts from positional changes and the relative displacement between the skin and the electrodes. Furthermore, external electrodes require special skin preparation to ensure adequate electrical contact. Such preparation, along with positioning the electrode and attachment of the ECG lead to the electrode needlessly prolongs the pacemaker follow-up session.
Other art relating to subcutaneous leadless pseudo EKG concept deals with generating a pseudo EKG signal via pulse generator externalized electrodes and signal conditioning electronics. This method of EKG acquisition is rapid, does not require electrode positioning and does not require patient disrobing. However, there is substantial increase in device cost, increased circuit complexity, increased IMD device size, and an IMD aesthetic degradation.
Prior art describes systems to monitor electrical activity of the human heart for diagnostic and related medical purposes. U.S. Pat. No. 4,023,565 issued to Ohlsson describes circuitry for recording ECG signals from multiple lead inputs. Similarly, U.S. Pat. No. 4,263,919 issued to Levin, U.S. Pat. No. 4,170,227 issued to Feldman, et al, and U.S. Pat. No. 4,593,702 issued to Kepski, et al, describe multiple electrode systems which combine surface EKG signals for artifact rejection.
The primary implementation for multiple electrode systems in the prior art is vector cardiography from ECG signals taken from multiple chest and limb electrodes. This is a technique whereby the direction of depolarization of the heart is monitored, as well as the amplitude, generally similar to the disclosure in U.S. Pat. No. 4,121,576 to Greensite.
Numerous body surface ECG monitoring electrode systems have been employed in the past in detecting the ECG and conducting vector cardiographic studies. For example, U.S. Pat. No. 4,082,086 to Page, et al., discloses a four electrode orthogonal array that may be applied to the patient's skin both for convenience and to ensure the precise orientation of one electrode to the other. U.S. Pat. No. 3,983,867 to Case describes a vector cardiography system employing ECG electrodes disposed on the patient in normal locations and a hex axial reference system orthogonal display for displaying ECG signals of voltage versus time generated across sampled bipolar electrode pairs.
U.S. Pat. No. 4,310,000 to Lindemans and U.S. Pat. Nos. 4,729,376 and 4,674,508 to DeCote, incorporated herein by reference, disclose the use of a separate passive sensing reference electrode mounted on the pacemaker connector block or otherwise insulated from the pacemaker case in order to provide a sensing reference electrode which is not part of the stimulation reference electrode and thus does not have residual after-potentials at its surface following delivery of a stimulation pulse.
Moreover, in regard to subcutaneously implanted EGM electrodes, the aforementioned Lindemans U.S. Pat. No. 4,310,000 discloses one or more reference-sensing electrode positioned on the surface of the pacemaker case as described above. U.S. Pat. No. 4,313,443 issued to Lund describes a subcutaneously implanted electrode or electrodes for use in monitoring the ECG.
Finally, U.S. Pat. No. 5,331,966 to Bennett, incorporated herein by reference, discloses a method and apparatus for providing an enhanced capability of detecting and gathering electrical cardiac signals via an array of relatively closely spaced subcutaneous electrodes (located on the body of an implanted device).
The present invention encompasses a non-tissue contacting electrode system for the sensing of physiologic signals from a patient that may be implemented during the implant and/or follow-up of an implantable medical device (IMD) via an external programmer or other monitoring instrument. These sensing systems are electrically connected to the circuitry of the external device and detect cardiac depolarization waveforms displayable as electrocardiographic tracings on the instrument screen when the programming head is positioned above an implanted device, such as a pacemaker, so equipped with a non-tissue contacting electrode system.
The present invention provides a method and apparatus that may be implemented for use in conjunction with the aforementioned medical devices to provide an enhanced capability of detecting and gathering electrical cardiac signals via non-tissue contacting sensors.
The present invention enables the physician or medical technician to perform follow-up regiments that, in turn, eliminate the time it takes to attach external adhesive electrodes to the patient's skin. Such timesavings can reduce the cost of follow-up, as well as making it possible for the physician or medical technician to see more patients during each day. Though not limited to these, other uses include: Holter monitoring with event storage, arrhythmia detection and monitoring, capture detection, ischemia detection and monitoring (S-T elevation and depression on the ECG), changes in QT interval (i.e., QT variability), transtelephonic monitoring, web-enabled remote patient management and chronic remote patient care.
FIG. 1 is an illustration of a body-implantable device system in accordance with one embodiment of the invention, including a hermetically sealed device implanted in a patient and an external programming unit.
FIG. 2 is a view of the external programming unit of FIG. 1.
FIG. 3 is a block diagram of the body-implantable system of FIG. 1.
FIG. 4 is a view of the external programming unit of FIG. 1 being used to program and/or interrogate the implanted device of FIG. 1.
FIG. 5 is a diagram of the communication head from the programmer unit of FIG. 2 encompassing a capacitive pickup electrode sensor.
FIG. 6 is a display of an ECG tracing from a capacitive, non-tissue contacting sensor.
FIG. 7 is a diagram of the communication head from the programmer unit of FIG. 2 encompassing a non-acoustic pulse-echo radar monitor sensor.
FIG. 8 is a display of an ECG tracing from a non-acoustic, pulse-echo radar, non-tissue contacting sensor.
FIG. 9 is a block diagram representing data collection and measurement system using sensors in accordance with the present invention.
FIG. 1 is an illustration of an implantable medical device system adapted for use in accordance with the present invention. The medical device system shown in FIG. 1 includes an implantable device 10—a pacemaker in this embodiment—which has been implanted in a patient 12. In accordance with conventional practice in the art, pacemaker 10 is housed within a hermetically sealed, biologically inert outer casing, which may itself be conductive so as to serve as an indifferent electrode in the pacemaker's pacing/sensing circuit. One or more pacemaker leads, collectively identified with reference numeral 14 in FIG. 1 are electrically coupled to pacemaker 10 in a conventional manner and extend into the patient's heart 16 via a vein 18. Disposed generally near the distal end of leads 14 are one or more exposed conductive electrodes for receiving electrical cardiac signals and/or for delivering electrical pacing stimuli to heart 16. As will be appreciated by those of ordinary skill in the art, leads 14 may be implanted with its distal end situated in the atrium and/or ventricle of heart 16.
Although the present invention will be described herein in one embodiment which includes a pacemaker, those of ordinary skill in the art having the benefit of the present disclosure will appreciate that the present invention may be advantageously practiced in connection with numerous other types of implantable medical device systems, and indeed in any application in which it is desirable to provide a communication link between two physically separated components, such as may occur during transtelephonic monitoring.
Also depicted in FIG. 1 is an external programming unit 20 for non-invasive communication with implanted device 10 via uplink and downlink communication channels 24, to be hereinafter described in further detail. Associated with programming unit 20 is a programming head 22, in accordance with conventional medical device programming systems, for facilitating two-way communication between implanted device 10 and programmer 20. In many known implantable device systems, a programming head such as that depicted in FIG. 1 is positioned on the patient's body over the implant site of the device, such that one or more antennae within the head can send RF signals to, and receive RF signals from, an antenna disposed within the hermetic enclosure of the implanted device or disposed within the connector block of the device, in accordance with common practice in the art.
In FIG. 2, there is shown a perspective view of programming unit 20 in accordance with the presently disclosed invention. Internally, programmer 20 includes a processing unit (not shown in the Figures) that in accordance with the presently disclosed invention is a personal computer type motherboard, e.g., a computer motherboard including an Intel Pentium 3 microprocessor and related circuitry such as digital memory. The details of design and operation of the programmer's computer system will not be set forth in detail in the present disclosure, as it is believed that such details are well-known to those of ordinary skill in the art.
Referring to FIG. 2, programmer 20 comprises an outer housing 52, which is preferably made of thermal plastic or another suitably rugged yet relatively lightweight material. A carrying handle, designated generally as 54 in FIG. 2, is integrally formed into the front of housing 52. With handle 54, programmer 20 can be carried like a briefcase.
An articulating display screen 50 is disposed on the upper surface of housing 52. Display screen 50 folds down into a closed position (not shown) when programmer 20 is not in use, thereby reducing the size of programmer 20 and protecting the display surface of display 50 during transportation and storage thereof.
A floppy disk drive is disposed within housing 52 and is accessible via a disk insertion slot (not shown). A hard disk drive is also disposed within housing 52, and it is contemplated that a hard disk drive activity indicator, (e.g., an LED, not shown) could be provided to give a visible indication of hard disk activation.
Those with ordinary skill in the art would know that it is often desirable to provide a means for determining the status of the patient's conduction system. Normally, programmer 20 is equipped with external ECG leads 54. It is these leads which are rendered redundant by the present invention.
In accordance with the present invention, programmer 20 is equipped with an internal printer (not shown) so that a hard copy of a patient's ECG or of graphics displayed on the programmer's display screen 50 can be generated. Several types of printers, such as the AR-100 printer available from General Scanning Co., are known and commercially available.
In the perspective view of FIG. 2, programmer 20 is shown with articulating display screen 50 having been lifted up into one of a plurality of possible open positions such that the display area thereof is visible to a user situated in front of programmer 20. Articulating display screen is preferably of the LCD or electro-luminescent type, characterized by being relatively thin as compared, for example, a cathode ray tube (CRT) or the like.
FIG. 3 is a block diagram of the electronic circuitry that makes up pulse generator 10 in accordance with the presently disclosed invention. As can be seen from FIG. 3, pacemaker 10 comprises a primary stimulation control circuit 120 for controlling the device's pacing and sensing functions. The circuitry associated with stimulation control circuit 120 may be of conventional design, in accordance, for example, with what is disclosed U.S. Pat. No. 5,052,388 issued to Sivula et al., “Method and apparatus for implementing activity sensing in a pulse generator.” To the extent that certain components of pulse generator 10 are conventional in their design and operation, such components will not be described herein in detail, as it is believed that design and implementation of such components would be a matter of routine to those of ordinary skill in the art. For example, stimulation control circuit 120 in FIG. 3 includes sense amplifier circuitry 124, stimulating pulse output circuitry 126, a crystal clock 128, a random-access memory and read-only memory (RAM/ROM) unit 130, and a central processing unit (CPU) 132, all of which are well-known in the art.
With continued reference to FIG. 3, pulse generator 10 is coupled to one or more leads 14 which, when implanted, extend transvenously between the implant site of pulse generator 10 and the patient's heart 16, as previously noted with reference to FIG. 1. Physically, the connections between leads 14 and the various internal components of pulse generator 10 are facilitated by means of a conventional connector block assembly 11, shown in FIG. 1. Electrically, the coupling of the conductors of leads and internal electrical components of pulse generator 10 may be facilitated by means of a lead interface circuit 122 which functions, in a multiplexer-like manner, to selectively and dynamically establish necessary connections between various conductors in leads 14, including, for example, atrial tip and ring electrode conductors ATIP and ARING and ventricular tip and ring electrode conductors VTIP and VRING, and individual electrical components of pulse generator 10, as would be familiar to those of ordinary skill in the art. For the sake of clarity, the specific connections between leads 14 and the various components of pulse generator 10 are not shown in FIG. 3, although it will be clear to those of ordinary skill in the art that, for example, leads 14 will necessarily be coupled, either directly or indirectly, to sense amplifier circuitry 124 and stimulating pulse output circuit 126, in accordance with common practice, such that cardiac electrical signals may be conveyed to sensing circuitry 124, and such that stimulating pulses may be delivered to cardiac tissue, via leads 14. Also not shown in FIG. 3 is the protection circuitry commonly included in implanted devices to protect, for example, the sensing circuitry of the device from high voltage stimulating pulses.
As previously noted, stimulation control circuit 120 includes central processing unit 132 which may be an off-the-shelf programmable microprocessor or micro controller, but in the present invention is a custom integrated circuit. Although specific connections between CPU 132 and other components of stimulation control circuit 120 are not shown in FIG. 3, it will be apparent to those of ordinary skill in the art that CPU 132 functions to control the timed operation of stimulating pulse output circuit 126 and sense amplifier circuit 124 under control of programming stored in RAM/ROM unit 130. It is believed that those of ordinary skill in the art will be familiar with such an operative arrangement.
