US20040230117A1 - Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body - Google Patents
Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body Download PDFInfo
- Publication number
- US20040230117A1 US20040230117A1 US10/826,232 US82623204A US2004230117A1 US 20040230117 A1 US20040230117 A1 US 20040230117A1 US 82623204 A US82623204 A US 82623204A US 2004230117 A1 US2004230117 A1 US 2004230117A1
- Authority
- US
- United States
- Prior art keywords
- deposits
- implant
- acoustic
- valve
- organ
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004506 ultrasonic cleaning Methods 0.000 title description 2
- 229940079593 drug Drugs 0.000 claims abstract description 48
- 239000003814 drug Substances 0.000 claims abstract description 48
- 210000003709 heart valve Anatomy 0.000 claims abstract description 22
- 238000002604 ultrasonography Methods 0.000 claims abstract description 17
- 238000003384 imaging method Methods 0.000 claims abstract description 14
- 239000007943 implant Substances 0.000 claims description 147
- 210000001519 tissue Anatomy 0.000 claims description 59
- 210000000056 organ Anatomy 0.000 claims description 51
- 238000002560 therapeutic procedure Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 34
- 238000000151 deposition Methods 0.000 claims description 25
- 230000008021 deposition Effects 0.000 claims description 25
- 238000011282 treatment Methods 0.000 claims description 25
- 239000008280 blood Substances 0.000 claims description 20
- 210000004369 blood Anatomy 0.000 claims description 20
- 230000006378 damage Effects 0.000 claims description 20
- 230000008878 coupling Effects 0.000 claims description 18
- 238000010168 coupling process Methods 0.000 claims description 18
- 238000005859 coupling reaction Methods 0.000 claims description 18
- 230000006870 function Effects 0.000 claims description 16
- 241001111421 Pannus Species 0.000 claims description 14
- 230000003628 erosive effect Effects 0.000 claims description 14
- 210000002216 heart Anatomy 0.000 claims description 13
- 230000000747 cardiac effect Effects 0.000 claims description 12
- 230000015556 catabolic process Effects 0.000 claims description 11
- 206010014665 endocarditis Diseases 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 241000894006 Bacteria Species 0.000 claims description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 9
- 229910052791 calcium Inorganic materials 0.000 claims description 9
- 239000011575 calcium Substances 0.000 claims description 9
- 230000033001 locomotion Effects 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 8
- 230000002452 interceptive effect Effects 0.000 claims description 8
- 238000012423 maintenance Methods 0.000 claims description 8
- 239000003146 anticoagulant agent Substances 0.000 claims description 7
- 229940127218 antiplatelet drug Drugs 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 230000001455 anti-clotting effect Effects 0.000 claims description 6
- 229940127219 anticoagulant drug Drugs 0.000 claims description 6
- 230000001926 lymphatic effect Effects 0.000 claims description 6
- 238000012285 ultrasound imaging Methods 0.000 claims description 6
- 239000005552 B01AC04 - Clopidogrel Substances 0.000 claims description 5
- 108010056764 Eptifibatide Proteins 0.000 claims description 5
- 241000282414 Homo sapiens Species 0.000 claims description 5
- 230000009286 beneficial effect Effects 0.000 claims description 5
- GKTWGGQPFAXNFI-HNNXBMFYSA-N clopidogrel Chemical compound C1([C@H](N2CC=3C=CSC=3CC2)C(=O)OC)=CC=CC=C1Cl GKTWGGQPFAXNFI-HNNXBMFYSA-N 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 238000006748 scratching Methods 0.000 claims description 5
- 230000002393 scratching effect Effects 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 5
- PHWBOXQYWZNQIN-UHFFFAOYSA-N ticlopidine Chemical compound ClC1=CC=CC=C1CN1CC(C=CS2)=C2CC1 PHWBOXQYWZNQIN-UHFFFAOYSA-N 0.000 claims description 5
- PJVWKTKQMONHTI-UHFFFAOYSA-N warfarin Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 claims description 5
- 241000233866 Fungi Species 0.000 claims description 4
- 108010023197 Streptokinase Proteins 0.000 claims description 4
- 230000017531 blood circulation Effects 0.000 claims description 4
- 230000032643 circulatory system process Effects 0.000 claims description 4
- 208000015181 infectious disease Diseases 0.000 claims description 4
- 230000002147 killing effect Effects 0.000 claims description 4
- 239000000106 platelet aggregation inhibitor Substances 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 108010058207 Anistreplase Proteins 0.000 claims description 3
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000005528 B01AC05 - Ticlopidine Substances 0.000 claims description 3
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 3
- 241001465754 Metazoa Species 0.000 claims description 3
- 208000031481 Pathologic Constriction Diseases 0.000 claims description 3
- 229940122388 Thrombin inhibitor Drugs 0.000 claims description 3
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 claims description 3
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 claims description 3
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 claims description 3
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 claims description 3
- 229960001138 acetylsalicylic acid Drugs 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 3
- 229960003009 clopidogrel Drugs 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 238000004090 dissolution Methods 0.000 claims description 3
- 230000004064 dysfunction Effects 0.000 claims description 3
- 229960004468 eptifibatide Drugs 0.000 claims description 3
- 229960002897 heparin Drugs 0.000 claims description 3
- 229920000669 heparin Polymers 0.000 claims description 3
- 229960004408 lepirudin Drugs 0.000 claims description 3
- 210000004324 lymphatic system Anatomy 0.000 claims description 3
- 210000003205 muscle Anatomy 0.000 claims description 3
- 230000036262 stenosis Effects 0.000 claims description 3
- 208000037804 stenosis Diseases 0.000 claims description 3
- 239000003868 thrombin inhibitor Substances 0.000 claims description 3
- 230000002537 thrombolytic effect Effects 0.000 claims description 3
- 229960005001 ticlopidine Drugs 0.000 claims description 3
- 229960003425 tirofiban Drugs 0.000 claims description 3
- COKMIXFXJJXBQG-NRFANRHFSA-N tirofiban Chemical compound C1=CC(C[C@H](NS(=O)(=O)CCCC)C(O)=O)=CC=C1OCCCCC1CCNCC1 COKMIXFXJJXBQG-NRFANRHFSA-N 0.000 claims description 3
- 229960005080 warfarin Drugs 0.000 claims description 3
- 108010001014 Plasminogen Activators Proteins 0.000 claims description 2
- 102000001938 Plasminogen Activators Human genes 0.000 claims description 2
- 101000712605 Theromyzon tessulatum Theromin Proteins 0.000 claims description 2
- 229960003318 alteplase Drugs 0.000 claims description 2
- 229960000983 anistreplase Drugs 0.000 claims description 2
- 230000001580 bacterial effect Effects 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 210000005242 cardiac chamber Anatomy 0.000 claims description 2
- 238000002594 fluoroscopy Methods 0.000 claims description 2
- 230000000004 hemodynamic effect Effects 0.000 claims description 2
- 230000002458 infectious effect Effects 0.000 claims description 2
- 238000003780 insertion Methods 0.000 claims description 2
- 230000037431 insertion Effects 0.000 claims description 2
- 210000003734 kidney Anatomy 0.000 claims description 2
- 210000004185 liver Anatomy 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims description 2
- 229940127126 plasminogen activator Drugs 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 229960005202 streptokinase Drugs 0.000 claims description 2
- 230000003319 supportive effect Effects 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 210000002435 tendon Anatomy 0.000 claims description 2
- 229960005356 urokinase Drugs 0.000 claims description 2
- 210000002073 venous valve Anatomy 0.000 claims description 2
- 238000002591 computed tomography Methods 0.000 claims 1
- GLGOPUHVAZCPRB-LROMGURASA-N eptifibatide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCCNC(=N)N)NC(=O)CCSSC[C@@H](C(N)=O)NC(=O)[C@@H]2CCCN2C(=O)[C@@H]1CC1=CN=C2[C]1C=CC=C2 GLGOPUHVAZCPRB-LROMGURASA-N 0.000 claims 1
- 230000002349 favourable effect Effects 0.000 claims 1
- OTQCKZUSUGYWBD-BRHMIFOHSA-N lepirudin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)[C@@H](C)O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 OTQCKZUSUGYWBD-BRHMIFOHSA-N 0.000 claims 1
- 230000017074 necrotic cell death Effects 0.000 claims 1
- 230000008439 repair process Effects 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000004140 cleaning Methods 0.000 abstract description 28
- 230000009471 action Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 7
- 238000001356 surgical procedure Methods 0.000 description 7
- 208000012868 Overgrowth Diseases 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 208000004434 Calcinosis Diseases 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- CZKPOZZJODAYPZ-LROMGURASA-N eptifibatide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCCNC(=N)N)NC(=O)CCSSC[C@@H](C(N)=O)NC(=O)[C@@H]2CCCN2C(=O)[C@@H]1CC1=CNC2=CC=CC=C12 CZKPOZZJODAYPZ-LROMGURASA-N 0.000 description 4
- FIBJDTSHOUXTKV-BRHMIFOHSA-N lepirudin Chemical compound CC[C@H](C)[C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCCN)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@@H]1CSSC[C@@H]2NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CSSC[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)CNC2=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H]1CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](Cc2ccc(O)cc2)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)[C@@H](C)O)[C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1)C(C)C)C(C)C)[C@@H](C)O)[C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O FIBJDTSHOUXTKV-BRHMIFOHSA-N 0.000 description 4
- 239000002296 pyrolytic carbon Substances 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 206010020718 hyperplasia Diseases 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 2
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229940000279 aggrastat Drugs 0.000 description 2
- 230000000740 bleeding effect Effects 0.000 description 2
- 239000003114 blood coagulation factor Substances 0.000 description 2
- 210000001715 carotid artery Anatomy 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 238000011961 computed axial tomography Methods 0.000 description 2
- 229940072645 coumadin Drugs 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 210000005003 heart tissue Anatomy 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229940056984 integrilin Drugs 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 108010002230 lepirudin Proteins 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229940020573 plavix Drugs 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229940030915 refludan Drugs 0.000 description 2
- 208000037803 restenosis Diseases 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 229920006345 thermoplastic polyamide Polymers 0.000 description 2
- 229940028869 ticlid Drugs 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 241001631457 Cannula Species 0.000 description 1
- 206010014666 Endocarditis bacterial Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 208000004002 Vascular Fistula Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229940099983 activase Drugs 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000002956 necrotizing effect Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00234—Surgical instruments, devices or methods for minimally invasive surgery
- A61B2017/00238—Type of minimally invasive operation
- A61B2017/00243—Type of minimally invasive operation cardiac
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22098—Decalcification of valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
Definitions
- the present application is directed generally to prosthetic heart valves, and, more particularly, to cleaning such heart valves, preferably in situ, with acoustic energy.
- Prosthetic heart valves are probably one of the most well-known implanted medical devices and are installed in an ailing human heart for the purpose of correcting cardiac valvular dysfunctions of various types.
- Such valves are made either of artificial biocompatible engineering materials, such as pyrolytic carbon, titanium, and silicone, or are fashioned out of donor tissues or actual valves or other tissues sourced from pigs, cattle or human donors.
- clotting-factor inhibiting drugs include warfarin (Coumadin®).
- thrombin inhibitors include heparin or lepirudin (Refludan®).
- anti-platelet drugs include aspirin, ticlopidine (Ticlid®), clopidogrel (Plavix®), tirofiban (Aggrastat®) and eptifibatide (Integrilin®). Some of these medications are administered for years after the implant surgery, if not permanently thereafter.
- What would be highly desirable is a device or method for cleaning such deposits, preferably in a damage-free non-contact manner, at least from cardiac implants such as prosthetic valves, in cases wherein the drugs mentioned above have not worked sufficiently to avoid such depositions or could not be used for medical reasons. It would further be attractive if such a device or method could allow for a reduction or even elimination of the use of such anti-clotting (or thrombolytic clot-dissolving) drugs and their undesirable side-effects and lifestyle limitations. For example, using such a device or method, one could avoid the drugs altogether or could take a patient off such drugs for a prolonged period to allow for an unrelated surgery and avoidance of massive bleeding related to that unrelated surgery.
- the present inventors foresee the use of the inventive device and method at least once if not several times on a given patient.
- the device and method can be practiced in noninvasive, semi-invasive, and invasive situations, thus allowing its use in routine maintenance as well as during surgery. Such use could be after cardiac function has been impacted or might be on a maintenance basis before such function is impacted. In all cases, at least some existing deposit would be removed or rendered removable by the body or with the help of an administered drug.
- an additional object of the invention is the provision of a non-contact or gentle-contact cleaning method that can clean such implant parts without damaging the moving parts and without damaging the cleaning device itself.
- the present inventors include certain deposits on natural body structures also within the scope of the present invention.
- the present inventors are not familiar with any art which involves the acoustic removal of undesirable depositions on natural valves, whether they be in the heart or in the lumens such as in the venous or lymphatic system of the legs, for example.
- acoustically cleaning lumens that have no moving parts in the sense that valves have moving or swinging occluders or leaflets.
- the present invention is directed to the cleaning of valves and body members that are supposed to have moving parts, natural or otherwise.
- the present disclosure also teaches methods and devices to acoustically assess the extent of such deposits-particularly on artificial engineered valves made of engineering materials. These acoustic or ultrasonic-assessment aspects may or may not be used together with the invention's therapeutic aspects.
- the present inventors have found no art relating directly to the use of ultrasound to clean implanted actuating prosthetic devices of undesirable existing deposits or overgrowths in a non-contact manner while thereby causing no damage, scratching, abrasion or permanent deformation to the implant itself. It should be noted that if contacting-cleaning means were used (such as abrasive devices), then they will cause implant surface-damage or scratching, which will surely invite further such deposits. As mentioned earlier, the present inventors also have not found any teaching regarding acoustically cleaning natural valves normally having natural actuation motions in the cardiac, lymphatic or arterial systems.
- Pharmasonics, Inc. has focused several patents on treating vascular tissues prone to hyperplasia or restenosis after a vascular procedure is performed. These patents are directed to preventative procedures and do not deal with deposits that have already taken place nor with deposits on or in actuatable implants or body members. In some cases, there is a lumen stent put in place, which is at least contributing to the restenosis process that they attempt to treat with their inventive therapy. In all cases, their approaches primarily involve treating the distressed tissues adjacent the stent such that those tissues do not overgrow the stent interior diameter, causing flow-blockage. There are no actuating or moving parts whose actuation would be interfered with by the deposits.