With continued reference to FIG. 3, crystal oscillator circuit 128, in the presently preferred embodiment a 32,768-Hz crystal controlled oscillator, provides main timing clock signals to stimulation control circuit 120. Again, the lines over which such clocking signals are provided to the various timed components of pulse generator 10 (e.g., microprocessor 132) are omitted from FIG. 3 for the sake of clarity.
It is to be understood that the various components of pulse generator 10 depicted in FIG. 3 are powered by means of a battery (not shown) which is contained within the hermetic enclosure of pacemaker 10, in accordance with common practice in the art. For the sake of clarity in the Figures, the battery and the connections between it and the other components of pulse generator 10 are not shown.
Stimulating pulse output circuit 126, which functions to generate cardiac stimuli under control of signals issued by CPU 132, may be, for example, of the type disclosed in U.S. Pat. No. 4,476,868 to Thompson, entitled “Body Stimulator Output Circuit,” which patent is hereby incorporated by reference herein in its entirety. Again, however, it is believed that those of ordinary skill in the art could select from among many various types of prior art pacing output circuits that would be suitable for the purposes of practicing the present invention.
Those of ordinary skill in the art will appreciate that pacemaker 10 may include numerous other components and subsystems, for example, activity sensors and associated circuitry. The presence or absence of such additional components in pacemaker 10, however, is not believed to be pertinent to the present invention, which relates primarily to the implementation and operation of communication subsystem 134 in pacemaker 10, and an associated communication subsystem in external unit 20.
The programming head 22 depicted in FIG. 4 possesses a pair of push button switches 150 and 152 labeled INTERROGATE and PROGRAM respectively. In use, the physician places the programmer head over IMD 20 and depresses one or the other of the two buttons as shown in FIG. 4, and those depressed buttons control the overall function of the programmer circuitry of FIG. 2. Communication channel function and status to IMD 10 (not shown) is indicated via LED 54.
FIG. 5 depicts programming head 22 with 3 electrodes 230 shown positioned on the surface facing the patient. Note that 1 to 3 electrodes 230 may be used with this invention. IMD 10 is shown in relief under the programming head 22, positioned to receive and transmit RF telemetry from/to IMD 10. Electrodes 230 are as substantially described in PCT application WO 01/16607, ELECTRIC FIELD SENSOR, by Brun del Re, et al, incorporated by reference in its entirety. The Brun del Re '607 application describes an electric field sensor employing a capacitive pickup electrode in a voltage divider network connected to a body emanating an electric field. The system is relatively insensitive to variations in the separation gap between electrode and body, reducing sensor motion artifacts in the output signal and stabilizing its low frequency response. The pick-up electrode may be positioned at a “stand off” location, spaced from intimate contact with the surface of the body. Human body-generated electrical signals may be acquired without use of conductive gels and suction-based electrodes, without direct electrical contact to the body and even through layers of clothing. One electrode 230 may be used as a signal pickup, however, optionally, two or more electrodes 230 may be used to differentially pickup the physiologic signal. Also by using multiple electrodes, the larger of two or more signals may be selected for an increased signal to noise ratio. Alternatively, sensor(s) 230 may be attached to the programmer 20 via a separate cable such as 56 of FIG. 2. Optionally, sensor(s) 230 may be connected to the patient via an adhesive strip and cable 56.
FIG. 6 displays an ECG tracing 301, superimposed upon a grid 300, taken during an acute study from a human patient utilizing the sensor 230 of FIG. 5, showing a p-wave 302, a QRS complex 304, and a T-wave 306. These signals may be used to enable the follow-up clinician or technician to rapidly and accurately determine IMD function vis-a-vis proper sensing, atrial and ventricular capture, A-V delay function, rate response parameters, multi-site pacing parameters and other functions/operations as per described in the hereinabove mentioned, and incorporated by reference, '169 pending application.
FIG. 7 depicts programming head 22 with a sensor 240 positioned on the surface facing the patient. IMD 10 is shown in relief under the programming head 22, positioned correctly for the reception and transmission of RF telemetry from/to IMD 10. Sensor 240 is as substantially described in U.S. Pat. Nos. 5,573,012, 5,966,090 and 5,986,600 by McEwan, incorporated by reference in their entireties. The McEwan '012, '090, and '600 patents describe a non-acoustic pulse-echo radar monitor, employed in a repetitive mode, whereby a large number of reflected pulses are averaged to produce a voltage that corresponds to the heart motion. The antenna used in this monitor generally comprises two flat copper foils, thus permitting the antenna to be housed in a substantially flat housing. It further uses a dual time constant to reduce the effect of gross sensor-to-surface movement. The monitor detects the movement of one or more internal body parts, such as the heart, lungs, arteries, and vocal chords, and includes a pulse generator for simultaneously inputting a sequence of pulses to a transmit path and a gating path. The pulses transmitted along the transmit path drive an impulse generator and provide corresponding transmit pulses that are applied to a transmit antenna. The gating path includes a range delay generator which generates timed gating pulses. The timed gating pulses cause the receive path to selectively conduct pulses reflected from the body parts and received by a receive antenna. The monitor output potential can be separated into a cardiac output indicative of the physical movement of the heart, and a pulmonary output indicative of the physical movement of the lung. Alternatively, the sensor 240 may be attached to programmer 20 via a separate cable such as 56 of FIG. 2. Optionally, the sensor 240 may be connected to the patient via an adhesive strip and cable 56. Further, sensor 240 may be attached to programmer 20 with signal pickup when the patient is positioned within 1 meter in front of programmer 20.
FIG. 8 displays a physiologic waveform 402, superimposed upon a grid 400, taken during an acute study from a human patient utilizing the sensor 240 of FIG. 7. The composite signal 402 is low pass filtered to remove the cardiac signal component with the respiration signal 404 remaining. Respiration signal 404 consists of respiration rate (frequency of breathing) and tidal volume (amplitude). This signal may be used by the follow-up clinician or technician to monitor and/or optimize the performance of respiration-based rate responsive pacemakers, such as substantially described in U.S. Pat. No. 4,919,136 to Alt, incorporated herein by reference in its entirety. Additionally, this signal may be used to monitor and/or optimize emphysema, edema or CHF patients as described in U.S. Pat. Nos. 5,957,861 to Combs, et al, and U.S. Pat. No. 5,876,353 to Riff, incorporated herein by reference in their entireties.
The composite signal 402 is high pass filtered to remove the tidal volume signal component with the cardiac signal 406 remaining. The cardiac component may be used to enable the follow-up clinician or technician to rapidly and accurately determine IMD function vis-a-vis proper sensing, atrial and ventricular capture, A-V delay function, rate response parameters, multi-site pacing parameters and other functions/operations as per described in the hereinabove mentioned, and incorporated by reference, '169 pending application.
The cardiac signal 406 may be additionally used to detect and assess acute ischemia via ST segment elevation and depression such as described in U.S. Pat. Nos. 6,115,628, 6,115,630 and 6,128,526, all to Stadler et al. The Stadler et al. '628, '630, and '526 patents are incorporated herein by reference in their entireties.
The cardiac signal 406 may additionally be used to remotely monitor and transmit EKG signals from a patient's home without wrist electrodes or tape-on electrodes as described in U.S. Pat. No. 5,467,773 to Bergelson, et al. The Bergelson '773 patent is incorporated herein by reference in its entirety. These signals may be transmitted via cellular means or, alternatively, by the Internet to a remote monitoring station as described in U.S. Pat. Nos. 5,752,976 and, 6,292,698 to Duffin et al., U.S. Pat. No. 6,083,248 to Thompson; U.S. patent application Ser. No. 09/348,506, System For Remote Communication With a Medical Device to Ferek-Petric, filed Jul. 7, 1999; U.S. Provisional Application No. 09/765,484, System and Method of Communicating Between an Implantable Medical Device and a Remote Computer System or Health Care Provider to Haller, et al, filed Jan. 18, 2001; U.S. Pat. No. 5,772,586, Method For Monitoring the Health of a Patient to Heinonen; and U.S. Pat. No. 5,113,869, Implantable Ambulatory Electrocardiogram Monitor to Nappholz. The Duffin '976, '698; Thompson '248; Heinonen '586; and Nappholz '869 patents and Ferek-Petric '506 and Haller '484 applications are herein incorporated by reference in their entireties.
FIG. 9 is a representation of a data management system in which data collected using the sensors of the present invention is remotely transferred using a data transfer medium 510 such as, for example, but not limited to, a modem, cable, fiber optics or equivalent, via network system 512 to PC 514 at the remote station. The system also enables direct data archival in server 516. Generally, the system is structured to enable physicians and other healthcare providers to use their PC at remote locations to access and review patient physiologic data collected by sensors 230 (FIG. 5) via telemetry head 22, transferred and reviewed at programmer 20. The data from programmer 20 could be transferred as discussed hereinabove, for review at PC 514 and storage and retrieval at 516. In this manner, the system is capable to provide transtelephonic monitoring or Web-enabled remote patient management to promote chronic remote patient care.
While particular embodiments have been shown and described herein, it will be apparent to those skilled in the art that variations and modifications may be made in these embodiments without departing from the spirit and scope of this invention. It is the purpose of the appended claims to cover any and all such variations and modifications.
Claims (17)
1. A system including a non-tissue contacting electrode in cooperation with an external device, the system comprising:
an IMD in data communication with the external device; and
means for establishing the data communication between said IMD and the external device;
said means for establishing the data communication being adapted to incorporate the non-tissue contacting electrode wherein the non-tissue contact electrode includes sensing means to detect cardiac depolarization waveforms.
2. The system of claim 1 wherein said means for establishing the data communication includes a telemetry unit in operable data and electrical communications with the external device.
3. The system of claim 2 wherein said telemetry unit is a hand-holdable telemetry head adapted to be placed within a telemetry range of said IMD.
4. A system including a non-tissue contacting electrode in cooperation with an external device, the system comprising:
an IMD in data communication with the external device; and
means for establishing the data communication between said IMD and the external device;
the non-tissue contacting electrode being adapted to communicate with said external device such that EKG readings from the electrode are displayable on said external device.
5. The system according to claim 4 wherein said external device is a programmer.
6. The system according to claim 4 wherein at least two electrodes are implemented to sense EKG signals.
7. The system according to claim 6 , further including means for selecting larger signals among signals sensed from said at least two electrodes.
8. A non-contact electrode system having at least one electrode, the system comprising:
means for adapting the least one of said non-contact electrode for attachment; and
means for transferring physiologic data obtained by said at least one electrode to an external device.
9. The system of claim 8 wherein said at least one electrode includes attachment to a programmer head.
10. The system of claim 8 wherein said at least one electrode includes attachment to an electrode strip.
11. The system of claim 8 wherein said physiologic data includes respiration signal implemented to provide one of implantable medical device follow-up, emphysema, edema and CHF monitoring and AVD optimization.
12. The system of claim 8 wherein said physiologic data includes data obtained in cooperation with an implanted medical device wherein capture detection and ischemia detection are obtained for monitoring.
13. A non-contact electrode in cooperation with a Web-enabled data management system, comprising:
means for transferring physiologic data collected from a patient with an implanted medical device (IMD);
an external device in data communication with the non-contact electrode to uplink and transfer said physiologic data;
interface means to transfer said physiologic data from said external device to a network; and
means to transfer said physiologic data from said network to a PC or a network server.
14. The system of claim 13 wherein said network is Web-enabled and is remotely located from the electrode location.
15. The system of claim 13 wherein said interface is one of a modem, cable, fiber optics and RF.
16. A method of collecting physiological data using one or more non-contact electrodes comprising:
positioning the one or more non-contact electrodes proximate to a patient; and
transferring physiologic data collected by the electrodes to an external device.
17. The method of claim 16 wherein the electrodes are implemented with a telemetry head wherein said transfer of data includes telemetry communication with an implanted medical device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/004,045 US6728576B2 (en) | 2001-10-31 | 2001-10-31 | Non-contact EKG |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/004,045 US6728576B2 (en) | 2001-10-31 | 2001-10-31 | Non-contact EKG |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030083714A1 US20030083714A1 (en) | 2003-05-01 |
US6728576B2 true US6728576B2 (en) | 2004-04-27 |
Family
ID=21708854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/004,045 Expired - Lifetime US6728576B2 (en) | 2001-10-31 | 2001-10-31 | Non-contact EKG |
Country Status (1)
Country | Link |
---|---|
US (1) | US6728576B2 (en) |
Cited By (144)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060136005A1 (en) * | 2004-12-21 | 2006-06-22 | Ebr Systems, Inc. | Implantable transducer devices |
US20060136004A1 (en) * | 2004-12-21 | 2006-06-22 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US20060271113A1 (en) * | 2001-12-26 | 2006-11-30 | Voelkel Andrew W | Stimulation channel selection methods |
US20070060961A1 (en) * | 2005-09-12 | 2007-03-15 | Ebr Systems, Inc. | Methods and apparatus for determining cardiac stimulation sites using hemodynamic data |
US20070078490A1 (en) * | 2004-12-21 | 2007-04-05 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US20070118038A1 (en) * | 2005-11-23 | 2007-05-24 | Vital Sensors Inc. | Implantable device for telemetric measurement of blood pressure/temperature within the heart |
US20070253021A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers |
US20070255116A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Broadcast data transmission and data packet repeating techniques for a wireless medical device network |
US20070255125A1 (en) * | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Monitor devices for networked fluid infusion systems |
US20070254593A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Wireless data communication for a medical device network that supports a plurality of data communication modes |
US20070253380A1 (en) * | 2006-04-28 | 2007-11-01 | James Jollota | Data translation device with nonvolatile memory for a networked medical device system |
US20070258395A1 (en) * | 2006-04-28 | 2007-11-08 | Medtronic Minimed, Inc. | Wireless data communication protocols for a medical device network |
US20090028829A1 (en) * | 2003-05-16 | 2009-01-29 | Gruskin Elliott A | Fusion proteins for the treatment of CNS |
US20090157146A1 (en) * | 2007-12-12 | 2009-06-18 | Cardiac Pacemakers, Inc. | Implantable medical device with hall sensor |
US7682313B2 (en) | 2005-11-23 | 2010-03-23 | Vital Sensors Holding Company, Inc. | Implantable pressure monitor |
US20100286744A1 (en) * | 2004-06-15 | 2010-11-11 | Ebr Systems, Inc. | Methods and systems for heart failure treatments using ultrasound and leadless implantable devices |
US20110006880A1 (en) * | 2009-07-09 | 2011-01-13 | Medtronic Minimed, Inc. | Fingerprint-linked control of a portable medical device |
US20110006876A1 (en) * | 2009-07-09 | 2011-01-13 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device |
US20110050428A1 (en) * | 2009-09-02 | 2011-03-03 | Medtronic Minimed, Inc. | Medical device having an intelligent alerting scheme, and related operating methods |
US20110105955A1 (en) * | 2009-11-03 | 2011-05-05 | Medtronic Minimed, Inc. | Omnidirectional accelerometer device and medical device incorporating same |
US20110149759A1 (en) * | 2009-12-23 | 2011-06-23 | Medtronic Minimed, Inc. | Ranking and switching of wireless channels in a body area network of medical devices |
US20110152970A1 (en) * | 2009-12-23 | 2011-06-23 | Medtronic Minimed, Inc. | Location-based ranking and switching of wireless channels in a body area network of medical devices |
US20110208260A1 (en) * | 2005-10-14 | 2011-08-25 | Nanostim, Inc. | Rate Responsive Leadless Cardiac Pacemaker |
US20110237967A1 (en) * | 2008-03-25 | 2011-09-29 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US8073008B2 (en) | 2006-04-28 | 2011-12-06 | Medtronic Minimed, Inc. | Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network |
US20120109236A1 (en) * | 2005-10-14 | 2012-05-03 | Jacobson Peter M | Leadless cardiac pacemaker with conducted communication |
US8197444B1 (en) | 2010-12-22 | 2012-06-12 | Medtronic Minimed, Inc. | Monitoring the seating status of a fluid reservoir in a fluid infusion device |
US8474332B2 (en) | 2010-10-20 | 2013-07-02 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8479595B2 (en) | 2010-10-20 | 2013-07-09 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8495918B2 (en) | 2010-10-20 | 2013-07-30 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8523803B1 (en) | 2012-03-20 | 2013-09-03 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US8562565B2 (en) | 2010-10-15 | 2013-10-22 | Medtronic Minimed, Inc. | Battery shock absorber for a portable medical device |
US8564447B2 (en) | 2011-03-18 | 2013-10-22 | Medtronic Minimed, Inc. | Battery life indication techniques for an electronic device |
US8574201B2 (en) | 2009-12-22 | 2013-11-05 | Medtronic Minimed, Inc. | Syringe piston with check valve seal |
US8603033B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device and related assembly having an offset element for a piezoelectric speaker |
US8603032B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device with membrane keypad sealing element, and related manufacturing method |
US8603026B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US8603027B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Occlusion detection using pulse-width modulation and medical device incorporating same |
US8615310B2 (en) | 2010-12-13 | 2013-12-24 | Pacesetter, Inc. | Delivery catheter systems and methods |
US8614596B2 (en) | 2011-02-28 | 2013-12-24 | Medtronic Minimed, Inc. | Systems and methods for initializing a voltage bus and medical devices incorporating same |
US8628510B2 (en) | 2010-12-22 | 2014-01-14 | Medtronic Minimed, Inc. | Monitoring the operating health of a force sensor in a fluid infusion device |
US8690855B2 (en) * | 2010-12-22 | 2014-04-08 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
US8808269B2 (en) | 2012-08-21 | 2014-08-19 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US8864726B2 (en) | 2011-02-22 | 2014-10-21 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir having a movable septum |
CN104107507A (en) * | 2014-07-09 | 2014-10-22 | 庞德兴 | Passive minimally-invasive subcutaneous nerve interventional chip based on RFID radio frequency technology |
US8870818B2 (en) | 2012-11-15 | 2014-10-28 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
US8920381B2 (en) | 2013-04-12 | 2014-12-30 | Medtronic Minimed, Inc. | Infusion set with improved bore configuration |
US9020611B2 (en) | 2010-10-13 | 2015-04-28 | Pacesetter, Inc. | Leadless cardiac pacemaker with anti-unscrewing feature |
US9018893B2 (en) | 2011-03-18 | 2015-04-28 | Medtronic Minimed, Inc. | Power control techniques for an electronic device |
US9033924B2 (en) | 2013-01-18 | 2015-05-19 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9060692B2 (en) | 2010-10-12 | 2015-06-23 | Pacesetter, Inc. | Temperature sensor for a leadless cardiac pacemaker |
US9101305B2 (en) | 2011-03-09 | 2015-08-11 | Medtronic Minimed, Inc. | Glucose sensor product and related manufacturing and packaging methods |
US9107994B2 (en) | 2013-01-18 | 2015-08-18 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9126032B2 (en) | 2010-12-13 | 2015-09-08 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
US9242102B2 (en) | 2010-12-20 | 2016-01-26 | Pacesetter, Inc. | Leadless pacemaker with radial fixation mechanism |
US9259528B2 (en) | 2013-08-22 | 2016-02-16 | Medtronic Minimed, Inc. | Fluid infusion device with safety coupling |
US9272155B2 (en) | 2009-02-02 | 2016-03-01 | Pacesetter, Inc. | Leadless cardiac pacemaker with secondary fixation capability |
US9308321B2 (en) | 2013-02-18 | 2016-04-12 | Medtronic Minimed, Inc. | Infusion device having gear assembly initialization |
US9333292B2 (en) | 2012-06-26 | 2016-05-10 | Medtronic Minimed, Inc. | Mechanically actuated fluid infusion device |
US9364609B2 (en) | 2012-08-30 | 2016-06-14 | Medtronic Minimed, Inc. | Insulin on board compensation for a closed-loop insulin infusion system |
US9393399B2 (en) | 2011-02-22 | 2016-07-19 | Medtronic Minimed, Inc. | Sealing assembly for a fluid reservoir of a fluid infusion device |
US9399096B2 (en) | 2014-02-06 | 2016-07-26 | Medtronic Minimed, Inc. | Automatic closed-loop control adjustments and infusion systems incorporating same |
US9402949B2 (en) | 2013-08-13 | 2016-08-02 | Medtronic Minimed, Inc. | Detecting conditions associated with medical device operations using matched filters |
US9433731B2 (en) | 2013-07-19 | 2016-09-06 | Medtronic Minimed, Inc. | Detecting unintentional motor motion and infusion device incorporating same |
US9463309B2 (en) | 2011-02-22 | 2016-10-11 | Medtronic Minimed, Inc. | Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir |
US9511236B2 (en) | 2011-11-04 | 2016-12-06 | Pacesetter, Inc. | Leadless cardiac pacemaker with integral battery and redundant welds |
US9522223B2 (en) | 2013-01-18 | 2016-12-20 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9598210B2 (en) | 2007-12-27 | 2017-03-21 | Medtronic Minimed, Inc. | Reservoir pressure equalization systems and methods |
US9610402B2 (en) | 2014-03-24 | 2017-04-04 | Medtronic Minimed, Inc. | Transcutaneous conduit insertion mechanism with a living hinge for use with a fluid infusion patch pump device |
US9610401B2 (en) | 2012-01-13 | 2017-04-04 | Medtronic Minimed, Inc. | Infusion set component with modular fluid channel element |
US9626521B2 (en) | 2014-04-16 | 2017-04-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Physiological signal-based encryption and EHR management |
US9623179B2 (en) | 2012-08-30 | 2017-04-18 | Medtronic Minimed, Inc. | Safeguarding techniques for a closed-loop insulin infusion system |
US9636453B2 (en) | 2014-12-04 | 2017-05-02 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
US9642543B2 (en) | 2013-05-23 | 2017-05-09 | Arizona Board Of Regents | Systems and methods for model-based non-contact physiological data acquisition |
US9662445B2 (en) | 2012-08-30 | 2017-05-30 | Medtronic Minimed, Inc. | Regulating entry into a closed-loop operating mode of an insulin infusion system |
US9681828B2 (en) | 2014-05-01 | 2017-06-20 | Medtronic Minimed, Inc. | Physiological characteristic sensors and methods for forming such sensors |
US9694132B2 (en) | 2013-12-19 | 2017-07-04 | Medtronic Minimed, Inc. | Insertion device for insertion set |
US9750877B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Predicted time to assess and/or control a glycemic state |
US9750878B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Closed-loop control of glucose according to a predicted blood glucose trajectory |
US9802054B2 (en) | 2012-08-01 | 2017-10-31 | Pacesetter, Inc. | Biostimulator circuit with flying cell |
US9833563B2 (en) | 2014-09-26 | 2017-12-05 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US9833564B2 (en) | 2014-11-25 | 2017-12-05 | Medtronic Minimed, Inc. | Fluid conduit assembly with air venting features |
US9839741B2 (en) | 2011-02-22 | 2017-12-12 | Medtronic Minimed, Inc. | Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir |
US9839753B2 (en) | 2014-09-26 | 2017-12-12 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US9849239B2 (en) | 2012-08-30 | 2017-12-26 | Medtronic Minimed, Inc. | Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system |
US9849240B2 (en) | 2013-12-12 | 2017-12-26 | Medtronic Minimed, Inc. | Data modification for predictive operations and devices incorporating same |
US9861748B2 (en) | 2014-02-06 | 2018-01-09 | Medtronic Minimed, Inc. | User-configurable closed-loop notifications and infusion systems incorporating same |
US9879668B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor |
US9878095B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements |
US9878096B2 (en) | 2012-08-30 | 2018-01-30 | Medtronic Minimed, Inc. | Generation of target glucose values for a closed-loop operating mode of an insulin infusion system |
US9880528B2 (en) | 2013-08-21 | 2018-01-30 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US9889257B2 (en) | 2013-08-21 | 2018-02-13 | Medtronic Minimed, Inc. | Systems and methods for updating medical devices |
US9895490B2 (en) | 2010-12-22 | 2018-02-20 | Medtronic Minimed, Inc. | Occlusion detection for a fluid infusion device |
US9937292B2 (en) | 2014-12-09 | 2018-04-10 | Medtronic Minimed, Inc. | Systems for filling a fluid infusion device reservoir |
US9943645B2 (en) | 2014-12-04 | 2018-04-17 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
US9987420B2 (en) | 2014-11-26 | 2018-06-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US9987425B2 (en) | 2015-06-22 | 2018-06-05 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements |
US9993594B2 (en) | 2015-06-22 | 2018-06-12 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors |
US9999721B2 (en) | 2015-05-26 | 2018-06-19 | Medtronic Minimed, Inc. | Error handling in infusion devices with distributed motor control and related operating methods |
US10001450B2 (en) | 2014-04-18 | 2018-06-19 | Medtronic Minimed, Inc. | Nonlinear mapping technique for a physiological characteristic sensor |
US10007765B2 (en) | 2014-05-19 | 2018-06-26 | Medtronic Minimed, Inc. | Adaptive signal processing for infusion devices and related methods and systems |
US10010668B2 (en) | 2015-06-22 | 2018-07-03 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and a force sensor |
US10037722B2 (en) | 2015-11-03 | 2018-07-31 | Medtronic Minimed, Inc. | Detecting breakage in a display element |
US10080903B2 (en) | 2007-05-23 | 2018-09-25 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US10105488B2 (en) | 2013-12-12 | 2018-10-23 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US10117992B2 (en) | 2015-09-29 | 2018-11-06 | Medtronic Minimed, Inc. | Infusion devices and related rescue detection methods |
US10130767B2 (en) | 2012-08-30 | 2018-11-20 | Medtronic Minimed, Inc. | Sensor model supervisor for a closed-loop insulin infusion system |
US10137243B2 (en) | 2015-05-26 | 2018-11-27 | Medtronic Minimed, Inc. | Infusion devices with distributed motor control and related operating methods |
US10146911B2 (en) | 2015-10-23 | 2018-12-04 | Medtronic Minimed, Inc. | Medical devices and related methods and systems for data transfer |
US10152049B2 (en) | 2014-05-19 | 2018-12-11 | Medtronic Minimed, Inc. | Glucose sensor health monitoring and related methods and systems |
US10182723B2 (en) | 2012-02-08 | 2019-01-22 | Easyg Llc | Electrode units for sensing physiological electrical activity |
US10182732B2 (en) | 2012-02-08 | 2019-01-22 | Easyg Llc | ECG system with multi mode electrode units |
US10195341B2 (en) | 2014-11-26 | 2019-02-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US10201657B2 (en) | 2015-08-21 | 2019-02-12 | Medtronic Minimed, Inc. | Methods for providing sensor site rotation feedback and related infusion devices and systems |
US10232113B2 (en) | 2014-04-24 | 2019-03-19 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for regulating insulin on board |
US10238030B2 (en) | 2016-12-06 | 2019-03-26 | Medtronic Minimed, Inc. | Wireless medical device with a complementary split ring resonator arrangement for suppression of electromagnetic interference |
US10265031B2 (en) | 2014-12-19 | 2019-04-23 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for automatic alert clearing |
US10275572B2 (en) | 2014-05-01 | 2019-04-30 | Medtronic Minimed, Inc. | Detecting blockage of a reservoir cavity during a seating operation of a fluid infusion device |
US10272201B2 (en) | 2016-12-22 | 2019-04-30 | Medtronic Minimed, Inc. | Insertion site monitoring methods and related infusion devices and systems |
US10274349B2 (en) | 2014-05-19 | 2019-04-30 | Medtronic Minimed, Inc. | Calibration factor adjustments for infusion devices and related methods and systems |
US10279126B2 (en) | 2014-10-07 | 2019-05-07 | Medtronic Minimed, Inc. | Fluid conduit assembly with gas trapping filter in the fluid flow path |
US10293108B2 (en) | 2015-08-21 | 2019-05-21 | Medtronic Minimed, Inc. | Infusion devices and related patient ratio adjustment methods |
US10307528B2 (en) | 2015-03-09 | 2019-06-04 | Medtronic Minimed, Inc. | Extensible infusion devices and related methods |
US10307535B2 (en) | 2014-12-19 | 2019-06-04 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US10363365B2 (en) | 2017-02-07 | 2019-07-30 | Medtronic Minimed, Inc. | Infusion devices and related consumable calibration methods |
US10391242B2 (en) | 2012-06-07 | 2019-08-27 | Medtronic Minimed, Inc. | Diabetes therapy management system for recommending bolus calculator adjustments |
US10449306B2 (en) | 2015-11-25 | 2019-10-22 | Medtronics Minimed, Inc. | Systems for fluid delivery with wicking membrane |
US10449298B2 (en) | 2015-03-26 | 2019-10-22 | Medtronic Minimed, Inc. | Fluid injection devices and related methods |
US10463297B2 (en) | 2015-08-21 | 2019-11-05 | Medtronic Minimed, Inc. | Personalized event detection methods and related devices and systems |
US10478557B2 (en) | 2015-08-21 | 2019-11-19 | Medtronic Minimed, Inc. | Personalized parameter modeling methods and related devices and systems |
US10496797B2 (en) | 2012-08-30 | 2019-12-03 | Medtronic Minimed, Inc. | Blood glucose validation for a closed-loop operating mode of an insulin infusion system |
US10500135B2 (en) | 2017-01-30 | 2019-12-10 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10532165B2 (en) | 2017-01-30 | 2020-01-14 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10552580B2 (en) | 2017-02-07 | 2020-02-04 | Medtronic Minimed, Inc. | Infusion system consumables and related calibration methods |
US10575767B2 (en) | 2015-05-29 | 2020-03-03 | Medtronic Minimed, Inc. | Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus |
US10589038B2 (en) | 2016-04-27 | 2020-03-17 | Medtronic Minimed, Inc. | Set connector systems for venting a fluid reservoir |
US10646649B2 (en) | 2017-02-21 | 2020-05-12 | Medtronic Minimed, Inc. | Infusion devices and fluid identification apparatuses and methods |
US10664569B2 (en) | 2015-08-21 | 2020-05-26 | Medtronic Minimed, Inc. | Data analytics and generation of recommendations for controlling glycemic outcomes associated with tracked events |
US11097051B2 (en) | 2016-11-04 | 2021-08-24 | Medtronic Minimed, Inc. | Methods and apparatus for detecting and reacting to insufficient hypoglycemia response |
US11207463B2 (en) | 2017-02-21 | 2021-12-28 | Medtronic Minimed, Inc. | Apparatuses, systems, and methods for identifying an infusate in a reservoir of an infusion device |
US11501867B2 (en) | 2015-10-19 | 2022-11-15 | Medtronic Minimed, Inc. | Medical devices and related event pattern presentation methods |
US11666702B2 (en) | 2015-10-19 | 2023-06-06 | Medtronic Minimed, Inc. | Medical devices and related event pattern treatment recommendation methods |
US12023488B2 (en) | 2020-08-17 | 2024-07-02 | Ebr Systems, Inc. | Implantable stimulation assemblies having tissue engagement mechanisms, and associated systems and methods |
US12115339B2 (en) | 2016-11-28 | 2024-10-15 | Medtronic Minimed, Inc. | Interactive guidance for medical devices |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742816B2 (en) * | 2006-03-31 | 2010-06-22 | Medtronic, Inc. | Multichannel communication for implantable medical device applications |
WO2008148040A1 (en) | 2007-05-24 | 2008-12-04 | Lifewave, Inc. | System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume |
CA2706956C (en) * | 2007-11-28 | 2015-11-17 | The Regents Of The University Of California | Non-contact biopotential sensor |
US9491307B2 (en) * | 2009-02-24 | 2016-11-08 | Centurylink Intellectual Property Llc | System and method for establishing pre-stored emergency messages |
US9002427B2 (en) | 2009-03-30 | 2015-04-07 | Lifewave Biomedical, Inc. | Apparatus and method for continuous noninvasive measurement of respiratory function and events |
WO2013181376A1 (en) | 2012-05-31 | 2013-12-05 | Lifewave, Inc. | Medical radar system for guiding cardiac resuscitation |
Citations (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3983867A (en) | 1975-09-29 | 1976-10-05 | Robert Case | Method and apparatus for providing hexaxial ecg display |
US4023565A (en) | 1974-06-21 | 1977-05-17 | Siemens Aktiengesellschaft | Circuit arrangement for the processing of physiological measuring signals |
US4082086A (en) | 1976-12-13 | 1978-04-04 | M I Systems, Inc. | Ecg monitoring pad |
US4170227A (en) | 1976-12-27 | 1979-10-09 | Electronics For Medicine, Inc. | Apparatus and method for ECG baseline shift detecting |
US4263919A (en) | 1979-10-12 | 1981-04-28 | Levin Kenneth M | Heartbeat detection and artifact discrimination method and apparatus |
US4310000A (en) | 1980-01-23 | 1982-01-12 | Medtronic, Inc. | Implantable pulse generator having separate passive sensing reference electrode |
US4313443A (en) | 1980-09-11 | 1982-02-02 | Nasa | Pocket ECG electrode |
US4476868A (en) | 1978-11-06 | 1984-10-16 | Medtronic, Inc. | Body stimulator output circuit |
US4593702A (en) | 1981-10-22 | 1986-06-10 | Osrodek Badawczo-Rozwojowy Techniki Medycznej "Ormed" | Measuring system for the electrical activity of the heart conducting system on the beat-to-beat basis by a noninvasive method |
US4674508A (en) | 1985-05-28 | 1987-06-23 | Cordis Corporation | Low-power consumption cardiac pacer based on automatic verification of evoked contractions |
US4729376A (en) | 1985-05-28 | 1988-03-08 | Cordis Corporation | Cardiac pacer and method providing means for periodically determining capture threshold and adjusting pulse output level accordingly |
US4919136A (en) | 1987-09-28 | 1990-04-24 | Eckhard Alt | Ventilation controlled rate responsive cardiac pacemaker |
US4957109A (en) | 1988-08-22 | 1990-09-18 | Cardiac Spectrum Technologies, Inc. | Electrocardiograph system |
US4981141A (en) | 1989-02-15 | 1991-01-01 | Jacob Segalowitz | Wireless electrocardiographic monitoring system |
US5007427A (en) | 1987-05-07 | 1991-04-16 | Capintec, Inc. | Ambulatory physiological evaluation system including cardiac monitoring |
US5027824A (en) | 1989-12-01 | 1991-07-02 | Edmond Dougherty | Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances |
US5052388A (en) | 1989-12-22 | 1991-10-01 | Medtronic, Inc. | Method and apparatus for implementing activity sensing in a pulse generator |
US5111818A (en) | 1985-10-08 | 1992-05-12 | Capintec, Inc. | Ambulatory physiological evaluation system including cardiac monitoring |
US5113869A (en) | 1990-08-21 | 1992-05-19 | Telectronics Pacing Systems, Inc. | Implantable ambulatory electrocardiogram monitor |
US5168871A (en) | 1990-11-09 | 1992-12-08 | Medtronic, Inc. | Method and apparatus for processing quasi-transient telemetry signals in noisy environments |