- a moving or actuating member covers any implant, natural member or organ wherein any solid or semisolid material (like tissue or metal, for instance) is expected to actuate at least once.
- any solid or semisolid material like tissue or metal, for instance
- actuation being the one-time or occasional alteration, maintenance, adjustment or servicing of an implant that may be fouled by such deposits.
- a perfect example of this is, for example, a pacemaker lead that has been fouled by tissue or deposit overgrowth such that it needs to be cleaned so that it can function properly or be exchanged for a new one.
- There the actuation is a one-time plugging-in (and out) of an electrical lead connector.
- acoustic excitations are delivered from outside the body, that the stent is smaller than his illuminating beamwidth, and that the stent is specifically pre-designed or modified to have a characteristic resonant frequency.
- the characteristic pre-chosen resonant frequency is utilized in a manner such that the resonant stent causes acoustic energy to be preferentially redeposited at the diseased interfaces between the stent and the adjacent tissues by his process of re-radiation in the form of reradiated (from the driven stent) vibrations or heat. Note that multiple treatments are suggested and that using a semi-invasive catheter for such treatments is taught to be avoided.
- a stent once placed, is a nonactuating device not subject to brittle fracture.
- the beamwidth being so much larger than the stent allows for easy aiming.
- Recommended implants for the preventative therapy delivered by the '554 patent focus on vascular stents, grafts and valves widely familiar to the vascular surgeon.
- the '554 patent utilizes externally applied ultrasound, that ultrasound cannot directly illuminate the stent or implant interior, thus the need for an indirect approach.
- direct treatment of deposits is not taught-only indirect treatment-and only noninvasive indirect treatment.
- direct treatment we mean that the ultrasound energy performs its function directly on a deposit.
- the above prior art performs only noninvasive indirect therapy wherein existing deposits are not directly targeted, and furthermore are taught to be avoided by advance use of that invention before such deposits exist.
- the invention herein has several fundamental differences including the following: (1) deposit materials that have already deposited or formed are themselves treated, (2) the deposits are primarily treated directly, not indirectly, (3) re-radiation is not primarily depended upon to provide an indirectly delivered or preferentially focused therapy, (4) the implant is not required to be modified in design to achieve a particular resonance, (5) it is recognized that any resonant property of the implant, if present, will vary as a function of the deposit burden attached thereto, (6) the acoustic signature of a clean implant is optionally utilized to deduce the presence and extent of such deposits and the progress of their removal, (7) it is recognized that any deformable implant (such as a stent) will have its native resonant frequency(s) modified by the exact amount of deformation and by the loading by adjacent tissues, and (8) it is recognized that some implants are subject to brittle fracture and can be broken by such driven resonances, particularly implants made of ceramics or glasses which are not acous
- the '554 patent does not teach what acoustics are reradiated, i.e., whether they are harmonics of the driving frequency or are solely the primary driving frequency.
- the present inventors specifically discuss the management of such harmonics if they are allowed to be present.
- ultrasonic, sonic or vibratory energy delivered non-invasively, minimally invasively or invasively (e.g., surgically), is utilized to preferably provide direct cleaning action at or to the location of an implanted artificial or bioprosthetic device, such as a prosthetic heart valve, or a natural bodily member or organ with a naturally moving, actuating or distending part or portion with undesirable deposits of at least some amount thereon or therein.
- an implanted artificial or bioprosthetic device such as a prosthetic heart valve, or a natural bodily member or organ with a naturally moving, actuating or distending part or portion with undesirable deposits of at least some amount thereon or therein.
- Such ultrasound energy may be aided by the use of a drug in association or cooperation with the acoustic irradiation. If a drug is used, the ultrasound may enhance the performance of that drug via its acoustic and/or thermal attributes. Alternatively, or in addition, the drug may make it easier to achieve deposit removal by destabil
- apparatus is provided that is capable of the non-contact or damage-free removal or erosion of undesirable deposits situated: (a) on or in an implanted artificial or bioprosthetic device having at least one moving or movable, actuatable or distendable part or portion (“moving or movable” hereinafter), or (b) on or in a natural bodily member or organ having a naturally moving or movable part or portion.
- the deposits to be removed or eroded interfere or potentially interfere with at least one of (a) any designed function of the implanted device, (b) any natural function of the natural bodily member or organ, or (c) any circulatory system process necessary for normal healthy living.
- the apparatus comprises:
- an acoustic emitter capable of emitting acoustic energy
- an administered drug to aid the removal or erosion process, to prevent or slow further such deposits, or to treat a side-effect of treatment with the emitter.
- an acoustic method capable of the non-contact removal or erosion of such undesirable deposits comprises:
- the method comprises:
- the possibly-fouled signature containing at least one of: (1) naturally generated acoustic features known to be caused by fouling, and (2) artificially excited features known to be excited upon the presence of fouling;
- the “cleaning” acoustic energy may optionally be delivered under the coordinated or real-time guidance of an imaging modality and may be delivered in a timed or gated manner such that the valve occluders or leaflets are in a preferred position (assuming they are functioning) during exposures.
- the cleaning ultrasound is delivered via a catheter, then it might be delivered to a valve from inside or outside the heart. If it is delivered via a transesophageal transducer, then it would be delivered from the esophagus. If it is delivered surgically, then it might be delivered upon a surface of the exposed beating heart or onto a lumen connecting to the valve in question.
- a combined ultrasound imaging probe and ultrasonic cleaning probe containing one or more transducers could be employed, for example.
- the invention may or may not involve bodily resonating the implant, or a portion thereof, itself, and in all cases at least some direct cleaning action is delivered which does not require such implant resonating; the deposit is directly bathed in emissions and is itself broken down or acted upon directly.
- the implant might be an artificial prosthetic heart valve or a combination valve/stent in a venous lumen, for example. In all cases, a pre-existing deposit is operated upon.
- the scope of the invention includes any implanted artificial or bioprosthetic device, natural bodily member or organ having a moving or movable part or portion that is subject to undesirable depositions on or in it, which could, or do, negatively impact the patient directly or indirectly.
- This would include the cleaning or dissolution of depositions, which would only harm the patient if they were to break free and passage into the bloodstream.
- it would include removing deposits from the nonmoving parts of heart valves as well, such a heart valve requiring a non-contact damage-free method of cleaning of any or all of its parts.
- the present inventors further teach, particularly for fragile non-deformable implants such as engineered artificial heart valves, that one may utilize acoustic spectral characteristics of clean vs. dirty implants to deduce something about the extent of such deposits or the extent of their removal.
- acoustic spectral characteristics of clean vs. dirty implants to deduce something about the extent of such deposits or the extent of their removal.
- the avoidance of delivering acoustic energies that could fracture such brittle implants is also taught.
- the cleaning acoustics may be directed at a portion of the implant, member or organ such that the acoustic intensity is maximized at desired locations or such that other fragile portions of the implant are avoided by the cleaning processes.
- FIG. 1 the sole Figure, schematically depicts a (non-tissue) prosthetic heart valve mounted in a patient's heart, the valve having undesirable deposits thereon and therein, wherein ultrasound waves are shown directed toward the deposits from an invasive (in this example) therapy transducer of the present invention.
- an artificial prosthetic heart valve 2 mounted in cardiac tissue 1 defining a chamber of the heart.
- item 2 is the known typical annular valve body of such a valve.
- body 2 is made of pyrolytic carbon or titanium.
- the valve 2 will have one or more swinging leaflets or occluders 3 A and 3 B as shown.
- normal blood flow F is upwards in the direction of flow arrow 12 .
- Valve 2 acts as a check valve preventing downwards flow by closing its leaflets 3 A and 3 B to the respective closed and seated phantom positions 3 C and 3 D. The leaflets swing as indicated by arrows 13 .
- leaflets 3 A and 3 B will swing upon hinged pivots of the type 3 E and 3 F. The axis of such pivoting is normal to the plane of the drawing.
- valves will have a fabric covering 4 , which allows the use of sutures 5 to attach the valve 2 to the cardiac tissue or annulus 1 .
- Blood 6 is shown as being present on both sides of the valve 2 , with its desired flow 12 upwards for the sake of illustration.
- the moving leaflets 3 A and 3 B seat themselves in their phantom closed positions 3 C and 3 D upon a sealing valve seat seen in section as rim 3 G and 3 H.
- the valve 2 thus may be an artificial, bioprosthetic, or natural valve, located anywhere in the body and having at least one moving part, referred to herein as a leaflet or an occluder 3 A, 3 B.
- the valve 2 may be of any type supportive of a patient's cardiac, lymphatic or arterial systems.
- the leaflet or occluder 3 A, 3 B if the valve 2 is artificial or bioprosthetic, may comprise a biocompatible engineering material such as pyrolytic carbon. Such biocompatible engineering materials are well-known.
- the leaflet or occluder 3 A, 3 B may comprise a tissue material of any type, whether natural or bioprosthetic.
- the tissue may be, at least in part, donor human tissue, donor animal tissue, lab-grown tissue or artificial tissue.
- the leaflet or occluder 3 A, 3 B may be a part of the patient's own natural valve, anywhere in the body. Examples of such natural valves include cardiac valves, venous valves, and lymphatic valves. We emphasize occluders as they are commonly fouled but we include in the scope any other connecting tissues or muscles which, if fouled by deposits, will cause a functional valve problem.
- Deposits 11 A, 11 B, 11 C upon the valve in various places.
- Deposits 11 A are on the leaflets themselves.
- Deposit 11 B is inside the annulus 2 .
- Deposit 11 C is in the dangerously nearby region of the valve seat 3 G, 3 H.
- Those skilled in the art of valves and valve deposits know that such deposits can also take place in numerous other positions or inside/outside surfaces (not shown), including within the pivot or hinge region(s) 3 E, 3 F, on the leaflet edges, or directly on the valve-seat sealing surfaces etc. It is not the point here to teach such details of historical deposit distributions.
- At least some of the deposits are on or in at least one of the moving, movable or nonmoving parts of the implant, member or organ and presents a potential or existing problem.
- the deposits may be on the leaflet or occluder, which moves, or on the seating or sealing edge or face against which the leaflet or occluder seals.
- at least some of the deposits may interfere with the proper moving of a moving part of the implant or interfere with a moving part or medical device arranged or designed to be passed through, passed into, mated to or threaded into the implant, such as a hinge, pivot or flexural area of the valve.
- the presence of the deposits may likely ease or encourage the formation of additional deposits as is known from clinical experience.
- the deposits may interfere with the designed or natural function of the implant, member or organ, thereby interfering in the desired hydrodynamic operation of a natural or implanted valve supporting the heart, the lymphatic system or the arterial system.
- the deposits may interfere with normal blood flow trajectories, normal hemodynamics or normal cardiac capacity.
- the removal of deposits as taught herein may prevent a potential stroke or any cardiac dysfunction or degraded function.
- pannus is an occasional lateral tissue overgrowth (not shown) onto the valve surface or valve throat. Although pannus is technically not a deposit, it is still a cleanable (or killable) tissue material that interferes with valve operation. Also included in the scope of “deposits” are blood constituents, whether clotted or not, calcium, fatty deposits, bodily organic debris, and bacteria.
- Such deposits include, but are not limited to, at least one of (a) surface-deposited, calcium-containing material, (b) calcium-based deposits inside tissues or in tissue interfaces, (c) calcium-based deposits inside implant materials or in an interface including at least one implant material, (d) fatty deposits on surfaces or inside tissues or engineering materials, (e) organic debris on surfaces or inside tissues or engineering materials, (f) plaque-like deposits, and (g) any deposit which contributes to stenosis or a loss of elasticity of a moving or movable tissue or implant component.
- valve 2 is depicted oversize in section within a patient's body having a skin surface 14 . Outside the skin surface 14 , there is the possibility of applying a noninvasive acoustic treatment and/or an invasive treatment can be applied from inside the body. Details of the heart are not shown in the Figure, as they are not necessary to understand the invention. Given the choice between noninvasive (no incisions), semi-invasive (small incisions), minimally invasive (tiny localized incisions or punctures) and invasive (large incisions) acoustic energy delivery, any one of the heart valves can be acoustically illuminated from at least one direction or angle to achieve the inventors' purpose here.
- a catheter or other ultrasound probe 7 is shown, directed toward the valve 2 in FIG. 1.
- a probe could be delivered, for example, through the femoral artery, carotid artery or through a laparoscope through the chest.
- Acoustic device 7 is shown as having an acoustic emitter 8 and an acoustic matching layer 9 .
- Acoustic cleaning waves 10 are shown directed toward the valve 2 for purposes of cleaning or removing deposits of the type 11 A, 11 B, 11 C or pannus (not shown).
- piezoelectric, ferroelectric, electrostrictive, magnetostrictive, or thermoacoustic transducers can be fabricated to deliver directed acoustics in the manner shown.
- Optoacoustic or laser-based acoustics-producing catheters may also be employed.
- transducer 8 , 9 could be a piezoceramic (PZT or lead-zirconate-titanate) transducer operating at 1 megahertz in single-pulse, multipulse or continuous wave fashion.
- the acoustic emitter 7 may be temporarily or permanently integrated into the patient's body or into the implant itself, and may be automatically operated without constant patient or doctor manipulation.
- the acoustic emitter 7 may be integrated or co-mounted with an imaging device, such as an ultrasound transducer, an infrared camera or an imaging scope of any type used during therapy.
- an independent imaging device may be employed, such as to guide or plan a treatment. Examples of such independent imaging devices include, but are not limited to, ultrasound imaging, fluoroscopy, MRI (Magnetic Resonance Imaging), CAT (Computed Axial Tomography) scan, PET (Positron Emission Tomography) or videoscope with a waterpath.
- the transducer 8 , 9 in the invasive case shown, might be moved in close proximity to the valve 2 (as shown) such that the delivered acoustics are mainly directed to areas of the valve needing cleaning.
- the transducer might be focused or unfocused, depending on the working distance desired. Focusing would likely be done for small working distances, which allow for minimal (total) acoustic power to be used to get the job done.
- the present inventors anticipate the use of protective devices (not shown) such that the cleaning transducer is not mechanically caught up in the moving leaflets 3 A, 3 B.
- the implant, member or organ may be at least temporarily immobilized; such immobilization may be done by the juxtaposition or insertion of a soft or compliant protective member than mechanically blocks the motion, such as an inflatable balloon or other pressurized member, inflated by at least one of a liquid or a gas.