US5307818A (en) | 1989-02-15 | 1994-05-03 | Jacob Segalowitz | Wireless electrocardiographic and monitoring system and wireless electrode assemblies for same |
US5331966A (en) | 1991-04-05 | 1994-07-26 | Medtronic, Inc. | Subcutaneous multi-electrode sensing system, method and pacer |
US5345362A (en) | 1993-04-29 | 1994-09-06 | Medtronic, Inc. | Portable computer apparatus with articulating display panel |
US5467773A (en) | 1993-05-21 | 1995-11-21 | Paceart Associates, L.P. | Cardiac patient remote monitoring using multiple tone frequencies from central station to control functions of local instrument at patient's home |
US5511553A (en) | 1989-02-15 | 1996-04-30 | Segalowitz; Jacob | Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously |
US5513645A (en) | 1993-11-17 | 1996-05-07 | Ela Medical S.A. | Holter functions with a zoom feature |
US5560368A (en) | 1994-11-15 | 1996-10-01 | Berger; Ronald D. | Methodology for automated QT variability measurement |
US5573012A (en) | 1994-08-09 | 1996-11-12 | The Regents Of The University Of California | Body monitoring and imaging apparatus and method |
US5634468A (en) | 1992-04-03 | 1997-06-03 | Micromedical Industries Limited | Sensor patch and system for physiological monitoring |
US5669393A (en) | 1994-11-22 | 1997-09-23 | Ela Medical S.A. | Programmable interface for a physiological signal recording device |
US5752976A (en) | 1995-06-23 | 1998-05-19 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
US5766133A (en) | 1994-10-28 | 1998-06-16 | Ela Medical S.A. | Circuit for testing cables for physiological signal sensing electrodes |
US5766708A (en) | 1996-08-01 | 1998-06-16 | Gabel S.R.L. | Ski poles for skiers made of material having high resistance and inherently fragile |
US5772586A (en) | 1996-02-12 | 1998-06-30 | Nokia Mobile Phones, Ltd. | Method for monitoring the health of a patient |
US5876353A (en) | 1997-01-31 | 1999-03-02 | Medtronic, Inc. | Impedance monitor for discerning edema through evaluation of respiratory rate |
US5957861A (en) | 1997-01-31 | 1999-09-28 | Medtronic, Inc. | Impedance monitor for discerning edema through evaluation of respiratory rate |
US5966090A (en) | 1998-03-16 | 1999-10-12 | Mcewan; Thomas E. | Differential pulse radar motion sensor |
US5987352A (en) | 1996-07-11 | 1999-11-16 | Medtronic, Inc. | Minimally invasive implantable device for monitoring physiologic events |
US5986600A (en) | 1998-01-22 | 1999-11-16 | Mcewan; Thomas E. | Pulsed RF oscillator and radar motion sensor |
US6083248A (en) | 1995-06-23 | 2000-07-04 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
US6115630A (en) | 1999-03-29 | 2000-09-05 | Medtronic, Inc. | Determination of orientation of electrocardiogram signal in implantable medical devices |
US6115628A (en) | 1999-03-29 | 2000-09-05 | Medtronic, Inc. | Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals |
US6128526A (en) | 1999-03-29 | 2000-10-03 | Medtronic, Inc. | Method for ischemia detection and apparatus for using same |
WO2001016607A2 (en) | 1999-08-26 | 2001-03-08 | Cordless Antistatic Research Inc. | Capacitive electric field sensor |
US6200265B1 (en) | 1999-04-16 | 2001-03-13 | Medtronic, Inc. | Peripheral memory patch and access method for use with an implantable medical device |
EP1134003A2 (en) * | 1994-07-08 | 2001-09-19 | Medtronic, Inc. | Handheld patient programmer for implantable human tissue stimulator |
US6650941B2 (en) * | 2000-12-22 | 2003-11-18 | Medtronic, Inc. | Implantable medical device programming wands having integral input device |
-
2001
- 2001-10-31 US US10/004,045 patent/US6728576B2/en not_active Expired - Lifetime
Patent Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4023565A (en) | 1974-06-21 | 1977-05-17 | Siemens Aktiengesellschaft | Circuit arrangement for the processing of physiological measuring signals |
US3983867A (en) | 1975-09-29 | 1976-10-05 | Robert Case | Method and apparatus for providing hexaxial ecg display |
US4082086A (en) | 1976-12-13 | 1978-04-04 | M I Systems, Inc. | Ecg monitoring pad |
US4170227A (en) | 1976-12-27 | 1979-10-09 | Electronics For Medicine, Inc. | Apparatus and method for ECG baseline shift detecting |
US4476868A (en) | 1978-11-06 | 1984-10-16 | Medtronic, Inc. | Body stimulator output circuit |
US4263919A (en) | 1979-10-12 | 1981-04-28 | Levin Kenneth M | Heartbeat detection and artifact discrimination method and apparatus |
US4310000A (en) | 1980-01-23 | 1982-01-12 | Medtronic, Inc. | Implantable pulse generator having separate passive sensing reference electrode |
US4313443A (en) | 1980-09-11 | 1982-02-02 | Nasa | Pocket ECG electrode |
US4593702A (en) | 1981-10-22 | 1986-06-10 | Osrodek Badawczo-Rozwojowy Techniki Medycznej "Ormed" | Measuring system for the electrical activity of the heart conducting system on the beat-to-beat basis by a noninvasive method |
US4674508A (en) | 1985-05-28 | 1987-06-23 | Cordis Corporation | Low-power consumption cardiac pacer based on automatic verification of evoked contractions |
US4729376A (en) | 1985-05-28 | 1988-03-08 | Cordis Corporation | Cardiac pacer and method providing means for periodically determining capture threshold and adjusting pulse output level accordingly |
US5111818A (en) | 1985-10-08 | 1992-05-12 | Capintec, Inc. | Ambulatory physiological evaluation system including cardiac monitoring |
US5007427A (en) | 1987-05-07 | 1991-04-16 | Capintec, Inc. | Ambulatory physiological evaluation system including cardiac monitoring |
US4919136A (en) | 1987-09-28 | 1990-04-24 | Eckhard Alt | Ventilation controlled rate responsive cardiac pacemaker |
US4957109A (en) | 1988-08-22 | 1990-09-18 | Cardiac Spectrum Technologies, Inc. | Electrocardiograph system |
US5511553A (en) | 1989-02-15 | 1996-04-30 | Segalowitz; Jacob | Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously |
US4981141A (en) | 1989-02-15 | 1991-01-01 | Jacob Segalowitz | Wireless electrocardiographic monitoring system |
US5307818A (en) | 1989-02-15 | 1994-05-03 | Jacob Segalowitz | Wireless electrocardiographic and monitoring system and wireless electrode assemblies for same |
US5027824A (en) | 1989-12-01 | 1991-07-02 | Edmond Dougherty | Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances |
US5052388A (en) | 1989-12-22 | 1991-10-01 | Medtronic, Inc. | Method and apparatus for implementing activity sensing in a pulse generator |
US5113869A (en) | 1990-08-21 | 1992-05-19 | Telectronics Pacing Systems, Inc. | Implantable ambulatory electrocardiogram monitor |
US5168871A (en) | 1990-11-09 | 1992-12-08 | Medtronic, Inc. | Method and apparatus for processing quasi-transient telemetry signals in noisy environments |
US5331966A (en) | 1991-04-05 | 1994-07-26 | Medtronic, Inc. | Subcutaneous multi-electrode sensing system, method and pacer |
US5634468A (en) | 1992-04-03 | 1997-06-03 | Micromedical Industries Limited | Sensor patch and system for physiological monitoring |
US5345362A (en) | 1993-04-29 | 1994-09-06 | Medtronic, Inc. | Portable computer apparatus with articulating display panel |
US5467773A (en) | 1993-05-21 | 1995-11-21 | Paceart Associates, L.P. | Cardiac patient remote monitoring using multiple tone frequencies from central station to control functions of local instrument at patient's home |
US5513645A (en) | 1993-11-17 | 1996-05-07 | Ela Medical S.A. | Holter functions with a zoom feature |
EP1134003A2 (en) * | 1994-07-08 | 2001-09-19 | Medtronic, Inc. | Handheld patient programmer for implantable human tissue stimulator |
US5573012A (en) | 1994-08-09 | 1996-11-12 | The Regents Of The University Of California | Body monitoring and imaging apparatus and method |
US5766133A (en) | 1994-10-28 | 1998-06-16 | Ela Medical S.A. | Circuit for testing cables for physiological signal sensing electrodes |
US5560368A (en) | 1994-11-15 | 1996-10-01 | Berger; Ronald D. | Methodology for automated QT variability measurement |
US5669393A (en) | 1994-11-22 | 1997-09-23 | Ela Medical S.A. | Programmable interface for a physiological signal recording device |
US5752976A (en) | 1995-06-23 | 1998-05-19 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
US6292698B1 (en) | 1995-06-23 | 2001-09-18 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
US6083248A (en) | 1995-06-23 | 2000-07-04 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
US5772586A (en) | 1996-02-12 | 1998-06-30 | Nokia Mobile Phones, Ltd. | Method for monitoring the health of a patient |
US5987352A (en) | 1996-07-11 | 1999-11-16 | Medtronic, Inc. | Minimally invasive implantable device for monitoring physiologic events |
US5766708A (en) | 1996-08-01 | 1998-06-16 | Gabel S.R.L. | Ski poles for skiers made of material having high resistance and inherently fragile |
US5957861A (en) | 1997-01-31 | 1999-09-28 | Medtronic, Inc. | Impedance monitor for discerning edema through evaluation of respiratory rate |
US5876353A (en) | 1997-01-31 | 1999-03-02 | Medtronic, Inc. | Impedance monitor for discerning edema through evaluation of respiratory rate |
US5986600A (en) | 1998-01-22 | 1999-11-16 | Mcewan; Thomas E. | Pulsed RF oscillator and radar motion sensor |
US5966090A (en) | 1998-03-16 | 1999-10-12 | Mcewan; Thomas E. | Differential pulse radar motion sensor |
US6115630A (en) | 1999-03-29 | 2000-09-05 | Medtronic, Inc. | Determination of orientation of electrocardiogram signal in implantable medical devices |
US6115628A (en) | 1999-03-29 | 2000-09-05 | Medtronic, Inc. | Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals |
US6128526A (en) | 1999-03-29 | 2000-10-03 | Medtronic, Inc. | Method for ischemia detection and apparatus for using same |
US6200265B1 (en) | 1999-04-16 | 2001-03-13 | Medtronic, Inc. | Peripheral memory patch and access method for use with an implantable medical device |
WO2001016607A2 (en) | 1999-08-26 | 2001-03-08 | Cordless Antistatic Research Inc. | Capacitive electric field sensor |
US6650941B2 (en) * | 2000-12-22 | 2003-11-18 | Medtronic, Inc. | Implantable medical device programming wands having integral input device |
Cited By (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060271113A1 (en) * | 2001-12-26 | 2006-11-30 | Voelkel Andrew W | Stimulation channel selection methods |
US20090028829A1 (en) * | 2003-05-16 | 2009-01-29 | Gruskin Elliott A | Fusion proteins for the treatment of CNS |
US20100286744A1 (en) * | 2004-06-15 | 2010-11-11 | Ebr Systems, Inc. | Methods and systems for heart failure treatments using ultrasound and leadless implantable devices |
US9333364B2 (en) | 2004-06-15 | 2016-05-10 | Ebr Systems, Inc. | Methods and systems for heart failure treatments using ultrasound and leadless implantable devices |
US7558631B2 (en) * | 2004-12-21 | 2009-07-07 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
WO2006069215A3 (en) * | 2004-12-21 | 2009-06-18 | Ebr Systems Inc | Leadless cardiac system for pacing and arrhythmia treatment |
US20100063562A1 (en) * | 2004-12-21 | 2010-03-11 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US7890173B2 (en) | 2004-12-21 | 2011-02-15 | Ebr Systems, Inc. | Implantable transducer devices |
US7996087B2 (en) | 2004-12-21 | 2011-08-09 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US7848815B2 (en) | 2004-12-21 | 2010-12-07 | Ebr Systems, Inc. | Implantable transducer devices |
US20070078490A1 (en) * | 2004-12-21 | 2007-04-05 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US20090326601A1 (en) * | 2004-12-21 | 2009-12-31 | Ebr Systems, Inc. | Implantable transducer devices |
US20100228308A1 (en) * | 2004-12-21 | 2010-09-09 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US7610092B2 (en) | 2004-12-21 | 2009-10-27 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US8315701B2 (en) | 2004-12-21 | 2012-11-20 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US20060136004A1 (en) * | 2004-12-21 | 2006-06-22 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US20060136005A1 (en) * | 2004-12-21 | 2006-06-22 | Ebr Systems, Inc. | Implantable transducer devices |
US9008776B2 (en) | 2004-12-21 | 2015-04-14 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US7606621B2 (en) * | 2004-12-21 | 2009-10-20 | Ebr Systems, Inc. | Implantable transducer devices |
US11376439B2 (en) | 2005-08-31 | 2022-07-05 | Ebr Systems, Inc. | Methods and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices |
US12133983B2 (en) | 2005-08-31 | 2024-11-05 | Ebr Systems, Inc. | Methods and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices |
US10207115B2 (en) | 2005-08-31 | 2019-02-19 | Ebr Systems, Inc. | Method and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices |
US20070060961A1 (en) * | 2005-09-12 | 2007-03-15 | Ebr Systems, Inc. | Methods and apparatus for determining cardiac stimulation sites using hemodynamic data |
US7702392B2 (en) | 2005-09-12 | 2010-04-20 | Ebr Systems, Inc. | Methods and apparatus for determining cardiac stimulation sites using hemodynamic data |
US9216298B2 (en) | 2005-10-14 | 2015-12-22 | Pacesetter, Inc. | Leadless cardiac pacemaker system with conductive communication |
US9687666B2 (en) | 2005-10-14 | 2017-06-27 | Pacesetter, Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
US9409033B2 (en) | 2005-10-14 | 2016-08-09 | Pacesetter, Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
US20120109236A1 (en) * | 2005-10-14 | 2012-05-03 | Jacobson Peter M | Leadless cardiac pacemaker with conducted communication |
US9358400B2 (en) | 2005-10-14 | 2016-06-07 | Pacesetter, Inc. | Leadless cardiac pacemaker |
US9227077B2 (en) | 2005-10-14 | 2016-01-05 | Pacesetter, Inc. | Leadless cardiac pacemaker triggered by conductive communication |
US9872999B2 (en) | 2005-10-14 | 2018-01-23 | Pacesetter, Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
US20110208260A1 (en) * | 2005-10-14 | 2011-08-25 | Nanostim, Inc. | Rate Responsive Leadless Cardiac Pacemaker |
US9192774B2 (en) | 2005-10-14 | 2015-11-24 | Pacesetter, Inc. | Cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
US9168383B2 (en) * | 2005-10-14 | 2015-10-27 | Pacesetter, Inc. | Leadless cardiac pacemaker with conducted communication |
US9072913B2 (en) | 2005-10-14 | 2015-07-07 | Pacesetter, Inc. | Rate responsive leadless cardiac pacemaker |
US8788053B2 (en) | 2005-10-14 | 2014-07-22 | Pacesetter, Inc. | Programmer for biostimulator system |
US10238883B2 (en) | 2005-10-14 | 2019-03-26 | Pacesetter Inc. | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
US7931598B2 (en) | 2005-11-23 | 2011-04-26 | Vital Sensors Holding Company, Inc. | Implantable pressure monitor |
US20100185103A1 (en) * | 2005-11-23 | 2010-07-22 | Vital Sensors Holding Company, Inc. | Implantable pressure monitor |
US7931597B2 (en) | 2005-11-23 | 2011-04-26 | Vital Sensors Holding Company, Inc. | Anchored implantable pressure monitor |
US20070118038A1 (en) * | 2005-11-23 | 2007-05-24 | Vital Sensors Inc. | Implantable device for telemetric measurement of blood pressure/temperature within the heart |
US8382677B2 (en) | 2005-11-23 | 2013-02-26 | Vital Sensors Holding Company, Inc. | Anchored implantable pressure monitor |
US20110201949A1 (en) * | 2005-11-23 | 2011-08-18 | Vital Sensors Holding Company, Inc. | Anchored implantable pressure monitor |
US20110201948A1 (en) * | 2005-11-23 | 2011-08-18 | Vital Sensors Holding Company, Inc. | Implantable pressure monitor |
US7682313B2 (en) | 2005-11-23 | 2010-03-23 | Vital Sensors Holding Company, Inc. | Implantable pressure monitor |
US8376953B2 (en) | 2005-11-23 | 2013-02-19 | Vital Sensors Holding Company, Inc. | Implantable pressure monitor |
US7686768B2 (en) | 2005-11-23 | 2010-03-30 | Vital Sensors Holding Company, Inc. | Implantable pressure monitor |
US20100174201A1 (en) * | 2005-11-23 | 2010-07-08 | Vital Sensors Holding Company, Inc. | Anchored implantable pressure monitor |
US8073008B2 (en) | 2006-04-28 | 2011-12-06 | Medtronic Minimed, Inc. | Subnetwork synchronization and variable transmit synchronization techniques for a wireless medical device network |
US20070253380A1 (en) * | 2006-04-28 | 2007-11-01 | James Jollota | Data translation device with nonvolatile memory for a networked medical device system |
US20070255126A1 (en) * | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Data communication in networked fluid infusion systems |
US7942844B2 (en) | 2006-04-28 | 2011-05-17 | Medtronic Minimed, Inc. | Remote monitoring for networked fluid infusion systems |
US20070255125A1 (en) * | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Monitor devices for networked fluid infusion systems |
US20070255250A1 (en) * | 2006-04-28 | 2007-11-01 | Moberg Sheldon B | Remote monitoring for networked fluid infusion systems |
US20070253021A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Identification of devices in a medical device network and wireless data communication techniques utilizing device identifiers |
US20070254593A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Wireless data communication for a medical device network that supports a plurality of data communication modes |
US20070255348A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Router device for centralized management of medical device data |
US20070255116A1 (en) * | 2006-04-28 | 2007-11-01 | Medtronic Minimed, Inc. | Broadcast data transmission and data packet repeating techniques for a wireless medical device network |
US20070258395A1 (en) * | 2006-04-28 | 2007-11-08 | Medtronic Minimed, Inc. | Wireless data communication protocols for a medical device network |
US11452879B2 (en) | 2007-05-23 | 2022-09-27 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US10080903B2 (en) | 2007-05-23 | 2018-09-25 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US10456588B2 (en) | 2007-05-23 | 2019-10-29 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US8509888B2 (en) | 2007-12-12 | 2013-08-13 | Cardiac Pacemakers, Inc. | Implantable medical device with hall sensor |
US20090157146A1 (en) * | 2007-12-12 | 2009-06-18 | Cardiac Pacemakers, Inc. | Implantable medical device with hall sensor |
US8121678B2 (en) | 2007-12-12 | 2012-02-21 | Cardiac Pacemakers, Inc. | Implantable medical device with hall sensor |
US9598210B2 (en) | 2007-12-27 | 2017-03-21 | Medtronic Minimed, Inc. | Reservoir pressure equalization systems and methods |
US9907968B2 (en) | 2008-03-25 | 2018-03-06 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US9283392B2 (en) | 2008-03-25 | 2016-03-15 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US11752352B2 (en) | 2008-03-25 | 2023-09-12 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US10688307B2 (en) | 2008-03-25 | 2020-06-23 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US20110237967A1 (en) * | 2008-03-25 | 2011-09-29 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
US9272155B2 (en) | 2009-02-02 | 2016-03-01 | Pacesetter, Inc. | Leadless cardiac pacemaker with secondary fixation capability |
US9579454B2 (en) | 2009-07-09 | 2017-02-28 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system based on synchronization status between devices |
US20110006880A1 (en) * | 2009-07-09 | 2011-01-13 | Medtronic Minimed, Inc. | Fingerprint-linked control of a portable medical device |
US9987426B2 (en) | 2009-07-09 | 2018-06-05 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system based on synchronization status between devices |
US8344847B2 (en) | 2009-07-09 | 2013-01-01 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device |
US20110006876A1 (en) * | 2009-07-09 | 2011-01-13 | Medtronic Minimed, Inc. | Coordination of control commands in a medical device system having at least one therapy delivery device and at least one wireless controller device |
US9517304B2 (en) | 2009-07-09 | 2016-12-13 | Medtronic Minimed, Inc. | Coordination of control commands and controller disable messages in a medical device system |
US8487758B2 (en) | 2009-09-02 | 2013-07-16 | Medtronic Minimed, Inc. | Medical device having an intelligent alerting scheme, and related operating methods |
US20110050428A1 (en) * | 2009-09-02 | 2011-03-03 | Medtronic Minimed, Inc. | Medical device having an intelligent alerting scheme, and related operating methods |
US8386042B2 (en) | 2009-11-03 | 2013-02-26 | Medtronic Minimed, Inc. | Omnidirectional accelerometer device and medical device incorporating same |
US20110105955A1 (en) * | 2009-11-03 | 2011-05-05 | Medtronic Minimed, Inc. | Omnidirectional accelerometer device and medical device incorporating same |
US8574201B2 (en) | 2009-12-22 | 2013-11-05 | Medtronic Minimed, Inc. | Syringe piston with check valve seal |
US20110152970A1 (en) * | 2009-12-23 | 2011-06-23 | Medtronic Minimed, Inc. | Location-based ranking and switching of wireless channels in a body area network of medical devices |
US20110149759A1 (en) * | 2009-12-23 | 2011-06-23 | Medtronic Minimed, Inc. | Ranking and switching of wireless channels in a body area network of medical devices |
US8755269B2 (en) | 2009-12-23 | 2014-06-17 | Medtronic Minimed, Inc. | Ranking and switching of wireless channels in a body area network of medical devices |
US9687655B2 (en) | 2010-10-12 | 2017-06-27 | Pacesetter, Inc. | Temperature sensor for a leadless cardiac pacemaker |
US9060692B2 (en) | 2010-10-12 | 2015-06-23 | Pacesetter, Inc. | Temperature sensor for a leadless cardiac pacemaker |
US9020611B2 (en) | 2010-10-13 | 2015-04-28 | Pacesetter, Inc. | Leadless cardiac pacemaker with anti-unscrewing feature |
US8562565B2 (en) | 2010-10-15 | 2013-10-22 | Medtronic Minimed, Inc. | Battery shock absorber for a portable medical device |
US8603032B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device with membrane keypad sealing element, and related manufacturing method |
US8603033B2 (en) | 2010-10-15 | 2013-12-10 | Medtronic Minimed, Inc. | Medical device and related assembly having an offset element for a piezoelectric speaker |
US8495918B2 (en) | 2010-10-20 | 2013-07-30 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8479595B2 (en) | 2010-10-20 | 2013-07-09 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US8474332B2 (en) | 2010-10-20 | 2013-07-02 | Medtronic Minimed, Inc. | Sensor assembly and medical device incorporating same |
US11759234B2 (en) | 2010-12-13 | 2023-09-19 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
US12226122B2 (en) | 2010-12-13 | 2025-02-18 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
US11786272B2 (en) | 2010-12-13 | 2023-10-17 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
US11890032B2 (en) | 2010-12-13 | 2024-02-06 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
US10188425B2 (en) | 2010-12-13 | 2019-01-29 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
US8615310B2 (en) | 2010-12-13 | 2013-12-24 | Pacesetter, Inc. | Delivery catheter systems and methods |
US9126032B2 (en) | 2010-12-13 | 2015-09-08 | Pacesetter, Inc. | Pacemaker retrieval systems and methods |
US9242102B2 (en) | 2010-12-20 | 2016-01-26 | Pacesetter, Inc. | Leadless pacemaker with radial fixation mechanism |
US9895490B2 (en) | 2010-12-22 | 2018-02-20 | Medtronic Minimed, Inc. | Occlusion detection for a fluid infusion device |