- a soft or compliant protective member such as an inflatable balloon or other pressurized member, inflated by at least one of a liquid or a gas.
- a non-contact scheme is employed, at least in the sense that no portions of the therapy device 7 which could interfere with or damage the implant surfaces come in contact with such surfaces.
- acoustic energy delivery of therapy waves 10 A outside the patient's body 14 is shown alternative acoustic delivery of therapy waves 10 A. This is to emphasize that the acoustic energy may be delivered from anywhere on (coupled-to in any manner) or in the body in any noninvasive, minimally-invasive or invasive manner. The delivery location will probably be determined at least in part by whether the therapy is of a scheduled maintenance sort or is being delivered together with a related or unrelated surgery, possibly to fix serious functional problems.
- Acoustic, sonic or vibratory energy 10 or 10 A preferably acts directly upon deposits 11 A, 11 B, 11 C that are typically enveloped by surrounding blood 6 (or other liquid or tissue path between the emitter and the deposits) capable of transmitting such acoustics directly into the deposits. In this manner, it is not necessary to pre-design the implant such that it can be resonated at a particular frequency.
- the acoustic energy may act upon at least a portion of the deposits, possibly in cooperation with one or more drugs, to break-up, break-down, dissolve, de-amalgamate, erode or otherwise attack the deposits.
- the acoustic energy may aid in the permeation of the deposits by such drug(s) or by a natural anti-clotting blood constituent or both.
- Such action may or may not include significant cavitation, streaming, erosion or dissolution phenomena in the region of the deposits, depending on the fragility of the implant. Cavitation and streaming will further accelerate these removal/erosive processes.
- the inventive therapy allows for heating of the deposits using the ultrasound exposure, if that accelerated deposition breakdown (e.g., for fatty layers). It will be noted that many valve parts, such as pyrolytic leaflet occluders, can be safely heated without damage-particularly by higher frequencies (e.g., 7 to 12 MHz) that will not cause resonant damage to the valve itself. In this manner, heating of several tens of degrees Centigrade or more is allowable, and can be thermally quenched quickly by the blood flow.
- the acoustic energy may be coupled into the implant, member or organ by, for example, (a) coupling to a patient's external skin, (b) coupling from within a patient's natural body passage or space, (c) coupling into the surface of a surgically exposed or accessed organ or tissue surface, (d) coupling from a natural body lumen into an organ or implant, or (e) coupling into a cardiac structure or implant from within a cardiac chamber.
- Frequencies of acoustic excitation may be in the range of 1 Hz to 100 MHz, preferably in the range of 1 KHz to 10 MHz, and most preferably in the range of 5 KHz to 10 MHz.
- Acoustic powers may be in the range of milliwatts per square centimeter to kilowatts per square centimeter, preferably in the range of 0.5 watts/cm 2 to 5000 watts/cm 2 , and most preferably in the range of 5 to 500 watts/cm 2 .
- the particular acoustic energy selected is chosen for its ability to remove the deposits upon direct radiation by the acoustic energy. The determination of the conditions for such removal is not considered to constitute undue experimentation.
- the acoustics may be focused, collimated, weakly focused, or unfocused. Preferably, they will be at least collimated if not somewhat focused to achieve a higher useful power density in the treatment field.
- the transducer or emitter, if focused, may be mechanically focused and/or electronically focused, beam-formed or steered as by use of a multielement array technology, which is widely known.
- the useful treatment portion of the beam will be large enough such that precision unaided mechanical scanning of the implant is not required.
- a treatment catheter could have a 7 mm diameter with a 7 mm diameter spherically-focused transducer at the tip.
- the transducer could be weakly focused inwards to a point, for example, at 25 mm distance. In this manner, the transducer can paint large swaths of the implant if it is held at a distance in the range of 5 to 15 mm, for example.
- the patient may receive one or more treatments or multiple scheduled treatments.
- a frequency employed has a characteristic wavelength on the order of a characteristic dimension of a typical deposit or deposit constituent, thus improving coupling into the deposit
- a frequency employed is chosen because it is known to be capable of exciting a resonance or resonance harmonic in an implant portion
- a frequency employed is known not to excite a resonance or resonance harmonic in an implant portion
- broadband frequency or scanned frequency is employed in order to gain the benefits of more than a single frequency.
- the resonant excitation may contribute to indirect delivery of acoustic energy into the deposits and the energy may contribute to the removal or erosion of the deposits.
- Indirect energy may be deposited upon or into the deposits by first coupling the acoustic emissions into the implant, member or organ and then the acoustic energy in turn being delivered to the deposit(s).
- Many applications of the invention will involve. using frequencies that directly attack deposits but fail to excite implant resonances. Typically, this means frequencies which are chosen to not be equal to a harmonic or base-frequency of an implant resonance-particularly one of the lower harmonics whose amplitude would be expected to be larger than that of a higher harmonic.
- the implanted valve had a resonant frequency at 100 KHz and it is desired to have only direct deposit attack and no resonant excitement we would choose not to utilize a frequency f, at least not for any significant pulse-length, having a value of, for example, 1 ⁇ 2 f, 1f, 2f, 3f, etc. or 50 KHz, 100 KHz, 200 KHz, 300 KHz etc. Thus, we could likely utilize 1 MHz, for example.
- emissions 10 could be in the few megahertz and above range, while emissions 10 A would preferably be somewhat lower in frequency, e.g., a few megahertz or lower.
- Also included in the ambit of the present invention is resonance of at least a portion of the implant at an amplitude known to be safe from prior engineering characterization.
- Such driven resonance or non-resonant vibrations add the indirect deposition attack mode because the deposition is essentially being shaken on a driven moving foundation (the implant).
- the implant we note specifically that even for an artificial valve having a resonance of its leaflet, say at 100 KHz, that the blood substantially dampens the resonant vibrations.
- our intent is to avoid unacceptable resonant vibration amplitudes, and the easiest way to do this is to avoid resonant peaks completely.
- the scope of our invention includes resonating implants wherein the resonant amplitudes are safely below damage thresholds but above those that aid in deposit indirect-attack.
- the acoustic energy may be one of (a) does not appreciably resonate the implant, member or organ at one of its resonant frequencies that could otherwise cause damage to the implant, member or organ, or (b) does appreciably resonate the implant, member or organ at a resonant frequency thereof, but does so at an amplitude below that known to damage the implant, member or organ and the resonance is not employed for indirect deposit-attack, or (c) does appreciably resonate the implant, member or organ but does so below an implant damage threshold but above a deposition-attack threshold.
- drugs including, but not limited to, thrombolytic therapy drugs (clot dissolvers), including drugs such as alteplase (Activase®), anistreplase (Eminase®), streptokinase (Streptase® or Kabikinase®), urokinase (Abbokinase®), and tissue plasminogen activators referred to as TPAs of various sorts (types of TPA), or an anti-clotting, anti-coagulant or anti-platelet drug such as a clotting factor inhibiting drug include warfarin (Coumadin®), a thrombin inhibitor such as heparin or lepirudin (Refludan®) or an anti-platelet drug such as aspirin, ticlopidine (Ticlid®), clopidogrel (Plavix®), tirofiban (Aggrastat®) and eptifibatide (Inte
- the drugs may be employed before, during or after an acoustic exposure in order to aid in removal or erosion of the deposits.
- the acoustic energy may accelerate or enable action of the drug.
- the drug(s) may be locally delivered to the deposits, such as via a catheter or working port of a scope or may be systemically delivered.
- the ultrasound may act alone without thrombolytic drugs or any other drugs which directly or indirectly assist in deposit removal.
- One may also choose to administer a drug in association with the inventive acoustic treatments simply to prevent any potential side-effects of the acoustic exposures themselves.
- This scheme is particularly useful for characterizing leaflet deposits on prosthetic valves because the occluders are mainly liquid-loaded and have only small acoustic losses out their hinges 3 E, 3 F.
- deposits on the leaflets or hinges will noticeably affect the spectral fingerprint of such a valve.
- the worst deposits, those that mechanically interfere with the leaflet or occluder motion or occluder seating, will have the largest acoustic fingerprint change.
- fingerprint is meant an acoustic signature that has one or both of the following content: (a) a passively received spectra comprising naturally generated noises coming from the valve or the valve's functioning and (b) actively generated spectra generated using acoustic excitations.
- a passively received spectra comprising naturally generated noises coming from the valve or the valve's functioning
- actively generated spectra generated using acoustic excitations.
- heart valves can be quite audibly (and inaudibly) noisy and can even be heard by the patient on occasion; thus, efforts go into designing them to be as quiet as possible.
- acoustic fingerprints of such implants preferably before and after depositions, using sensitive reception-microphones or transducers, such that the acoustic effects of such depositions can be used to deduce fouling or deduce the progress of fouling removal.
- sensitive reception-microphones or transducers such that the acoustic effects of such depositions can be used to deduce fouling or deduce the progress of fouling removal.
- ultrasound imaging realize that it is not always possible to image such deposits until they are quite large.
- this additional fingerprinting tool is provided herein which is more sensitive to small depositions, particularly on moving parts. Use of this fingerprint tool does not preclude ultrasound imaging and may even be incorporated into an ultrasound imaging transducer.
- the acoustic emitter may also comprise or be co-mounted, co-packaged or used in association with an acoustic device used to gather an acoustic fingerprint indicative of the extent, location or nature of deposits.
- the fingerprints may be taken or generated by an acoustic device that is independent of the acoustic emitter.
- an implant portion such as a leaflet 3 A, 3 B
- acoustic illuminations for finger-printing that excite harmonics directly (by driving at the harmonic frequency) or indirectly (by driving at the primary frequency) or by driving in a broadband manner. Driving at a resonance or harmonic will maximize the signal to noise ratio, but one must remain below pre-known and pre-characterized critical amplitudes that could cause breakage.
- a second example would be the cleaning or necrosing of pannus, which is the lateral overgrowth of the patient's tissues into or onto an artificial prosthetic valve.
- killing living tissue occurs and this procedure would tend to use the higher specified powers at the higher specified frequencies using a close-in delivery transducer such as 7 .
- the acoustic energy has a frequency within a range of 3 to 10 MHz and an acoustic power of several hundred to a few thousand wafts/cm 2 at the most intense portion of the beam.
- thermal heating may be used to kill pannus, pannus may alternatively be killed by cavitation or a combination of thermal heating and cavitation.
- deposits 11 A, 11 B, 11 C will be formed of blood-based thrombus and will be thermally blood-coupled.
- a fair amount of acoustic power may be delivered (tens or hundreds of wafts/cm 2 ) without appreciably heating the deposits because of the excellent heatsinking situation to the blood and to the underlying implant itself.
- the underlying implant material is a thermally conductive metal, this is particularly true. This will invite easier acoustic breakdown of the deposit without burning it into an insoluble form.
- the same benefit extends to calcium deposits whether they be on or within artificial valves, bioprosthetic valves, natural valves or valve tissues.
- the implant in general will have an acoustic impedance that significantly mismatches that of blood, such that energy delivery into the implant material itself is reduced in favor of delivery into the deposits in the known manner taking account of the therefore-different acoustic reflectivities.
- valve body 2 or leaflets 3 A, 3 B of the Figure could include an embedded or co-laminated miniature ultrasound transducer(s) that excites some or all of the valve structures or at least their surface deposits. This may be particularly doable if the transducing material is embedded and unexposed. Leads for electrical excitation of such a miniature transducer could be provided as necessary, as is known to the pacemaker art, for example.
- a functioning valve may be held in place for a few heartbeats or more in order to access deposits which are otherwise hard to get to with a sufficient acoustic exposure.
- An exemplary case would be that wherein transducer 7 of the Figure is covered by a saline-filled balloon (not shown) and the balloon is pushed into or placed into the valve to hold it open in a damage-free manner while it is inspected, fingerprinted and/or treated for deposit removal.
- the transducer would deliver its acoustics through the saline from a standoff distance, for example.
- the transducer or acoustic emitter of the invention may comprise a magnetostrictive transducer of the type widely known to the art.
- a key advantage of such transducers is that the excitation field that excites the magnetostrictive material may optionally be remote from the excited material (the emitting implant component to be cleaned for example).
- the excitation field that excites the magnetostrictive material may optionally be remote from the excited material (the emitting implant component to be cleaned for example).
- the implanted prosthetic be excited acoustically via this magnetostrictive mechanism. This could thus be done without any tissue-penetrating leads.
- catheter item 7 is shown as being a forward-firing or emitting transducer.
- One may also utilize a side-firing transducer or radial-firing transducer, particularly if it is to be passed into the valve body as just mentioned, for example.
- an emitter emits acoustics regardless of whether the acoustics are themselves generated by the emitter, as they would be for a transducer-emitter, but as they would not be if the emitter were simply an output port of an acoustic waveguide connected to a remote transducer pumping acoustics into the connecting waveguide.
- acoustic emissions we mean at least one of compression, rare-faction or shear waves which travel at or near a speed of sound of a material. These may be single-pulse, multipulse, pulse-trains, bipolar pulses, unipolar pulses, symmetric pulses, asymmetric pulses, inaudible vibrations or audible vibrations. They may have amplitudes in the general range of a micron or so up to a fraction of a centimeter per the recommended frequency limits. The highest frequencies described have the smallest wavelengths. Variable frequencies and therefore variable wavelengths may be employed as is known for broadband or multitone emitters. These are a good choice to help avoid exciting a resonance that is within the scanned frequency range.
- transducers or emitters that are mounted in or held by surgical tools, clamps, balloons or other manipulators that aid the surgeon.
- manipulators may, for example, include all manner of access scopes, laparoscopes, gastroscopes, catheters, cannulas, handheld tools, mechanical clamps, suction-based clamps or robotic grippers.
- Balloons or any other soft standoff or appendage may be interspersed between the emitter 7 and any portion of the implant, member or organ and pass emissions to or from the implant, member or organ in a manner to avoid damage or scratching the implant, member or organ.
- the balloon, standoff or appendage may be utilized to aid in the temporary clamping or holding of the moving part of the implant, member or organ such that at least one deposit can be better accessed.
- transducer(s) or acoustic emitters could be a suction or flushing means or a trapping means to either suck out removed debris or to catch it in a filter or net at, near or away from the implant being cleaned, either during therapy and/or after the therapy.
- a suction or flushing means or a trapping means to either suck out removed debris or to catch it in a filter or net at, near or away from the implant being cleaned, either during therapy and/or after the therapy.