US9555190B2 (en) | 2010-12-22 | 2017-01-31 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
US9770553B2 (en) | 2010-12-22 | 2017-09-26 | Medtronic Minimed, Inc. | Monitoring the operating health of a force sensor in a fluid infusion device |
US8197444B1 (en) | 2010-12-22 | 2012-06-12 | Medtronic Minimed, Inc. | Monitoring the seating status of a fluid reservoir in a fluid infusion device |
US8690855B2 (en) * | 2010-12-22 | 2014-04-08 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
US8628510B2 (en) | 2010-12-22 | 2014-01-14 | Medtronic Minimed, Inc. | Monitoring the operating health of a force sensor in a fluid infusion device |
US10071200B2 (en) | 2010-12-22 | 2018-09-11 | Medtronic Minimed, Inc. | Fluid reservoir seating procedure for a fluid infusion device |
US9629992B2 (en) | 2011-02-22 | 2017-04-25 | Medtronic Minimed, Inc. | Fluid infusion device and related sealing assembly for a needleless fluid reservoir |
US9839741B2 (en) | 2011-02-22 | 2017-12-12 | Medtronic Minimed, Inc. | Flanged sealing element and needle guide pin assembly for a fluid infusion device having a needled fluid reservoir |
US8864726B2 (en) | 2011-02-22 | 2014-10-21 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir having a movable septum |
US8870829B2 (en) | 2011-02-22 | 2014-10-28 | Medtronic Minimed, Inc. | Fluid infusion device and related sealing assembly for a needleless fluid reservoir |
US9463309B2 (en) | 2011-02-22 | 2016-10-11 | Medtronic Minimed, Inc. | Sealing assembly and structure for a fluid infusion device having a needled fluid reservoir |
US8900206B2 (en) | 2011-02-22 | 2014-12-02 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir for a fluid infusion device |
US8945068B2 (en) | 2011-02-22 | 2015-02-03 | Medtronic Minimed, Inc. | Fluid reservoir having a fluid delivery needle for a fluid infusion device |
US9393399B2 (en) | 2011-02-22 | 2016-07-19 | Medtronic Minimed, Inc. | Sealing assembly for a fluid reservoir of a fluid infusion device |
US9339639B2 (en) | 2011-02-22 | 2016-05-17 | Medtronic Minimed, Inc. | Sealing assembly for a fluid reservoir of a fluid infusion device |
US9610431B2 (en) | 2011-02-22 | 2017-04-04 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir having a movable septum |
US9533132B2 (en) | 2011-02-22 | 2017-01-03 | Medtronic Minimed, Inc. | Pressure vented fluid reservoir for a fluid infusion device |
US8614596B2 (en) | 2011-02-28 | 2013-12-24 | Medtronic Minimed, Inc. | Systems and methods for initializing a voltage bus and medical devices incorporating same |
US9101305B2 (en) | 2011-03-09 | 2015-08-11 | Medtronic Minimed, Inc. | Glucose sensor product and related manufacturing and packaging methods |
US9616165B2 (en) | 2011-03-09 | 2017-04-11 | Medtronic Minimed, Inc. | Glucose sensor product |
US9755452B2 (en) | 2011-03-18 | 2017-09-05 | Medtronic Minimed, Inc. | Power control techniques for an electronic device |
US8564447B2 (en) | 2011-03-18 | 2013-10-22 | Medtronic Minimed, Inc. | Battery life indication techniques for an electronic device |
US9018893B2 (en) | 2011-03-18 | 2015-04-28 | Medtronic Minimed, Inc. | Power control techniques for an electronic device |
US9511236B2 (en) | 2011-11-04 | 2016-12-06 | Pacesetter, Inc. | Leadless cardiac pacemaker with integral battery and redundant welds |
US9610401B2 (en) | 2012-01-13 | 2017-04-04 | Medtronic Minimed, Inc. | Infusion set component with modular fluid channel element |
US10182723B2 (en) | 2012-02-08 | 2019-01-22 | Easyg Llc | Electrode units for sensing physiological electrical activity |
US10182732B2 (en) | 2012-02-08 | 2019-01-22 | Easyg Llc | ECG system with multi mode electrode units |
US9344024B2 (en) | 2012-03-20 | 2016-05-17 | Medtronic Minimed, Inc. | Occlusion detection using pulse-width modulation and medical device incorporating same |
US9379653B2 (en) | 2012-03-20 | 2016-06-28 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US9379652B2 (en) | 2012-03-20 | 2016-06-28 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US10228663B2 (en) | 2012-03-20 | 2019-03-12 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US8603027B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Occlusion detection using pulse-width modulation and medical device incorporating same |
US10141882B2 (en) | 2012-03-20 | 2018-11-27 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US8603026B2 (en) | 2012-03-20 | 2013-12-10 | Medtronic Minimed, Inc. | Dynamic pulse-width modulation motor control and medical device incorporating same |
US8523803B1 (en) | 2012-03-20 | 2013-09-03 | Medtronic Minimed, Inc. | Motor health monitoring and medical device incorporating same |
US10391242B2 (en) | 2012-06-07 | 2019-08-27 | Medtronic Minimed, Inc. | Diabetes therapy management system for recommending bolus calculator adjustments |
US9757518B2 (en) | 2012-06-26 | 2017-09-12 | Medtronic Minimed, Inc. | Mechanically actuated fluid infusion device |
US9333292B2 (en) | 2012-06-26 | 2016-05-10 | Medtronic Minimed, Inc. | Mechanically actuated fluid infusion device |
US10744332B2 (en) | 2012-08-01 | 2020-08-18 | Pacesetter, Inc. | Biostimulator circuit with flying cell |
US9802054B2 (en) | 2012-08-01 | 2017-10-31 | Pacesetter, Inc. | Biostimulator circuit with flying cell |
US10232112B2 (en) | 2012-08-21 | 2019-03-19 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US9517303B2 (en) | 2012-08-21 | 2016-12-13 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US8808269B2 (en) | 2012-08-21 | 2014-08-19 | Medtronic Minimed, Inc. | Reservoir plunger position monitoring and medical device incorporating same |
US9623179B2 (en) | 2012-08-30 | 2017-04-18 | Medtronic Minimed, Inc. | Safeguarding techniques for a closed-loop insulin infusion system |
US9526834B2 (en) | 2012-08-30 | 2016-12-27 | Medtronic Minimed, Inc. | Safeguarding measures for a closed-loop insulin infusion system |
US10496797B2 (en) | 2012-08-30 | 2019-12-03 | Medtronic Minimed, Inc. | Blood glucose validation for a closed-loop operating mode of an insulin infusion system |
US9662445B2 (en) | 2012-08-30 | 2017-05-30 | Medtronic Minimed, Inc. | Regulating entry into a closed-loop operating mode of an insulin infusion system |
US11628250B2 (en) | 2012-08-30 | 2023-04-18 | Medtronic Minimed, Inc. | Temporary target glucose values for temporary reductions in fluid delivery |
US9849239B2 (en) | 2012-08-30 | 2017-12-26 | Medtronic Minimed, Inc. | Generation and application of an insulin limit for a closed-loop operating mode of an insulin infusion system |
US12268846B2 (en) | 2012-08-30 | 2025-04-08 | Medtronic Minimed, Inc. | Regulating delivery of insulin to a body of a user by a fluid delivery device |
US11986633B2 (en) | 2012-08-30 | 2024-05-21 | Medtronic Minimed, Inc. | Sensor model supervisor for temporary reductions in fluid delivery by a fluid delivery device |
US9364609B2 (en) | 2012-08-30 | 2016-06-14 | Medtronic Minimed, Inc. | Insulin on board compensation for a closed-loop insulin infusion system |
US9878096B2 (en) | 2012-08-30 | 2018-01-30 | Medtronic Minimed, Inc. | Generation of target glucose values for a closed-loop operating mode of an insulin infusion system |
US10758674B2 (en) | 2012-08-30 | 2020-09-01 | Medtronic Minimed, Inc. | Safeguarding measures for a closed-loop insulin infusion system |
US10130767B2 (en) | 2012-08-30 | 2018-11-20 | Medtronic Minimed, Inc. | Sensor model supervisor for a closed-loop insulin infusion system |
US9513104B2 (en) | 2012-11-15 | 2016-12-06 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
US8870818B2 (en) | 2012-11-15 | 2014-10-28 | Medtronic Minimed, Inc. | Systems and methods for alignment and detection of a consumable component |
US9033924B2 (en) | 2013-01-18 | 2015-05-19 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9107994B2 (en) | 2013-01-18 | 2015-08-18 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9522223B2 (en) | 2013-01-18 | 2016-12-20 | Medtronic Minimed, Inc. | Systems for fluid reservoir retention |
US9308321B2 (en) | 2013-02-18 | 2016-04-12 | Medtronic Minimed, Inc. | Infusion device having gear assembly initialization |
US8920381B2 (en) | 2013-04-12 | 2014-12-30 | Medtronic Minimed, Inc. | Infusion set with improved bore configuration |
US9642543B2 (en) | 2013-05-23 | 2017-05-09 | Arizona Board Of Regents | Systems and methods for model-based non-contact physiological data acquisition |
US9433731B2 (en) | 2013-07-19 | 2016-09-06 | Medtronic Minimed, Inc. | Detecting unintentional motor motion and infusion device incorporating same |
US9795732B2 (en) | 2013-07-19 | 2017-10-24 | Medtronic Minimed, Inc. | Detecting unintentional motor motion and infusion device incorporating same |
US10124113B2 (en) | 2013-08-13 | 2018-11-13 | Medtronic Minimed, Inc. | Detecting conditions associated with medical device operations using matched filters |
US9402949B2 (en) | 2013-08-13 | 2016-08-02 | Medtronic Minimed, Inc. | Detecting conditions associated with medical device operations using matched filters |
US11024408B2 (en) | 2013-08-21 | 2021-06-01 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US9889257B2 (en) | 2013-08-21 | 2018-02-13 | Medtronic Minimed, Inc. | Systems and methods for updating medical devices |
US9880528B2 (en) | 2013-08-21 | 2018-01-30 | Medtronic Minimed, Inc. | Medical devices and related updating methods and systems |
US12033737B2 (en) | 2013-08-21 | 2024-07-09 | Medtronic Minimed, Inc. | Streamed communication of updated control information to a medical device via an intermediate device |
US10188789B2 (en) | 2013-08-22 | 2019-01-29 | Medtronic Minimed, Inc. | Fluid infusion device with safety coupling |
US9259528B2 (en) | 2013-08-22 | 2016-02-16 | Medtronic Minimed, Inc. | Fluid infusion device with safety coupling |
US9750877B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Predicted time to assess and/or control a glycemic state |
US12161840B2 (en) | 2013-12-11 | 2024-12-10 | Medtronic Minimed, Inc. | Predicted time to assess and/or control a glycemic state |
US9750878B2 (en) | 2013-12-11 | 2017-09-05 | Medtronic Minimed, Inc. | Closed-loop control of glucose according to a predicted blood glucose trajectory |
US10105488B2 (en) | 2013-12-12 | 2018-10-23 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US9849240B2 (en) | 2013-12-12 | 2017-12-26 | Medtronic Minimed, Inc. | Data modification for predictive operations and devices incorporating same |
US12017044B2 (en) | 2013-12-12 | 2024-06-25 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US10960136B2 (en) | 2013-12-12 | 2021-03-30 | Medtronic Minimed, Inc. | Predictive infusion device operations and related methods and systems |
US9694132B2 (en) | 2013-12-19 | 2017-07-04 | Medtronic Minimed, Inc. | Insertion device for insertion set |
US10166331B2 (en) | 2014-02-06 | 2019-01-01 | Medtronic Minimed, Inc. | Automatic closed-loop control adjustments and infusion systems incorporating same |
US9399096B2 (en) | 2014-02-06 | 2016-07-26 | Medtronic Minimed, Inc. | Automatic closed-loop control adjustments and infusion systems incorporating same |
US11241535B2 (en) | 2014-02-06 | 2022-02-08 | Medtronic Minimed, Inc. | User-configurable closed-loop notifications and infusion systems incorporating same |
US9861748B2 (en) | 2014-02-06 | 2018-01-09 | Medtronic Minimed, Inc. | User-configurable closed-loop notifications and infusion systems incorporating same |
US9987422B2 (en) | 2014-03-24 | 2018-06-05 | Medtronic Minimed, Inc. | Fluid infusion patch pump device with automatic startup feature |