- trash-collection features are known for clot-busters used in lumens and for carotid artery and cardiac installation.
- Another feature could be a modification to the implant's geometry or to its material makeup to make it easier to deliver the inventive therapy or make it easier for the acoustics to pass into certain regions of the targeted implant.
- silicone or other polymer might be used to at least coat portions of the implant such that emitted acoustics are favorably absorbed causing at least one of localized heating and localized flexure of the surfaces supporting the deposits. It should be noted that direct and indirect resonation can provide very appreciable surface deformations to a flexible silicone coating (or component) that can knock off or shed deposits. One might also release the taught drugs locally at the implant as through a catheter.
- Heart valves as an exemplary example
- Other candidate implants would include ports or other access devices wherein the moving part is yet another device, lead or catheter which must be passed into or through the port or access device on at least one occasion or at least once after a deposit may have formed. What all of these have in common is that deposits may interfere with a mechanical operation or function necessary for the implant to serve its function.
- acoustic treatment of endocarditis tissues in or around natural or prosthetic heart valves may comprise one of two types.
- the first type is outright killing of the bacteria by acoustic energy exposure or by the heat generated by such an exposure.
- the acoustic emissions may be directed, at least in part, to a prosthetic valve component, whereby acoustic heating of the component causes heat to be conducted into adjacent endocarditis-laden tissue, thereby at least partially killing the endocarditis bacterial or fungus.
- a catheter or other lumen-delivered device may, for example, be used to deliver the acoustic emissions.
- the second type is sealing of blood leakage at the bacteria-caused leaks, such as by heat-induced blood clotting to plug such leaks.
- acoustic emissions may serve as a therapy for endocarditis.
- the bacterial deposit is attacked and at least partly killed and thus is in keeping with the teaching herein of removing or reducing undesired depositions.
- an antibacterial or other helpful drug with the ultrasound exposure delivered to the valve or implant in any manner.
- Such a drug might be delivered locally to the infected valve via the aforementioned optional inflated balloon covering the emitter.
- the previously mentioned ranges or acoustic power and frequency are also applicable-particularly the higher powers and frequencies.
- the therapy treatment may require only one therapy session. Alternatively, two or more therapy sessions may be conducted at different times or on different days.
- inventive therapeutic acoustic emitters and/or fingerprinting apparatus can optionally be cointegrated with an ultrasonic imaging probe such that two or more of visualization, fingerprinting, and therapy can be delivered by one tool.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Vascular Medicine (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Mechanical Engineering (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Description
- The present application claims priority from provisional application Ser. No. 60/463,918, filed Apr. 17, 2003.
- The present application is directed generally to prosthetic heart valves, and, more particularly, to cleaning such heart valves, preferably in situ, with acoustic energy.
- Background Discussion.
- Prosthetic heart valves are probably one of the most well-known implanted medical devices and are installed in an ailing human heart for the purpose of correcting cardiac valvular dysfunctions of various types. Such valves are made either of artificial biocompatible engineering materials, such as pyrolytic carbon, titanium, and silicone, or are fashioned out of donor tissues or actual valves or other tissues sourced from pigs, cattle or human donors.
- Particularly for cardiac valves made of such artificial engineering materials, experience has shown that over time, even with the administration of anti-clotting, anti-coagulant or anti-platelet drug treatments, that undesirable buildups of clot, fat, calcium or other undesirable cellular or debris deposits can grow on various valve surfaces and valve pivoting-joints, thereby interfering with valve operation. In extreme cases, the moving occluder portions of such valves can become physically stuck, so the valve is frozen in a random open position. In less severe cases, deposits interfere with the proper seating of the moving occluders, thereby causing leaks and flow irregularities, such as turbulent jets. Such flow affects can encourage more such deposits and/or damage to the blood itself. They also cause functional cardiac problems. Furthermore, such deposits may achieve a finite size, then detach from the valve and cause a downstream clot or stroke elsewhere.
- It is also known that even for prosthetic heart valves made from animal or human tissues, that children, in particular, exhibit excessive calcium deposits on such tissue-based valves due to children's unique body processes supporting their growth and maturation. It is also known that calcium deposits may take place inside of valve and other moving tissues, eventually contributing to their stiffening, tearing or stenosis. Expressly included in the scope herein are such buried, interior or interfacial deposits that can possibly cause valve leaflets to fuse together, tear or lose required elasticity.
- A general answer to many of these problems, particularly the clotting-based problems, has been to administer a variety of anti-clotting, anticoagulant or anti-platelet drugs. Such clotting-factor inhibiting drugs include warfarin (Coumadin®). Such thrombin inhibitors include heparin or lepirudin (Refludan®). Such anti-platelet drugs include aspirin, ticlopidine (Ticlid®), clopidogrel (Plavix®), tirofiban (Aggrastat®) and eptifibatide (Integrilin®). Some of these medications are administered for years after the implant surgery, if not permanently thereafter. In general, there are some undesirable side-effects to taking many of these drugs, the most important of which are that (a) one's propensity to bleed is enhanced, and (b) in some situations, bleeding can be initiated, particularly in the brain, by such drugs, even without a provoking injury. Thus, major effort has gone into getting the exact bodily concentration of such drugs correct on an ongoing basis. If properly practiced, such drug administration greatly reduces valve deposits, particularly of the clotting type, but does not eliminate such deposits completely. Another answer to these problems has been the avoidance of using engineered material valves in children in favor of bioprosthetic valves made of real tissues. Again, this helps greatly but does not totally eliminate deposition problems.
- What would be highly desirable is a device or method for cleaning such deposits, preferably in a damage-free non-contact manner, at least from cardiac implants such as prosthetic valves, in cases wherein the drugs mentioned above have not worked sufficiently to avoid such depositions or could not be used for medical reasons. It would further be attractive if such a device or method could allow for a reduction or even elimination of the use of such anti-clotting (or thrombolytic clot-dissolving) drugs and their undesirable side-effects and lifestyle limitations. For example, using such a device or method, one could avoid the drugs altogether or could take a patient off such drugs for a prolonged period to allow for an unrelated surgery and avoidance of massive bleeding related to that unrelated surgery. So, the present inventors foresee the use of the inventive device and method at least once if not several times on a given patient. Ideally, the device and method can be practiced in noninvasive, semi-invasive, and invasive situations, thus allowing its use in routine maintenance as well as during surgery. Such use could be after cardiac function has been impacted or might be on a maintenance basis before such function is impacted. In all cases, at least some existing deposit would be removed or rendered removable by the body or with the help of an administered drug.
- Of particular use would be a device or method which can do so for the moving parts of devices such as heart valve leaflets and can likewise clean other nonmoving parts of actuating implants which would be easily damaged if directly contacted, the damage inviting further deposits. Cleaning the nonmoving parts of such actuating (having moving parts) implants means doing so in the presence of a nearby moving part. Thus, an additional object of the invention is the provision of a non-contact or gentle-contact cleaning method that can clean such implant parts without damaging the moving parts and without damaging the cleaning device itself.
- It will be noted from the title that the present inventors include certain deposits on natural body structures also within the scope of the present invention. In particular, the present inventors are not familiar with any art which involves the acoustic removal of undesirable depositions on natural valves, whether they be in the heart or in the lumens such as in the venous or lymphatic system of the legs, for example. There is much art, however, regarding acoustically cleaning lumens that have no moving parts in the sense that valves have moving or swinging occluders or leaflets. Thus, the present invention is directed to the cleaning of valves and body members that are supposed to have moving parts, natural or otherwise.
- The bulk of the discussion below will focus on implanted-structure cleaning as depositions are, or at least have the potential to be, more prevalent upon or within them.
- The present disclosure also teaches methods and devices to acoustically assess the extent of such deposits-particularly on artificial engineered valves made of engineering materials. These acoustic or ultrasonic-assessment aspects may or may not be used together with the invention's therapeutic aspects.
- Prior Art.
- The present inventors have found no art relating directly to the use of ultrasound to clean implanted actuating prosthetic devices of undesirable existing deposits or overgrowths in a non-contact manner while thereby causing no damage, scratching, abrasion or permanent deformation to the implant itself. It should be noted that if contacting-cleaning means were used (such as abrasive devices), then they will cause implant surface-damage or scratching, which will surely invite further such deposits. As mentioned earlier, the present inventors also have not found any teaching regarding acoustically cleaning natural valves normally having natural actuation motions in the cardiac, lymphatic or arterial systems.
- Pharmasonics, Inc. has focused several patents on treating vascular tissues prone to hyperplasia or restenosis after a vascular procedure is performed. These patents are directed to preventative procedures and do not deal with deposits that have already taken place nor with deposits on or in actuatable implants or body members. In some cases, there is a lumen stent put in place, which is at least contributing to the restenosis process that they attempt to treat with their inventive therapy. In all cases, their approaches primarily involve treating the distressed tissues adjacent the stent such that those tissues do not overgrow the stent interior diameter, causing flow-blockage. There are no actuating or moving parts whose actuation would be interfered with by the deposits. Our definition of a moving or actuating member covers any implant, natural member or organ wherein any solid or semisolid material (like tissue or metal, for instance) is expected to actuate at least once. Thus, venous, lymphatic and cardiac valves of natural and implanted types are covered. We include in our scope actuation being the one-time or occasional alteration, maintenance, adjustment or servicing of an implant that may be fouled by such deposits. A perfect example of this is, for example, a pacemaker lead that has been fouled by tissue or deposit overgrowth such that it needs to be cleaned so that it can function properly or be exchanged for a new one. There the actuation is a one-time plugging-in (and out) of an electrical lead connector. Two last examples of actuation are the normal cyclic motion of various bodily organs due to perfusion (e.g., heart, kidney, liver) and the actuation of muscles and tendons. In both of those cases, known deposits can interfere with the normal distension or extension of such members and would benefit from the therapy of this invention.
- U.S. Pat. No. 6,361,554 to Brisken (and assigned to Pharmasonics) and U.S. Pat. No. 6,387,116 to McKenzie (and assigned to Pharmasonics) are the nearest to being relevant to the discussion here and will be discussed below. However, neither patent alone nor in combination with the other, leads one to the present invention herein. Other patents reviewed but not considered at all relevant include U.S. Pat. Nos. 5,725,494; 5,728,062; 5,931,805; 6,210,393; 6,221,038; 6,228,046; 6,494,874; and 6,503,243, all to Brisken (and assigned to Pharmasonics).
- U.S. Pat. No. 6,361,554 to Brisken (the '554 patent) is entitled “Methods and Apparatus for the Subcutaneous Delivery of Acoustic Vibrations”. What this patent teaches is a preventative therapy to avoid undesired stent depositions, not the removal of prior depositions nor the removal of depositions interfering with or potentially interfering with the actuation or distension of an implant or body member. Brisken utilizes the sonically-driven stent resonation to indirectly treat the tissue adjacent the stent and prevent it from later forming overgrowths onto or into the stent. More specifically, he teaches that acoustic excitations are delivered from outside the body, that the stent is smaller than his illuminating beamwidth, and that the stent is specifically pre-designed or modified to have a characteristic resonant frequency. Furthermore, the characteristic pre-chosen resonant frequency is utilized in a manner such that the resonant stent causes acoustic energy to be preferentially redeposited at the diseased interfaces between the stent and the adjacent tissues by his process of re-radiation in the form of reradiated (from the driven stent) vibrations or heat. Note that multiple treatments are suggested and that using a semi-invasive catheter for such treatments is taught to be avoided. The reader will appreciate that a stent, once placed, is a nonactuating device not subject to brittle fracture. The beamwidth being so much larger than the stent allows for easy aiming. Recommended implants for the preventative therapy delivered by the '554 patent focus on vascular stents, grafts and valves widely familiar to the vascular surgeon. Note that because the '554 patent utilizes externally applied ultrasound, that ultrasound cannot directly illuminate the stent or implant interior, thus the need for an indirect approach. So direct treatment of deposits is not taught-only indirect treatment-and only noninvasive indirect treatment. By direct treatment we mean that the ultrasound energy performs its function directly on a deposit. The above prior art performs only noninvasive indirect therapy wherein existing deposits are not directly targeted, and furthermore are taught to be avoided by advance use of that invention before such deposits exist.
- Contrary to the '554 patent, the invention herein has several fundamental differences including the following: (1) deposit materials that have already deposited or formed are themselves treated, (2) the deposits are primarily treated directly, not indirectly, (3) re-radiation is not primarily depended upon to provide an indirectly delivered or preferentially focused therapy, (4) the implant is not required to be modified in design to achieve a particular resonance, (5) it is recognized that any resonant property of the implant, if present, will vary as a function of the deposit burden attached thereto, (6) the acoustic signature of a clean implant is optionally utilized to deduce the presence and extent of such deposits and the progress of their removal, (7) it is recognized that any deformable implant (such as a stent) will have its native resonant frequency(s) modified by the exact amount of deformation and by the loading by adjacent tissues, and (8) it is recognized that some implants are subject to brittle fracture and can be broken by such driven resonances, particularly implants made of ceramics or glasses which are not acoustically lossy and are brittle. Furthermore, the '554 patent does not teach what acoustics are reradiated, i.e., whether they are harmonics of the driving frequency or are solely the primary driving frequency. The present inventors specifically discuss the management of such harmonics if they are allowed to be present.
- U.S. Pat. No. 6,387,116 to McKenzie (the '116 patent) entitled “Methods and Kits for the Inhibition of Hyperplasia in Vascular Fistulas and Grafts” is somewhat similar to the above, except that it typically involves only natural tissue structures therein whose potential hyperplasia is to be avoided. Note that there is no mention of any resonant attribute of an artificial implant, stent or graft nor any mention of using the acoustics themselves to clean up prior deposits. New elements relative to the '554 patent are the use of a drug if desired, the avoidance of cavitation, and the avoidance of temperature rises of more than 2 degrees Centigrade. Since there is virtually no discussion of any implant's acoustic properties nor the cleaning of prior deposits on any implant, this patent is thus, after inspection, regarded as irrelevant. It is also preventative in nature like the '554 patent.
- Thus, there remains a need for a mechanism for removing undesirable deposits from an implanted device, such as a prosthetic heart valve, having at least one moving or movable part. This need also extends to such deposits in or on a natural bodily member or organ having a naturally moving, distending or actuating part or portion. The need also extends to one-time actuation required to maintain or service existing implants, the actuation being a required movement of at least a portion of the implant or its connection means. Thus, the replacement of a fouled pacemaker lead is included within the scope of the present invention because the lead and its connector must be moved (removed and exchanged) relative to the pacemaker body itself.
- In accordance with the present invention, ultrasonic, sonic or vibratory energy, delivered non-invasively, minimally invasively or invasively (e.g., surgically), is utilized to preferably provide direct cleaning action at or to the location of an implanted artificial or bioprosthetic device, such as a prosthetic heart valve, or a natural bodily member or organ with a naturally moving, actuating or distending part or portion with undesirable deposits of at least some amount thereon or therein. Such ultrasound energy may be aided by the use of a drug in association or cooperation with the acoustic irradiation. If a drug is used, the ultrasound may enhance the performance of that drug via its acoustic and/or thermal attributes. Alternatively, or in addition, the drug may make it easier to achieve deposit removal by destabilizing or softening such deposits. Such a drug might be given at least one of before, during or after the acoustic therapy.
- Specifically in accordance with the present invention, apparatus is provided that is capable of the non-contact or damage-free removal or erosion of undesirable deposits situated: (a) on or in an implanted artificial or bioprosthetic device having at least one moving or movable, actuatable or distendable part or portion (“moving or movable” hereinafter), or (b) on or in a natural bodily member or organ having a naturally moving or movable part or portion. The deposits to be removed or eroded interfere or potentially interfere with at least one of (a) any designed function of the implanted device, (b) any natural function of the natural bodily member or organ, or (c) any circulatory system process necessary for normal healthy living. The apparatus comprises:
- an acoustic emitter capable of emitting acoustic energy;
- a means for exciting the acoustic emitter to emit acoustic energy;
- a means for acoustically coupling the acoustic energy into the deposits directly or indirectly;
- a means for operating the emitter(s) to at least partially remove or otherwise erode the deposits; and
- optionally, an administered drug to aid the removal or erosion process, to prevent or slow further such deposits, or to treat a side-effect of treatment with the emitter.
- Further in accordance with the present invention, an acoustic method capable of the non-contact removal or erosion of such undesirable deposits is provided. The method comprises:
- providing the acoustic emitter;
- exciting the acoustic emitter to emit the acoustic energy;
- acoustically coupling the energy into the deposits, directly or indirectly, to at least partially remove or otherwise erode the deposits;
- either passing the at least partially removed deposits or otherwise eroded deposits into the body or physically removing the at least partially removed deposits or otherwise eroded deposits by a collection, trapping or immobilization means; and
- optionally administering a drug to aid the removal or immobilization.
- Still further in accordance with the present invention, a method is provided for assessing the state of fouling by undesirable deposits of an implant or of a natural valve in a living body, the implant or valve having at least one moving or movable part. The method comprises:
- obtaining, in any manner, an acoustic signature of the operation of the implant or valve at least under unfouled conditions inside or outside a living body;
- obtaining, in any manner, using passive reception or pulse-echo active probing, an acoustic signature of the implant or valve thought to possibly have fouling thereon or therein;
- the possibly-fouled signature containing at least one of: (1) naturally generated acoustic features known to be caused by fouling, and (2) artificially excited features known to be excited upon the presence of fouling;
- comparing the fingerprints looking for fouling features that have newly been incorporated into the signature; and
- concluding that newly added features which match known fouling features indicate fouling.
- The “cleaning” acoustic energy may optionally be delivered under the coordinated or real-time guidance of an imaging modality and may be delivered in a timed or gated manner such that the valve occluders or leaflets are in a preferred position (assuming they are functioning) during exposures. For example, if the cleaning ultrasound is delivered via a catheter, then it might be delivered to a valve from inside or outside the heart. If it is delivered via a transesophageal transducer, then it would be delivered from the esophagus. If it is delivered surgically, then it might be delivered upon a surface of the exposed beating heart or onto a lumen connecting to the valve in question. A combined ultrasound imaging probe and ultrasonic cleaning probe containing one or more transducers could be employed, for example. It is to be emphasized that the invention may or may not involve bodily resonating the implant, or a portion thereof, itself, and in all cases at least some direct cleaning action is delivered which does not require such implant resonating; the deposit is directly bathed in emissions and is itself broken down or acted upon directly. The implant might be an artificial prosthetic heart valve or a combination valve/stent in a venous lumen, for example. In all cases, a pre-existing deposit is operated upon. The scope of the invention includes any implanted artificial or bioprosthetic device, natural bodily member or organ having a moving or movable part or portion that is subject to undesirable depositions on or in it, which could, or do, negatively impact the patient directly or indirectly. This would include the cleaning or dissolution of depositions, which would only harm the patient if they were to break free and passage into the bloodstream. Thus, it would include removing deposits from the nonmoving parts of heart valves as well, such a heart valve requiring a non-contact damage-free method of cleaning of any or all of its parts.
- The present inventors further teach, particularly for fragile non-deformable implants such as engineered artificial heart valves, that one may utilize acoustic spectral characteristics of clean vs. dirty implants to deduce something about the extent of such deposits or the extent of their removal. The avoidance of delivering acoustic energies that could fracture such brittle implants is also taught.
- Finally, the present inventors teach that the cleaning acoustics may be directed at a portion of the implant, member or organ such that the acoustic intensity is maximized at desired locations or such that other fragile portions of the implant are avoided by the cleaning processes.
- FIG. 1, the sole Figure, schematically depicts a (non-tissue) prosthetic heart valve mounted in a patient's heart, the valve having undesirable deposits thereon and therein, wherein ultrasound waves are shown directed toward the deposits from an invasive (in this example) therapy transducer of the present invention.
- Moving directly now to the Figure, there is shown (not to scale) an artificial
prosthetic heart valve 2 mounted incardiac tissue 1 defining a chamber of the heart. In fact,item 2 is the known typical annular valve body of such a valve. Typically,body 2 is made of pyrolytic carbon or titanium. Typically, thevalve 2 will have one or more swinging leaflets oroccluders flow arrow 12.Valve 2 acts as a check valve preventing downwards flow by closing itsleaflets phantom positions arrows 13. Also typically,leaflets type sutures 5 to attach thevalve 2 to the cardiac tissue orannulus 1.Blood 6 is shown as being present on both sides of thevalve 2, with its desiredflow 12 upwards for the sake of illustration. Finally, as is known in the art of valve construction, the movingleaflets positions rim - While the majority of the description herein is directed to implanted artificial or bioprosthetic devices having at least one moving or movable part or portion, it will be readily appreciated by those skilled in this art that the same teachings may be applied to a natural bodily member or organ having a naturally moving or movable part or portion. In all cases, the deposits either interfere or potentially interfere with at least one of (a) any designed function (or any required maintenance) of the implanted device, (b) any natural function of the natural bodily member or organ, or (c) any circulatory system process necessary for normal healthy living.
- The
valve 2 thus may be an artificial, bioprosthetic, or natural valve, located anywhere in the body and having at least one moving part, referred to herein as a leaflet or anoccluder valve 2 may be of any type supportive of a patient's cardiac, lymphatic or arterial systems. The leaflet oroccluder valve 2 is artificial or bioprosthetic, may comprise a biocompatible engineering material such as pyrolytic carbon. Such biocompatible engineering materials are well-known. Alternatively, the leaflet oroccluder - The leaflet or
occluder - Referring back to FIG. 1, it will be noted that there are
undesirable deposits Deposits 11A are on the leaflets themselves.Deposit 11 B is inside theannulus 2.Deposit 11 C is in the dangerously nearby region of thevalve seat - At least some of the deposits are on or in at least one of the moving, movable or nonmoving parts of the implant, member or organ and presents a potential or existing problem. For example, the deposits may be on the leaflet or occluder, which moves, or on the seating or sealing edge or face against which the leaflet or occluder seals. Or, at least some of the deposits may interfere with the proper moving of a moving part of the implant or interfere with a moving part or medical device arranged or designed to be passed through, passed into, mated to or threaded into the implant, such as a hinge, pivot or flexural area of the valve.
- The presence of the deposits may likely ease or encourage the formation of additional deposits as is known from clinical experience. The deposits may interfere with the designed or natural function of the implant, member or organ, thereby interfering in the desired hydrodynamic operation of a natural or implanted valve supporting the heart, the lymphatic system or the arterial system. Thus, the deposits may interfere with normal blood flow trajectories, normal hemodynamics or normal cardiac capacity. The removal of deposits as taught herein may prevent a potential stroke or any cardiac dysfunction or degraded function.
- Specifically included in the scope of “deposits” is pannus, which is an occasional lateral tissue overgrowth (not shown) onto the valve surface or valve throat. Although pannus is technically not a deposit, it is still a cleanable (or killable) tissue material that interferes with valve operation. Also included in the scope of “deposits” are blood constituents, whether clotted or not, calcium, fatty deposits, bodily organic debris, and bacteria. Specific examples of such deposits include, but are not limited to, at least one of (a) surface-deposited, calcium-containing material, (b) calcium-based deposits inside tissues or in tissue interfaces, (c) calcium-based deposits inside implant materials or in an interface including at least one implant material, (d) fatty deposits on surfaces or inside tissues or engineering materials, (e) organic debris on surfaces or inside tissues or engineering materials, (f) plaque-like deposits, and (g) any deposit which contributes to stenosis or a loss of elasticity of a moving or movable tissue or implant component.
- It will be noted that the
valve 2 is depicted oversize in section within a patient's body having askin surface 14. Outside theskin surface 14, there is the possibility of applying a noninvasive acoustic treatment and/or an invasive treatment can be applied from inside the body. Details of the heart are not shown in the Figure, as they are not necessary to understand the invention. Given the choice between noninvasive (no incisions), semi-invasive (small incisions), minimally invasive (tiny localized incisions or punctures) and invasive (large incisions) acoustic energy delivery, any one of the heart valves can be acoustically illuminated from at least one direction or angle to achieve the inventors' purpose here. We emphasize here that the therapy of the invention, if invasive to any degree, may be done along with other surgery already being done and thus our therapy is not the root cause of an invasive procedure. This makes the invention a concomitant procedure in those cases. Such situations are a common surgical occurrence and are quite common in heart surgery, for example. - By way of invasive or semi-invasive energy delivery, a catheter or other ultrasound probe7 is shown, directed toward the
valve 2 in FIG. 1. Such a probe could be delivered, for example, through the femoral artery, carotid artery or through a laparoscope through the chest. Acoustic device 7 is shown as having an acoustic emitter 8 and anacoustic matching layer 9. Acoustic cleaning waves 10 are shown directed toward thevalve 2 for purposes of cleaning or removing deposits of thetype - As an example,
transducer 8, 9 could be a piezoceramic (PZT or lead-zirconate-titanate) transducer operating at 1 megahertz in single-pulse, multipulse or continuous wave fashion. - The acoustic emitter7, as an alternative option, may be temporarily or permanently integrated into the patient's body or into the implant itself, and may be automatically operated without constant patient or doctor manipulation. Alternatively, the acoustic emitter 7 may be integrated or co-mounted with an imaging device, such as an ultrasound transducer, an infrared camera or an imaging scope of any type used during therapy. Thus, an independent imaging device may be employed, such as to guide or plan a treatment. Examples of such independent imaging devices include, but are not limited to, ultrasound imaging, fluoroscopy, MRI (Magnetic Resonance Imaging), CAT (Computed Axial Tomography) scan, PET (Positron Emission Tomography) or videoscope with a waterpath.
- The
transducer 8, 9, in the invasive case shown, might be moved in close proximity to the valve 2 (as shown) such that the delivered acoustics are mainly directed to areas of the valve needing cleaning. Thus, the transducer might be focused or unfocused, depending on the working distance desired. Focusing would likely be done for small working distances, which allow for minimal (total) acoustic power to be used to get the job done. The present inventors anticipate the use of protective devices (not shown) such that the cleaning transducer is not mechanically caught up in the movingleaflets - Outside the patient's
body 14 is shown alternative acoustic delivery oftherapy waves 10A. This is to emphasize that the acoustic energy may be delivered from anywhere on (coupled-to in any manner) or in the body in any noninvasive, minimally-invasive or invasive manner. The delivery location will probably be determined at least in part by whether the therapy is of a scheduled maintenance sort or is being delivered together with a related or unrelated surgery, possibly to fix serious functional problems. - Acoustic, sonic or
vibratory energy deposits - The acoustic energy may be coupled into the implant, member or organ by, for example, (a) coupling to a patient's external skin, (b) coupling from within a patient's natural body passage or space, (c) coupling into the surface of a surgically exposed or accessed organ or tissue surface, (d) coupling from a natural body lumen into an organ or implant, or (e) coupling into a cardiac structure or implant from within a cardiac chamber.
- Frequencies of acoustic excitation may be in the range of 1 Hz to 100 MHz, preferably in the range of 1 KHz to 10 MHz, and most preferably in the range of 5 KHz to 10 MHz. Acoustic powers may be in the range of milliwatts per square centimeter to kilowatts per square centimeter, preferably in the range of 0.5 watts/cm2 to 5000 watts/cm2, and most preferably in the range of 5 to 500 watts/cm2. The particular acoustic energy selected is chosen for its ability to remove the deposits upon direct radiation by the acoustic energy. The determination of the conditions for such removal is not considered to constitute undue experimentation.
- The acoustics may be focused, collimated, weakly focused, or unfocused. Preferably, they will be at least collimated if not somewhat focused to achieve a higher useful power density in the treatment field. The transducer or emitter, if focused, may be mechanically focused and/or electronically focused, beam-formed or steered as by use of a multielement array technology, which is widely known. Preferably, the useful treatment portion of the beam will be large enough such that precision unaided mechanical scanning of the implant is not required. As an example, a treatment catheter could have a 7 mm diameter with a 7 mm diameter spherically-focused transducer at the tip. The transducer could be weakly focused inwards to a point, for example, at 25 mm distance. In this manner, the transducer can paint large swaths of the implant if it is held at a distance in the range of 5 to 15 mm, for example. The patient may receive one or more treatments or multiple scheduled treatments.
- Included within the ambit of the present invention is the choosing of a frequency such that one of these four conditions is met: (a) a frequency employed has a characteristic wavelength on the order of a characteristic dimension of a typical deposit or deposit constituent, thus improving coupling into the deposit, (b) a frequency employed is chosen because it is known to be capable of exciting a resonance or resonance harmonic in an implant portion, (c) a frequency employed is known not to excite a resonance or resonance harmonic in an implant portion, or (d) broadband frequency or scanned frequency is employed in order to gain the benefits of more than a single frequency. The resonant excitation may contribute to indirect delivery of acoustic energy into the deposits and the energy may contribute to the removal or erosion of the deposits. Indirect energy may be deposited upon or into the deposits by first coupling the acoustic emissions into the implant, member or organ and then the acoustic energy in turn being delivered to the deposit(s). Many applications of the invention will involve. using frequencies that directly attack deposits but fail to excite implant resonances. Typically, this means frequencies which are chosen to not be equal to a harmonic or base-frequency of an implant resonance-particularly one of the lower harmonics whose amplitude would be expected to be larger than that of a higher harmonic. So, for example, if the implanted valve had a resonant frequency at 100 KHz and it is desired to have only direct deposit attack and no resonant excitement we would choose not to utilize a frequency f, at least not for any significant pulse-length, having a value of, for example, ½ f, 1f, 2f, 3f, etc. or 50 KHz, 100 KHz, 200 KHz, 300 KHz etc. Thus, we could likely utilize 1 MHz, for example.
- In general, the less intervening tissue that is situated between the therapy transducer and the implant to be cleaned, the higher the frequency can be because intervening tissue losses are not the limiting factor. Thus, in the Figure,
emissions 10 could be in the few megahertz and above range, whileemissions 10A would preferably be somewhat lower in frequency, e.g., a few megahertz or lower. - In general, one does not want to deliver excessive high power acoustic waves to an artificial implant that has brittle components with resonant frequencies that could be excited by the therapy transducer. It might indeed be possible to deliver enough grossly excessive acoustic power to break
pyrolytic carbon leaflets - The optional use of drugs is mentioned above. A variety of drugs may be used, including, but not limited to, thrombolytic therapy drugs (clot dissolvers), including drugs such as alteplase (Activase®), anistreplase (Eminase®), streptokinase (Streptase® or Kabikinase®), urokinase (Abbokinase®), and tissue plasminogen activators referred to as TPAs of various sorts (types of TPA), or an anti-clotting, anti-coagulant or anti-platelet drug such as a clotting factor inhibiting drug include warfarin (Coumadin®), a thrombin inhibitor such as heparin or lepirudin (Refludan®) or an anti-platelet drug such as aspirin, ticlopidine (Ticlid®), clopidogrel (Plavix®), tirofiban (Aggrastat®) and eptifibatide (Integrilin®). The drugs may be employed before, during or after an acoustic exposure in order to aid in removal or erosion of the deposits. The acoustic energy may accelerate or enable action of the drug. The drug(s) may be locally delivered to the deposits, such as via a catheter or working port of a scope or may be systemically delivered.
- Alternatively, the ultrasound may act alone without thrombolytic drugs or any other drugs which directly or indirectly assist in deposit removal. One may also choose to administer a drug in association with the inventive acoustic treatments simply to prevent any potential side-effects of the acoustic exposures themselves.
- One may characterize an artificial implant before or soon after implantation to understand its acoustic signature in its clean deposition-free condition. This scheme is particularly useful for characterizing leaflet deposits on prosthetic valves because the occluders are mainly liquid-loaded and have only small acoustic losses out their
hinges - It should also be emphasized that an implant portion, such as a
leaflet - Returning to the description of the invention, it was mentioned that the cleaning of natural (pre-existing non-implanted) valves or of natural tissue overgrowths (pannus) onto artificial valves is included within the teachings herein. A first example of this would be the cleaning of calcium deposits from a bioprosthetic (tissue-based) valve in a child. Such tissue-based replacement valves in children are particularly prone to calcium deposits.
- A second example would be the cleaning or necrosing of pannus, which is the lateral overgrowth of the patient's tissues into or onto an artificial prosthetic valve. In this unique case, killing living tissue occurs and this procedure would tend to use the higher specified powers at the higher specified frequencies using a close-in delivery transducer such as7. This is because it is desired to preferably heat the pannus and kill it. In this example, the acoustic energy has a frequency within a range of 3 to 10 MHz and an acoustic power of several hundred to a few thousand wafts/cm2 at the most intense portion of the beam. Although thermal heating may be used to kill pannus, pannus may alternatively be killed by cavitation or a combination of thermal heating and cavitation.
- In general,
deposits - It is expected that it may be preferable to gate the energy delivery in time with the open or closed state of a moving functioning valve. This would be for at least one of three reasons. The first is that it may be easier to illuminate a leaflet-deposit at a particular angle of a moving leaflet. The second reason is that it may be beneficial to use a portion of the implant or moving leaflet to shield some other portion of the heart (or implant) from the acoustics. The third reason is that it may be beneficial to allow cooling or allow for microscopic debris to be carried off with each heartbeat, where the debris is of sufficiently fine size that it can be allowed to pass into the circulatory system safely. Finally, it may also be beneficial to intersperse imaging activity such as ultrasound B-mode or color flow mode imaging. It may also be beneficial to intersperse the previously mentioned acoustic fingerprinting activity to assess deposition removal in real time.
- Known to the ultrasonic arts of imaging and tissue therapy are numerous RF-driving means and control-logic to excite such transducers with single pulses, pulse trains, or continuous pulses. Also widely known are acoustic spectroscopic methods of taking acoustic fingerprints of acoustic sounds and comparison methods to detect changes in such fingerprints-such as by spectral subtraction. It is noted that a wide variety of such means would be useful to the practice of the present invention.
- The three following additional special cases are also included within the scope of the present invention:
- 1. One may choose to permanently mount a therapy transducer adjacent to, upon, or physically within the implant (not shown). For example, the
valve body 2 orleaflets - 2. A functioning valve (or non-functioning stuck valve) may be held in place for a few heartbeats or more in order to access deposits which are otherwise hard to get to with a sufficient acoustic exposure. An exemplary case would be that wherein transducer7 of the Figure is covered by a saline-filled balloon (not shown) and the balloon is pushed into or placed into the valve to hold it open in a damage-free manner while it is inspected, fingerprinted and/or treated for deposit removal. The transducer would deliver its acoustics through the saline from a standoff distance, for example. One could also envelop the transducer in a balloon and insert the balloon/transducer into the valve if not through it to operate on the inside and/or far side of the valve.
- 3. The transducer or acoustic emitter of the invention may comprise a magnetostrictive transducer of the type widely known to the art. A key advantage of such transducers is that the excitation field that excites the magnetostrictive material may optionally be remote from the excited material (the emitting implant component to be cleaned for example). Thus, one could have a magnetic or electromagnetic varying field applied to the body non-invasively, yet still have the implanted prosthetic be excited acoustically via this magnetostrictive mechanism. This could thus be done without any tissue-penetrating leads.
- It is emphasized that in the Figure, catheter item7 is shown as being a forward-firing or emitting transducer. One may also utilize a side-firing transducer or radial-firing transducer, particularly if it is to be passed into the valve body as just mentioned, for example. For the purposes of the invention, an emitter emits acoustics regardless of whether the acoustics are themselves generated by the emitter, as they would be for a transducer-emitter, but as they would not be if the emitter were simply an output port of an acoustic waveguide connected to a remote transducer pumping acoustics into the connecting waveguide. By “acoustic emissions” we mean at least one of compression, rare-faction or shear waves which travel at or near a speed of sound of a material. These may be single-pulse, multipulse, pulse-trains, bipolar pulses, unipolar pulses, symmetric pulses, asymmetric pulses, inaudible vibrations or audible vibrations. They may have amplitudes in the general range of a micron or so up to a fraction of a centimeter per the recommended frequency limits. The highest frequencies described have the smallest wavelengths. Variable frequencies and therefore variable wavelengths may be employed as is known for broadband or multitone emitters. These are a good choice to help avoid exciting a resonance that is within the scanned frequency range.
- Along the lines of
item 2 above, included within the scope of the invention are transducers or emitters that are mounted in or held by surgical tools, clamps, balloons or other manipulators that aid the surgeon. Such manipulators may, for example, include all manner of access scopes, laparoscopes, gastroscopes, catheters, cannulas, handheld tools, mechanical clamps, suction-based clamps or robotic grippers. Balloons or any other soft standoff or appendage may be interspersed between the emitter 7 and any portion of the implant, member or organ and pass emissions to or from the implant, member or organ in a manner to avoid damage or scratching the implant, member or organ. The balloon, standoff or appendage may be utilized to aid in the temporary clamping or holding of the moving part of the implant, member or organ such that at least one deposit can be better accessed. - It will be clear to the reader now that one might further incorporate additional features along with the transducer(s) or acoustic emitters. One such feature could be a suction or flushing means or a trapping means to either suck out removed debris or to catch it in a filter or net at, near or away from the implant being cleaned, either during therapy and/or after the therapy. Such trash-collection features are known for clot-busters used in lumens and for carotid artery and cardiac installation. Another feature could be a modification to the implant's geometry or to its material makeup to make it easier to deliver the inventive therapy or make it easier for the acoustics to pass into certain regions of the targeted implant. For example, one might provide a mating feature on the implant such that a portion of the therapy emitter aligns favorably to illuminate or excite pre-selected portions of the implant prone to deposition. As another example, silicone or other polymer might be used to at least coat portions of the implant such that emitted acoustics are favorably absorbed causing at least one of localized heating and localized flexure of the surfaces supporting the deposits. It should be noted that direct and indirect resonation can provide very appreciable surface deformations to a flexible silicone coating (or component) that can knock off or shed deposits. One might also release the taught drugs locally at the implant as through a catheter. The present inventors stress that although the discussion herein has focused on heart valves as an exemplary example, also included in the scope of the invention are lumen-based natural and artificial valves, such as those found in the venous systems of the legs. Other candidate implants would include ports or other access devices wherein the moving part is yet another device, lead or catheter which must be passed into or through the port or access device on at least one occasion or at least once after a deposit may have formed. What all of these have in common is that deposits may interfere with a mechanical operation or function necessary for the implant to serve its function.
- The foregoing discussion has been primarily directed to the removal of deposits around or upon moving parts of valves or implants. Other types of deposits known to cause valve problems are blood-borne bacteria, or even fungus, which frequently take up residence at or in natural or prosthetic valves. Such bacteria may get into the blood from a simple skin cut or from a dental procedure for example. Untreated, these bacteria can destroy the valve or at least cause blood-leakage at the edges of the valve. Prosthetic valves and compromised natural valves are particularly prone to such infectious damage. This valve infection is called endocarditis. The blood leakage is endocarditis-caused leakage. Included within the scope of the invention is the acoustic treatment of endocarditis tissues in or around natural or prosthetic heart valves. This treatment of infection or leakage-damage caused by deposited bacteria may comprise one of two types. The first type is outright killing of the bacteria by acoustic energy exposure or by the heat generated by such an exposure. The acoustic emissions may be directed, at least in part, to a prosthetic valve component, whereby acoustic heating of the component causes heat to be conducted into adjacent endocarditis-laden tissue, thereby at least partially killing the endocarditis bacterial or fungus. A catheter or other lumen-delivered device may, for example, be used to deliver the acoustic emissions.
- The second type is sealing of blood leakage at the bacteria-caused leaks, such as by heat-induced blood clotting to plug such leaks. Such acoustic emissions may serve as a therapy for endocarditis. In all cases, the bacterial deposit is attacked and at least partly killed and thus is in keeping with the teaching herein of removing or reducing undesired depositions. Consistent with the other teachings herein, one may utilize an antibacterial or other helpful drug with the ultrasound exposure delivered to the valve or implant in any manner. Such a drug might be delivered locally to the infected valve via the aforementioned optional inflated balloon covering the emitter. The previously mentioned ranges or acoustic power and frequency are also applicable-particularly the higher powers and frequencies.
- The therapy treatment may require only one therapy session. Alternatively, two or more therapy sessions may be conducted at different times or on different days.
- The reader will readily appreciate that the inventive therapeutic acoustic emitters and/or fingerprinting apparatus can optionally be cointegrated with an ultrasonic imaging probe such that two or more of visualization, fingerprinting, and therapy can be delivered by one tool.
Claims (88)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/826,232 US8083707B2 (en) | 2003-04-17 | 2004-04-16 | Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46391803P | 2003-04-17 | 2003-04-17 | |
US10/826,232 US8083707B2 (en) | 2003-04-17 | 2004-04-16 | Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040230117A1 true US20040230117A1 (en) | 2004-11-18 |
US8083707B2 US8083707B2 (en) | 2011-12-27 |
Family
ID=33423517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/826,232 Expired - Fee Related US8083707B2 (en) | 2003-04-17 | 2004-04-16 | Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body |
Country Status (1)
Country | Link |
---|---|
US (1) | US8083707B2 (en) |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7007698B2 (en) | 2002-04-03 | 2006-03-07 | Boston Scientific Corporation | Body lumen closure |
US20060064082A1 (en) * | 2004-09-20 | 2006-03-23 | Bonutti Peter M | Minimally invasive therapeutic system |
US7081131B2 (en) | 2002-04-03 | 2006-07-25 | Boston Scientific Corporation | Artificial valve |
US20060229659A1 (en) * | 2004-12-09 | 2006-10-12 | The Foundry, Inc. | Aortic valve repair |
US20060235349A1 (en) * | 2005-04-14 | 2006-10-19 | Brett Osborn | Implantable anti-clogging device for maintenance of cerebrospinal fluid shunt patency |
US20060287598A1 (en) * | 2005-06-20 | 2006-12-21 | Lasater Brian J | System of implantable ultrasonic emitters for preventing restenosis following a stent procedure |
US7244242B2 (en) | 2002-12-30 | 2007-07-17 | Boston Scientific Scimed, Inc. | Valve treatment catheter and methods |
US7267686B2 (en) | 1999-10-21 | 2007-09-11 | Boston Scientific Scimed, Inc | Implantable prosthetic valve |
US20080188772A1 (en) * | 2007-02-06 | 2008-08-07 | Siemens Schweiz Ag | Device for spatial localization of a movable part of the body |
US7416557B2 (en) | 2002-10-24 | 2008-08-26 | Boston Scientific Scimed, Inc. | Venous valve apparatus and method |
US20080281250A1 (en) * | 2005-05-10 | 2008-11-13 | Marvin Bergsneider | Self-Clearing Catheter for Clinical Implantation |
US7566343B2 (en) | 2004-09-02 | 2009-07-28 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US7569071B2 (en) | 2005-09-21 | 2009-08-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US20090306552A1 (en) * | 2008-06-04 | 2009-12-10 | Japan Health Sciences Foundation | Ultrasonic medical apparatus |
US7670368B2 (en) | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
WO2010014515A3 (en) * | 2008-07-27 | 2010-08-12 | Klein, David | Fracturing calcifications in heart valves |
US7776053B2 (en) | 2000-10-26 | 2010-08-17 | Boston Scientific Scimed, Inc. | Implantable valve system |
US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7799038B2 (en) | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7878966B2 (en) | 2005-02-04 | 2011-02-01 | Boston Scientific Scimed, Inc. | Ventricular assist and support device |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US20110106019A1 (en) * | 2007-11-21 | 2011-05-05 | Piezo Resonance Innovations, Inc. | Devices for clearing blockages in in-situ artificial lumens |
US7967853B2 (en) | 2007-02-05 | 2011-06-28 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US20120016212A1 (en) * | 2010-07-16 | 2012-01-19 | Dyconex Ag | Implantable Sensor Device |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US8409133B2 (en) | 2007-12-18 | 2013-04-02 | Insuline Medical Ltd. | Drug delivery device with sensor for closed-loop operation |
US8622991B2 (en) | 2007-03-19 | 2014-01-07 | Insuline Medical Ltd. | Method and device for drug delivery |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US8827979B2 (en) | 2007-03-19 | 2014-09-09 | Insuline Medical Ltd. | Drug delivery device |
US8961458B2 (en) | 2008-11-07 | 2015-02-24 | Insuline Medical Ltd. | Device and method for drug delivery |
CN104473639A (en) * | 2014-12-14 | 2015-04-01 | 中国科学院电工研究所 | Magnetic thermal sound imaging resistivity rebuilding method based on optimization iterative algorithm |
US9034033B2 (en) | 2011-10-19 | 2015-05-19 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9125740B2 (en) | 2011-06-21 | 2015-09-08 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US20150305629A1 (en) * | 2012-12-06 | 2015-10-29 | Frederick J. Fritz | Csf shunt flow evaluation apparatus and method using a conformable expanded dynamic range thermosensor |
US9220837B2 (en) | 2007-03-19 | 2015-12-29 | Insuline Medical Ltd. | Method and device for drug delivery |
US9295393B2 (en) | 2012-11-09 | 2016-03-29 | Elwha Llc | Embolism deflector |
US9421098B2 (en) | 2010-12-23 | 2016-08-23 | Twelve, Inc. | System for mitral valve repair and replacement |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US20170055932A1 (en) * | 2015-08-27 | 2017-03-02 | Samsung Electronics Co., Ltd. | Tomography apparatus and method of reconstructing tomography images |
US9622859B2 (en) | 2005-02-01 | 2017-04-18 | Boston Scientific Scimed, Inc. | Filter system and method |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9901443B2 (en) | 2011-10-19 | 2018-02-27 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10111747B2 (en) | 2013-05-20 | 2018-10-30 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
CN109431562A (en) * | 2018-10-19 | 2019-03-08 | 彭力 | A kind of wound closure device of medical multiple point crossover suture |
US10238490B2 (en) | 2015-08-21 | 2019-03-26 | Twelve, Inc. | Implant heart valve devices, mitral valve repair devices and associated systems and methods |
US10265172B2 (en) | 2016-04-29 | 2019-04-23 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US20190125932A1 (en) * | 2017-10-26 | 2019-05-02 | Cal-X Stars Business Accelerator, Inc. | Preventing blood clot formation, calcification and/or plaque formation on blood contact surface(s) |
CN110013782A (en) * | 2019-05-24 | 2019-07-16 | 山东艾博康生物科技有限公司 | A kind of dispensation apparatus using ultrasonic oscillation |
US10360667B2 (en) * | 2015-08-19 | 2019-07-23 | Battelle Memorial Institute | Biological material fouling assessment systems and methods |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10702380B2 (en) | 2011-10-19 | 2020-07-07 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US11090721B2 (en) | 2017-06-27 | 2021-08-17 | Fluid Handling Llc | Method for modifying the dimensions of a cast iron pump part |
CN113490459A (en) * | 2019-01-24 | 2021-10-08 | 艾奥迪可实验室有限责任公司 | Device for treating tissue calcification |
US11193716B2 (en) | 2017-07-28 | 2021-12-07 | Fluid Handling Llc | Fluid routing methods for a spiral heat exchanger with lattice cross section made via additive manufacturing |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
EP3970653A1 (en) * | 2020-09-21 | 2022-03-23 | Universidad de Sevilla | Device and method for non-invasive preventive cleaning of cerebrospinal fluid shunt systems |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112017022768B1 (en) | 2015-04-24 | 2022-05-17 | Sanuwave, Inc | Acoustic pressure shock wave applicator |
US10322230B2 (en) | 2016-06-09 | 2019-06-18 | C. R. Bard, Inc. | Systems and methods for correcting and preventing occlusion in a catheter |
CA3026392A1 (en) * | 2018-07-10 | 2020-01-10 | John F. Warlick | Improved acoustic shock wave therapeutic methods |
CA3150870A1 (en) | 2019-09-11 | 2021-03-18 | Olivier Bataille | Catheter, sheath or dilator for heart valve decalcification treatment and method of use thereof |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3433226A (en) * | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US4870953A (en) * | 1987-11-13 | 1989-10-03 | Donmicheal T Anthony | Intravascular ultrasonic catheter/probe and method for treating intravascular blockage |
US5713831A (en) * | 1992-02-17 | 1998-02-03 | Olsson; Sten Bertil | Method and apparatus for arterial reperfusion through noninvasive ultrasonic action |
US5725494A (en) * | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US5728082A (en) * | 1990-02-14 | 1998-03-17 | Molnlycke Ab | Absorbent body with two different superabsorbents |
US5831805A (en) * | 1997-02-13 | 1998-11-03 | Sony Corporation | Local power failure detection and clock disabling circuit |
US5853005A (en) * | 1996-05-02 | 1998-12-29 | The United States Of America As Represented By The Secretary Of The Army | Acoustic monitoring system |
US6210393B1 (en) * | 1997-12-31 | 2001-04-03 | Pharmasonics, Inc. | Methods and systems for the inhibition of vascular hyperplasia |
US6221038B1 (en) * | 1996-11-27 | 2001-04-24 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US6228046B1 (en) * | 1997-06-02 | 2001-05-08 | Pharmasonics, Inc. | Catheters comprising a plurality of oscillators and methods for their use |
US20010039383A1 (en) * | 1996-12-18 | 2001-11-08 | Sailor Mohler | Passive/non-invasive systemic and pulmonary blood pressure measurement |
US6361554B1 (en) * | 1999-06-30 | 2002-03-26 | Pharmasonics, Inc. | Methods and apparatus for the subcutaneous delivery of acoustic vibrations |
US6387116B1 (en) * | 1999-06-30 | 2002-05-14 | Pharmasonics, Inc. | Methods and kits for the inhibition of hyperplasia in vascular fistulas and grafts |
US20020177843A1 (en) * | 2001-04-19 | 2002-11-28 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US6503542B2 (en) * | 2000-12-14 | 2003-01-07 | Globoasia, L.L.C. | Herbal compositions for treating immunological disorders |
US20030009153A1 (en) * | 1998-07-29 | 2003-01-09 | Pharmasonics, Inc. | Ultrasonic enhancement of drug injection |
US20030171803A1 (en) * | 2001-12-05 | 2003-09-11 | Shimon Dov V. | Endovascular device for entrapment of particulate matter and method for use |
US6635017B1 (en) * | 2000-02-09 | 2003-10-21 | Spentech, Inc. | Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis |
US20040024347A1 (en) * | 2001-12-03 | 2004-02-05 | Wilson Richard R. | Catheter with multiple ultrasound radiating members |
US7335169B2 (en) * | 2000-08-24 | 2008-02-26 | Timi 3 Systems, Inc. | Systems and methods for delivering ultrasound energy at an output power level that remains essentially constant despite variations in transducer impedance |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5728062A (en) | 1995-11-30 | 1998-03-17 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US5931805A (en) | 1997-06-02 | 1999-08-03 | Pharmasonics, Inc. | Catheters comprising bending transducers and methods for their use |
-
2004
- 2004-04-16 US US10/826,232 patent/US8083707B2/en not_active Expired - Fee Related
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3433226A (en) * | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US4870953A (en) * | 1987-11-13 | 1989-10-03 | Donmicheal T Anthony | Intravascular ultrasonic catheter/probe and method for treating intravascular blockage |
US5728082A (en) * | 1990-02-14 | 1998-03-17 | Molnlycke Ab | Absorbent body with two different superabsorbents |
US5713831A (en) * | 1992-02-17 | 1998-02-03 | Olsson; Sten Bertil | Method and apparatus for arterial reperfusion through noninvasive ultrasonic action |
US5725494A (en) * | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US5853005A (en) * | 1996-05-02 | 1998-12-29 | The United States Of America As Represented By The Secretary Of The Army | Acoustic monitoring system |
US6221038B1 (en) * | 1996-11-27 | 2001-04-24 | Pharmasonics, Inc. | Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers |
US20010039383A1 (en) * | 1996-12-18 | 2001-11-08 | Sailor Mohler | Passive/non-invasive systemic and pulmonary blood pressure measurement |
US5831805A (en) * | 1997-02-13 | 1998-11-03 | Sony Corporation | Local power failure detection and clock disabling circuit |
US6228046B1 (en) * | 1997-06-02 | 2001-05-08 | Pharmasonics, Inc. | Catheters comprising a plurality of oscillators and methods for their use |
US6210393B1 (en) * | 1997-12-31 | 2001-04-03 | Pharmasonics, Inc. | Methods and systems for the inhibition of vascular hyperplasia |
US6494874B1 (en) * | 1997-12-31 | 2002-12-17 | Pharmasonics, Inc. | Methods and systems for the inhibition of vascular hyperplasia |
US20030009153A1 (en) * | 1998-07-29 | 2003-01-09 | Pharmasonics, Inc. | Ultrasonic enhancement of drug injection |
US6361554B1 (en) * | 1999-06-30 | 2002-03-26 | Pharmasonics, Inc. | Methods and apparatus for the subcutaneous delivery of acoustic vibrations |
US6387116B1 (en) * | 1999-06-30 | 2002-05-14 | Pharmasonics, Inc. | Methods and kits for the inhibition of hyperplasia in vascular fistulas and grafts |
US6635017B1 (en) * | 2000-02-09 | 2003-10-21 | Spentech, Inc. | Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis |
US7335169B2 (en) * | 2000-08-24 | 2008-02-26 | Timi 3 Systems, Inc. | Systems and methods for delivering ultrasound energy at an output power level that remains essentially constant despite variations in transducer impedance |
US6503542B2 (en) * | 2000-12-14 | 2003-01-07 | Globoasia, L.L.C. | Herbal compositions for treating immunological disorders |
US20020177843A1 (en) * | 2001-04-19 | 2002-11-28 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US20040024347A1 (en) * | 2001-12-03 | 2004-02-05 | Wilson Richard R. | Catheter with multiple ultrasound radiating members |
US20030171803A1 (en) * | 2001-12-05 | 2003-09-11 | Shimon Dov V. | Endovascular device for entrapment of particulate matter and method for use |
Cited By (164)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7267686B2 (en) | 1999-10-21 | 2007-09-11 | Boston Scientific Scimed, Inc | Implantable prosthetic valve |
US7776053B2 (en) | 2000-10-26 | 2010-08-17 | Boston Scientific Scimed, Inc. | Implantable valve system |
US7081131B2 (en) | 2002-04-03 | 2006-07-25 | Boston Scientific Corporation | Artificial valve |
US7682385B2 (en) | 2002-04-03 | 2010-03-23 | Boston Scientific Corporation | Artificial valve |
US7007698B2 (en) | 2002-04-03 | 2006-03-07 | Boston Scientific Corporation | Body lumen closure |
US7416557B2 (en) | 2002-10-24 | 2008-08-26 | Boston Scientific Scimed, Inc. | Venous valve apparatus and method |
US7780627B2 (en) | 2002-12-30 | 2010-08-24 | Boston Scientific Scimed, Inc. | Valve treatment catheter and methods |
US7244242B2 (en) | 2002-12-30 | 2007-07-17 | Boston Scientific Scimed, Inc. | Valve treatment catheter and methods |
US10869764B2 (en) | 2003-12-19 | 2020-12-22 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8721717B2 (en) | 2003-12-19 | 2014-05-13 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US9301843B2 (en) | 2003-12-19 | 2016-04-05 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US7566343B2 (en) | 2004-09-02 | 2009-07-28 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US8932349B2 (en) | 2004-09-02 | 2015-01-13 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US9918834B2 (en) | 2004-09-02 | 2018-03-20 | Boston Scientific Scimed, Inc. | Cardiac valve, system and method |
US8002824B2 (en) | 2004-09-02 | 2011-08-23 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US10639052B2 (en) | 2004-09-20 | 2020-05-05 | P Tech, Llc | Acoustic therapy device |
US8750983B2 (en) * | 2004-09-20 | 2014-06-10 | P Tech, Llc | Therapeutic system |
US11534187B2 (en) | 2004-09-20 | 2022-12-27 | P Tech, Llc | Acoustic therapy device |
US9474676B2 (en) | 2004-09-20 | 2016-10-25 | P Tech, Llc | Acoustic therapy device |
US20060064082A1 (en) * | 2004-09-20 | 2006-03-23 | Bonutti Peter M | Minimally invasive therapeutic system |
US11272982B2 (en) | 2004-12-09 | 2022-03-15 | Twelve, Inc. | Intravascular treatment catheters |
US7803168B2 (en) | 2004-12-09 | 2010-09-28 | The Foundry, Llc | Aortic valve repair |
US10350004B2 (en) | 2004-12-09 | 2019-07-16 | Twelve, Inc. | Intravascular treatment catheters |
US9414852B2 (en) | 2004-12-09 | 2016-08-16 | Twelve, Inc. | Aortic valve repair |
US20060229659A1 (en) * | 2004-12-09 | 2006-10-12 | The Foundry, Inc. | Aortic valve repair |
US7854755B2 (en) | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
US9622859B2 (en) | 2005-02-01 | 2017-04-18 | Boston Scientific Scimed, Inc. | Filter system and method |
US7878966B2 (en) | 2005-02-04 | 2011-02-01 | Boston Scientific Scimed, Inc. | Ventricular assist and support device |
US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7670368B2 (en) | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US9808341B2 (en) | 2005-02-23 | 2017-11-07 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US9370419B2 (en) | 2005-02-23 | 2016-06-21 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US20060235349A1 (en) * | 2005-04-14 | 2006-10-19 | Brett Osborn | Implantable anti-clogging device for maintenance of cerebrospinal fluid shunt patency |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US8512399B2 (en) | 2005-04-15 | 2013-08-20 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US9861473B2 (en) | 2005-04-15 | 2018-01-09 | Boston Scientific Scimed Inc. | Valve apparatus, system and method |
US20080281250A1 (en) * | 2005-05-10 | 2008-11-13 | Marvin Bergsneider | Self-Clearing Catheter for Clinical Implantation |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US9028542B2 (en) | 2005-06-10 | 2015-05-12 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US11337812B2 (en) | 2005-06-10 | 2022-05-24 | Boston Scientific Scimed, Inc. | Venous valve, system and method |
US20060287598A1 (en) * | 2005-06-20 | 2006-12-21 | Lasater Brian J | System of implantable ultrasonic emitters for preventing restenosis following a stent procedure |
US7857766B2 (en) * | 2005-06-20 | 2010-12-28 | Alfred E. Mann Foundation For Scientific Research | System of implantable ultrasonic emitters for preventing restenosis following a stent procedure |
US9474609B2 (en) | 2005-09-21 | 2016-10-25 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US8460365B2 (en) | 2005-09-21 | 2013-06-11 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US7569071B2 (en) | 2005-09-21 | 2009-08-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US8672997B2 (en) | 2005-09-21 | 2014-03-18 | Boston Scientific Scimed, Inc. | Valve with sinus |
US10548734B2 (en) | 2005-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US7951189B2 (en) | 2005-09-21 | 2011-05-31 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US7799038B2 (en) | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US8348999B2 (en) | 2007-01-08 | 2013-01-08 | California Institute Of Technology | In-situ formation of a valve |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
US11504239B2 (en) | 2007-02-05 | 2022-11-22 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US8470023B2 (en) | 2007-02-05 | 2013-06-25 | Boston Scientific Scimed, Inc. | Percutaneous valve, system, and method |
US10226344B2 (en) | 2007-02-05 | 2019-03-12 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US9421083B2 (en) | 2007-02-05 | 2016-08-23 | Boston Scientific Scimed Inc. | Percutaneous valve, system and method |
US7967853B2 (en) | 2007-02-05 | 2011-06-28 | Boston Scientific Scimed, Inc. | Percutaneous valve, system and method |
US20080188772A1 (en) * | 2007-02-06 | 2008-08-07 | Siemens Schweiz Ag | Device for spatial localization of a movable part of the body |
US9220837B2 (en) | 2007-03-19 | 2015-12-29 | Insuline Medical Ltd. | Method and device for drug delivery |
US8827979B2 (en) | 2007-03-19 | 2014-09-09 | Insuline Medical Ltd. | Drug delivery device |
US9056167B2 (en) | 2007-03-19 | 2015-06-16 | Insuline Medical Ltd. | Method and device for drug delivery |
US8622991B2 (en) | 2007-03-19 | 2014-01-07 | Insuline Medical Ltd. | Method and device for drug delivery |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US20110106019A1 (en) * | 2007-11-21 | 2011-05-05 | Piezo Resonance Innovations, Inc. | Devices for clearing blockages in in-situ artificial lumens |
US8262645B2 (en) | 2007-11-21 | 2012-09-11 | Actuated Medical, Inc. | Devices for clearing blockages in in-situ artificial lumens |
US8409133B2 (en) | 2007-12-18 | 2013-04-02 | Insuline Medical Ltd. | Drug delivery device with sensor for closed-loop operation |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US8414641B2 (en) | 2007-12-21 | 2013-04-09 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US8137394B2 (en) | 2007-12-21 | 2012-03-20 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US20090306552A1 (en) * | 2008-06-04 | 2009-12-10 | Japan Health Sciences Foundation | Ultrasonic medical apparatus |
US8515524B2 (en) * | 2008-06-04 | 2013-08-20 | National Cerebral And Cardiovascular Center | Extracorperal ultrasonic irradition of titanium oxide (TiO2) coated implant for angiogenesis stimulation |
JP2011528963A (en) * | 2008-07-27 | 2011-12-01 | ゴラン、エレズ | Fracture of calcified part in heart valve |
US20110118634A1 (en) * | 2008-07-27 | 2011-05-19 | Erez Golan | Fracturing calcifications in heart valves |
US9717513B2 (en) | 2008-07-27 | 2017-08-01 | Pi-Cardia Ltd. | Fracturing calcifications in heart valves |
WO2010014515A3 (en) * | 2008-07-27 | 2010-08-12 | Klein, David | Fracturing calcifications in heart valves |
US9731084B2 (en) | 2008-11-07 | 2017-08-15 | Insuline Medical Ltd. | Device and method for drug delivery |
US8961458B2 (en) | 2008-11-07 | 2015-02-24 | Insuline Medical Ltd. | Device and method for drug delivery |
US20120016212A1 (en) * | 2010-07-16 | 2012-01-19 | Dyconex Ag | Implantable Sensor Device |
US8679010B2 (en) * | 2010-07-16 | 2014-03-25 | Dyconex Ag | Implantable sensor device |
US11571303B2 (en) | 2010-12-23 | 2023-02-07 | Twelve, Inc. | System for mitral valve repair and replacement |
US9421098B2 (en) | 2010-12-23 | 2016-08-23 | Twelve, Inc. | System for mitral valve repair and replacement |
US12178702B2 (en) | 2010-12-23 | 2024-12-31 | Twelve, Inc. | System for mitral valve repair and replacement |
US9770331B2 (en) | 2010-12-23 | 2017-09-26 | Twelve, Inc. | System for mitral valve repair and replacement |
US10517725B2 (en) | 2010-12-23 | 2019-12-31 | Twelve, Inc. | System for mitral valve repair and replacement |
US9572662B2 (en) | 2011-06-21 | 2017-02-21 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US9585751B2 (en) | 2011-06-21 | 2017-03-07 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US9579196B2 (en) | 2011-06-21 | 2017-02-28 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10034750B2 (en) | 2011-06-21 | 2018-07-31 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11523900B2 (en) | 2011-06-21 | 2022-12-13 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US9125740B2 (en) | 2011-06-21 | 2015-09-08 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11712334B2 (en) | 2011-06-21 | 2023-08-01 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10751173B2 (en) | 2011-06-21 | 2020-08-25 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10028827B2 (en) | 2011-06-21 | 2018-07-24 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US11617648B2 (en) | 2011-10-19 | 2023-04-04 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11826249B2 (en) | 2011-10-19 | 2023-11-28 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US10945835B2 (en) | 2011-10-19 | 2021-03-16 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10016271B2 (en) | 2011-10-19 | 2018-07-10 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10702380B2 (en) | 2011-10-19 | 2020-07-07 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US11497603B2 (en) | 2011-10-19 | 2022-11-15 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10335278B2 (en) | 2011-10-19 | 2019-07-02 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9034033B2 (en) | 2011-10-19 | 2015-05-19 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10299917B2 (en) | 2011-10-19 | 2019-05-28 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10299927B2 (en) | 2011-10-19 | 2019-05-28 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11197758B2 (en) | 2011-10-19 | 2021-12-14 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11628063B2 (en) | 2011-10-19 | 2023-04-18 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9901443B2 (en) | 2011-10-19 | 2018-02-27 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10052204B2 (en) | 2011-10-19 | 2018-08-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9295552B2 (en) | 2011-10-19 | 2016-03-29 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9034032B2 (en) | 2011-10-19 | 2015-05-19 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US11129714B2 (en) | 2012-03-01 | 2021-09-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US10258468B2 (en) | 2012-03-01 | 2019-04-16 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US12161552B2 (en) | 2012-03-01 | 2024-12-10 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US9295393B2 (en) | 2012-11-09 | 2016-03-29 | Elwha Llc | Embolism deflector |
US9414752B2 (en) | 2012-11-09 | 2016-08-16 | Elwha Llc | Embolism deflector |
US20150305629A1 (en) * | 2012-12-06 | 2015-10-29 | Frederick J. Fritz | Csf shunt flow evaluation apparatus and method using a conformable expanded dynamic range thermosensor |
US10499816B2 (en) * | 2012-12-06 | 2019-12-10 | Shuntcheck, Inc. | CSF shunt flow evaluation apparatus and method using a conformable expanded dynamic range thermosensor |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
US11234821B2 (en) | 2013-05-20 | 2022-02-01 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10111747B2 (en) | 2013-05-20 | 2018-10-30 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
CN104473639A (en) * | 2014-12-14 | 2015-04-01 | 中国科学院电工研究所 | Magnetic thermal sound imaging resistivity rebuilding method based on optimization iterative algorithm |
US10360667B2 (en) * | 2015-08-19 | 2019-07-23 | Battelle Memorial Institute | Biological material fouling assessment systems and methods |
US11576782B2 (en) | 2015-08-21 | 2023-02-14 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10238490B2 (en) | 2015-08-21 | 2019-03-26 | Twelve, Inc. | Implant heart valve devices, mitral valve repair devices and associated systems and methods |
US10820996B2 (en) | 2015-08-21 | 2020-11-03 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10307129B2 (en) * | 2015-08-27 | 2019-06-04 | Samsung Electronics Co., Ltd. | Apparatus and method for reconstructing tomography images using motion information |
US20170055932A1 (en) * | 2015-08-27 | 2017-03-02 | Samsung Electronics Co., Ltd. | Tomography apparatus and method of reconstructing tomography images |
US10265172B2 (en) | 2016-04-29 | 2019-04-23 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US11033390B2 (en) | 2016-04-29 | 2021-06-15 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US12109113B2 (en) | 2016-04-29 | 2024-10-08 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
US11654021B2 (en) | 2017-04-18 | 2023-05-23 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US11389295B2 (en) | 2017-04-18 | 2022-07-19 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US11737873B2 (en) | 2017-04-18 | 2023-08-29 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US12201523B2 (en) | 2017-04-18 | 2025-01-21 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US11786370B2 (en) | 2017-05-11 | 2023-10-17 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US11559398B2 (en) | 2017-06-02 | 2023-01-24 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US11464659B2 (en) | 2017-06-06 | 2022-10-11 | Twelve, Inc. | Crimping device for loading stents and prosthetic heart valves |
US12274632B2 (en) | 2017-06-06 | 2025-04-15 | Twelve, Inc. | Crimping device for loading stents and prosthetic heart valves |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US11090721B2 (en) | 2017-06-27 | 2021-08-17 | Fluid Handling Llc | Method for modifying the dimensions of a cast iron pump part |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11877926B2 (en) | 2017-07-06 | 2024-01-23 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US12016772B2 (en) | 2017-07-06 | 2024-06-25 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US11898804B2 (en) | 2017-07-28 | 2024-02-13 | Fluid Handling Llc | Fluid routing methods for a spiral heat exchanger with lattice cross section made via additive manufacturing |
US11193716B2 (en) | 2017-07-28 | 2021-12-07 | Fluid Handling Llc | Fluid routing methods for a spiral heat exchanger with lattice cross section made via additive manufacturing |
US20190125932A1 (en) * | 2017-10-26 | 2019-05-02 | Cal-X Stars Business Accelerator, Inc. | Preventing blood clot formation, calcification and/or plaque formation on blood contact surface(s) |
CN109431562A (en) * | 2018-10-19 | 2019-03-08 | 彭力 | A kind of wound closure device of medical multiple point crossover suture |
CN113490459A (en) * | 2019-01-24 | 2021-10-08 | 艾奥迪可实验室有限责任公司 | Device for treating tissue calcification |
CN110013782A (en) * | 2019-05-24 | 2019-07-16 | 山东艾博康生物科技有限公司 | A kind of dispensation apparatus using ultrasonic oscillation |
WO2022058609A1 (en) * | 2020-09-21 | 2022-03-24 | Universidad De Sevilla | Device and method for non-invasive preventive cleaning of cerebrospinal fluid shunt systems |
EP3970653A1 (en) * | 2020-09-21 | 2022-03-23 | Universidad de Sevilla | Device and method for non-invasive preventive cleaning of cerebrospinal fluid shunt systems |
Also Published As
Publication number | Publication date |
---|---|
US8083707B2 (en) | 2011-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8083707B2 (en) | Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body | |
US7713203B2 (en) | Ultrasound treatment device and method | |
Ter Haar | High intensity focused ultrasound for the treatment of tumors | |
US6433464B2 (en) | Apparatus for selectively dissolving and removing material using ultra-high frequency ultrasound | |
Ter Haar | Ultrasound focal beam surgery | |
US7507213B2 (en) | Pressure pulse/shock wave therapy methods for organs | |
US6503243B1 (en) | Methods and systems for the inhibition of vascular hyperplasia | |
JP4373792B2 (en) | How to prevent thrombus formation | |
US20070239082A1 (en) | Shock Wave Treatment Device | |
US20090062697A1 (en) | Insertable ultrasound probes, systems, and methods for thermal therapy | |
US20030236539A1 (en) | Apparatus and method for using an ultrasonic probe to clear a vascular access device | |
US20060206028A1 (en) | Apparatus and method for ablating deposits from blood vessel | |
US20080058682A1 (en) | Device for ultrasound monitored tissue treatment | |
JP2018512251A (en) | Method and apparatus for treating pericardial diseases | |
US20210038924A1 (en) | High intensity focused ultrasound systems for treating tissue | |
US20040006288A1 (en) | Pressure-pulse therapy device for treatment of deposits | |
KR20090121292A (en) | Treatment of weakened blood vessel walls, such as fragile flakes or aneurysms | |
JPH07184907A (en) | Ultrasonic treating device | |
CN113747942A (en) | System, apparatus and method for treating tissue and cellulite via non-invasive sonic subcutaneous cutting | |
Bigelow et al. | Histotripsy treatment of S. aureus biofilms on surgical mesh samples under varying pulse durations | |
US20050234438A1 (en) | Ultrasound medical treatment system and method | |
JP2015502187A (en) | Method and apparatus for removing atherosclerosis from a region of an arterial tree | |
US20110213281A1 (en) | Method and apparatus for the removal of non desired biological components from surfaces of external tissues | |
Vaezy et al. | Acoustic surgery | |
CN101005876A (en) | Ultrasound treating device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20191227 |