US9610402B2 (en) | 2014-03-24 | 2017-04-04 | Medtronic Minimed, Inc. | Transcutaneous conduit insertion mechanism with a living hinge for use with a fluid infusion patch pump device |
US10034976B2 (en) | 2014-03-24 | 2018-07-31 | Medtronic Minimed, Inc. | Fluid infusion patch pump device with automatic fluid system priming feature |
US9626521B2 (en) | 2014-04-16 | 2017-04-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Physiological signal-based encryption and EHR management |
US10001450B2 (en) | 2014-04-18 | 2018-06-19 | Medtronic Minimed, Inc. | Nonlinear mapping technique for a physiological characteristic sensor |
US11344674B2 (en) | 2014-04-24 | 2022-05-31 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for regulating insulin on board |
US10232113B2 (en) | 2014-04-24 | 2019-03-19 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for regulating insulin on board |
US9681828B2 (en) | 2014-05-01 | 2017-06-20 | Medtronic Minimed, Inc. | Physiological characteristic sensors and methods for forming such sensors |
US10275572B2 (en) | 2014-05-01 | 2019-04-30 | Medtronic Minimed, Inc. | Detecting blockage of a reservoir cavity during a seating operation of a fluid infusion device |
US10274349B2 (en) | 2014-05-19 | 2019-04-30 | Medtronic Minimed, Inc. | Calibration factor adjustments for infusion devices and related methods and systems |
US10007765B2 (en) | 2014-05-19 | 2018-06-26 | Medtronic Minimed, Inc. | Adaptive signal processing for infusion devices and related methods and systems |
US10152049B2 (en) | 2014-05-19 | 2018-12-11 | Medtronic Minimed, Inc. | Glucose sensor health monitoring and related methods and systems |
CN104107507A (en) * | 2014-07-09 | 2014-10-22 | 庞德兴 | Passive minimally-invasive subcutaneous nerve interventional chip based on RFID radio frequency technology |
CN104107507B (en) * | 2014-07-09 | 2016-06-08 | 庞德兴 | Passive Wicresoft underlying nerve based on RFID radio-frequency technique gets involved chip |
US9839753B2 (en) | 2014-09-26 | 2017-12-12 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US9833563B2 (en) | 2014-09-26 | 2017-12-05 | Medtronic Minimed, Inc. | Systems for managing reservoir chamber pressure |
US10279126B2 (en) | 2014-10-07 | 2019-05-07 | Medtronic Minimed, Inc. | Fluid conduit assembly with gas trapping filter in the fluid flow path |
US9833564B2 (en) | 2014-11-25 | 2017-12-05 | Medtronic Minimed, Inc. | Fluid conduit assembly with air venting features |
US10195341B2 (en) | 2014-11-26 | 2019-02-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US9987420B2 (en) | 2014-11-26 | 2018-06-05 | Medtronic Minimed, Inc. | Systems and methods for fluid infusion device with automatic reservoir fill |
US9943645B2 (en) | 2014-12-04 | 2018-04-17 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
US11636938B2 (en) | 2014-12-04 | 2023-04-25 | Medtronic Minimed, Inc. | Methods for operating mode transitions and related infusion devices and systems |
US9636453B2 (en) | 2014-12-04 | 2017-05-02 | Medtronic Minimed, Inc. | Advance diagnosis of infusion device operating mode viability |
US9937292B2 (en) | 2014-12-09 | 2018-04-10 | Medtronic Minimed, Inc. | Systems for filling a fluid infusion device reservoir |
US11744942B2 (en) | 2014-12-19 | 2023-09-05 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US10265031B2 (en) | 2014-12-19 | 2019-04-23 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for automatic alert clearing |
US10307535B2 (en) | 2014-12-19 | 2019-06-04 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US11191896B2 (en) | 2014-12-19 | 2021-12-07 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US12285592B2 (en) | 2014-12-19 | 2025-04-29 | Medtronic Minimed, Inc. | Infusion devices and related methods and systems for preemptive alerting |
US12144961B2 (en) | 2015-03-09 | 2024-11-19 | Medtronic Minimed, Inc. | Extensible infusion devices and related methods |
US10307528B2 (en) | 2015-03-09 | 2019-06-04 | Medtronic Minimed, Inc. | Extensible infusion devices and related methods |
US10449298B2 (en) | 2015-03-26 | 2019-10-22 | Medtronic Minimed, Inc. | Fluid injection devices and related methods |
US12154671B2 (en) | 2015-05-26 | 2024-11-26 | Medtronic Minimed, Inc. | Error handling in infusion devices with distributed motor control and related operating methods |
US10137243B2 (en) | 2015-05-26 | 2018-11-27 | Medtronic Minimed, Inc. | Infusion devices with distributed motor control and related operating methods |
US9999721B2 (en) | 2015-05-26 | 2018-06-19 | Medtronic Minimed, Inc. | Error handling in infusion devices with distributed motor control and related operating methods |
US10575767B2 (en) | 2015-05-29 | 2020-03-03 | Medtronic Minimed, Inc. | Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus |
US9879668B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and an optical sensor |
US10010668B2 (en) | 2015-06-22 | 2018-07-03 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and a force sensor |
US9987425B2 (en) | 2015-06-22 | 2018-06-05 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and sensor contact elements |
US9878095B2 (en) | 2015-06-22 | 2018-01-30 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and multiple sensor contact elements |
US9993594B2 (en) | 2015-06-22 | 2018-06-12 | Medtronic Minimed, Inc. | Occlusion detection techniques for a fluid infusion device having a rotary pump mechanism and rotor position sensors |
US10543314B2 (en) | 2015-08-21 | 2020-01-28 | Medtronic Minimed, Inc. | Personalized parameter modeling with signal calibration based on historical data |
US11484651B2 (en) | 2015-08-21 | 2022-11-01 | Medtronic Minimed, Inc. | Personalized parameter modeling methods and related devices and systems |
US10201657B2 (en) | 2015-08-21 | 2019-02-12 | Medtronic Minimed, Inc. | Methods for providing sensor site rotation feedback and related infusion devices and systems |
US11338086B2 (en) | 2015-08-21 | 2022-05-24 | Medtronic Minimed, Inc. | Infusion devices and related patient ratio adjustment methods |
US12057214B2 (en) | 2015-08-21 | 2024-08-06 | Medtronic Minimed, Inc. | Personalized event detection |
US10867012B2 (en) | 2015-08-21 | 2020-12-15 | Medtronic Minimed, Inc. | Data analytics and insight delivery for the management and control of diabetes |
US11857765B2 (en) | 2015-08-21 | 2024-01-02 | Medtronic Minimed, Inc. | Personalized parameter modeling methods and related devices and systems |
US10664569B2 (en) | 2015-08-21 | 2020-05-26 | Medtronic Minimed, Inc. | Data analytics and generation of recommendations for controlling glycemic outcomes associated with tracked events |
US10463297B2 (en) | 2015-08-21 | 2019-11-05 | Medtronic Minimed, Inc. | Personalized event detection methods and related devices and systems |
US10293108B2 (en) | 2015-08-21 | 2019-05-21 | Medtronic Minimed, Inc. | Infusion devices and related patient ratio adjustment methods |
US11872372B2 (en) | 2015-08-21 | 2024-01-16 | Medtronic Minimed, Inc. | Identification of sites for sensing arrangements |
US10478557B2 (en) | 2015-08-21 | 2019-11-19 | Medtronic Minimed, Inc. | Personalized parameter modeling methods and related devices and systems |
US11027064B2 (en) | 2015-08-21 | 2021-06-08 | Medtronic Minimed, Inc. | Methods for providing sensor site rotation feedback and related infusion devices and systems |
US10117992B2 (en) | 2015-09-29 | 2018-11-06 | Medtronic Minimed, Inc. | Infusion devices and related rescue detection methods |
US11666702B2 (en) | 2015-10-19 | 2023-06-06 | Medtronic Minimed, Inc. | Medical devices and related event pattern treatment recommendation methods |
US11501867B2 (en) | 2015-10-19 | 2022-11-15 | Medtronic Minimed, Inc. | Medical devices and related event pattern presentation methods |
US10146911B2 (en) | 2015-10-23 | 2018-12-04 | Medtronic Minimed, Inc. | Medical devices and related methods and systems for data transfer |
US11075006B2 (en) | 2015-10-23 | 2021-07-27 | Medtronic Minimed, Inc. | Medical devices and related methods and systems for data transfer |
US10037722B2 (en) | 2015-11-03 | 2018-07-31 | Medtronic Minimed, Inc. | Detecting breakage in a display element |
US10449306B2 (en) | 2015-11-25 | 2019-10-22 | Medtronics Minimed, Inc. | Systems for fluid delivery with wicking membrane |
US10589038B2 (en) | 2016-04-27 | 2020-03-17 | Medtronic Minimed, Inc. | Set connector systems for venting a fluid reservoir |
US11097051B2 (en) | 2016-11-04 | 2021-08-24 | Medtronic Minimed, Inc. | Methods and apparatus for detecting and reacting to insufficient hypoglycemia response |
US12064599B2 (en) | 2016-11-04 | 2024-08-20 | Medtronic Minimed, Inc. | Management of insufficient hypoglycemia response |
US12115339B2 (en) | 2016-11-28 | 2024-10-15 | Medtronic Minimed, Inc. | Interactive guidance for medical devices |
US10238030B2 (en) | 2016-12-06 | 2019-03-26 | Medtronic Minimed, Inc. | Wireless medical device with a complementary split ring resonator arrangement for suppression of electromagnetic interference |
US10272201B2 (en) | 2016-12-22 | 2019-04-30 | Medtronic Minimed, Inc. | Insertion site monitoring methods and related infusion devices and systems |
US10500135B2 (en) | 2017-01-30 | 2019-12-10 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10532165B2 (en) | 2017-01-30 | 2020-01-14 | Medtronic Minimed, Inc. | Fluid reservoir and systems for filling a fluid reservoir of a fluid infusion device |
US10552580B2 (en) | 2017-02-07 | 2020-02-04 | Medtronic Minimed, Inc. | Infusion system consumables and related calibration methods |
US11908562B2 (en) | 2017-02-07 | 2024-02-20 | Medtronic Minimed, Inc. | Infusion system consumables and related calibration methods |
US10363365B2 (en) | 2017-02-07 | 2019-07-30 | Medtronic Minimed, Inc. | Infusion devices and related consumable calibration methods |
US11672910B2 (en) | 2017-02-21 | 2023-06-13 | Medtronic Minimed, Inc. | Infusion devices and fluid identification apparatuses and methods |
US10646649B2 (en) | 2017-02-21 | 2020-05-12 | Medtronic Minimed, Inc. | Infusion devices and fluid identification apparatuses and methods |
US11207463B2 (en) | 2017-02-21 | 2021-12-28 | Medtronic Minimed, Inc. | Apparatuses, systems, and methods for identifying an infusate in a reservoir of an infusion device |
US12023488B2 (en) | 2020-08-17 | 2024-07-02 | Ebr Systems, Inc. | Implantable stimulation assemblies having tissue engagement mechanisms, and associated systems and methods |
Also Published As
Publication number | Publication date |
---|---|
US20030083714A1 (en) | 2003-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6728576B2 (en) | Non-contact EKG | |
EP1331970B1 (en) | Surround shroud connector and electrode housings for a subcutaneous electrode array and leadless ecgs | |
US6584352B2 (en) | Leadless fully automatic pacemaker follow-up | |
US6564106B2 (en) | Thin film electrodes for sensing cardiac depolarization signals | |
US6622046B2 (en) | Subcutaneous sensing feedthrough/electrode assembly | |
US6512940B1 (en) | Subcutaneous spiral electrode for sensing electrical signals of the heart | |
US6505067B1 (en) | System and method for deriving a virtual ECG or EGM signal | |
WO2002098507A2 (en) | Implantable medical device with dual cell power source | |
JP2004537347A5 (en) | ||
EP1901807B1 (en) | Electrical contact for a feedthrough/electrode assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDTRONIC, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:THOMPSON, DAVID L.;WILSON, SUZANNE L.;REEL/FRAME:012941/0753;SIGNING DATES FROM 20020320 TO 20020401 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |