US10350004B2 - Intravascular treatment catheters - Google Patents
Intravascular treatment catheters Download PDFInfo
- Publication number
- US10350004B2 US10350004B2 US15/212,797 US201615212797A US10350004B2 US 10350004 B2 US10350004 B2 US 10350004B2 US 201615212797 A US201615212797 A US 201615212797A US 10350004 B2 US10350004 B2 US 10350004B2
- Authority
- US
- United States
- Prior art keywords
- catheter
- basket
- treatment
- distal
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B17/2202—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/221—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B17/3205—Excision instruments
- A61B17/3207—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
- A61B17/320758—Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions with a rotating cutting instrument, e.g. motor driven
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2445—Annuloplasty rings in direct contact with the valve annulus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/02—Holding devices, e.g. on the body
- A61M25/04—Holding devices, e.g. on the body in the body, e.g. expansible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
- A61N7/022—Localised ultrasound hyperthermia intracavitary
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22038—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with a guide wire
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22061—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation for spreading elements apart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22065—Functions of balloons
- A61B2017/22069—Immobilising; Stabilising
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22079—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with suction of debris
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22098—Decalcification of valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/221—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
- A61B2017/2215—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions having an open distal end
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0231—Characteristics of handpieces or probes
- A61B2018/0262—Characteristics of handpieces or probes using a circulating cryogenic fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/10—Balloon catheters
- A61M2025/1043—Balloon catheters with special features or adapted for special applications
- A61M2025/105—Balloon catheters with special features or adapted for special applications having a balloon suitable for drug delivery, e.g. by using holes for delivery, drug coating or membranes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0039—Ultrasound therapy using microbubbles
Definitions
- Aortic valve stenosis is a common cardiac disease resulting in approximately 65,000 aortic valve replacement surgeries in the United States annually. Aortic valve stenosis can occur via several etiologies including rheumatic disease, congenital and degenerative calcific stenosis. In developing countries, rheumatic fever results in thickening and progressive immobility of the valve tissues. Calcific disease accounts for almost all of the cases of aortic stenosis in the United States and in developed countries where rheumatic disease is rare.
- calcific material such as nodular calcific deposits may be superimposed on an underlying fibrotic aortic valve leaflet or calcific deposits may be diffusely distributed throughout the body (spongiosa) of the aortic valve leaflets.
- calcific deposits may be diffusely distributed throughout the body (spongiosa) of the aortic valve leaflets.
- distribution and type of deposits may differ depending on valve geometry (bicuspid, tricuspid), the deposits generally contribute to leaflet immobility, thickening and other pathologies that lead to degenerative valve function. The presence and progression of this disease leads to a decreased functional area of the valve and dramatically reduced cardiac output.
- valve cross-sectional area devices and techniques have suffered from only a modest ability to increase valve cross-sectional area, however. For instance, many studies showed that a pre-dilatation area of about 0.6 cm 2 could be opened to only between about 0.9 to about 1.0 cm 2 . It would be desirable to open such a stenosis to an area closer to about 1.2 to about 1.5 cm 2 . In addition to opening the cross-sectional area, it may be desirable to treat the leaflets and surrounding annulus to remove calcific deposits that stiffen the valve, impair flow dynamics, and otherwise degenerate valve function. Toward this end, other techniques such as direct surgical ultrasonic debridement of calcium deposits have had some success, but required an open surgical incision, thereby increasing the risk to the patient.
- balloon dilatation offered patients a viable, less invasive alternative, it fell into disfavor in the early to mid 1990s primarily as a result of rapid restenosis of the valve post treatment. At six months, reports of restenosis rates were commonly in excess of 70-80%.
- balloon valvuloplasty is primarily reserved for palliative care in elderly patients who are not candidates for surgical replacement due to comorbid conditions.
- anti-calcification drugs including ACE inhibitors, statins, and angiotensins, specifically angiotensin II, as detailed in United States Patent Application Publication 2004/0057955, the disclosure of which is expressly incorporated herein by reference.
- the present invention provides various devices and methods that create more effective treatments for aortic stenosis and prevent or reduce the incidence and/or severity of aortic restenosis.
- the present inventions provides methods and devices for decalcification or debridement of aortic stenosis, either as a stand alone therapy or in conjunction with conventional techniques, such as traditional valvuloplasty, stenting, valve repair, and percutaneous or surgical valve replacement.
- the present invention relates to the repair of aortic and other cardiac valves, and more particularly devices and methods for calcium removal and anti-restenosis systems for achieving such repair.
- the invention can take a number of different forms, including apparatus, acute interventions performed at the time of the aortic repair or valvuloplasty, or temporary or permanent implant, and the like.
- the methods and devices of the reduce or remove calcifications on or around the valve through application or removal of energy to disrupt the calcifications.
- the present invention may apply ultrasound energy, RF energy, a mechanical energy, or the like, to the valve to remove the calcification from the valve.
- it may be desirable to instead remove energy (e.g. cryogenically cooling) from the calcification to enhance the removal of the calcification from the valve.
- it will be desirable to create an embolic containment region over a localized calcific site on or near the cardiac valve. Such containment may be achieved by creating a structure about the localized site and/or by actively aspirating embolic particles from the site as they are created. Suitable structures include filters, baskets, balloons, housings and the like.
- treatment catheters are provided to deliver a working element to the vicinity of the diseased valve.
- Working element can include an ultrasonic element, or any other delivery mechanism or element that is capable of disrupting, e.g., breaking up or obliterating calcific deposits in and around the cardiac valve.
- Such devices may be steerable or otherwise positionable to allow the user to direct the distal end of the catheter grossly for initial placement through the patient's arteries to the valve, and then precisely adjust placement prior to and/or during treatment.
- the present invention provides a treatment catheter that comprises a mechanical element that can disrupt, e.g., mechanically break up, obliterate, and remove the calcific deposits in and around the aortic valve.
- a mechanical element that can disrupt, e.g., mechanically break up, obliterate, and remove the calcific deposits in and around the aortic valve.
- the catheter comprising the mechanical element may be steerable or otherwise articulable to allow the user to direct the distal end of the catheter grossly for initial placement, and then fine tune placement during treatment.
- systems including a guide catheter may also be employed to position the treatment catheter at the site of the disease to be treated, either as a separate catheter or as part of the treatment device.
- a main guide catheter may be used to center a secondary positioning catheter that contains the treatment catheter over the aortic valve.
- the treatment catheter may then be further articulated to provide even further directionality to the working end.
- Various other apparatus and methods may be employed for positioning and stabilizing the treatment catheter, including shaped balloons, baskets or filters and methods of pacing the heart.
- methods may be used to disrupt the calcified sites and trap and evacuate emboli and other debris from the treatment site, using filters located on the treatment catheter, suction housings located on the treatment catheter, perfusion balloons linked with aspiration devices, separate suction catheters, separate filter devices either at the treatment site or downstream from the treatment site, and/or external filter and perfusion systems.
- Certain filter embodiments may be shaped to allow the treatment catheter to access the location to be treated, while still allowing flow through the valve (e.g. treating one leaflet at a time).
- methods for treating cardiac valves comprise creating an emboli containment region over a calcific site and delivering energy (including cryotherapy) to disrupt said site and potentially create emboli which are contained in the containment region.
- the containment regions will typically be localized directly over a target site, usually having a limited size so that the associated aorta or other blood vessel is not blocked or occluded.
- the containment region may be created using a barrier, such as a filter structure, basket, or balloon over the calcified site. Alternatively or additionally, the containment region may be created by localized aspiration to remove substantially all emboli as they are formed.
- the energy applied may be ultrasound, radiofrequency, microwave, mechanical, cryogenic, or any other type of energy capable of disrupting valve calcifications.
- the methods may virtually disintegrate the calcification through the use a media that contains microspheres or microbubbles, such as OptisonTM sold by GE Healthcare (www.amershamhealth-us.com/optison/). Delivery of an ultrasound energy (or other form of energy, for example, laser, RF, thermal, energy) to the media may cause the microspheres to rupture, which causes a release of energy toward the valve, which may help remove the calcification around and on the valve. Bioeffects Caused by Changes in Ascoustic Cavitation Bubble Density and Cell Concentration: A Unifed Explanation Based on Cell - to - Bubble Ratio and Blast Radius , Guzman, et al. Ultrasound in Med. & Biol., Vol. 29, No. 8, pp. 1211-1222 (2003).
- Certain imaging and other monitoring modalities may be employed prior to, during or after the procedure of the present invention, utilizing a variety of techniques, such as intracardiac echocardiography (ICE), transesophageal echocardiography (TEE), fluoroscopy, intravascular ultrasound, angioscopy or systems which use infrared technology to “see through blood”, such as that under development by Cardio-Optics, Inc.
- ICE intracardiac echocardiography
- TEE transesophageal echocardiography
- fluoroscopy fluoroscopy
- intravascular ultrasound such as that under development by Cardio-Optics, Inc.
- RF radio frequency
- ultrasonic energy in various therapeutic ranges
- mechanical (non-ultrasound) energy may be utilized to effect the treatment of the present invention.
- the distal tips of the RF, ultrasonic treatment catheters, and mechanical treatment catheters of the present invention may have a variety of distal tip configurations, and be may be used in a variety of treatment patterns, and to target specific locations within the valve.
- intravascular implants are contemplated by the present invention, including those placed within the valve annulus, supra annular, sub annular, or a combination thereof to assist in maintaining a functional valve orifice.
- Such implants may incorporate various pharamacological agents to increase efficacy by reducing restenosis, and otherwise aiding valve function.
- Implants may be formed of various metals, biodegradable materials, or combinations thereof.
- These devices may all be introduced via either the retrograde approach, from the femoral artery, into the aorta and across the valve from the ascending aorta, or through the antegrade approach—transeptal, across the mitral valve, through the left ventricle and across the aortic valve.
- the present invention provides an anti-restenosis system for aortic valve repair.
- Acute interventions are performed at the time of the aortic repair or valvuloplasty and may take the form of a temporary or permanent implant.
- implant devices may all be introduced via either the retrograde approach, from the femoral artery, into the aorta and across the valve from the ascending aorta, or through the antegrade approach—trans-septal, across the mitral valve, through the left ventricle and across the aortic valve, and will provide for delivery of anti-restenosis agents or energy to inhibit and/or repair valve restenosis.
- FIG. 1 illustrates a suction catheter constructed in accordance with the principles of the present invention.
- FIG. 2 is a cross-sectional view of the catheter of FIG. 1 .
- FIGS. 3 and 4 are detailed views of the distal end of the catheter of FIG. 1 , with FIG. 4 showing a suction housing in an expanded configuration.
- FIG. 5 is similar to FIG. 4 , showing the catheter without a guidewire.
- FIGS. 6-8 show modified suction housings.
- FIGS. 9 and 10 show suction housings having different depths.
- FIGS. 11-13 show suction housings having rigid or semi-rigid members around their circumferences.
- FIG. 14 shows a suction catheter having a stabilizing structure near its distal end.
- FIG. 15 illustrates how a guiding catheter would be used to place the catheters of the present invention above a treatment area.
- FIGS. 16 and 17 show how suction catheters would be placed through the guide catheters.
- FIGS. 18-22 illustrate the use of treatment catheters having ultrasonic probes for decalcifying leaflets in accordance with the principles of the present invention.
- FIG. 23 illustrates a catheter having a distal portion shaped to correspond to a shape of a targeted valve leaflet.
- FIG. 24 illustrates a catheter having a distal end with an annular treatment surface adapted to apply energy to a valve annulus.
- FIGS. 25A-25D illustrate catheters having different working ends in accordance with the principles of the present invention.
- FIGS. 26-28 illustrate catheters having ultrasonic transmission members and enlarged working ends.
- FIGS. 29-31 illustrate catheters having enlarged distal working ends with central lumens therethrough.
- FIGS. 32 and 33 illustrate catheters having ultrasonic transmission elements adjacent a working end.
- FIGS. 34-37 illustrate different patterns of motion which may be imparted by the electronic catheters of the present invention.
- FIG. 38 illustrates a catheter having a force limiting feature.
- FIGS. 39 and 40 illustrate a catheter having a deflectable distal end.
- FIGS. 41 and 42 illustrate treatment catheters being advanced through a sheath.
- FIG. 43 illustrates an ultrasonic catheter having a distal horn and a PZT stack.
- FIG. 44 illustrates a suction housing placed over a PZT stack and ultrasonic horn in an embodiment of the present invention.
- FIG. 45 illustrates a proximal housing for steering a distal end of the catheters of the present invention.
- FIG. 46 illustrates use of a pair of suction catheters for treating a valve in accordance with the principles of the present invention.
- FIG. 47 illustrates a catheter having an eccentrically loaded coil in the working end thereof.
- FIGS. 48 and 49 show variations on the coil of FIG. 47 .
- FIGS. 50-52 illustrate catheters having mechanical elements in their distal ends.
- FIGS. 53 and 54 show catheters having distal impellers and grinders.
- FIGS. 55-57 illustrate catheters having disk-like grinders with abrasive surfaces.
- FIGS. 58 and 59 illustrate rotating burrs which may be placed in the distal end of the catheters of the present invention.
- FIG. 60 illustrates a catheter having a piezoelectric film element in its distal end.
- FIGS. 61 and 62 show guiding catheters having filter elements at their distal ends which are used for introducing the catheters of the present invention.
- FIG. 63 illustrates a filter device deployed to protect an entire region of treatment.
- FIG. 64 illustrates a filter device covering a single leaflet.
- FIG. 65 shows a filter shape optimized for a leaflet at the treatment site.
- FIGS. 66-68 show catheter positions optimized for reducing calcium deposits.
- FIG. 69 shows a device having an open lattice structure.
- FIGS. 70-72 show implants formed from lattice wire structures.
- FIGS. 73-76 illustrate implants having multiple loops.
- FIGS. 77-80 show embodiments of the present invention for delivering drugs to the target treatment sites.
- FIGS. 81 and 82 illustrate catheters having balloons with both drug release capability and blood perfusion capability.
- FIGS. 83 and 84 show implantable devices having deployable struts.
- FIGS. 85 and 86 show implantable devices having anchoring elements which lie against the wall of the aorta.
- FIGS. 87-89 show embodiments where the device struts also provide for anchoring.
- Treatment catheters 10 typically comprise an elongate catheter body 12 that comprises a proximal end 14 , a distal end 16 , and one or more lumens 18 , 20 ( FIG. 2 ) within the catheter body.
- the distal end 16 may optionally comprise a suction housing 22 ( FIGS. 4 and 5 ) that extends distally from the distal end of the catheter body 12 for isolating the leaflet during treatment as well as providing a debris evacuation path during treatment and protecting the vasculature from adverse embolic events.
- An energy transmission element 24 (e.g., a drive shaft, wire leads, or a waveguide-ultrasonic transmission element, or the like) may be positioned in one of the lumens in the elongate body 12 and will typically extend from the proximal end to the distal end of the catheter body.
- a handle 26 is coupled to the proximal end 14 of the elongate catheter body 12 .
- a generator e.g., RF generator, ultrasound generator, motor, optical energy source, etc.
- the distal working element 28 may be coupled to the distal end of the energy transmission element 24 to facilitate delivery of the energy to the calcification on the aortic valve.
- the treatment catheters 10 of the present invention are configured to be introduced to the target area “over the wire.”
- the treatment catheters may be positioned adjacent the aortic valve through a guide catheter or sheath.
- the treatment catheters of the present invention may comprise a central guidewire lumen 20 for receiving a guidewire GW ( FIG. 2 ).
- the guidewire lumen 20 of the treatment catheters of the present invention may also be used for irrigating or aspirating the target area.
- the handle may comprise one or more ports so as to allow for irrigation of the target leaflet and/or aspiration of the target area.
- An irrigation source and/or an aspiration source may be coupled to the port(s), and the target area may be aspirated through one of the lumen of the catheter and/or irrigated through one of the lumens of the catheter.
- one of the irrigation source and aspiration source may be coupled to the central guidewire lumen (central lumen) and the other of the aspiration source and the irrigation source may be coupled to the lumen that is coaxial to the guidewire lumen. In some embodiments, however, there will be no inner guidewire lumen and the guidewire will simply extend through the ultrasound waveguide and the rotatable drive shaft, as shown in FIGS. 3, 4 and 6 .
- the treatment catheters 10 of the present invention may comprise a suction housing positioned at the distal end of the catheter body having an expanded configuration and a retracted configuration and configured to conform to the valve leaflet to be treated. While the suction housing 22 may be fixedly attached at the distal end, in preferred embodiments, the suction housing is movable between a retracted configuration ( FIG. 3 ) and an expanded configuration ( FIGS. 4 and 5 ). A separate sheath may also be retracted to expose the suction housing and advanced to fold the housing.
- the suction housing may be made from silicone or urethane and may be reinforced with an internal frame or mesh reinforcement to provide structural support or to enhance placement of the housing on a specified area of the valve leaflet. The housing may further act as an embolic filter as detailed later in this specification.
- the energy transmission element 24 is advanced beyond the distal end of the catheter body 12 and into the suction housing 22 .
- the guidewire GW is positioned through an opening in the distal tip.
- the guidewire GW is withdrawn and the distal working element 28 is ready for use to treat the calcification.
- the suction housing 22 is shaped to substantially conform to the shape of a bicuspid valve leaflet.
- the suction housing may be better configured to isolate the target leaflet.
- the suction housing may be shaped to substantially conform to a tricuspid valve ( FIGS. 7 and 8 ), etc.
- the depth of the suction housing may take many forms such that it is compatible with the valve to be treated.
- the suction housing 22 may be shallow ( FIG. 9 ) or deep ( FIG. 10 ).
- the depth on the cup can reduce or eliminate obstructing the coronary ostia if one of the leaflets under treatment is a coronary leaflet.
- the suction cups/housings may also have rigid or semi-rigid members around the circumference or part of the circumference of the housing to preferentially align the cup on certain valve features, such as the annulus.
- the suction cup housings have a depth range of 0.1′′ to 0.5′′ and a diameter of 15 mm to 30 mm.
- the cup or housing may have fingers 30 or longitudinal stabilizing elements 32 to assist in placing the housing against the valve as shown in FIGS. 11, 12, and 13 .
- Such stabilizing elements may also be in the form of pleats, rings or hemispherical elements, or other reinforcements to assist the device to seat within the annulus of the valve or against the leaflet.
- Such reinforcements or stabilizing elements may be formed of stainless steel, NiTi (superelastic or shape memory treated), Elgiloy®, cobalt chromium, various polymers, or may be in the form of an inflatable ringed cup.
- the cup or housing of the present invention is intended to function to provide sufficient approximation with the treatment area so as to stabilize or localize the working element while also minimizing embolic events. It that sense, it is substantially sealing against the treatment region, but such seal is not necessarily an “airtight” seal, but an approximation that performs the desired functions listed above.
- certain stabilizing devices 36 , 38 may be located on the main catheter shaft 12 to provide stability within the aorta, and may, in some cases, extend through the valve leaflets L below the valve to further stabilize the treatment device, as shown in FIG. 14 .
- a system could include a main guide catheter GC placed over the treatment area as depicted in FIG. 15 :
- the treatment area include the coronary leaflet (CL), the non-coronary leaflet (NCL) and the non-coronary leaflet (center) (NCLC).
- CL coronary leaflet
- NCL non-coronary leaflet
- NCLC non-coronary leaflet
- a first treatment catheter 40 having a distal housing 42 adapted to conform to the NCL is advanced as indicated by arrow S 1 .
- the leaflet is treated and the NCL housing catheter is withdrawn as indicated by S 2 .
- the guide catheter position is then adjusted as indicated by arrow S 3 to better approximate the CL.
- CL housing catheter is the advanced through the guide as indicated by arrow S 4 .
- the CL housing catheter is removed as indicated by arrow S 5 .
- the guide catheter GC is then repositioned to treat NCLC as indicated by arrow S 6 , and finally the NCLC housing catheter is advanced through the guide according to arrow S 7 .
- the NCLC is removed as indicated by arrow S 8 and the guide is removed and procedure completed.
- one leaflet may be treated only, more than one leaflet, and in any order according to the type of calcification, health of the patient, geometry of the target region or preference of the operator.
- a treatment catheter 50 having an ultrasonic probe for decalcifying the leaflet.
- An ultrasonic probe 52 may be surrounded by a frame or sheath 54 . Both the frame and the sheath may be connected to a source of ultrasonic vibration (not shown).
- the probe 52 is surrounded by a sheath or housing that enables the system to be substantially sealed against the treatment surface via a source of suction attached at the proximal end of the catheter system and connected to the catheter housing via a suction lumen in the catheter body.
- the system may be placed or localized at the treatment site with a mechanical clip or interface that physically attaches the housing to the treatment area (annulus or leaflet).
- the ultrasonic probe 52 is activated to disintegrate the calcium on the leaflets, creating debris that may then be removed through a suction lumen in the catheter body 50 .
- FIG. 19 Another embodiment of an ultrasonic probe 60 having a silicone cup is shown in FIG. 19 where infusate is indicated by arrows 62 and aspirate is indicated by arrows 64 .
- the ultrasonic probe 70 may be a separate element, allowing the ultrasonic treatment catheter 72 to move independently within the sealed region.
- the treatment probe 70 may be operated in a variety of directions and patterns that are further detailed in the specification, including sweeping in a circular pattern along the cusp of each leaflet and creating concentric circles during treatment to effectively treat the entire leaflet, if necessary.
- the ultrasonic element may be coaxial with the suction housing and adapted to move independently therewithin.
- a treatment catheter 80 may be placed through a series of guide catheters 82 , 84 to assist placement accuracy.
- the first guide member 84 may be placed and anchored in the aortic root using either the shape of the guide to anchor against the aortic wall, or a separate balloon or filter device to stabilize the guide or a stabilizing ring made from shape memory material or other suitable material that can provide stabilization to allow the catheter to be directed to the treatment site.
- a second steerable or articulable catheter 82 may then be placed through the initial guide to direct the treatment catheter to one area of the leaflet or other.
- the treatment catheter 80 may then be placed through the system once these guides are in place, and deployed directly to the targeted valve region.
- the steerable guide may then be actuated to target the next treatment location, thereby directing the treatment catheter (and related filtering devices) to the next site. It may only be necessary to place one guide catheter prior to the treatment catheter, or alternatively, the treatment catheter may be steerable, allowing it to be placed directly to the treatment site without the aid of other guide catheters.
- the guide catheter may also be steerable and an integral part of the treatment catheter. Steerable guides such as those depicted in US Patent Publications 2004/0092962 and 2004/0044350 are examples, the contents of which is expressly incorporated by reference in its entirety. Treatment device may then re-directed to a second treatment site, as shown in FIG. 22 .
- the distal portion 90 of the treatment catheters of the present invention may be shaped to substantially correspond to a shape of the targeted leaflet L (e.g., formed to fit within shape of the leaflet cusp, with the mouth of the housing being shaped to conform to the leaflet shape as shown in FIG. 23 ). This also enables the surface of the leaflet to be stabilized for treatment.
- the distal portion may have an internal frame that supports the distal section during deployment and treatment but is flexible such that it collapses into the treatment catheter or sheath to assist with withdrawal.
- the treatment catheter 100 of the present invention may be formed having a circumferential, annular treatment 102 surface to apply energy/vibration to the annulus to be treated.
- the catheter may be placed antegrade or retrograde, or two circumferential treatment surfaces may be used in conjunction with each other, as shown in FIG. 24 .
- the distal tip of an ultrasonic catheter may be coupled to a ultrasound transmission member or waveguide.
- the distal tip may be chosen from the various examples below, including a blunt tip, a beveled tip, a rounded tip, a pointed tip and may further include nodules or ribs ( FIG. 25C ) that protrude from the surface of the tip to enhance breakup of calcium. Arrows show exemplary patterns of use.
- the distal tip of the ultrasonic catheters of the present invention may also take the shape of the waveguide tips that are shown and described in U.S. Pat. No. 5,304,115, the contents of which is expressly incorporated by reference herein.
- U.S. Pat. No. 5,989,208 (“Nita”) the contents of which is expressly incorporated by reference herein, illustrate some additional tips in FIGS. 2-7A that may also be useful for decalcifying a valve leaflet.
- the ultrasound transmission members of the present invention may comprise a solid tube that is coupled to an enlarged distal working end.
- a central lumen may extend throughout the ultrasonic transmission member and may be used for aspiration, suction, and/or to receive a guidewire.
- the enlarged working end 110 (which has a larger diameter than the elongate proximal portion), may comprise a cylindrical portion that comprises a plurality of elongated members 112 .
- the elongated members are arranged in castellated pattern (e.g., a circular pattern in which each of the elongated members extend distally) and provide an opening along the longitudinal axis of the ultrasound transmission member. While the elongated members are cylindrically shaped, in other embodiments, the elongated members may be rounded, sharpened, or the like.
- a central lumen may extend through the ultrasound transmission element and through the enlarged distal working end.
- the distal working end 120 is enlarged and rounded.
- the portion of the ultrasound transmission element (or waveguide) that is adjacent the distal working end may be modified to amplify the delivery of the ultrasonic waves from the working end.
- the waveguide may comprises a plurality of axial slots in the tubing that act to create a plurality of “thin wires” from the tubing, which will cause the ultrasonic waves to move radially, rather than axially.
- the enlarged distal working end may then be attached to the plurality of thin wires. Two embodiments of such a configuration are illustrated in FIGS. 32 and 33 .
- each castellation may be housed on its own shaft extending back to the proximal end of the device. Other potential tip geometries are depicted below.
- the ultrasonic catheters of the present invention may be adapted to impart motion to the distal tip that is oscillatory, dottering, circular, lateral or any combination thereof.
- distal tips described herein, Applicants have found that the use of a small distal tip relative to the inner diameter of the catheter body provides a better amplitude of motion and may provide improved decalcification.
- an ultrasonic tip of the present invention can be operated in a variety of treatment patterns, depending on the region of the leaflet or annulus that is being treated, among other things.
- the treatment pattern either controlled by the user programmed into the treatment device, may be a circular motion to provide rings of decalcification on the surface being treated, a cross-hatching pattern to break up larger deposits of calcium ( FIG.
- FIG. 24 or a hemispherical ( FIG. 36 ) or wedge-shaped ( FIG. 37 ) pattern when one leaflet or region is treated at a time. It is within the scope of the present invention to use combinations of any of the patterns listed, or to employ more random patterns, or simply a linear motion.
- Certain safety mechanisms may be incorporated on the treatment catheter and related components to ensure that the treatment device does not perforate or otherwise degrade the leaflet.
- a force limiting feature may be incorporated into the treatment catheter shaft as shown in FIG. 38 , where a structure 140 can contract in response to force applied to catheter 142 in the direction of arrows 144 .
- features of the catheter shaft may limit the force that is delivered to the tissues.
- the treatment catheter 200 may be advanced through a sheath 202 that acts as a depth limiter to the treatment catheter as shown in FIGS. 41 and 42 .
- a sheath 202 that acts as a depth limiter to the treatment catheter as shown in FIGS. 41 and 42 .
- FIG. 43 An assembly of an ultrasonic catheter of the present invention is shown in FIG. 43 , including an ultrasonic transmission member 210 , a transmission-head 212 , a guide wire GW, a suction cup 214 , a spring 216 , and catheter body 218 .
- an ultrasonic catheter 220 includes a PZT stack 222 and a distal horn 224 at the distal end of the device as shown in FIG. 44 .
- FIG. 44 The advantage of the embodiment of FIG. 44 that it eliminates a long waveguide and the losses that occur when using a long waveguide.
- the suction housing would fit over the PZT stack and the ultrasonic horn.
- Certain useful ultrasound elements are depicted in U.S. Pat. No. 5,725,494 to Brisken, U.S. Pat. No. 5,069,664 to Zalesky, U.S. Pat. Nos. 5,269,291 and 5,318,014 to Carter, the contents of which are expressly incorporated by reference in their entirety.
- the proximal end of the ultrasonic catheter of the present invention may be configured according to the schematic depicted in FIG. 45 .
- Knobs 230 on a proximal housing 232 are coupled to control wires that are connected to the distal end of the device. These knobs operate to tension the control wires thereby manipulating the angle of the distal end.
- Controls 234 for the steerable guide, such as gearing, pins, and shafts, are housed in the control box 236 on which the knobs are located.
- the main body of the treatment device further comprises an outer shaft and an inner shaft connected to slide knob.
- the inner shaft is operatively connected at the distal end of the device to the housing such that when the slide knob is retracted the housing is translated from a retracted position to an extended position, or vice versa.
- a drive shaft or drive coil 230 that is operatively connected to an energy source or prime mover, for imparting motion to the drive coil.
- Drive coil terminates in the distal end of the device at the working element that contacts the tissue to be treated.
- the ultrasonic waveguide or transmission element may be positioned within the outer shaft and/or inner shaft.
- the catheters will comprise a catheter body that comprises one or more lumens.
- a drive shaft (or similar element) may extend from a proximal end of one of the lumens to the distal end of the lumen.
- a distal working element may be coupled to (or formed integrally from) the drive shaft and will be configured to extend at least partially beyond a distal end of the catheter body.
- the proximal end of the drive shaft may be coupled to a source of mechanical motion (rotation, oscillation, and/or axial movement) to drive the drive shaft and distal working element.
- the catheters of the present invention may use a variety of configurations to decalcify the leaflet. Some examples of the working elements and distal ends of the catheter body that may be used are described below.
- the distal end of the catheter 240 comprises a suction housing 242 that may be used to contact and/or isolate the leaflet that is being decalcified. While the suction housing is illustrated as a funnel shaped element, in alternative embodiments, the suction housing may be of a similar shape as the leaflets that are to be treated (as described above).
- the suction housing 242 may be fixedly coupled to the distal end of the catheter body 240 or it may be movably coupled to the distal end portion. In such movable embodiments, the suction housing may be moved from a retracted position (not shown), in which the suction housing is at least partially disposed within the lumen of the catheter body, to an expanded configuration (shown below).
- a mechanical clip, clamp or other fixation element may be used to localize the treatment device at the annulus or leaflet to be treated such as that depicted below, including an element placed from the retrograde direction and the antegrade direction to secure the leaflets.
- the distal working element may comprise a rotatable, eccentrically loaded coil 250 .
- the distal portion of the coil may taper in the distal direction and may comprise a ball 252 (or other shaped element) at or near its distal end.
- one or more weighted elements may be coupled along various portions of the coil to change the dynamics of the vibration of the coil. As can be appreciated, if the weight is positioned off of a longitudinal axis of the coil, the rotation profile of the coil will change. Consequently, strategic placement of the one or more weights could change the vibration of the coil from a simple rotation, to a coil that also has an axial vibration component.
- the working element may comprise an eccentrically loaded non-tapering coil 260 .
- the coil may or may not comprise a ball or weight at its distal tip.
- the distal coil may comprise an elongated distal wire tip 270 in which at least a portion extends radially beyond an outer diameter of the distal coil working element.
- the distal wire tip may comprise one (or more) balls or weights.
- the distal wire tip may be curved, straight or a combination thereof
- the distal working element may comprise a “drill bit” type impeller or a Dremel type oscillating or rotating member at the distal tip that is configured to contact the calcification and mechanically remove the calcification from the leaflet.
- such embodiments will be rotated and oscillated in a non-ultrasonic range of operation, and typically about 10 Hz to 20,000 Hz, preferably 100 Hz to 1000 Hz.
- rotation of the shaped impellers will typically cause the calcification debris to be moved proximally toward the lumen in the catheter body.
- the impeller may comprise rounded edges so as to provide some protection to the leaflets.
- a sheath may cover the rotating elements to provide protection or to provide more directed force by transmitting the rotational and axial movements through the sheath.
- the working elements may also comprise mechanically rotating devices.
- an oval shaped burr 280 is shown that the orientation of which ranges from vertically aligned with the central axis of the device (rotating axis) to 90 degrees or more from the central axis of the device.
- This off axis orientation allows a range of debridement locations and may be more applicable for certain situations, such as stenoses that are located eccentrically within the valve annulus, or to treat leaflet surfaces that are angled with respect to the central axis of the device.
- Angulation of the treatment tip relative to the central axis of the treatment device facilitates fragmentation of the calcification by providing increased velocity at the tip region.
- a similar arrangement is shown in FIG.
- FIG. 52 shows a burr element 284 in the form of a disk having holes in the face of the disk to allow evacuation of debris through the burr element.
- any mechanical working elements may have a roughened surface, a carbide tip material, or diamond coating to enhance fragmentation of the targeted material.
- Representative burr elements are manufactured by several companies such as Ditec Manufacturing (Carpenteria, Calif.), Diamond Tool (Providence, R.I.), and Carbide Grinding Co. (Waukesha, Wis.).
- an impeller element 290 ( FIG. 53 ) proximal to the aortic valve and not actually contact the leaflets.
- the rotation of the impeller may cause a vortex to remove calcific material off of the leaflet and into the suction housing and catheter body.
- the impeller may take a variety of forms such as the one described in U.S. Pat. No. 4,747,821 to Kensey, the contents of which are expressly incorporated herein by reference.
- a rotating grinder head 292 may be coupled to the distal coil 294 .
- the rotating grinder distal tip can take a variety of shapes. In the configuration illustrated below, the grinder distal tip is convex shaped and comprises a plurality of holes that are in a radial circular pattern around a central opening that is in communication with an axial lumen of the drive shaft. In such a configuration, the grinder distal tip is symmetrically positioned about the longitudinal axis of the distal coil and the rest of the drive shaft. The radial openings allow for irrigation and aspiration of particles.
- the grinder distal tip may comprise abrasive material, such as diamond dust, to assist in removal of the calcific material from the aortic valve.
- the grinder distal tip may comprise a flat pate 300 .
- the flat grinder distal tip may comprise an abrasive material, holes, and/or machined protrusions or nubs. Such elements may be used to enhance the calcification removal from the leaflet.
- a grinder distal tip 304 may be mounted eccentrically about the distal coil 306 so that upon rotation, the grinder tips may cover a greater surface area of the leaflet without having to enlarge the size of the grinder distal tip.
- the figure below illustrates the flat grinder distal tip, but it should be appreciated that any of the distal tips described herein may be mounted eccentrically with the distal coil.
- the distal working element may comprise a castellated mechanical tip, such as that shown above for the ultrasonic working element.
- the castellated tip may have an impeller that is set back from the distal tip.
- the present invention may use the Rotablator device that is described in U.S. Pat. No. 5,314,407 or 6,818,001, the complete disclosure of which are expressly incorporated herein by reference, to decalcify a leaflet.
- the Rotablator (as shown below) may be used as originally described, or the distal tip may be modified by flattening the tip, applying diamond dust on the tip, making the distal tip more bulbous, or the like. See FIG. 58 which is taken from the '407 patent.
- the air turbine used for the Rotablator may be used to power some or all of the aforementioned mechanically-based treatment catheters.
- the air turbine provides an appropriate amount of torque and speed for disruption of calcium on the leaflets.
- the torque and speed combined with a low moment of inertia of the drive shaft and distal tips of the present invention, reduce the risk of catastrophic drive shaft failure. For example, when the distal tip becomes “loaded” due to contact with the calcific deposits, the speed of rotation will reduce to zero without snapping or wrapping up the drive shaft.
- the treatment catheter may comprise an optional sheath that surrounds the distal working element.
- the sheath may comprise a spherical shaped distal tip 310 that surrounds the distal working element.
- An elongated proximal portion is attached to the spherical distal tip and is sized and shaped to cover some or all of the drive shaft that is within the lumen of the catheter body.
- the spherical shaped distal tip may comprise an opening 312 that will allow for the delivery of a media (e.g., contrast media, coolant, etc.) and/or for passageway of a guidewire.
- the mechanical element or ultrasonic transmission element may extend beyond the tip of the sheath.
- a similar depiction is shown in U.S. Pat. No. 6,843,797 to Nash, the contents of which are expressly incorporated herein by reference.
- the sheath may comprise bellows or a flexible portion that allows for the end of the sheath to bend, extend, and/or retract.
- the sheath will typically not rotate, and the sheath will typically be sized to allow the distal working element and the drive shaft to rotate within the sheath. Rotation of the distal working element within the sheath will articulate the sheath (which will depend on the shape and type of actuation of the drive shaft) and may create a “scrubbing effect” on the calcific deposits.
- the sheath will transmit the mechanical motion of the drive shaft, while providing a layer of protection to the leaflets by controlling the oscillation of the working element.
- the sheath may be made of a variety of materials as known in the art and reinforced in such a way as to withstand the friction from the rotation of the distal working element within the spherical distal tip Consequently, one useful material for the sheath is steel, or a braided or other catheter reinforcement technique.
- a cooling fluid may be to decrease the heat energy seen by the tissue, and assist in the removal of debris during debridement.
- a fluid may also assist with tissue fragmentation by providing a cavitation effect in either the ultrasonic embodiments or the mechanical embodiments.
- the ultrasound treatment catheters and the mechanical treatment catheters comprise a lumen that runs through the catheter body to the distal end. It may be useful to deliver a media, such as a cooling fluid, an ultrasound contrast fluid, or the like, through the lumen to the target leaflet to amplify the effect of the energy delivery to the embedded calcific nodules on the leaflet.
- the media may comprise microspheres or microbubbles.
- One useful contrast media that may be used with the methods and treatment catheters of the present invention is the OptisonTM contrast agent (GE Healthcare).
- OptisonTM contrast agent GE Healthcare
- Delivery of the ultrasonic wave through the contrast media that contains the microbubbles can increase the amount of cavitation or fragmentation energy delivered to the leaflet. Applying suction during the procedure can also enhance the fragmentation energy as described by Cimino and Bond, “Physics of Ultrasonic Surgery using Tissue Fragmentation: Part I and Part II”, Ultrasound in Medicine and Biology, Vol. 22, No. 1, pp. 89-100, and pp. 101-117, 1996. It has been described that the interaction of gas bodies (e.g., microbubbles) with ultrasound pulses enhances non-thermal perturbation (e.g., cavitation-related mechanical phenomena). Thus, using a controlled amount of contrast agent with microbubbles may enhance the removal of the calcification from the leaflets.
- gas bodies e.g., microbubbles
- non-thermal perturbation e.g., cavitation-related mechanical phenomena
- the contrast media may be used with an RF catheter or a piezoelectric-based catheter.
- the catheter body may comprise two RF electrodes positioned at or near the distal end of the catheter.
- the media with the microbubbles may be delivered to the target leaflet through the lumen of the catheter, and an RF energy may be delivered between two leads to deliver energy to the microbubbles.
- wire leads will extend through, within (or outside) the lumen of the catheter body and will be coupled to a generator. If the wire leads are disposed within the lumen of the catheter body, the catheter may comprise an inner tube to insulate the wires. The media may be delivered through the inner lumen of the catheter body and exposed to the piezo film at the distal end of the catheter body, and the energy may be delivered from the piezo film and into the media with the microbubbles.
- protection devices and methods may be used to trap and evacuate debris from the treatment site.
- a filter device 336 is located on the shaft of a guide catheter 338 . This structure may also provide anchoring of the guide catheter in the aortic root to provide a stable access system to the valve or placing additional treatment catheters.
- a filter device is deployed to protect the entire region of treatment and may include a systemic filtering device 340 such as those where blood and aspirate are removed from the arterial side of the vasculature, filtered and then infused back into the venous circulation, further details in U.S. Pat. No. 6,423,032 to Parodi, the disclosure of which is expressly incorporated herein by reference.
- a suction port 342 surrounds the ultrasound probe 344 at the distal end of catheter 346 .
- filtering applied more locally closer to the treatment site (e.g. one leaflet at a time), to protect local structures such as the ostium of the coronaries located just above the aortic valve.
- a filtering device may be used in conjunction with treatment devices, such as the ultrasonic suction catheter shown in FIG. 64 , where filter device 350 covers a single leaflet which is also engaged by ultrasonic probe 352 at suction port 354 .
- the filter shape may be optimized to access the most relevant leaflet or treatment site, as shown in FIG. 6 . Any of the above filtering or protection systems may be used with any of the treatment catheters disclosed herein.
- Certain features of the present invention aid in directing, positioning and stabilizing the treatment catheter optimally at the site of the disease to be treated.
- certain methods may be used to position the catheter.
- the heart may be connected to a pacing lead and the heart then paced at an increased rate, for example 200 beats per minute, which then holds the aortic leaflets in a relatively fixed location arresting blood flow and allowing the treatment catheter of the present invention to be applied to at least one leaflet.
- pacing is stopped, and the remaining leaflets not engaged by the catheter, function normally.
- ICE intracardiac echocardiography
- TEE transesophageal echocardiography
- IVUS intravascular ultrasound
- angioscopy infrared, capacitive ultrasonic transducers (cMUTs) available from Sensant, Inc./Seimens (San Leandro, Calif.) or other means known in the art.
- the treatment catheter may have an imaging device integrated into the housing or treatment element catheter shaft, such as a phased array intravascular ultrasound element.
- Imaging may become critical at various stages of the procedure, including diagnosing the type and location of the disease, placing the treatment catheter, assessing the treatment process, and verifying the function of the valve once it is treated.
- Imaging devices may be placed locally at the treatment site, such as on the catheter tip, or catheter body, alongside the treatment catheter, or in more remote locations such as known in the art (e.g. superior vena cava, esophagus, or right atrium). If the imaging element is placed on the treatment catheter, it may be adapted to be “forward looking” e.g. image in a plane or multiple planes in front of the treatment device.
- Elastography in this context may be performed using an intravascular ultrasound (IVUS) catheter, either a mechanical transducer or phased array system, such as those described in “Characterization of plaque components and vulnerability with intravascular ultrasound elastography” Phys. Med. Biol. 45 (2000) 1465-1475, the contents of which is expressly incorporated by reference herein.
- IVUS intravascular ultrasound
- the transducer may be advanced to a treatment site on the valve, and using either externally applied force, or “periodic excitation” of the tissue region either by externally applied force or the naturally occurring movement in the tissue itself (such as the opening and closing of the valve leaflets), an initial baseline reading can be taken.
- This baseline could be set by engaging the region or leaflet to be treated with a suction catheter of the present invention (including circulating fluid within the treatment site), inserting an ultrasound transducer through the treatment catheter up to the treatment site, and interrogating the targeted region with the ultrasound transducer to establish the elasticity of the region (stress/strain profile).
- infusion can then be stopped, putting the leaflet under additional stress (by suction alone) and the displacement in the stress/strain profile can be noted and evaluated to direct the treatment device to those locations showing less elasticity (“stiffer” regions indicating the presence of calcific deposits. See also those techniques set forth in “Elastography—the movement begins” Phys. Med. Biol. 45 (2000) 1409-1421 and “Selected Methods for Imaging Elastic Properties of Biological Tissues” Annu Rev. Biomed. Eng. (2003) 5:57-78, the contents of which are expressly incorporated by reference herein.
- the same transducer or fiber optic that is used to interrogate or image the region may also be used to break up or treat the underlying calcific deposits. Certain parameters may be adjusted to transition the therapy device from diagnostic to therapeutic, including frequency, power, total energy delivered, etc.
- characterization techniques may be employed to both target the calcific region to be treated or assess the result of a treatment, including MRI, Doppler, and techniques that utilize resistivity data, impedance/inductance feedback and the like.
- imaging and other monitoring techniques such as those described, can result in a more targeted procedure that focuses on removing calcific deposits and limits potential tissue damage to the leaflet and annulus that can lead to an unwanted proliferative response.
- a variety of energy modalities may be used in the treatment catheters envisioned by the present invention. Those modalities more specifically useful for breaking down or obliterating calcific deposits may be ultrasonic energy, laser energy and the like. Specifically, some Er:YAG lasers may specifically target calcium when operated in appropriate ranges. Some detail of targeted bone ablation supports this as found in “Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers” J Periodontol. 2002 June; 73(6):643-52, the contents of which are expressly incorporated by reference herein.
- energy may be delivered to selectively remove tissue from around or over a calcium deposit by employing a resurfacing laser that selectively targets water-containing tissue resulting in controlled tissue vaporization, such as a high-energy pulsed or scanned carbon dioxide laser, a short-pulsed Er:YAG, and modulated (short-and-long-pulsed) Er:YAG system.
- a resurfacing laser that selectively targets water-containing tissue resulting in controlled tissue vaporization, such as a high-energy pulsed or scanned carbon dioxide laser, a short-pulsed Er:YAG, and modulated (short-and-long-pulsed) Er:YAG system.
- This application of energy may be useful for accessing plaque or calcium that is distributed between the leaflets (spongiosa).
- tissue destruction may also be applied to the removal of scar tissue or regions of hypertrophy within the valve annulus as part of the
- the ultrasonic treatment catheters of the present invention may be operated in ranges between 5 and 100 kHz, for example 10-50 kHz, with an oscillation rate in the range of 10-200 microns, for example 75-150 microns (maximum travel between 20-400 microns).
- an oscillation rate in the range of 10-200 microns, for example 75-150 microns (maximum travel between 20-400 microns).
- FIGS. 66, 67, and 68 A schematic depiction of these various positions with the valve are depicted in FIGS. 66, 67, and 68 , where FIGS. 67 and 68 are cross-sections along lines A-A and B-B of FIG. 66 , respectively.
- the treatment catheters of the present invention may also be utilized to not only remove calcium, but also to remove or obliterate the leaflet itself, such as in preparation for implantation of a minimally invasive prosthetic valve, such as those disclosed in U.S. Pat. Nos. 5,840,081 and 6,582,462 to Anderson, US Patent Application 2004/0092858 to Wilson, PCT Publication WO 2004/093728 to Khairkhahan, WO 2005/009285 to Hermann and the like, the disclosures of which are expressly incorporated herein by reference.
- Pre-treatment with devices of the present invention may facilitate placement of such prosthetic valves since removing calcium from the site of implantation may reduce perivalvular leak, dislodgement, and may result in a larger prosthesis being implanted due to an increased effective valve orifice.
- devices may be provided which are temporarily or permanently implanted across or within the aortic valve.
- the devices which appear below are all intended to remain for at least a period of time within the body after the repair of the stenosis has been completed in order to prevent or delay the valves from degenerating, by either recalcifying, fusion of leaflets, and restenosing.
- An implant of the present invention is depicted in FIG. 67 in either a sub annular 360 or supra annular position 362 .
- an implant such as the coil depicted below, to extend both sub annular and supra annular to provide additional support to the valve and provide a greater treatment area across the valve.
- the coil design of this embodiment has a single strut that joins the two ring portions but is low profile enough that is does not occlude the coronaries just above the valve annulus. See, FIG. 68 . Because of its open structure, the supra annular portion of the implant can extend above the coronaries into the aortic root for additional anchoring. See, FIG. 69 .
- the implant may be formed of a wire, series of wire, or cellular structure similar to that used in peripheral or coronary stents. To better seat in the valve annulus, or below the valve, it may be advantageous to form the implant ring to follow the cusps of the valve, in a sinusoidal form.
- the implant ring may have struts that extend to seat against the annulus of the valve to provide structure or further disseminate a pharmacologic coating at specific valve sites. See, FIGS. 70, 71, and 72 .
- the implant may be formed of multiple loops, such as three loops 120 degrees from each other. See, FIGS. 73-76 .
- the wire may have a diameter between 0.020′′ and 0.250′′ depending on the force desired.
- the wire may be flat and the structure may include a mesh between the loops to provide a larger surface area for supporting the valve or delivery the pharmacologic agent.
- the loops of this device may be moved distally and proximally in a cyclic way to further open the valve leaflets and disrupt plaque as a stand alone therapy.
- the device may then be permanently implanted as detailed above. It may be desirable to recapture the device, either once the valve has been treated, or during positioning of the permanent implant to ensure proper placement.
- a recapture device may be the delivery catheter from which the implant is deployed, or may include an expandable funnel on the distal end of a retrieval catheter or may include any number of mechanical devices including a grasper or a hook that mates with a hook on the implant, or grasps the implant at some point such that it may be drawn into the delivery sheath and removed from the body.
- any of the implants described herein may have surface enhancements or coatings to make them radiopaque or echogenic for purposes of procedure assessment as is known in the art.
- the devices described may be permanent, removable, or bio-erodable. They can incorporate anti-restenosis agents or materials such as those set forth above, in the form of coatings, holes, depots, pores or surface irregularities designed into or applied onto the devices.
- the implants can be formed of certain calcification resistant materials such as those set forth in U.S. Pat. No. 6,254,635, the contents of which are expressly incorporated by reference herein. Further, implants of the present invention may be configured to emit a slight electrical charge.
- Anti-restenosis agents which may be useful in this application may be chosen from any of the families of agents or energy modalities known in the art.
- pharmaceutical agents or their analogues such as rapamycin, paclitaxel, sirolimus or nitric-oxide enhancing agents may be coated onto these devices using drug eluting coatings, incorporated into intentionally created surface irregularities or specific surface features such as holes or divots.
- the devices may be designed for drug infusion through the incorporation of coatings or other surfaces to adhere the agents to the implants utilized to perform the procedures of the present invention, or may be prescribed for oral administration following procedures of the present invention.
- a patient may be prescribed a dose of statins, ACE inhibitors or other drugs to prolong the valve function provided by the intervention.
- FIGS. 77-89 represent various embodiments of systems intended for acute or sub-chronic procedures. These devices may be placed across the aortic valve and expanded to reopen the aortic valve, and then left in place for a period of time in order to expose the treated valve to anti-restenosis agents or energy modalities designed to facilitate the repair and/or to prevent restenosis.
- the device shown in FIGS. 77 and 78 features mechanical vanes 400 which extend outward to engage and separate the fused leaflets at the commissures.
- the vanes may be made of any suitable metal, plastic or combination.
- vanes may be self expanding (made from nitinol or elgiloy, for instance) or they might be mechanically actuated using a pneumatic, hydraulic, threaded or other mechanical actuation system.
- the vanes might be deformable members as shown above, or each vane might be made up of several more rigid parts connected at hinged portions to allow expansion and contraction of the unit.
- the vanes may be designed with a cross section which is rectangular in shape, with the narrower edge designed to facilitate separation of fused leaflets and to fit within the commissures without impacting the ability if he valves to close. The wider face of these rectangular vanes would contact the newly separated edges of the leaflets.
- the vanes might be designed to have more of a wing-shaped or other cross sectional shape to minimize turbulence within the bloodstream and to minimize trauma to the valve leaflets.
- the device of FIGS. 79 and 80 shows a balloon system to be used in accordance with the inventive methods.
- the balloon 410 may feature a plurality of holes 412 to be used for the infusion of anti-restenosis agents as described in more detail below. These holes maybe small enough to allow only a slight weeping of the agents to be infused, or they might be of a size which would allow more rapid infusion or a greater volume of infusate to be delivered.
- the holes might be placed in even distribution around the circumference of the balloon, or they might be placed to align more directly with the location of the commissures.
- the device of FIGS. 81 and 82 comprise a balloon system which combines features of FIGS. 77 and 78 with those of 79 and 80 .
- Several balloons are placed such that each balloon aligns with a commissure 424 . Inflation of this device may allow continued perfusion of blood out of the heart and into the body which the device is in place. This in turn might low for more prolonged delivery of anti-restenosis agents.
- Holes might be placed on the balloons of FIG. 3 similar to the description for the holes on the device in FIGS. 79 and 80 .
- Anti-restenosis agents which may be useful in this application may be chosen from any of the families of agents or energy modalities known in the art.
- pharmaceutical agents or their analogues such as rapamycin, paclitaxel, sirolimus or nitric-oxide enhancing agents may be coated onto any of the inventive devices using drug eluting coatings, incorporated into intentionally created surface irregularities or specific surface features such as holes or divots.
- the devices may be designed for drug infusion through the incorporation of infusion channels and infusion holes in the work-performing elements of the devices such as the balloons or commissurotomy vanes shown in the drawings.
- Radiofrequency energy delivery may be achieved by several different modalities and for different purposes.
- Radiofrequency energy can be applied by energizing the commissurotomy vanes or by using the pores on the balloons to achieve a wet electrode.
- Microwave, ultrasound, high frequency ultrasound energy or pulsed electric fields might be used by incorporating antennae or electrodes into the vanes, balloons or catheter shafts that support these work performing elements.
- Cryotherapy can be achieved by circulating cooling fluids such as phase-change gases or liquid nitrogen through the work performing elements. Multiple modalities might be incorporated into a single device for achieving the goal of durable aortic valve repair.
- This energy may be used to facilitate the valve repair, for instance by making easier the parting of fused leaflets.
- the energy may be used to delay or prevent restenosis of the treated valve.
- One example of the use of energy delivery for the prevention of restenosis is the use of pulsed electric fields to induce cellular apoptosis. It is known in the art that the application of pulses of electricity on the order of nanosecond duration can alter the intracellular apparatus of a cell and induce apoptosis, or programmed cell death, which is known to be a key aspect of the mechanism of action of the clinically proven anti-restenosis drugs such as paclitaxel or sirolimus.
- agents or energy applications might be administered while the patient is in the catheterization lab, over the course of minutes to hours.
- the devices may be designed to allow the patient to return to the hospital floor with the device in place, so that the infusion of agents or the application of energy could proceed over the course of hours or days.
- devices may be provided which are temporarily or permanently implanted across or within the aortic valve.
- the devices which appear below are all intended to remain for at least a period of time within the body after the repair of the stenosis has been completed in order to prevent or delay the valves from readhering to one another and restenosing.
- the devices described may be permanent, removable, or bio-erodable. They can incorporate anti-restenosis agents or materials into coatings, holes, depots, pores or surface irregularities designed into or applied onto the devices
- the struts 430 may be made of any suitable metal, plastic or combination as shown in FIGS. 83 and 84 . They may be self expanding (made from nitinol or elgiloy, for instance) or they might be mechanically actuated during implantation using a pneumatic, hydraulic, threaded or other mechanical actuation system and then locked into their final position prior to deployment of the device from the delivery system.
- the struts might be deformable members as shown above, or each strut might be made up of several more rigid parts connected at hinged portions to allow expansion and contraction of the unit.
- the struts may be designed with a cross section which is rectangular in shape, with the narrower edge designed to facilitate separation of fused leaflets and to fit within the commissures without impacting the ability if he valves to close. The wider face of these rectangular struts would contact the newly separated edges of the leaflets.
- the struts might be designed to have more of a wing-shaped or other cross sectional shape to minimize turbulence within the bloodstream and to minimize trauma to the valve leaflets.
- FIGS. 85-89 show alternate designs for the implantable device. It should be noted that any design for the implant which achieves the goals of providing long-term anti-restenosis agents or energy modalities to the treated regions of the repaired leaflets should be considered as subjects of this invention.
- Anchoring elements which lie against the wall of the aorta and are generally contiguous with the struts (as shown in FIGS. 83 and 84 ), which join in the center of the aorta before reforming with the struts (as in FIGS. 85 and 86 ), or designs in which the struts themselves are the anchoring elements (as in FIGS. 87-89 ) are all embodiments of the subject invention.
- the implantable and bio-erodable devices might all feature pharmaceutical agents or their analogues such as rapamycin, paclitaxel, sirolimus or nitric-oxide enhancing agents, which may be coated onto any of the inventive devices using drug eluting coatings, or incorporated into intentionally created surface irregularities or specific surface features such as holes or divots.
- pharmaceutical agents or their analogues such as rapamycin, paclitaxel, sirolimus or nitric-oxide enhancing agents, which may be coated onto any of the inventive devices using drug eluting coatings, or incorporated into intentionally created surface irregularities or specific surface features such as holes or divots.
- Additional anti-restenosis agents or energy modalities might be delivered separate from and/or in addition to those agents that are incorporated onto the implant, for instance as a feature of the delivery system.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Mechanical Engineering (AREA)
- Otolaryngology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Transplantation (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Surgical Instruments (AREA)
- Valve Housings (AREA)
- Prostheses (AREA)
Abstract
Description
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/212,797 US10350004B2 (en) | 2004-12-09 | 2016-07-18 | Intravascular treatment catheters |
US16/511,947 US11272982B2 (en) | 2004-12-09 | 2019-07-15 | Intravascular treatment catheters |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63527504P | 2004-12-09 | 2004-12-09 | |
US66276405P | 2005-03-16 | 2005-03-16 | |
US69829705P | 2005-07-11 | 2005-07-11 | |
US11/299,246 US7803168B2 (en) | 2004-12-09 | 2005-12-09 | Aortic valve repair |
US12/870,270 US20100324554A1 (en) | 2004-12-09 | 2010-08-27 | Aortic Valve Repair |
US13/692,613 US9414852B2 (en) | 2004-12-09 | 2012-12-03 | Aortic valve repair |
US15/212,797 US10350004B2 (en) | 2004-12-09 | 2016-07-18 | Intravascular treatment catheters |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/692,613 Continuation US9414852B2 (en) | 2004-12-09 | 2012-12-03 | Aortic valve repair |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/511,947 Continuation US11272982B2 (en) | 2004-12-09 | 2019-07-15 | Intravascular treatment catheters |
Publications (2)
Publication Number | Publication Date |
---|---|
US20170014183A1 US20170014183A1 (en) | 2017-01-19 |
US10350004B2 true US10350004B2 (en) | 2019-07-16 |
Family
ID=36578602
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/299,246 Active 2026-02-16 US7803168B2 (en) | 2004-12-09 | 2005-12-09 | Aortic valve repair |
US12/870,270 Abandoned US20100324554A1 (en) | 2004-12-09 | 2010-08-27 | Aortic Valve Repair |
US13/692,613 Expired - Fee Related US9414852B2 (en) | 2004-12-09 | 2012-12-03 | Aortic valve repair |
US15/212,797 Active 2026-08-01 US10350004B2 (en) | 2004-12-09 | 2016-07-18 | Intravascular treatment catheters |
US16/511,947 Active 2027-01-23 US11272982B2 (en) | 2004-12-09 | 2019-07-15 | Intravascular treatment catheters |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/299,246 Active 2026-02-16 US7803168B2 (en) | 2004-12-09 | 2005-12-09 | Aortic valve repair |
US12/870,270 Abandoned US20100324554A1 (en) | 2004-12-09 | 2010-08-27 | Aortic Valve Repair |
US13/692,613 Expired - Fee Related US9414852B2 (en) | 2004-12-09 | 2012-12-03 | Aortic valve repair |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/511,947 Active 2027-01-23 US11272982B2 (en) | 2004-12-09 | 2019-07-15 | Intravascular treatment catheters |
Country Status (5)
Country | Link |
---|---|
US (5) | US7803168B2 (en) |
EP (1) | EP1819304B1 (en) |
JP (1) | JP5219518B2 (en) |
CN (1) | CN101076290B (en) |
WO (1) | WO2006063199A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11272982B2 (en) | 2004-12-09 | 2022-03-15 | Twelve, Inc. | Intravascular treatment catheters |
US11419619B2 (en) * | 2016-06-30 | 2022-08-23 | Les Solutions Médicales Soundbite Inc. | Method and system for treating lesions |
US12186011B2 (en) | 2019-10-21 | 2025-01-07 | Endogenex, Inc. | Devices, systems, and methods for pulsed electric field treatment of the duodenum |
US12239365B2 (en) | 2015-10-07 | 2025-03-04 | Mayo Foundation For Medical Education And Research | Electroporation for obesity or diabetes treatment |
Families Citing this family (446)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6440164B1 (en) | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
US7756583B2 (en) | 2002-04-08 | 2010-07-13 | Ardian, Inc. | Methods and apparatus for intravascularly-induced neuromodulation |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
CA2502967A1 (en) | 2002-10-24 | 2004-05-06 | Boston Scientific Limited | Venous valve apparatus and method |
US6945957B2 (en) | 2002-12-30 | 2005-09-20 | Scimed Life Systems, Inc. | Valve treatment catheter and methods |
DE202004021947U1 (en) | 2003-09-12 | 2013-05-13 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
US7854761B2 (en) | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US7566343B2 (en) | 2004-09-02 | 2009-07-28 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
CA2582520C (en) | 2004-10-08 | 2017-09-12 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument |
US20060173490A1 (en) | 2005-02-01 | 2006-08-03 | Boston Scientific Scimed, Inc. | Filter system and method |
US7867274B2 (en) | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
US7569071B2 (en) | 2005-09-21 | 2009-08-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
US10219815B2 (en) * | 2005-09-22 | 2019-03-05 | The Regents Of The University Of Michigan | Histotripsy for thrombolysis |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US20080097251A1 (en) * | 2006-06-15 | 2008-04-24 | Eilaz Babaev | Method and apparatus for treating vascular obstructions |
EP2076193A4 (en) | 2006-10-18 | 2010-02-03 | Minnow Medical Inc | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
CA2666660C (en) | 2006-10-18 | 2015-06-02 | Minnow Medical, Inc. | Inducing desirable temperature effects on body tissue |
AU2007310991B2 (en) | 2006-10-18 | 2013-06-20 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
US20080147181A1 (en) * | 2006-12-19 | 2008-06-19 | Sorin Biomedica Cardio S.R.L. | Device for in situ axial and radial positioning of cardiac valve prostheses |
US8070799B2 (en) | 2006-12-19 | 2011-12-06 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
ES2441801T3 (en) | 2007-02-05 | 2014-02-06 | Boston Scientific Limited | Percutaneous valve and supply system |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
EP2164401B1 (en) * | 2007-05-23 | 2015-08-26 | Medinol Ltd. | Apparatus for guided chronic total occlusion penetration |
US8758431B2 (en) * | 2007-06-04 | 2014-06-24 | Mor Research Applications Ltd. | Cardiac valve leaflet augmentation |
US8858490B2 (en) | 2007-07-18 | 2014-10-14 | Silk Road Medical, Inc. | Systems and methods for treating a carotid artery |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US9039728B2 (en) * | 2007-08-31 | 2015-05-26 | BiO2 Medical, Inc. | IVC filter catheter with imaging modality |
EP2195071A1 (en) * | 2007-09-06 | 2010-06-16 | Boston Scientific Scimed, Inc. | Methods and devices for local therapeutic agent delivery to heart valves |
US8808367B2 (en) | 2007-09-07 | 2014-08-19 | Sorin Group Italia S.R.L. | Prosthetic valve delivery system including retrograde/antegrade approach |
US8114154B2 (en) | 2007-09-07 | 2012-02-14 | Sorin Biomedica Cardio S.R.L. | Fluid-filled delivery system for in situ deployment of cardiac valve prostheses |
DE102007043830A1 (en) | 2007-09-13 | 2009-04-02 | Lozonschi, Lucian, Madison | Heart valve stent |
WO2009046234A2 (en) | 2007-10-05 | 2009-04-09 | Ethicon Endo-Surgery, Inc | Ergonomic surgical instruments |
US9895158B2 (en) * | 2007-10-26 | 2018-02-20 | University Of Virginia Patent Foundation | Method and apparatus for accelerated disintegration of blood clot |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US8767514B2 (en) * | 2007-12-03 | 2014-07-01 | Kolo Technologies, Inc. | Telemetric sensing using micromachined ultrasonic transducer |
CN101868981B (en) * | 2007-12-03 | 2014-05-07 | 科隆科技公司 | Stacked transducing devices |
US20100262014A1 (en) * | 2007-12-03 | 2010-10-14 | Yongli Huang | Ultrasound Scanner Built with Capacitive Micromachined Ultrasonic Transducers (CMUTS) |
US11589880B2 (en) | 2007-12-20 | 2023-02-28 | Angiodynamics, Inc. | System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure |
US10517617B2 (en) | 2007-12-20 | 2019-12-31 | Angiodynamics, Inc. | Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter |
EP3311875B1 (en) * | 2007-12-20 | 2024-11-20 | AngioDynamics, Inc. | Systems for removing undesirable material within a circulatory system |
US7892276B2 (en) | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
US8175679B2 (en) * | 2007-12-26 | 2012-05-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode that can simultaneously emit electrical energy and facilitate visualization by magnetic resonance imaging |
US9675410B2 (en) * | 2007-12-28 | 2017-06-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Flexible polymer electrode for MRI-guided positioning and radio frequency ablation |
US20090204005A1 (en) * | 2008-02-07 | 2009-08-13 | Broncus Technologies, Inc. | Puncture resistant catheter for sensing vessels and for creating passages in tissue |
US9498600B2 (en) | 2009-07-01 | 2016-11-22 | Avinger, Inc. | Atherectomy catheter with laterally-displaceable tip |
US9788790B2 (en) | 2009-05-28 | 2017-10-17 | Avinger, Inc. | Optical coherence tomography for biological imaging |
US9125562B2 (en) | 2009-07-01 | 2015-09-08 | Avinger, Inc. | Catheter-based off-axis optical coherence tomography imaging system |
US8062316B2 (en) | 2008-04-23 | 2011-11-22 | Avinger, Inc. | Catheter system and method for boring through blocked vascular passages |
US20100036294A1 (en) | 2008-05-07 | 2010-02-11 | Robert Mantell | Radially-Firing Electrohydraulic Lithotripsy Probe |
US8668668B2 (en) * | 2008-05-14 | 2014-03-11 | Onset Medical Corporation | Expandable iliac sheath and method of use |
US9101735B2 (en) * | 2008-07-07 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Catheter control systems |
WO2010014515A2 (en) * | 2008-07-27 | 2010-02-04 | Klein, David | Fracturing calcifications in heart valves |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8574245B2 (en) | 2008-08-13 | 2013-11-05 | Silk Road Medical, Inc. | Suture delivery device |
CN101380244B (en) * | 2008-10-06 | 2010-12-08 | 丁起武 | Intra-cavity milling type stone breaking device in urinary system |
WO2010041629A1 (en) * | 2008-10-07 | 2010-04-15 | オリンパスメディカルシステムズ株式会社 | Bloodstream detecting device |
US9044618B2 (en) | 2008-11-05 | 2015-06-02 | Shockwave Medical, Inc. | Shockwave valvuloplasty catheter system |
KR20110104504A (en) | 2008-11-17 | 2011-09-22 | 미노우 메디컬, 인코포레이티드 | Selective accumulation of energy according to knowledge of organizational topology |
WO2010129075A1 (en) | 2009-04-28 | 2010-11-11 | Avinger, Inc. | Guidewire support catheter |
US8353953B2 (en) | 2009-05-13 | 2013-01-15 | Sorin Biomedica Cardio, S.R.L. | Device for the in situ delivery of heart valves |
EP2250975B1 (en) | 2009-05-13 | 2013-02-27 | Sorin Biomedica Cardio S.r.l. | Device for the in situ delivery of heart valves |
US9168105B2 (en) | 2009-05-13 | 2015-10-27 | Sorin Group Italia S.R.L. | Device for surgical interventions |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8344596B2 (en) | 2009-06-24 | 2013-01-01 | Ethicon Endo-Surgery, Inc. | Transducer arrangements for ultrasonic surgical instruments |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8177835B2 (en) * | 2009-08-21 | 2012-05-15 | Siemens Aktiengesellschaft | Method of imaging for heart valve implant procedure |
DE102009042465A1 (en) * | 2009-09-23 | 2011-03-31 | Fehling Instruments Gmbh & Co. Kg | Instrument for the surgical treatment of aortic valve defects |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9060775B2 (en) | 2009-10-09 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US20230346401A1 (en) * | 2009-12-05 | 2023-11-02 | Pi-Cardia Ltd. | Fracturing calcifications in heart valves |
WO2011069025A1 (en) * | 2009-12-05 | 2011-06-09 | Pi-R-Squared Ltd. | Fracturing calcifications in heart valves |
US20110319988A1 (en) | 2009-12-08 | 2011-12-29 | Avalon Medical, Ltd. | Device and System for Transcatheter Mitral Valve Replacement |
EP2509498B1 (en) | 2009-12-08 | 2020-09-16 | Avinger, Inc. | Devices for predicting and preventing restenosis |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
WO2011106547A2 (en) * | 2010-02-26 | 2011-09-01 | Silk Road Medical, Inc. | Systems and methods for transcatheter aortic valve treatment |
WO2011126572A2 (en) | 2010-04-07 | 2011-10-13 | Office Of Technology Transfer | An expandable stent that collapses into a non-convex shape and expands into an expanded, convex shape |
US8998980B2 (en) * | 2010-04-09 | 2015-04-07 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with recapturing feature and method |
CA2795229A1 (en) | 2010-04-09 | 2011-10-13 | Vessix Vascular, Inc. | Power generating and control apparatus for the treatment of tissue |
US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
US9345510B2 (en) | 2010-07-01 | 2016-05-24 | Avinger, Inc. | Atherectomy catheters with longitudinally displaceable drive shafts |
US11382653B2 (en) | 2010-07-01 | 2022-07-12 | Avinger, Inc. | Atherectomy catheter |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
CN103491900B (en) | 2010-12-23 | 2017-03-01 | 托尔福公司 | System for mitral valve repair and replacement |
US8948848B2 (en) | 2011-01-07 | 2015-02-03 | Innovative Cardiovascular Solutions, Llc | Angiography catheter |
US9220561B2 (en) | 2011-01-19 | 2015-12-29 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
US20120209375A1 (en) | 2011-02-11 | 2012-08-16 | Gilbert Madrid | Stability device for use with percutaneous delivery systems |
US12245788B2 (en) | 2011-03-15 | 2025-03-11 | Angiodynamics, Inc. | Device and method for removing material from a hollow anatomical structure |
US9055964B2 (en) | 2011-03-15 | 2015-06-16 | Angio Dynamics, Inc. | Device and method for removing material from a hollow anatomical structure |
EP4119095A1 (en) | 2011-03-21 | 2023-01-18 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus |
CA2831306C (en) | 2011-03-28 | 2018-11-20 | Avinger, Inc. | Occlusion-crossing devices, imaging, and atherectomy devices |
US9949754B2 (en) | 2011-03-28 | 2018-04-24 | Avinger, Inc. | Occlusion-crossing devices |
CA2832586C (en) * | 2011-04-08 | 2016-08-16 | Covidien Lp | Flexible microwave catheters for natural or artificial lumens |
US20120259269A1 (en) | 2011-04-08 | 2012-10-11 | Tyco Healthcare Group Lp | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
US20120271163A1 (en) * | 2011-04-20 | 2012-10-25 | Foster Arthur J | Ultrasonic monitoring of implantable medical devices |
EP2701623B1 (en) | 2011-04-25 | 2016-08-17 | Medtronic Ardian Luxembourg S.à.r.l. | Apparatus related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9198706B2 (en) | 2011-05-12 | 2015-12-01 | Cvdevices, Llc | Systems and methods for cryoblation of a tissue |
US20120303048A1 (en) | 2011-05-24 | 2012-11-29 | Sorin Biomedica Cardio S.R.I. | Transapical valve replacement |
JP5872692B2 (en) | 2011-06-21 | 2016-03-01 | トゥエルヴ, インコーポレイテッド | Artificial therapy device |
CN103813745B (en) | 2011-07-20 | 2016-06-29 | 波士顿科学西美德公司 | In order to visualize, be directed at and to melt transcutaneous device and the method for nerve |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
JP6106669B2 (en) | 2011-07-22 | 2017-04-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | A neuromodulation system having a neuromodulation element that can be placed in a helical guide |
US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
US9480559B2 (en) | 2011-08-11 | 2016-11-01 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
EP2765942B1 (en) | 2011-10-10 | 2016-02-24 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
EP2765940B1 (en) | 2011-10-11 | 2015-08-26 | Boston Scientific Scimed, Inc. | Off-wall electrode device for nerve modulation |
US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
EP2768406B1 (en) | 2011-10-17 | 2019-12-04 | Avinger, Inc. | Atherectomy catheters and non-contact actuation mechanism for catheters |
EP2768568B1 (en) | 2011-10-18 | 2020-05-06 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
EP2768563B1 (en) | 2011-10-18 | 2016-11-09 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
JP6034390B2 (en) * | 2011-10-18 | 2016-11-30 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Atherectomy positioning device |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
EP3943047B1 (en) | 2011-10-19 | 2023-08-30 | Twelve, Inc. | Device for heart valve replacement |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
CA2849030C (en) | 2011-10-19 | 2020-10-27 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
EP2775948B1 (en) | 2011-11-08 | 2018-04-04 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US8574247B2 (en) | 2011-11-08 | 2013-11-05 | Shockwave Medical, Inc. | Shock wave valvuloplasty device with moveable shock wave generator |
US9345406B2 (en) | 2011-11-11 | 2016-05-24 | Avinger, Inc. | Occlusion-crossing devices, atherectomy devices, and imaging |
EP2779929A1 (en) | 2011-11-15 | 2014-09-24 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
WO2013078235A1 (en) | 2011-11-23 | 2013-05-30 | Broncus Medical Inc | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
EP2787902B1 (en) * | 2011-12-05 | 2018-09-19 | Pi-R-Squared Ltd. | Fracturing calcifications in heart valves |
US9730609B2 (en) | 2011-12-15 | 2017-08-15 | Siemens Healthcare Gmbh | Method and system for aortic valve calcification evaluation |
US9827092B2 (en) | 2011-12-16 | 2017-11-28 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
WO2013096919A1 (en) | 2011-12-23 | 2013-06-27 | Vessix Vascular, Inc. | Expandable balloon or an electrode pad with a heat sensing device |
US9433760B2 (en) | 2011-12-28 | 2016-09-06 | Boston Scientific Scimed, Inc. | Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements |
US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
JP6165780B2 (en) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Robot-controlled surgical instrument |
US20130226287A1 (en) * | 2012-02-23 | 2013-08-29 | Boston Scientific Scimed, Inc. | Valvuloplasty device |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
CN102614017B (en) * | 2012-04-20 | 2015-09-30 | 中国人民解放军第二军医大学 | Untouchable for bronchial lumen internal therapy microwave device |
US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
WO2013172970A1 (en) | 2012-05-14 | 2013-11-21 | Avinger, Inc. | Atherectomy catheters with imaging |
US9557156B2 (en) | 2012-05-14 | 2017-01-31 | Avinger, Inc. | Optical coherence tomography with graded index fiber for biological imaging |
EP2849660B1 (en) | 2012-05-14 | 2021-08-25 | Avinger, Inc. | Atherectomy catheter drive assemblies |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
WO2014022124A1 (en) | 2012-07-28 | 2014-02-06 | Tendyne Holdings, Inc. | Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
WO2014021905A1 (en) | 2012-07-30 | 2014-02-06 | Tendyne Holdings, Inc. | Improved delivery systems and methods for transcatheter prosthetic valves |
EP2879597B1 (en) | 2012-08-06 | 2016-09-21 | Shockwave Medical, Inc. | Shockwave catheter |
WO2014025981A1 (en) * | 2012-08-08 | 2014-02-13 | Shockwave Medical, Inc. | Shockwave valvuloplasty with multiple balloons |
WO2014032016A1 (en) | 2012-08-24 | 2014-02-27 | Boston Scientific Scimed, Inc. | Intravascular catheter with a balloon comprising separate microporous regions |
US10335173B2 (en) | 2012-09-06 | 2019-07-02 | Avinger, Inc. | Re-entry stylet for catheter |
JP6523170B2 (en) | 2012-09-06 | 2019-05-29 | アビンガー・インコーポレイテッドAvinger, Inc. | Atheroma catheter and atheroma assembly |
US9498247B2 (en) | 2014-02-06 | 2016-11-22 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US11284916B2 (en) | 2012-09-06 | 2022-03-29 | Avinger, Inc. | Atherectomy catheters and occlusion crossing devices |
US9173696B2 (en) | 2012-09-17 | 2015-11-03 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
WO2014047411A1 (en) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
WO2014047454A2 (en) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
BR112015007010B1 (en) | 2012-09-28 | 2022-05-31 | Ethicon Endo-Surgery, Inc | end actuator |
WO2014059165A2 (en) | 2012-10-10 | 2014-04-17 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US9675456B2 (en) * | 2012-11-02 | 2017-06-13 | Medtronic, Inc. | Transcatheter valve prosthesis delivery system with recapturing feature and method |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
US9693821B2 (en) | 2013-03-11 | 2017-07-04 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
ES2703539T3 (en) | 2013-03-11 | 2019-03-11 | Northgate Tech Inc | Unfocused electrohydraulic lithotripter |
US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
JP6291025B2 (en) | 2013-03-15 | 2018-03-14 | アビンガー・インコーポレイテッドAvinger, Inc. | Optical pressure sensor assembly |
EP2967371B1 (en) | 2013-03-15 | 2024-05-15 | Avinger, Inc. | Chronic total occlusion crossing devices with imaging |
CN105228546B (en) | 2013-03-15 | 2017-11-14 | 波士顿科学国际有限公司 | Utilize the impedance-compensated medicine equipment and method that are used to treat hypertension |
JP6220044B2 (en) | 2013-03-15 | 2017-10-25 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Medical device for renal nerve ablation |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
WO2014142954A1 (en) | 2013-03-15 | 2014-09-18 | Avinger, Inc. | Tissue collection device for catheter |
US11224510B2 (en) | 2013-04-02 | 2022-01-18 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US9486306B2 (en) | 2013-04-02 | 2016-11-08 | Tendyne Holdings, Inc. | Inflatable annular sealing device for prosthetic mitral valve |
US10463489B2 (en) | 2013-04-02 | 2019-11-05 | Tendyne Holdings, Inc. | Prosthetic heart valve and systems and methods for delivering the same |
US10478293B2 (en) | 2013-04-04 | 2019-11-19 | Tendyne Holdings, Inc. | Retrieval and repositioning system for prosthetic heart valve |
JP6545665B2 (en) | 2013-05-20 | 2019-07-17 | トゥエルヴ, インコーポレイテッド | Implantable heart valve devices, mitral valve repair devices, and related systems and methods |
US9610159B2 (en) | 2013-05-30 | 2017-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
EP3010436A1 (en) | 2013-06-21 | 2016-04-27 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation having rotatable shafts |
US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
JP6461122B2 (en) | 2013-06-25 | 2019-01-30 | テンダイン ホールディングス,インコーポレイテッド | Thrombus management and structural compliance features of prosthetic heart valves |
US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
EP3013262B1 (en) * | 2013-06-26 | 2020-04-22 | Strait Access Technologies Holdings (PTY) LTD | Orientation device for use in mitral valve repair |
US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
US10130386B2 (en) | 2013-07-08 | 2018-11-20 | Avinger, Inc. | Identification of elastic lamina to guide interventional therapy |
CN105377170A (en) | 2013-07-11 | 2016-03-02 | 波士顿科学国际有限公司 | Medical device with stretchable electrode assemblies |
WO2015006480A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US9561103B2 (en) | 2013-07-17 | 2017-02-07 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
CN105682594B (en) | 2013-07-19 | 2018-06-22 | 波士顿科学国际有限公司 | Helical bipolar electrodes renal denervation dominates air bag |
CN105392435B (en) | 2013-07-22 | 2018-11-09 | 波士顿科学国际有限公司 | Renal nerve ablation catheter with twisting sacculus |
WO2015013205A1 (en) | 2013-07-22 | 2015-01-29 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
CN105555231B (en) | 2013-08-01 | 2018-02-09 | 坦迪尼控股股份有限公司 | External membrane of heart anchor and method |
US10722300B2 (en) | 2013-08-22 | 2020-07-28 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
CN105555218B (en) | 2013-09-04 | 2019-01-15 | 波士顿科学国际有限公司 | With radio frequency (RF) foley's tube rinsed with cooling capacity |
EP3043733A1 (en) | 2013-09-13 | 2016-07-20 | Boston Scientific Scimed, Inc. | Ablation balloon with vapor deposited cover layer |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
CN105592778B (en) | 2013-10-14 | 2019-07-23 | 波士顿科学医学有限公司 | High-resolution cardiac mapping electrod-array conduit |
US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US9962223B2 (en) | 2013-10-15 | 2018-05-08 | Boston Scientific Scimed, Inc. | Medical device balloon |
WO2015058039A1 (en) | 2013-10-17 | 2015-04-23 | Robert Vidlund | Apparatus and methods for alignment and deployment of intracardiac devices |
EP3057521B1 (en) | 2013-10-18 | 2020-03-25 | Boston Scientific Scimed, Inc. | Balloon catheters with flexible conducting wires |
EP3060153A1 (en) | 2013-10-25 | 2016-08-31 | Boston Scientific Scimed, Inc. | Embedded thermocouple in denervation flex circuit |
CN105682611B (en) | 2013-10-28 | 2018-06-01 | 坦迪尼控股股份有限公司 | Prosthetic heart valve and the system and method for conveying prosthetic heart valve |
US9526611B2 (en) | 2013-10-29 | 2016-12-27 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
US9913655B2 (en) * | 2013-11-18 | 2018-03-13 | Ethicon Llc | Surgical instrument with active element and suction cage |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
WO2015103617A1 (en) | 2014-01-06 | 2015-07-09 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
EP3424453A1 (en) | 2014-02-04 | 2019-01-09 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
WO2015120122A2 (en) | 2014-02-05 | 2015-08-13 | Robert Vidlund | Apparatus and methods for transfemoral delivery of prosthetic mitral valve |
EP3102127B1 (en) | 2014-02-06 | 2019-10-09 | Avinger, Inc. | Atherectomy catheter |
US9986993B2 (en) | 2014-02-11 | 2018-06-05 | Tendyne Holdings, Inc. | Adjustable tether and epicardial pad system for prosthetic heart valve |
JP6865037B2 (en) | 2014-03-10 | 2021-04-28 | テンダイン ホールディングス,インコーポレイテッド | Devices and methods for positioning the artificial mitral valve and monitoring the tether load of the artificial mitral valve |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US11903833B2 (en) | 2014-03-29 | 2024-02-20 | Cormatrix Cardiovascular, Inc. | Prosthetic venous valves |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US10709490B2 (en) | 2014-05-07 | 2020-07-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods |
FR3021859A1 (en) * | 2014-06-05 | 2015-12-11 | Bernard Pain | DEVICE FOR CUTTING AND REMOVING CALCIFIED TISSUES FROM A HEART VALVE |
CN107106190B (en) | 2014-07-08 | 2020-02-28 | 阿维格公司 | High-speed chronic total occlusion traversing device |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
WO2016046710A1 (en) * | 2014-09-24 | 2016-03-31 | Koninklijke Philips N.V. | Endoluminal filter having enhanced echogenic properties |
US20160089172A1 (en) * | 2014-09-30 | 2016-03-31 | Boston Scientific Scimed, Inc. | Devices and methods for applying suction |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
EP3229736B1 (en) | 2014-12-09 | 2024-01-10 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and method of manufacture |
CN107405195B (en) | 2015-01-07 | 2020-09-08 | 坦迪尼控股股份有限公司 | Artificial mitral valve and apparatus and method for delivering artificial mitral valve |
TWI529391B (en) * | 2015-01-22 | 2016-04-11 | 國立臺灣大學 | System and method for using photoacoustic effect |
EP3253331B1 (en) | 2015-02-05 | 2021-04-07 | Tendyne Holdings, Inc. | Prosthetic heart valve with tether and expandable epicardial pad |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10485563B2 (en) * | 2015-03-27 | 2019-11-26 | Terumo Kabushiki Kaisha | Calculus/calculi retrieving device and method |
CN107750150B (en) | 2015-04-16 | 2021-03-05 | 坦迪尼控股股份有限公司 | Devices and methods for delivering, repositioning and retrieving transcatheter prosthetic valves |
WO2016183526A1 (en) | 2015-05-14 | 2016-11-17 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
EP3294220B1 (en) | 2015-05-14 | 2023-12-06 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
ES2948135T3 (en) | 2015-06-24 | 2023-08-31 | Univ Michigan Regents | Histotripsy therapy systems for the treatment of brain tissue |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
CN107920780B (en) | 2015-07-13 | 2022-01-11 | 阿维格公司 | Micro-molded anamorphic reflective lens for image guided therapy/diagnostic catheter |
ES2905752T3 (en) * | 2015-07-16 | 2022-04-12 | Perflow Medical Ltd | Vessel occlusion removal device |
CN107920895B (en) | 2015-08-21 | 2020-06-26 | 托尔福公司 | Implantable heart valve devices, mitral valve repair devices, and associated systems and methods |
US10327894B2 (en) | 2015-09-18 | 2019-06-25 | Tendyne Holdings, Inc. | Methods for delivery of prosthetic mitral valves |
US11033322B2 (en) | 2015-09-30 | 2021-06-15 | Ethicon Llc | Circuit topologies for combined generator |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
EP3383322B1 (en) | 2015-12-03 | 2020-02-12 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
US10631984B2 (en) | 2015-12-15 | 2020-04-28 | Neovasc Tiara Inc. | Transseptal delivery system |
CA3006010C (en) | 2015-12-28 | 2023-09-26 | Tendyne Holdings, Inc. | Atrial pocket closures for prosthetic heart valves |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10709469B2 (en) | 2016-01-15 | 2020-07-14 | Ethicon Llc | Modular battery powered handheld surgical instrument with energy conservation techniques |
WO2017132247A1 (en) | 2016-01-25 | 2017-08-03 | Avinger, Inc. | Oct imaging catheter with lag correction |
WO2017127939A1 (en) | 2016-01-29 | 2017-08-03 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
JP6959255B2 (en) | 2016-04-01 | 2021-11-02 | アビンガー・インコーポレイテッドAvinger, Inc. | Catheter device for porridge resection |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
CN109069272A (en) | 2016-04-29 | 2018-12-21 | 美敦力瓦斯科尔勒公司 | Prosthetic heart valve equipment and associated system and method with the anchor log with tether |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10470877B2 (en) | 2016-05-03 | 2019-11-12 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
WO2017210466A1 (en) | 2016-06-03 | 2017-12-07 | Avinger, Inc. | Catheter device with detachable distal end |
US11039921B2 (en) | 2016-06-13 | 2021-06-22 | Tendyne Holdings, Inc. | Sequential delivery of two-part prosthetic mitral valve |
EP3471665B1 (en) | 2016-06-17 | 2023-10-11 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices |
EP3478190B1 (en) | 2016-06-30 | 2023-03-15 | Avinger, Inc. | Atherectomy catheter with shapeable distal tip |
JP6968113B2 (en) | 2016-06-30 | 2021-11-17 | テンダイン ホールディングス,インコーポレイテッド | Transapical delivery device for artificial heart valves |
WO2018013515A1 (en) | 2016-07-12 | 2018-01-18 | Tendyne Holdings, Inc. | Apparatus and methods for trans-septal retrieval of prosthetic heart valves |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
CN109475418A (en) | 2016-07-13 | 2019-03-15 | 波士顿科学国际有限公司 | For the instrument and method in the intravascular maintenance smoothness adjacent with nearby performing the operation |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10779847B2 (en) | 2016-08-25 | 2020-09-22 | Ethicon Llc | Ultrasonic transducer to waveguide joining |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
KR102721645B1 (en) | 2016-09-27 | 2024-10-25 | 삼성메디슨 주식회사 | Ultrasound diagnostic apparatus and operating method for the same |
US10646240B2 (en) | 2016-10-06 | 2020-05-12 | Shockwave Medical, Inc. | Aortic leaflet repair using shock wave applicators |
CN113893064A (en) | 2016-11-21 | 2022-01-07 | 内奥瓦斯克迪亚拉公司 | Methods and systems for rapid retrieval of transcatheter heart valve delivery systems |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10357264B2 (en) | 2016-12-06 | 2019-07-23 | Shockwave Medical, Inc. | Shock wave balloon catheter with insertable electrodes |
EP4437979A3 (en) | 2017-01-20 | 2025-02-26 | W. L. Gore & Associates, Inc. | Embolic filter system |
JP7046078B2 (en) | 2017-01-23 | 2022-04-01 | セフィア・バルブ・テクノロジーズ,インコーポレイテッド | Replacement mitral valve |
AU2018203053B2 (en) | 2017-01-23 | 2020-03-05 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US11690645B2 (en) | 2017-05-03 | 2023-07-04 | Medtronic Vascular, Inc. | Tissue-removing catheter |
CN110573098B (en) | 2017-05-03 | 2022-08-23 | 美敦力瓦斯科尔勒公司 | Tissue removal catheter |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
AU2018301815A1 (en) | 2017-07-13 | 2020-01-23 | Tendyne Holdings, Inc. | Prosthetic heart valves and apparatus and methods for delivery of same |
CN111263622A (en) | 2017-08-25 | 2020-06-09 | 内奥瓦斯克迪亚拉公司 | Sequentially deployed transcatheter mitral valve prosthesis |
EP3675774B1 (en) | 2017-08-28 | 2023-06-21 | Tendyne Holdings, Inc. | Prosthetic heart valves with tether coupling features |
JP7298826B2 (en) | 2017-09-12 | 2023-06-27 | アオルティクラブ エスアールエル | Transcatheter device for treating calcified heart valve leaflets |
IL277057B2 (en) | 2018-03-07 | 2025-02-01 | Innovative Cardiovascular Solutions Llc | Embolic protection device |
US11285003B2 (en) | 2018-03-20 | 2022-03-29 | Medtronic Vascular, Inc. | Prolapse prevention device and methods of use thereof |
US11026791B2 (en) | 2018-03-20 | 2021-06-08 | Medtronic Vascular, Inc. | Flexible canopy valve repair systems and methods of use |
US11931257B2 (en) | 2018-03-27 | 2024-03-19 | Medtronic, Inc. | Devices and methods for aortic valve preparation prior to transcatheter prosthetic valve procedures |
EP3781021B1 (en) | 2018-04-19 | 2023-03-22 | Avinger, Inc. | Occlusion-crossing devices |
CA3101165A1 (en) | 2018-05-23 | 2019-11-28 | Sorin Group Italia S.R.L. | A cardiac valve prosthesis |
US11357958B2 (en) | 2018-10-25 | 2022-06-14 | Medtronic Vascular, Inc. | Devices and techniques for cardiovascular intervention |
US11464658B2 (en) * | 2018-10-25 | 2022-10-11 | Medtronic Vascular, Inc. | Implantable medical device with cavitation features |
AU2019374743B2 (en) | 2018-11-08 | 2022-03-03 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
US11406446B2 (en) | 2018-11-14 | 2022-08-09 | Medtronic, Inc. | Devices and methods for preparing a valve for a transcatheter valve replacement procedure |
WO2020102729A1 (en) | 2018-11-16 | 2020-05-22 | Medtronic Vascular, Inc. | Tissue-removing catheter |
CN114206246B (en) | 2019-01-23 | 2024-06-11 | 阿特里医疗有限公司 | Radio frequency ablation device |
EP3685772A1 (en) * | 2019-01-24 | 2020-07-29 | Aorticlab Sarl | Device for the treatment of tissue calcification |
CA3132873A1 (en) | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
WO2020205296A1 (en) | 2019-03-21 | 2020-10-08 | Illumina, Inc. | Artificial intelligence-based generation of sequencing metadata |
CN113924065A (en) | 2019-04-10 | 2022-01-11 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve with natural blood flow |
US11819236B2 (en) | 2019-05-17 | 2023-11-21 | Medtronic Vascular, Inc. | Tissue-removing catheter |
EP3972673A4 (en) | 2019-05-20 | 2023-06-07 | Neovasc Tiara Inc. | INTRODUCER DEVICE WITH HEMOSTASIS MECHANISM |
AU2020295566B2 (en) | 2019-06-20 | 2023-07-20 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
CN114641250A (en) * | 2019-09-11 | 2022-06-17 | 北极星医疗公司 | Catheter, sheath or dilator for heart valve decalcification treatment and method of use |
EP4044942A4 (en) | 2019-10-18 | 2023-11-15 | Avinger, Inc. | Occlusion-crossing devices |
EP3831343B1 (en) | 2019-12-05 | 2024-01-31 | Tendyne Holdings, Inc. | Braided anchor for mitral valve |
US11648114B2 (en) | 2019-12-20 | 2023-05-16 | Tendyne Holdings, Inc. | Distally loaded sheath and loading funnel |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11744636B2 (en) | 2019-12-30 | 2023-09-05 | Cilag Gmbh International | Electrosurgical systems with integrated and external power sources |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12262937B2 (en) | 2019-12-30 | 2025-04-01 | Cilag Gmbh International | User interface for surgical instrument with combination energy modality end-effector |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11937866B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Method for an electrosurgical procedure |
US20210196362A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical end effectors with thermally insulative and thermally conductive portions |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11648020B2 (en) | 2020-02-07 | 2023-05-16 | Angiodynamics, Inc. | Device and method for manual aspiration and removal of an undesirable material |
US12011184B2 (en) | 2020-02-10 | 2024-06-18 | Elixir Medical Corporation | Methods and apparatus for plaque disruption |
WO2022212290A1 (en) * | 2021-03-29 | 2022-10-06 | Elixir Medical Corporation | Methods and apparatus for plaque disruption |
CN115297809A (en) * | 2020-03-17 | 2022-11-04 | 爱德华兹生命科学公司 | Modification of existing valve structures for prosthetic heart valve implantation |
US11951002B2 (en) | 2020-03-30 | 2024-04-09 | Tendyne Holdings, Inc. | Apparatus and methods for valve and tether fixation |
CN111616836B (en) * | 2020-06-24 | 2024-12-03 | 科凯(南通)生命科学有限公司 | A valve leaflet repair device |
EP4199860A1 (en) | 2020-08-19 | 2023-06-28 | Tendyne Holdings, Inc. | Fully-transseptal apical pad with pulley for tensioning |
US11523841B2 (en) * | 2020-09-03 | 2022-12-13 | Cardiovascular Systems, Inc. | Systems, methods and devices for removal of thrombus and/or soft plaque with asymmetric mass distribution within working region of impeller |
CN112168282B (en) * | 2020-09-29 | 2022-04-15 | 河南省洛阳正骨医院(河南省骨科医院) | Marrow cavity focus reducing scraping device |
US20220168036A1 (en) * | 2020-11-30 | 2022-06-02 | Evalve, Inc. | Systems, apparatuses, and methods for removing a medical implant from cardiac tissue |
WO2022177552A1 (en) * | 2021-02-17 | 2022-08-25 | Cormatrix Cardiovascular, Inc. | Prosthetic venous valves |
EP4294326A4 (en) | 2021-02-17 | 2024-11-20 | Cormatrix Cardiovascular, Inc. | PROSTHETIC HEART VALVES |
CN113907840B (en) * | 2021-08-31 | 2023-08-29 | 山东大学第二医院 | A device for removing gallstones |
CN114869380B (en) * | 2022-03-24 | 2022-12-06 | 江苏省肿瘤医院 | Vibration sleeve-removing device for plug coil |
WO2024075048A1 (en) * | 2022-10-04 | 2024-04-11 | Otsuka Medical Devices Co., Ltd. | Devices, methods and systems for renal denervation |
US12035932B1 (en) | 2023-04-21 | 2024-07-16 | Shockwave Medical, Inc. | Intravascular lithotripsy catheter with slotted emitter bands |
Citations (668)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US931795A (en) | 1908-11-30 | 1909-08-24 | George James Packe | Bottle for teething liquids and other liquids or materials. |
US3526219A (en) | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
US3565062A (en) | 1968-06-13 | 1971-02-23 | Ultrasonic Systems | Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like |
US3589363A (en) | 1967-07-25 | 1971-06-29 | Cavitron Corp | Material removal apparatus and method employing high frequency vibrations |
US3667474A (en) | 1970-01-05 | 1972-06-06 | Konstantin Vasilievich Lapkin | Dilator for performing mitral and tricuspidal commissurotomy per atrium cordis |
US3752162A (en) | 1972-04-10 | 1973-08-14 | Dow Corning | Artificial cutaneous stoma |
US3823717A (en) | 1972-04-22 | 1974-07-16 | R Pohlman | Apparatus for disintegrating concretions in body cavities of living organisms by means of an ultrasonic probe |
US3861391A (en) | 1972-07-02 | 1975-01-21 | Blackstone Corp | Apparatus for disintegration of urinary calculi |
US3896811A (en) | 1972-08-31 | 1975-07-29 | Karl Storz | Ultrasonic surgical instrument |
US4042979A (en) | 1976-07-12 | 1977-08-23 | Angell William W | Valvuloplasty ring and prosthetic method |
US4046150A (en) | 1975-07-17 | 1977-09-06 | American Hospital Supply Corporation | Medical instrument for locating and removing occlusive objects |
US4188952A (en) | 1973-12-28 | 1980-02-19 | Loschilov Vladimir I | Surgical instrument for ultrasonic separation of biological tissue |
US4431006A (en) | 1982-01-07 | 1984-02-14 | Technicare Corporation | Passive ultrasound needle probe locator |
US4445509A (en) | 1982-02-04 | 1984-05-01 | Auth David C | Method and apparatus for removal of enclosed abnormal deposits |
US4484579A (en) | 1982-07-19 | 1984-11-27 | University Of Pittsburgh | Commissurotomy catheter apparatus and method |
US4587958A (en) | 1983-04-04 | 1986-05-13 | Sumitomo Bakelite Company Limited | Ultrasonic surgical device |
US4589419A (en) | 1984-11-01 | 1986-05-20 | University Of Iowa Research Foundation | Catheter for treating arterial occlusion |
US4646736A (en) | 1984-09-10 | 1987-03-03 | E. R. Squibb & Sons, Inc. | Transluminal thrombectomy apparatus |
JPS62181225A (en) | 1986-01-14 | 1987-08-08 | イ−ル−セルタ−ク,ソシエテ,アノニム | Anesthetic medicine composition |
US4692139A (en) | 1984-03-09 | 1987-09-08 | Stiles Frank B | Catheter for effecting removal of obstructions from a biological duct |
US4709698A (en) | 1986-05-14 | 1987-12-01 | Thomas J. Fogarty | Heatable dilation catheter |
US4747821A (en) | 1986-10-22 | 1988-05-31 | Intravascular Surgical Instruments, Inc. | Catheter with high speed moving working head |
US4750902A (en) | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US4777951A (en) | 1986-09-19 | 1988-10-18 | Mansfield Scientific, Inc. | Procedure and catheter instrument for treating patients for aortic stenosis |
US4787388A (en) | 1985-11-29 | 1988-11-29 | Schneider - Shiley Ag | Method for opening constricted regions in the cardiovascular system |
US4790812A (en) | 1985-11-15 | 1988-12-13 | Hawkins Jr Irvin F | Apparatus and method for removing a target object from a body passsageway |
US4796629A (en) | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
US4808153A (en) | 1986-11-17 | 1989-02-28 | Ultramed Corporation | Device for removing plaque from arteries |
US4819751A (en) | 1987-10-16 | 1989-04-11 | Baxter Travenol Laboratories, Inc. | Valvuloplasty catheter and method |
US4824436A (en) | 1985-04-09 | 1989-04-25 | Harvey Wolinsky | Method for the prevention of restenosis |
US4841977A (en) | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
US4870953A (en) | 1987-11-13 | 1989-10-03 | Donmicheal T Anthony | Intravascular ultrasonic catheter/probe and method for treating intravascular blockage |
US4878495A (en) | 1987-05-15 | 1989-11-07 | Joseph Grayzel | Valvuloplasty device with satellite expansion means |
WO1990000060A1 (en) | 1988-06-30 | 1990-01-11 | Collagen Corporation | Collagen wound healing matrices and process for their production |
US4898575A (en) | 1987-08-31 | 1990-02-06 | Medinnovations, Inc. | Guide wire following tunneling catheter system and method for transluminal arterial atherectomy |
US4909252A (en) | 1988-05-26 | 1990-03-20 | The Regents Of The Univ. Of California | Perfusion balloon catheter |
US4919133A (en) | 1988-08-18 | 1990-04-24 | Chiang Tien Hon | Catheter apparatus employing shape memory alloy structures |
US4920954A (en) | 1988-08-05 | 1990-05-01 | Sonic Needle Corporation | Ultrasonic device for applying cavitation forces |
US4936281A (en) | 1989-04-13 | 1990-06-26 | Everest Medical Corporation | Ultrasonically enhanced RF ablation catheter |
US4960411A (en) | 1984-09-18 | 1990-10-02 | Medtronic Versaflex, Inc. | Low profile sterrable soft-tip catheter |
US4986830A (en) | 1989-09-22 | 1991-01-22 | Schneider (U.S.A.) Inc. | Valvuloplasty catheter with balloon which remains stable during inflation |
US4990134A (en) | 1986-01-06 | 1991-02-05 | Heart Technology, Inc. | Transluminal microdissection device |
US5058570A (en) | 1986-11-27 | 1991-10-22 | Sumitomo Bakelite Company Limited | Ultrasonic surgical apparatus |
US5069664A (en) | 1990-01-25 | 1991-12-03 | Inter Therapy, Inc. | Intravascular ultrasonic angioplasty probe |
US5071424A (en) | 1989-08-18 | 1991-12-10 | Evi Corporation | Catheter atherotome |
US5076276A (en) | 1989-11-01 | 1991-12-31 | Olympus Optical Co., Ltd. | Ultrasound type treatment apparatus |
US5078717A (en) | 1989-04-13 | 1992-01-07 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US5087244A (en) | 1989-01-31 | 1992-02-11 | C. R. Bard, Inc. | Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen |
US5102402A (en) | 1991-01-04 | 1992-04-07 | Medtronic, Inc. | Releasable coatings on balloon catheters |
US5106302A (en) | 1990-09-26 | 1992-04-21 | Ormco Corporation | Method of fracturing interfaces with an ultrasonic tool |
WO1992011898A1 (en) | 1991-01-07 | 1992-07-23 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
EP0497041A1 (en) | 1991-01-31 | 1992-08-05 | Baxter International Inc. | Automated infusion pump with replaceable memory cartridges |
WO1992017118A1 (en) | 1991-04-04 | 1992-10-15 | Shturman Cardiology Systems, Inc. | Method and apparatus for in vivo heart valve decalcification |
US5156610A (en) | 1989-08-18 | 1992-10-20 | Evi Corporation | Catheter atherotome |
US5158564A (en) | 1990-02-14 | 1992-10-27 | Angiomed Ag | Atherectomy apparatus |
WO1992020291A1 (en) | 1991-05-24 | 1992-11-26 | Applied Medical Resources, Inc. | Articulating tissue cutter assembly |
US5190540A (en) | 1990-06-08 | 1993-03-02 | Cardiovascular & Interventional Research Consultants, Inc. | Thermal balloon angioplasty |
US5211651A (en) | 1989-08-18 | 1993-05-18 | Evi Corporation | Catheter atherotome |
US5248296A (en) | 1990-12-24 | 1993-09-28 | Sonic Needle Corporation | Ultrasonic device having wire sheath |
US5255679A (en) | 1992-06-02 | 1993-10-26 | Cardiac Pathways Corporation | Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method |
US5267954A (en) | 1991-01-11 | 1993-12-07 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US5269291A (en) | 1990-12-10 | 1993-12-14 | Coraje, Inc. | Miniature ultrasonic transducer for plaque ablation |
US5282484A (en) | 1989-08-18 | 1994-02-01 | Endovascular Instruments, Inc. | Method for performing a partial atherectomy |
US5304120A (en) | 1992-07-01 | 1994-04-19 | Btx Inc. | Electroporation method and apparatus for insertion of drugs and genes into endothelial cells |
US5304115A (en) | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
US5306250A (en) | 1992-04-02 | 1994-04-26 | Indiana University Foundation | Method and apparatus for intravascular drug delivery |
US5314407A (en) | 1986-11-14 | 1994-05-24 | Heart Technology, Inc. | Clinically practical rotational angioplasty system |
JPH06504516A (en) | 1991-01-23 | 1994-05-26 | エクソン ケミカル パテンツ インコーポレイテッド | Method for producing substantially binder-free zeolite |
US5318014A (en) | 1992-09-14 | 1994-06-07 | Coraje, Inc. | Ultrasonic ablation/dissolution transducer |
US5326341A (en) | 1990-03-30 | 1994-07-05 | Alza Corporation | Iontorphoretic delivery device |
US5344395A (en) | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US5345936A (en) | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
WO1994021165A1 (en) | 1993-03-16 | 1994-09-29 | Ep Technologies, Inc. | Guide sheaths for cardiac mapping and ablation |
WO1994021168A1 (en) | 1993-03-16 | 1994-09-29 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5356418A (en) | 1992-10-28 | 1994-10-18 | Shturman Cardiology Systems, Inc. | Apparatus and method for rotational atherectomy |
WO1995001751A1 (en) | 1993-07-01 | 1995-01-19 | Boston Scientific Corporation | Imaging, electrical potential sensing, and ablation catheters |
US5397293A (en) | 1992-11-25 | 1995-03-14 | Misonix, Inc. | Ultrasonic device with sheath and transverse motion damping |
WO1995010319A1 (en) | 1993-10-15 | 1995-04-20 | Ep Technologies, Inc. | Electrodes for creating lesions in body tissue |
US5411025A (en) * | 1992-06-30 | 1995-05-02 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array |
US5419777A (en) | 1994-03-10 | 1995-05-30 | Bavaria Medizin Technologie Gmbh | Catheter for injecting a fluid or medicine |
US5419767A (en) | 1992-01-07 | 1995-05-30 | Thapliyal And Eggers Partners | Methods and apparatus for advancing catheters through severely occluded body lumens |
US5464395A (en) | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
US5465717A (en) | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
US5471982A (en) | 1992-09-29 | 1995-12-05 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5476495A (en) | 1993-03-16 | 1995-12-19 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5489297A (en) | 1992-01-27 | 1996-02-06 | Duran; Carlos M. G. | Bioprosthetic heart valve with absorbable stent |
US5496311A (en) | 1988-10-28 | 1996-03-05 | Boston Scientific Corporation | Physiologic low stress angioplasty |
US5538504A (en) | 1992-07-14 | 1996-07-23 | Scimed Life Systems, Inc. | Intra-extravascular drug delivery catheter and method |
US5540679A (en) | 1992-10-05 | 1996-07-30 | Boston Scientific Corporation | Device and method for heating tissue in a patient's body |
US5571122A (en) | 1992-11-09 | 1996-11-05 | Endovascular Instruments, Inc. | Unitary removal of plaque |
WO1996034559A1 (en) | 1995-05-01 | 1996-11-07 | Cordis Webster, Inc. | Unique electrode configurations for cardiovascular electrode catheter with built-in deflection method and central puller wire |
US5584879A (en) | 1993-12-13 | 1996-12-17 | Brigham & Women's Hospital | Aortic valve supporting device |
US5588962A (en) | 1994-03-29 | 1996-12-31 | Boston Scientific Corporation | Drug treatment of diseased sites deep within the body |
US5588960A (en) | 1994-12-01 | 1996-12-31 | Vidamed, Inc. | Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence |
US5590654A (en) | 1993-06-07 | 1997-01-07 | Prince; Martin R. | Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent |
WO1997003604A1 (en) | 1995-07-18 | 1997-02-06 | Houser Russell A | Multiple compartmented balloon catheter with external pressure sensing |
US5609151A (en) | 1994-09-08 | 1997-03-11 | Medtronic, Inc. | Method for R-F ablation |
WO1997017892A1 (en) | 1995-11-13 | 1997-05-22 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe and method |
EP0774991A1 (en) | 1994-08-08 | 1997-05-28 | Schneider (Usa) Inc. | Drug delivery and dilatation-drug delivery catheters in a rapid exchange configuration |
US5662671A (en) | 1996-07-17 | 1997-09-02 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US5667490A (en) | 1992-10-07 | 1997-09-16 | Scimed Life Systems, Inc. | Ablation device drive assembly including catheter connector |
US5681336A (en) | 1995-09-07 | 1997-10-28 | Boston Scientific Corporation | Therapeutic device for treating vien graft lesions |
WO1997042990A1 (en) | 1996-05-13 | 1997-11-20 | Medtronic, Inc. | Techniques for treating epilepsy by brain stimulation and drug infusion |
US5695507A (en) | 1994-10-03 | 1997-12-09 | Boston Scientific Corporation Northwest Technology Center, Inc. | Transluminal thrombectomy apparatus |
US5704908A (en) | 1996-10-10 | 1998-01-06 | Genetronics, Inc. | Electroporation and iontophoresis catheter with porous balloon |
US5709874A (en) | 1993-04-14 | 1998-01-20 | Emory University | Device for local drug delivery and methods for using the same |
US5725494A (en) | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US5772590A (en) | 1992-06-30 | 1998-06-30 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire |
US5782931A (en) | 1996-07-30 | 1998-07-21 | Baxter International Inc. | Methods for mitigating calcification and improving durability in glutaraldehyde-fixed bioprostheses and articles manufactured by such methods |
US5807306A (en) | 1992-11-09 | 1998-09-15 | Cortrak Medical, Inc. | Polymer matrix drug delivery apparatus |
US5817144A (en) | 1994-10-25 | 1998-10-06 | Latis, Inc. | Method for contemporaneous application OF laser energy and localized pharmacologic therapy |
US5823956A (en) | 1993-02-22 | 1998-10-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5827229A (en) | 1995-05-24 | 1998-10-27 | Boston Scientific Corporation Northwest Technology Center, Inc. | Percutaneous aspiration thrombectomy catheter system |
US5840081A (en) | 1990-05-18 | 1998-11-24 | Andersen; Henning Rud | System and method for implanting cardiac valves |
US5843016A (en) | 1996-03-18 | 1998-12-01 | Physion S.R.L. | Electromotive drug administration for treatment of acute urinary outflow obstruction |
US5848969A (en) | 1996-10-28 | 1998-12-15 | Ep Technologies, Inc. | Systems and methods for visualizing interior tissue regions using expandable imaging structures |
US5860974A (en) | 1993-07-01 | 1999-01-19 | Boston Scientific Corporation | Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft |
US5873811A (en) | 1997-01-10 | 1999-02-23 | Sci-Med Life Systems | Composition containing a radioactive component for treatment of vessel wall |
US5876374A (en) | 1992-11-02 | 1999-03-02 | Localmed, Inc. | Catheter sleeve for use with a balloon catheter |
WO1999016370A1 (en) | 1997-09-30 | 1999-04-08 | Boston Scientific Corporation | Deflectable interstitial ablation device |
US5904679A (en) | 1989-01-18 | 1999-05-18 | Applied Medical Resources Corporation | Catheter with electrosurgical cutter |
US5910129A (en) * | 1996-12-19 | 1999-06-08 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
DE29909082U1 (en) | 1999-05-25 | 1999-07-22 | Starck, Bernd, Dipl.-Ing., 75443 Ötisheim | Stimulation, sensing and / or defibrillation electrode and balloon catheter for inserting the electrode |
WO1999039648A1 (en) | 1998-02-10 | 1999-08-12 | Dubrul William R | Entrapping apparatus and method for use |
WO1999044522A1 (en) | 1998-03-06 | 1999-09-10 | Conway-Stuart Medical, Inc. | Apparatus to electrosurgically treat esophageal sphincters |
US5954742A (en) | 1996-03-16 | 1999-09-21 | Osypka; Peter | Dilatation catheter |
US5957882A (en) | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
WO1999049799A1 (en) | 1998-03-30 | 1999-10-07 | Arthrocare Corporation | Systems and methods for electrosurgical removal of calcified deposits |
WO1999052424A1 (en) | 1998-04-14 | 1999-10-21 | Global Vascular Concepts, Inc. | Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues |
US5989208A (en) | 1997-05-16 | 1999-11-23 | Nita; Henry | Therapeutic ultrasound system |
US5997497A (en) | 1991-01-11 | 1999-12-07 | Advanced Cardiovascular Systems | Ultrasound catheter having integrated drug delivery system and methods of using same |
WO1999062413A1 (en) | 1998-05-29 | 1999-12-09 | Applied Medical Resources Corporation | Improved electrosurgical catheter apparatus and method |
US6014590A (en) | 1974-03-04 | 2000-01-11 | Ep Technologies, Inc. | Systems and methods employing structures having asymmetric mechanical properties to support diagnostic or therapeutic elements in contact with tissue in interior body regions |
US6024740A (en) | 1997-07-08 | 2000-02-15 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6036689A (en) | 1998-09-24 | 2000-03-14 | Tu; Lily Chen | Ablation device for treating atherosclerotic tissues |
US6056744A (en) | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
JP3041967B2 (en) | 1990-12-13 | 2000-05-15 | ソニー株式会社 | Digital signal coding device |
EP1009303A1 (en) | 1997-07-08 | 2000-06-21 | The Regents of the University of California | Circumferential ablation device assembly and method |
US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6117128A (en) | 1997-04-30 | 2000-09-12 | Kenton W. Gregory | Energy delivery catheter and method for the use thereof |
US6129725A (en) | 1998-12-04 | 2000-10-10 | Tu; Lily Chen | Methods for reduction of restenosis |
US6132444A (en) | 1997-08-14 | 2000-10-17 | Shturman Cardiology Systems, Inc. | Eccentric drive shaft for atherectomy device and method for manufacture |
WO2000062699A2 (en) | 1999-04-21 | 2000-10-26 | Broncus Technologies, Inc. | Modification of airways by application of energy |
USRE36939E (en) | 1991-03-22 | 2000-10-31 | Ekos Corporation | Composition for therapy of diseases with ultrasonic and pharmaceutical liquid composition containing the same |
US6149647A (en) | 1999-04-19 | 2000-11-21 | Tu; Lily Chen | Apparatus and methods for tissue treatment |
US6152899A (en) | 1996-03-05 | 2000-11-28 | Vnus Medical Technologies, Inc. | Expandable catheter having improved electrode design, and method for applying energy |
US6165187A (en) | 1989-08-18 | 2000-12-26 | Endo Vascular Instruments, Inc. | Method of enlarging a lumen of an artery |
US6168579B1 (en) | 1999-08-04 | 2001-01-02 | Scimed Life Systems, Inc. | Filter flush system and methods of use |
US20010000041A1 (en) | 1997-12-19 | 2001-03-15 | Selmon Matthew R. | Methods and apparatus for crossing vascular occlusions |
US6211247B1 (en) | 1998-05-13 | 2001-04-03 | Pharmascience Inc | Administration of resveratrol to prevent or treat restenosis following coronary intervention |
CA2384866A1 (en) | 1999-09-28 | 2001-04-05 | Stuart D. Edwards | Treatment of tissue by application of energy and drugs |
US6216044B1 (en) | 1993-03-16 | 2001-04-10 | Ep Technologies, Inc. | Medical device with three dimensional collapsible basket structure |
US6217595B1 (en) | 1996-11-18 | 2001-04-17 | Shturman Cardiology Systems, Inc. | Rotational atherectomy device |
US6219577B1 (en) | 1998-04-14 | 2001-04-17 | Global Vascular Concepts, Inc. | Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues |
US6231516B1 (en) | 1997-10-14 | 2001-05-15 | Vacusense, Inc. | Endoluminal implant with therapeutic and diagnostic capability |
US6231513B1 (en) | 1998-10-14 | 2001-05-15 | Daum Gmbh | Contrast agent for ultrasonic imaging |
US6235044B1 (en) | 1999-08-04 | 2001-05-22 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue |
US6236883B1 (en) | 1999-02-03 | 2001-05-22 | The Trustees Of Columbia University In The City Of New York | Methods and systems for localizing reentrant circuits from electrogram features |
WO2001037746A1 (en) | 1999-11-22 | 2001-05-31 | Boston Scientific Limited | Apparatus for mapping and coagulating soft tissue in or around body orifices |
US6245045B1 (en) | 1999-04-23 | 2001-06-12 | Alexander Andrew Stratienko | Combination sheath and catheter for cardiovascular use |
US6254635B1 (en) | 1998-02-02 | 2001-07-03 | St. Jude Medical, Inc. | Calcification-resistant medical articles |
US20010007070A1 (en) | 1999-04-05 | 2001-07-05 | Medtronic, Inc. | Ablation catheter assembly and method for isolating a pulmonary vein |
US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
US6283951B1 (en) | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US6292695B1 (en) | 1998-06-19 | 2001-09-18 | Wilton W. Webster, Jr. | Method and apparatus for transvascular treatment of tachycardia and fibrillation |
US6295712B1 (en) | 1996-07-15 | 2001-10-02 | Shturman Cardiology Systems, Inc. | Rotational atherectomy device |
US6296619B1 (en) | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
WO2001074255A1 (en) | 2000-03-31 | 2001-10-11 | Bacchus Vascular Inc. | Expansible shearing catheters for thrombus and occlusive material removal |
US6302870B1 (en) | 1999-04-29 | 2001-10-16 | Precision Vascular Systems, Inc. | Apparatus for injecting fluids into the walls of blood vessels, body cavities, and the like |
US6309379B1 (en) | 1991-05-23 | 2001-10-30 | Lloyd K. Willard | Sheath for selective delivery of multiple intravascular devices and methods of use thereof |
US20010039419A1 (en) | 2000-04-27 | 2001-11-08 | Medtronic, Inc. | Vibration sensitive ablation device and method |
US6321109B2 (en) | 1996-02-15 | 2001-11-20 | Biosense, Inc. | Catheter based surgery |
US6319251B1 (en) | 1998-09-24 | 2001-11-20 | Hosheng Tu | Medical device and methods for treating intravascular restenosis |
US20010044591A1 (en) | 1991-07-16 | 2001-11-22 | Heartport, Inc. | System for cardiac procedures |
US20010044596A1 (en) | 2000-05-10 | 2001-11-22 | Ali Jaafar | Apparatus and method for treatment of vascular restenosis by electroporation |
US6322559B1 (en) | 1998-07-06 | 2001-11-27 | Vnus Medical Technologies, Inc. | Electrode catheter having coil structure |
US20020007192A1 (en) | 1999-06-17 | 2002-01-17 | Pederson Gary J. | Stent securement by balloon modification |
US6346074B1 (en) | 1993-02-22 | 2002-02-12 | Heartport, Inc. | Devices for less invasive intracardiac interventions |
EP1180004A1 (en) | 1999-05-18 | 2002-02-20 | Silhouette Medical Inc. | Surgical weight control device |
US6353751B1 (en) | 1994-10-11 | 2002-03-05 | Ep Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrodes structures |
US6357447B1 (en) | 1993-10-15 | 2002-03-19 | Ep Technologies, Inc. | Surface coatings for catheters, direct contacting diagnostic and therapeutic devices |
WO2002028421A1 (en) | 2000-10-06 | 2002-04-11 | University Of Washington | Methods of inhibition of stenosis and/or sclerosis of the aortic valve |
US6379373B1 (en) | 1998-08-14 | 2002-04-30 | Confluent Surgical, Inc. | Methods and apparatus for intraluminal deposition of hydrogels |
US6389311B1 (en) | 1998-03-26 | 2002-05-14 | Scimed Life Systems, Inc. | Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in interior body regions |
US6389314B2 (en) | 1990-05-07 | 2002-05-14 | Andrew Jonathan Feiring | Method and apparatus for inducing the permeation of medication into internal tissue |
US6405732B1 (en) | 1994-06-24 | 2002-06-18 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US20020077627A1 (en) * | 2000-07-25 | 2002-06-20 | Johnson Theodore C. | Method for detecting and treating tumors using localized impedance measurement |
US20020077592A1 (en) | 1994-06-30 | 2002-06-20 | Boston Scientific Corporation | Replenishable stent and delivery system |
US6409723B1 (en) | 1999-04-02 | 2002-06-25 | Stuart D. Edwards | Treating body tissue by applying energy and substances |
US20020082552A1 (en) | 1998-04-14 | 2002-06-27 | Schneider (Usa) Inc. | Medical device with sponge coating for controlled drug release |
US20020082637A1 (en) | 2000-12-22 | 2002-06-27 | Cardiovascular Systems, Inc. | Catheter and method for making the same |
US6423032B2 (en) | 1998-03-13 | 2002-07-23 | Arteria Medical Science, Inc. | Apparatus and methods for reducing embolization during treatment of carotid artery disease |
US20020099439A1 (en) | 2000-09-29 | 2002-07-25 | Schwartz Robert S. | Venous valvuloplasty device and method |
WO2002058549A1 (en) | 2001-01-26 | 2002-08-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Endoluminal expandable implant with integrated sensor system |
US20020103445A1 (en) | 2000-08-24 | 2002-08-01 | Rahdert David A. | Thermography catheter with flexible circuit temperature sensors |
US6454737B1 (en) | 1991-01-11 | 2002-09-24 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty-atherectomy catheter and method of use |
US6454775B1 (en) | 1999-12-06 | 2002-09-24 | Bacchus Vascular Inc. | Systems and methods for clot disruption and retrieval |
US20020143324A1 (en) | 1998-02-19 | 2002-10-03 | Curon Medical, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US20020139379A1 (en) | 1998-02-19 | 2002-10-03 | Curon Medical, Inc. | Method for treating a sphincter |
US20020151918A1 (en) | 2001-04-17 | 2002-10-17 | Scimed Life Systems, Inc. | In-stent ablative tool |
US20020165532A1 (en) | 2001-05-01 | 2002-11-07 | Cardima, Inc. | Helically shaped electrophysiology catheter |
US6484052B1 (en) | 1999-03-30 | 2002-11-19 | The Regents Of The University Of California | Optically generated ultrasound for enhanced drug delivery |
US20020183682A1 (en) | 1999-06-04 | 2002-12-05 | Nissim Darvish | Drug delivery device |
US6494891B1 (en) | 1999-12-30 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty transmission member |
US6494890B1 (en) | 1997-08-14 | 2002-12-17 | Shturman Cardiology Systems, Inc. | Eccentric rotational atherectomy device |
US6497711B1 (en) | 2000-08-16 | 2002-12-24 | Scimed Life Systems, Inc. | Therectomy device having a light weight drive shaft and an imaging device |
US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
US6505080B1 (en) | 1999-05-04 | 2003-01-07 | Medtronic, Inc. | Method and apparatus for inhibiting or minimizing calcification of aortic valves |
US6511496B1 (en) | 2000-09-12 | 2003-01-28 | Advanced Cardiovascular Systems, Inc. | Embolic protection device for use in interventional procedures |
US6514236B1 (en) | 1999-04-23 | 2003-02-04 | Alexander A. Stratienko | Method for treating a cardiovascular condition |
US20030028114A1 (en) | 1995-09-20 | 2003-02-06 | Texas Heart Institute | Method and apparatus for detecting vulnerable atherosclerotic plaque |
US6524274B1 (en) | 1990-12-28 | 2003-02-25 | Scimed Life Systems, Inc. | Triggered release hydrogel drug delivery system |
US20030050637A1 (en) | 1997-07-08 | 2003-03-13 | Maguire Mark A. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
WO2003024311A2 (en) | 2001-09-20 | 2003-03-27 | The Regents Of The University Of California | A microfabricated surgical device for interventional procedures |
US20030069619A1 (en) | 2000-06-20 | 2003-04-10 | Fenn Alan J. | System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumors |
US20030074039A1 (en) | 1999-06-25 | 2003-04-17 | Puskas John D. | Devices and methods for vagus nerve stimulation |
US20030082225A1 (en) | 2001-10-19 | 2003-05-01 | Mason Paul Arthur | Sterile, breathable patch for treating wound pain |
US6558382B2 (en) | 2000-04-27 | 2003-05-06 | Medtronic, Inc. | Suction stabilized epicardial ablation devices |
US6562034B2 (en) | 1998-02-19 | 2003-05-13 | Curon Medical, Inc. | Electrodes for creating lesions in tissue regions at or near a sphincter |
US6565588B1 (en) | 2000-04-05 | 2003-05-20 | Pathway Medical Technologies, Inc. | Intralumenal material removal using an expandable cutting device |
WO2003043685A2 (en) | 2001-11-19 | 2003-05-30 | Cardiovascular Systems, Inc | High torque, low profile intravascular guidewire system |
US6572612B2 (en) | 1999-04-05 | 2003-06-03 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
US6575933B1 (en) | 1998-11-30 | 2003-06-10 | Cryocath Technologies Inc. | Mechanical support for an expandable membrane |
US6579308B1 (en) | 2000-11-28 | 2003-06-17 | Scimed Life Systems, Inc. | Stent devices with detachable distal or proximal wires |
US6595959B1 (en) | 1999-04-23 | 2003-07-22 | Alexander A. Stratienko | Cardiovascular sheath/catheter |
US20030144658A1 (en) | 2002-01-31 | 2003-07-31 | Yitzhack Schwartz | Radio frequency pulmonary vein isolation |
US20030158584A1 (en) | 2002-02-19 | 2003-08-21 | Cates Adam W | Chronically-implanted device for sensing and therapy |
US6616624B1 (en) | 2000-10-30 | 2003-09-09 | Cvrx, Inc. | Systems and method for controlling renovascular perfusion |
US20030176816A1 (en) | 1997-07-08 | 2003-09-18 | Maguire Mark A. | Medical device with sensor cooperating with expandable member |
US6623453B1 (en) | 2000-01-19 | 2003-09-23 | Vanny Corporation | Chemo-thermo applicator for cancer treatment |
US6623452B2 (en) | 2000-12-19 | 2003-09-23 | Scimed Life Systems, Inc. | Drug delivery catheter having a highly compliant balloon with infusion holes |
WO2003082080A2 (en) | 2002-03-27 | 2003-10-09 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US6640120B1 (en) | 2000-10-05 | 2003-10-28 | Scimed Life Systems, Inc. | Probe assembly for mapping and ablating pulmonary vein tissue and method of using same |
US6645223B2 (en) | 2001-04-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Deployment and recovery control systems for embolic protection devices |
US6648854B1 (en) | 1999-05-14 | 2003-11-18 | Scimed Life Systems, Inc. | Single lumen balloon-tipped micro catheter with reinforced shaft |
US20030216792A1 (en) | 2002-04-08 | 2003-11-20 | Levin Howard R. | Renal nerve stimulation method and apparatus for treatment of patients |
US6658279B2 (en) | 1996-10-28 | 2003-12-02 | Ep Technologies, Inc. | Ablation and imaging catheter |
US20030233099A1 (en) | 2000-10-17 | 2003-12-18 | Broncus Technologies, Inc. | Modification of airways by application of energy |
US20040006358A1 (en) | 2000-04-05 | 2004-01-08 | Pathway Medical Technologies, Inc. | Intralumenal material removal using a cutting device for differential cutting |
JP2004016333A (en) | 2002-06-13 | 2004-01-22 | Unique Medical Co Ltd | Catheter for extradural anesthesia, and electrostimulator using the catheter for extradural anesthesia |
WO2004011055A2 (en) | 2002-07-31 | 2004-02-05 | Scimed Life Systems, Inc. | Implantable or insertable medical devices for controlled drug delivery |
US6689086B1 (en) | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US6692738B2 (en) | 2000-01-27 | 2004-02-17 | The General Hospital Corporation | Delivery of therapeutic biologicals from implantable tissue matrices |
US6692490B1 (en) | 1999-05-18 | 2004-02-17 | Novasys Medical, Inc. | Treatment of urinary incontinence and other disorders by application of energy and drugs |
US6695830B2 (en) | 1999-01-15 | 2004-02-24 | Scimed Life Systems, Inc. | Method for delivering medication into an arterial wall for prevention of restenosis |
US20040039412A1 (en) | 2002-08-20 | 2004-02-26 | Takaaki Isshiki | Thrombus capture catheter |
US20040044286A1 (en) | 2002-08-29 | 2004-03-04 | Hossack Norman Hugh | Ultrasonic imaging devices and methods of fabrication |
US20040043030A1 (en) | 2001-07-31 | 2004-03-04 | Immunomedics, Inc. | Polymeric delivery systems |
US20040044350A1 (en) | 1999-04-09 | 2004-03-04 | Evalve, Inc. | Steerable access sheath and methods of use |
US6702748B1 (en) | 2002-09-20 | 2004-03-09 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US6706011B1 (en) | 1996-12-27 | 2004-03-16 | Douglas Murphy-Chutorian | Laser assisted drug delivery |
US20040057955A1 (en) | 2001-10-05 | 2004-03-25 | O'brien Kevin D. | Methods of inhibition of stenosis and/or sclerosis of the aortic valve |
US6714822B2 (en) | 1998-04-30 | 2004-03-30 | Medtronic, Inc. | Apparatus and method for expanding a stimulation lead body in situ |
US20040064093A1 (en) | 2002-08-21 | 2004-04-01 | Hektner Thomas R. | Vascular treatment method and device |
US20040062852A1 (en) | 2002-09-30 | 2004-04-01 | Medtronic, Inc. | Method for applying a drug coating to a medical device |
US20040064090A1 (en) | 1999-01-11 | 2004-04-01 | Gad Keren | Apparatus and methods for treating congestive heart disease |
JP2004097807A (en) | 2002-08-20 | 2004-04-02 | Nipro Corp | Thrombus capturing catheter |
WO2004028583A2 (en) | 2002-09-26 | 2004-04-08 | Angiotech International Ag | Perivascular wraps |
US20040073243A1 (en) | 2000-06-29 | 2004-04-15 | Concentric Medical, Inc., A Delaware Corporation | Systems, methods and devices for removing obstructions from a blood vessel |
US6723064B2 (en) | 2001-03-21 | 2004-04-20 | Advanced Medical Applications, Inc. | Ultrasonic catheter drug delivery method and device |
US20040082910A1 (en) | 2002-10-29 | 2004-04-29 | Constantz Brent R. | Devices and methods for treating aortic valve stenosis |
US20040082978A1 (en) | 2000-09-28 | 2004-04-29 | Harrison William Vanbrooks | Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation |
US20040092962A1 (en) | 1999-04-09 | 2004-05-13 | Evalve, Inc., A Delaware Corporation | Multi-catheter steerable guiding system and methods of use |
US20040092989A1 (en) | 2002-08-28 | 2004-05-13 | Heart Leaflet Technologies, Inc | Delivery device for leaflet valve |
DE10252325A1 (en) | 2002-11-11 | 2004-05-27 | Berchtold Holding Gmbh | Thermal ablation probe for minimal invasive body tissue high frequency thermal treatment has temperature sensor on star shaped flexible arms with adjustable protrusion from insulating sheath |
US20040103516A1 (en) | 1998-02-03 | 2004-06-03 | Bolduc Lee R. | Intravascular device and method of manufacture and use |
US6748255B2 (en) | 2001-12-14 | 2004-06-08 | Biosense Webster, Inc. | Basket catheter with multiple location sensors |
US6746463B1 (en) | 2003-01-27 | 2004-06-08 | Scimed Life Systems, Inc | Device for percutaneous cutting and dilating a stenosis of the aortic valve |
US6748953B2 (en) | 2002-06-11 | 2004-06-15 | Scimed Life Systems, Inc. | Method for thermal treatment of type II endoleaks in arterial aneurysms |
WO2004049976A1 (en) | 2002-12-03 | 2004-06-17 | Boston Scientific Limited | Treating arrhythmias by altering properties of tissue |
US6752805B2 (en) | 2000-06-13 | 2004-06-22 | Atrionix, Inc. | Surgical ablation probe for forming a circumferential lesion |
US20040122421A1 (en) | 2000-12-07 | 2004-06-24 | the Gov. of the U.S.A. as represented by the Secretary of the Dept of Health and Human Services | Endoluminal radiofrequency cauterization system |
DE10257146A1 (en) | 2002-12-06 | 2004-06-24 | Admedes Schuessler Gmbh | Thermal ablation probe for minimal invasive body tissue high frequency thermal treatment has temperature sensor on star shaped flexible arms with adjustable protrusion from insulating sheath |
US6767544B2 (en) | 2002-04-01 | 2004-07-27 | Allergan, Inc. | Methods for treating cardiovascular diseases with botulinum toxin |
US6780183B2 (en) | 2002-09-16 | 2004-08-24 | Biosense Webster, Inc. | Ablation catheter having shape-changing balloon |
US6811801B2 (en) | 2001-12-12 | 2004-11-02 | Abbott Laboratories | Methods and compositions for brightening the color of thermally processed nutritionals |
US20040220556A1 (en) | 1999-08-05 | 2004-11-04 | Broncus Technologies, Inc. | Devices and methods for maintaining collateral channels in tissue |
WO2004093728A2 (en) | 2003-04-18 | 2004-11-04 | Alexander Khairkhahan | Percutaneous transcatheter heart valve replacement |
WO2004096097A2 (en) | 2003-04-25 | 2004-11-11 | Boston Scientific Limited | Cutting stent and balloon |
US6818001B2 (en) | 2000-04-05 | 2004-11-16 | Pathway Medical Technologies, Inc. | Intralumenal material removal systems and methods |
US20040230212A1 (en) | 2000-04-05 | 2004-11-18 | Pathway Medical Technologies, Inc. | Medical sealed tubular structures |
US20040230213A1 (en) | 2000-04-05 | 2004-11-18 | Pathway Medical Technologies, Inc. | Liquid seal assembly for a rotating torque tube |
US20040230117A1 (en) | 2003-04-17 | 2004-11-18 | Tosaya Carol A. | Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body |
US20040243162A1 (en) | 2000-04-05 | 2004-12-02 | Pathway Medical Technologies, Inc. | Interventional catheter assemblies and control systems |
US20040243097A1 (en) | 2000-05-12 | 2004-12-02 | Robert Falotico | Antiproliferative drug and delivery device |
US6829497B2 (en) | 1999-09-21 | 2004-12-07 | Jamil Mogul | Steerable diagnostic catheters |
US6830568B1 (en) | 1995-05-10 | 2004-12-14 | Randy J. Kesten | Guiding catheter system for ablating heart tissue |
US20040253304A1 (en) | 2003-01-29 | 2004-12-16 | Yossi Gross | Active drug delivery in the gastrointestinal tract |
WO2004112657A1 (en) | 2003-06-20 | 2004-12-29 | Medtronic Vascular Inc. | Cardiac valve annulus compressor system |
US6837886B2 (en) | 2000-05-03 | 2005-01-04 | C.R. Bard, Inc. | Apparatus and methods for mapping and ablation in electrophysiology procedures |
WO2005001513A2 (en) | 2003-03-12 | 2005-01-06 | Itt Manufacturing Enterprises, Inc. | Apparatus and method for rapid detection of objects with time domain impulsive signals |
US20050007219A1 (en) | 2002-07-11 | 2005-01-13 | Qing Ma | Microelectromechanical (MEMS) switching apparatus |
WO2005002466A2 (en) | 2003-07-08 | 2005-01-13 | Ventor Technologies Ltd. | Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices |
US6843797B2 (en) | 1996-07-26 | 2005-01-18 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
WO2005007000A1 (en) | 2003-05-13 | 2005-01-27 | Celsion Corporation | Method and apparatus for treatment of tissue adjacent a bodily conduit with a compression balloon |
WO2005007219A2 (en) | 2003-07-18 | 2005-01-27 | Intervalve, Inc. | Valvuloplasty devices and methods |
US6849075B2 (en) | 2001-12-04 | 2005-02-01 | Estech, Inc. | Cardiac ablation devices and methods |
WO2005009506A2 (en) | 2003-07-22 | 2005-02-03 | Corazon Technologies, Inc. | Devices and methods for treating aortic valve stenosis |
WO2005009285A2 (en) | 2003-07-21 | 2005-02-03 | The Trustees Of The University Of Pennsylvania | Percutaneous heart valve |
US6852118B2 (en) | 2001-10-19 | 2005-02-08 | Shturman Cardiology Systems, Inc. | Self-indexing coupling for rotational angioplasty device |
US6855123B2 (en) | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
EP1512383A2 (en) | 2000-06-26 | 2005-03-09 | Rex Medical, L.P. | Vascular device for valve leaflet apposition |
US6869431B2 (en) | 1997-07-08 | 2005-03-22 | Atrionix, Inc. | Medical device with sensor cooperating with expandable member |
US6869439B2 (en) | 1996-09-19 | 2005-03-22 | United States Surgical Corporation | Ultrasonic dissector |
US20050090820A1 (en) | 2003-10-24 | 2005-04-28 | Sinus Rhythm Technologies, Inc. | Methods and devices for creating electrical block at specific sites in cardiac tissue with targeted tissue ablation |
US20050096647A1 (en) * | 2003-09-12 | 2005-05-05 | Minnow Medical, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US6893414B2 (en) | 2002-08-12 | 2005-05-17 | Breg, Inc. | Integrated infusion and aspiration system and method |
US20050149173A1 (en) | 2003-11-10 | 2005-07-07 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050165391A1 (en) | 1997-07-08 | 2005-07-28 | Maguire Mark A. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
US20050182479A1 (en) | 2004-02-13 | 2005-08-18 | Craig Bonsignore | Connector members for stents |
US20050192638A1 (en) | 2002-04-08 | 2005-09-01 | Mark Gelfand | Methods and devices for renal nerve blocking |
US20050228286A1 (en) | 2004-04-07 | 2005-10-13 | Messerly Jeffrey D | Medical system having a rotatable ultrasound source and a piercing tip |
US20050267556A1 (en) | 2004-05-28 | 2005-12-01 | Allan Shuros | Drug eluting implants to prevent cardiac apoptosis |
US20050283195A1 (en) | 2004-06-18 | 2005-12-22 | Pastore Joseph M | Methods and apparatuses for localizing myocardial infarction during catheterization |
US20060018949A1 (en) | 2004-04-07 | 2006-01-26 | Bausch & Lomb Incorporated | Injectable biodegradable drug delivery system |
WO2006009376A2 (en) | 2004-07-20 | 2006-01-26 | Lg Electronics Inc. | Drying machine |
US20060041277A1 (en) | 2002-04-08 | 2006-02-23 | Mark Deem | Methods and apparatus for renal neuromodulation |
CA2575458A1 (en) | 2004-07-28 | 2006-03-02 | Ardian, Inc. | Methods and devices for renal nerve blocking |
EP1634542A1 (en) | 1999-05-04 | 2006-03-15 | Curon Medical, Inc. | Integrated tissue heating and cooling apparatus |
US7022105B1 (en) | 1996-05-06 | 2006-04-04 | Novasys Medical Inc. | Treatment of tissue in sphincters, sinuses and orifices |
WO2006041881A2 (en) | 2004-10-05 | 2006-04-20 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US20060111672A1 (en) | 2002-05-28 | 2006-05-25 | Mercator Medsystems, Inc. | Methods and apparatus for aspiration and priming of inflatable structures in catheters |
WO2006063199A2 (en) | 2004-12-09 | 2006-06-15 | The Foundry, Inc. | Aortic valve repair |
US20060189941A1 (en) | 2002-01-22 | 2006-08-24 | Mercator Medsystems, Inc. | Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation |
US7104987B2 (en) | 2000-10-17 | 2006-09-12 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US7127284B2 (en) | 2001-06-11 | 2006-10-24 | Mercator Medsystems, Inc. | Electroporation microneedle and methods for its use |
US20060240070A1 (en) | 1998-09-24 | 2006-10-26 | Cromack Keith R | Delivery of highly lipophilic agents via medical devices |
WO2006116198A2 (en) | 2005-04-21 | 2006-11-02 | Asthmatx, Inc. | Control methods and devices for energy delivery |
US20060247619A1 (en) | 2004-11-05 | 2006-11-02 | Asthmatx, Inc. | Medical device with procedure improvement features |
US20060263393A1 (en) | 2005-05-20 | 2006-11-23 | Omeros Corporation | Cyclooxygenase inhibitor and calcium channel antagonist compositions and methods for use in urological procedures |
US7141041B2 (en) | 2003-03-19 | 2006-11-28 | Mercator Medsystems, Inc. | Catheters having laterally deployable needles |
US20060280858A1 (en) | 2001-01-05 | 2006-12-14 | Lyudmila Kokish | Balloon catheter for delivering therapeutic agents |
CN2855350Y (en) | 2005-09-01 | 2007-01-10 | 迈德医疗科技(上海)有限公司 | Probe electrode device for RF ablation treatment |
US7197354B2 (en) | 2004-06-21 | 2007-03-27 | Mediguide Ltd. | System for determining the position and orientation of a catheter |
US7200445B1 (en) | 2005-10-21 | 2007-04-03 | Asthmatx, Inc. | Energy delivery devices and methods |
US20070078620A1 (en) | 2002-02-13 | 2007-04-05 | Mercator Medsystems Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US20070100318A1 (en) | 2002-01-22 | 2007-05-03 | Mercator Medsystems, Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
EP1782852A1 (en) | 2005-11-04 | 2007-05-09 | F.Hoffmann-La Roche Ag | Device for automatic delivery of a liquid medicament into the body of a patient |
US20070106293A1 (en) | 2002-10-25 | 2007-05-10 | Hakan Oral | Ablation catheters |
US7241736B2 (en) | 2003-11-10 | 2007-07-10 | Angiotech International Ag | Compositions and methods for treating diverticular disease |
US7241273B2 (en) | 2002-09-20 | 2007-07-10 | Flowmedica, Inc. | Intra-aortic renal delivery catheter |
US20070208134A1 (en) | 2005-10-03 | 2007-09-06 | Hunter William L | Anti-scarring drug combinations and use thereof |
US20070207186A1 (en) | 2006-03-04 | 2007-09-06 | Scanlon John J | Tear and abrasion resistant expanded material and reinforcement |
US20070219576A1 (en) | 2006-03-16 | 2007-09-20 | Medtronic Vascular, Inc. | Reversibly and Radially Expandable Electroactive Polymer Element for Temporary Occlusion of a Vessel |
US7273469B1 (en) | 2003-12-31 | 2007-09-25 | Advanced Cardiovascular Systems, Inc. | Modified needle catheter for directional orientation delivery |
US7297475B2 (en) | 2003-05-16 | 2007-11-20 | Terumo Kabushiki Kaisha | Medicament injection kit and medicament injection method |
US20070269385A1 (en) | 2006-05-18 | 2007-11-22 | Mercator Medsystems, Inc | Devices, methods, and systems for delivering therapeutic agents for the treatment of sinusitis, rhinitis, and other disorders |
US20070278103A1 (en) | 2006-01-31 | 2007-12-06 | Nanocopoeia, Inc. | Nanoparticle coating of surfaces |
US20070287994A1 (en) | 2006-06-12 | 2007-12-13 | Pankaj Amrit Patel | Endoscopically Introducible Expandable Bipolar Probe |
US20070299043A1 (en) | 2005-10-03 | 2007-12-27 | Hunter William L | Anti-scarring drug combinations and use thereof |
US20080004596A1 (en) | 2006-05-25 | 2008-01-03 | Palo Alto Institute | Delivery of agents by microneedle catheter |
US7329236B2 (en) | 1999-01-11 | 2008-02-12 | Flowmedica, Inc. | Intra-aortic renal drug delivery catheter |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US20080045890A1 (en) | 2005-12-16 | 2008-02-21 | Mercator Medsystems, Inc. | Methods and systems for ablating tissue |
US7335192B2 (en) | 1999-01-11 | 2008-02-26 | Flowmedica, Inc. | Apparatus and methods for treating congestive heart disease |
US20080064957A1 (en) | 2006-09-07 | 2008-03-13 | Spence Paul A | Ultrasonic implant, systems and methods related to diverting material in blood flow away from the head |
US20080082109A1 (en) | 2006-09-08 | 2008-04-03 | Hansen Medical, Inc. | Robotic surgical system with forward-oriented field of view guide instrument navigation |
US20080086072A1 (en) | 2006-10-04 | 2008-04-10 | Bonutti Peter M | Methods and devices for controlling biologic microenvironments |
US7364566B2 (en) | 2002-09-20 | 2008-04-29 | Flowmedica, Inc. | Method and apparatus for intra-aortic substance delivery to a branch vessel |
US7396355B2 (en) | 1997-09-11 | 2008-07-08 | Vnus Medical Technologies, Inc. | Method and apparatus for applying energy to biological tissue including the use of tumescent tissue compression |
US20080172035A1 (en) | 2006-10-18 | 2008-07-17 | Starksen Niel F | Methods and devices for catheter advancement and delivery of substances therethrough |
US7407671B2 (en) | 1998-03-31 | 2008-08-05 | Boston Scientific Scimed, Inc. | Temperature controlled solute delivery system |
US7407502B2 (en) | 1998-05-08 | 2008-08-05 | Cytyc Corporation | Radio-frequency generator for powering an ablation device |
US7413556B2 (en) | 1998-06-29 | 2008-08-19 | Ekos Corporation | Sheath for use with an ultrasound element |
US20080208162A1 (en) | 2007-02-26 | 2008-08-28 | Joshi Ashok V | Device and Method For Thermophoretic Fluid Delivery |
US20080213331A1 (en) | 2002-04-08 | 2008-09-04 | Ardian, Inc. | Methods and devices for renal nerve blocking |
US7426409B2 (en) | 1999-06-25 | 2008-09-16 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
US7425212B1 (en) | 1998-06-10 | 2008-09-16 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy |
US20080245371A1 (en) | 2007-04-06 | 2008-10-09 | William Harwick Gruber | Systems, methods and devices for performing gynecological procedures |
US7465298B2 (en) | 2002-06-28 | 2008-12-16 | Mercator Medsystems, Inc. | Methods and systems for delivering liquid substances to tissues surrounding body lumens |
US20080317818A1 (en) | 2005-09-09 | 2008-12-25 | May Griffith | Interpenetrating Networks, and Related Methods and Compositions |
EP2010103A2 (en) | 2006-04-14 | 2009-01-07 | Edwards Lifesciences Corporation | Holders for prosthetic aortic heart valves |
US20090024195A1 (en) | 2005-09-12 | 2009-01-22 | The Cleveland Clinic Foundation | Method and apparatus for renal neuromodulation |
US7481803B2 (en) | 2000-11-28 | 2009-01-27 | Flowmedica, Inc. | Intra-aortic renal drug delivery catheter |
US20090074828A1 (en) | 2007-04-04 | 2009-03-19 | Massachusetts Institute Of Technology | Poly(amino acid) targeting moieties |
US20090076409A1 (en) | 2006-06-28 | 2009-03-19 | Ardian, Inc. | Methods and systems for thermally-induced renal neuromodulation |
US7507235B2 (en) | 2001-01-13 | 2009-03-24 | Medtronic, Inc. | Method and system for organ positioning and stabilization |
US7529589B2 (en) | 2003-06-04 | 2009-05-05 | Synecor Llc | Intravascular electrophysiological system and methods |
US7532938B2 (en) | 2004-09-10 | 2009-05-12 | The Cleveland Clinic Foundation | Intraluminal electrode assembly |
US7540870B2 (en) | 2006-08-08 | 2009-06-02 | Bacoustics, Llc | Ablative ultrasonic-cryogenic apparatus |
US20090142306A1 (en) | 2003-04-22 | 2009-06-04 | Mercator Medsystems, Inc. | Methods and systems for treating ischemic tissues |
US20090156988A1 (en) | 2007-12-18 | 2009-06-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US7556624B2 (en) | 1997-04-07 | 2009-07-07 | Asthmatx, Inc. | Method of increasing gas exchange of a lung |
US7558625B2 (en) | 2004-11-18 | 2009-07-07 | Transpharma Medical Ltd. | Combined micro-channel generation and iontophoresis for transdermal delivery of pharmaceutical agents |
WO2009088678A1 (en) | 2007-12-31 | 2009-07-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Pressure-sensitive flexible polymer bipolar electrode |
US20090203962A1 (en) | 2008-02-07 | 2009-08-13 | Voyage Medical, Inc. | Stent delivery under direct visualization |
US20090216317A1 (en) | 2005-03-23 | 2009-08-27 | Cromack Keith R | Delivery of Highly Lipophilic Agents Via Medical Devices |
US20090221955A1 (en) | 2006-08-08 | 2009-09-03 | Bacoustics, Llc | Ablative ultrasonic-cryogenic methods |
US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US7632268B2 (en) | 1996-10-11 | 2009-12-15 | BÂRRX Medical, Inc. | System for tissue ablation |
US20100023088A1 (en) | 2008-03-27 | 2010-01-28 | Stack Richard S | System and method for transvascularly stimulating contents of the carotid sheath |
US7666163B2 (en) | 2001-09-20 | 2010-02-23 | The Regents Of The University Of California | Microfabricated surgical device for interventional procedures |
US20100049186A1 (en) | 1997-08-13 | 2010-02-25 | Ams Research Corporation | Noninvasive devices, methods, and systems for shrinking of tissues |
US7670335B2 (en) | 2003-07-21 | 2010-03-02 | Biosense Webster, Inc. | Ablation device with spiral array ultrasound transducer |
US7678123B2 (en) | 2003-07-14 | 2010-03-16 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US20100069837A1 (en) | 2008-09-16 | 2010-03-18 | Boston Scientific Scimed, Inc. | Balloon Assembly and Method for Therapeutic Agent Delivery |
US7691080B2 (en) | 2006-09-21 | 2010-04-06 | Mercator Medsystems, Inc. | Dual modulus balloon for interventional procedures |
US20100087782A1 (en) | 2008-10-07 | 2010-04-08 | Roozbeh Ghaffari | Catheter balloon having stretchable integrated circuitry and sensor array |
US7706882B2 (en) | 2000-01-19 | 2010-04-27 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area |
WO2010056771A1 (en) | 2008-11-11 | 2010-05-20 | Shifamed Llc | Low profile electrode assembly |
US20100137860A1 (en) | 2002-04-08 | 2010-06-03 | Ardian, Inc. | Apparatus for performing a non-continuous circumferential treatment of a body lumen |
US7744584B2 (en) | 2002-01-22 | 2010-06-29 | Mercator Medsystems, Inc. | Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation |
US20100168737A1 (en) | 2008-12-30 | 2010-07-01 | Debby Esther Grunewald | Catheter with multiple electrode assemblies for use at or near tubular regions of the heart |
US20100191232A1 (en) | 2009-01-27 | 2010-07-29 | Boveda Marco Medical Llc | Catheters and methods for performing electrophysiological interventions |
US20100228122A1 (en) | 2005-10-27 | 2010-09-09 | Artenga Inc. | Microbubble medical devices |
US20100249702A1 (en) | 2009-03-24 | 2010-09-30 | Abbott Cardiovascular Systems Inc. | Porous catheter balloon and method of making same |
US20100256616A1 (en) | 2007-09-26 | 2010-10-07 | Retrovascular, Inc. | Recanalizing occluded vessels using radiofrequency energy |
US20100268217A1 (en) | 2006-05-24 | 2010-10-21 | Emcision Limited | Vessel sealing device and methods |
US20100286684A1 (en) | 2009-05-07 | 2010-11-11 | Cary Hata | Irrigated ablation catheter with multiple segmented ablation electrodes |
US7850685B2 (en) | 2005-06-20 | 2010-12-14 | Medtronic Ablation Frontiers Llc | Ablation catheter |
US20100324472A1 (en) | 2007-11-14 | 2010-12-23 | Pathway Medical Technologies, Inc. | Delivery and administration of compositions using interventional catheters |
US7905862B2 (en) | 2004-11-15 | 2011-03-15 | Cytyc Corporation | Method and system for drug delivery |
US7917208B2 (en) | 2002-10-04 | 2011-03-29 | Microchips, Inc. | Medical device for controlled drug delivery and cardiac monitoring and/or stimulation |
US20110104061A1 (en) | 2009-04-22 | 2011-05-05 | Mercator Medsystems, Inc. | Treatment of renal hypertension or carotid sinus syndrome with adventitial pharmaceutical sympathetic denervation or neuromodulation |
WO2011055143A2 (en) | 2009-11-04 | 2011-05-12 | Emcision Limited | Lumenal remodelling device and methods |
WO2011060200A1 (en) | 2009-11-11 | 2011-05-19 | Innovative Pulmonary Solutions, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
US20110118726A1 (en) | 2009-11-13 | 2011-05-19 | St. Jude Medical, Inc. | Assembly of staggered ablation elements |
US20110137155A1 (en) | 2009-12-09 | 2011-06-09 | Boston Scientific Scimed, Inc. | Delivery device for localized delivery of a therapeutic agent |
US7972330B2 (en) | 2003-03-27 | 2011-07-05 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
WO2011082279A2 (en) | 2009-12-31 | 2011-07-07 | Boston Scientific Scimed, Inc. | Patterned denervation therapy for innervated renal vasculature |
US20110166499A1 (en) | 2005-09-20 | 2011-07-07 | Ardian, Inc. | Methods and apparatus for inducing controlled renal neuromodulation |
US20110182912A1 (en) | 2010-01-26 | 2011-07-28 | Evans Michael A | Agents and methods for denervation |
EP2352542A1 (en) | 2008-11-14 | 2011-08-10 | Minnow Medical, Inc. | Selective drug delivery in a lumen |
US20110202098A1 (en) | 2002-04-08 | 2011-08-18 | Ardian, Inc. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
US8007495B2 (en) | 2004-03-31 | 2011-08-30 | Biosense Webster, Inc. | Catheter for circumferential ablation at or near a pulmonary vein |
US20110213231A1 (en) | 2007-05-09 | 2011-09-01 | Hall Sacha C | Bendable catheter arms having varied flexibility |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US8021362B2 (en) | 2003-03-27 | 2011-09-20 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
US8027740B2 (en) | 1997-03-13 | 2011-09-27 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
WO2011119857A2 (en) | 2010-03-24 | 2011-09-29 | Shifamed, Llc | Intravascular tissue disruption |
WO2011130534A2 (en) | 2010-04-14 | 2011-10-20 | Boston Scientific Scimed, Inc. | Renal artery denervation apparatus employing helical shaping arrangement |
WO2011133724A2 (en) | 2010-04-20 | 2011-10-27 | Minipumps, Llc | Electrolytically driven drug pump devices |
US20110301587A1 (en) | 2010-04-06 | 2011-12-08 | Innovative Pulmonary Solutions, Inc. | System and method for pulmonary treatment |
CN102274074A (en) | 2011-05-03 | 2011-12-14 | 上海微创电生理医疗科技有限公司 | Multi-electrode open-type radio frequency ablation catheter |
CN202069688U (en) | 2011-03-11 | 2011-12-14 | 北京天助畅运医疗技术股份有限公司 | Radio frequency ablation electrode capable of treating resistant hypertension |
US20110306851A1 (en) | 2011-08-26 | 2011-12-15 | Jie Wang | Mapping sympathetic nerve distribution for renal ablation and catheters for same |
EP2400924A1 (en) | 2009-02-27 | 2012-01-04 | St. Jude Medical, Inc. | Stent features for collapsible prosthetic heart valves |
US20120029504A1 (en) | 2009-05-13 | 2012-02-02 | Afonso Valtino X | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US20120029500A1 (en) | 2010-07-30 | 2012-02-02 | Jenson Mark L | Sequential Activation RF Electrode Set for Renal Nerve Ablation |
US20120029510A1 (en) | 2010-07-30 | 2012-02-02 | Haverkost Patrick A | RF Electrodes on Multiple Flexible Wires for Renal Nerve Ablation |
US8119183B2 (en) | 2006-09-11 | 2012-02-21 | Enbio Limited | Method of doping surfaces |
US8131371B2 (en) | 2002-04-08 | 2012-03-06 | Ardian, Inc. | Methods and apparatus for monopolar renal neuromodulation |
EP2429641A1 (en) | 2009-05-13 | 2012-03-21 | Vessix Vascular, Inc. | Directional delivery of energy and bioactives |
US20120071870A1 (en) | 2008-11-11 | 2012-03-22 | Amr Salahieh | Low Profile Electrode Assembly |
WO2012068471A1 (en) | 2010-11-19 | 2012-05-24 | Boston Scientific Scimed, Inc. | Renal nerve detection and ablation apparatus and method |
WO2012075156A1 (en) | 2010-12-01 | 2012-06-07 | Boston Scientific Scimed, Inc. | Expandable angular vascular electrode for renal nerve ablation |
US20120157992A1 (en) | 2010-12-15 | 2012-06-21 | Scott Smith | Off-wall electrode device for renal nerve ablation |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
EP2470119A1 (en) | 2009-08-27 | 2012-07-04 | Medtronic Inc. | Transcatheter valve delivery systems and methods |
US20120172837A1 (en) | 2002-04-08 | 2012-07-05 | Ardian, Inc. | Methods for inhibiting renal nerve activity via an intra-to-extravascular approach |
US20120184952A1 (en) | 2011-01-19 | 2012-07-19 | Jenson Mark L | Low-profile off-wall electrode device for renal nerve ablation |
US8257724B2 (en) | 1998-09-24 | 2012-09-04 | Abbott Laboratories | Delivery of highly lipophilic agents via medical devices |
US8257725B2 (en) | 1997-09-26 | 2012-09-04 | Abbott Laboratories | Delivery of highly lipophilic agents via medical devices |
US8263104B2 (en) | 2007-06-08 | 2012-09-11 | Northwestern University | Polymer nanofilm coatings |
CN202426647U (en) | 2011-12-22 | 2012-09-12 | 王涛 | Multi-pole radio frequency ablation electrode with variable-diameter net basket |
WO2012131107A1 (en) | 2011-04-01 | 2012-10-04 | Flux Medical N.V. | System, device and method for ablation of a vessel's wall from the inside |
US20120259269A1 (en) | 2011-04-08 | 2012-10-11 | Tyco Healthcare Group Lp | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
EP2509538A2 (en) | 2009-12-08 | 2012-10-17 | Avalon Medical Ltd. | Device and system for transcatheter mitral valve replacement |
US20120271301A1 (en) | 2011-04-22 | 2012-10-25 | Fischell Innovations Llc | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
WO2012158864A1 (en) | 2011-05-18 | 2012-11-22 | St. Jude Medical, Inc. | Apparatus and method of assessing transvascular denervation |
US20120296329A1 (en) | 2011-05-18 | 2012-11-22 | St. Jude Medical, Inc. | Apparatus and method of assessing transvascular denervation |
US20120296232A1 (en) | 2011-05-18 | 2012-11-22 | St. Jude Medical, Inc. | Method and apparatus of assessing transvascular denervation |
US8317810B2 (en) | 2008-12-29 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Tissue puncture assemblies and methods for puncturing tissue |
WO2012170482A1 (en) | 2011-06-06 | 2012-12-13 | St. Jude Medical, Inc. | Renal denervation system and method |
CN102885649A (en) | 2012-08-29 | 2013-01-23 | 中国人民解放军第三军医大学第一附属医院 | Radio frequency cable controlled ablation catheter system for removing sympathetic nerve from kidney |
CN102885648A (en) | 2012-08-29 | 2013-01-23 | 中国人民解放军第三军医大学第一附属医院 | Sympathetic nerve denervation ablation catheter system for kidneys |
US8364237B2 (en) | 2005-03-28 | 2013-01-29 | Vessix Vascular, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
CN102908188A (en) | 2012-08-29 | 2013-02-06 | 中国人民解放军第三军医大学第一附属医院 | Radio frequency ablation (RFA) catheter system for denervation of renal sympathetic nerves |
CN102908189A (en) | 2012-08-29 | 2013-02-06 | 中国人民解放军第三军医大学第一附属医院 | Multifunctional ablation catheter system for denervation of renal sympathetic nerves |
WO2013028781A1 (en) | 2011-08-24 | 2013-02-28 | Ablative Solutions, Inc. | Catheter system for vessel wall injection and perivascular renal denervation |
US20130053732A1 (en) | 2011-08-24 | 2013-02-28 | Richard R. Heuser | Devices and methods for treating hypertension with energy |
WO2013028274A2 (en) | 2011-07-11 | 2013-02-28 | Synecor Llc | System and method for neuromodulation |
CN202761434U (en) | 2012-08-29 | 2013-03-06 | 中国人民解放军第三军医大学第一附属医院 | Kidney sympathetic denervation multifunctional ablation catheter system |
US8403983B2 (en) | 2008-09-29 | 2013-03-26 | Cardiaq Valve Technologies, Inc. | Heart valve |
US8409172B2 (en) | 2006-08-03 | 2013-04-02 | Hansen Medical, Inc. | Systems and methods for performing minimally invasive procedures |
CN202843784U (en) | 2012-08-29 | 2013-04-03 | 中国人民解放军第三军医大学第一附属医院 | Renal sympathetic nerve ablation catheter system |
US20130090651A1 (en) | 2011-10-11 | 2013-04-11 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
US20130090652A1 (en) | 2011-10-10 | 2013-04-11 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US20130096604A1 (en) | 2011-10-18 | 2013-04-18 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
US20130096554A1 (en) | 2011-10-12 | 2013-04-18 | Boston Scientific Scimed, Inc. | Slotted tube multiple electrode frame and off-wall spacer cage |
US20130096550A1 (en) | 2011-10-18 | 2013-04-18 | Boston Scientific Scimed, Inc. | Ablative catheter with electrode cooling and related methods of use |
WO2013059735A1 (en) | 2011-10-19 | 2013-04-25 | Mercator Medsystems, Inc. | Localized modulation of tissues and cells to enhance therapeutic effects including renal denervation |
US20130110106A1 (en) | 2011-10-28 | 2013-05-02 | Boston Scientific Scimed, Inc. | Expandable structure for off-wall ablation electrode |
WO2013063331A1 (en) | 2011-10-26 | 2013-05-02 | Stein Emily A | Agents, methods, and devices for affecting nerve function |
US20130116687A1 (en) | 2011-11-08 | 2013-05-09 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US20130123778A1 (en) | 2011-11-15 | 2013-05-16 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
WO2013077283A1 (en) | 2011-11-21 | 2013-05-30 | 国立大学法人大阪大学 | Renal artery ablation catheter and system |
EP2598068A1 (en) | 2010-07-30 | 2013-06-05 | Boston Scientific Scimed, Inc. | Self-leveling electrode sets for renal nerve ablation |
CN202960760U (en) | 2012-12-13 | 2013-06-05 | 乐普(北京)医疗器械股份有限公司 | Multi-point radiofrequency ablation electrode used for operation of renal sympathetic nerve removal |
US20130158536A1 (en) | 2011-12-19 | 2013-06-20 | Medtronic Advanced Energy Llc | Electrosurgical Devices |
US20130158509A1 (en) | 2011-12-19 | 2013-06-20 | Paul M. Consigny | System, apparatus, and method for denervating an artery |
EP2611389A2 (en) | 2010-07-21 | 2013-07-10 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
WO2013106054A2 (en) | 2011-04-08 | 2013-07-18 | Vivant Medical, Inc. | Flexible microwave catheters for natural or artificial lumens |
WO2013112844A2 (en) | 2012-01-26 | 2013-08-01 | Landy Toth | Controlled sympathectomy and micro-ablation systems and methods |
US20130226166A1 (en) | 2012-02-28 | 2013-08-29 | James E. Chomas | Renal Nerve Neuromodulation Device |
US20130231658A1 (en) | 2012-03-01 | 2013-09-05 | Boston Scientific Scimed, Inc. | Expandable ablation device and methods for nerve modulation |
US20130231659A1 (en) | 2012-03-01 | 2013-09-05 | Boston Scientific Scimed, Inc. | Off-wall and contact electrode devices and methods for nerve modulation |
US20130245622A1 (en) | 2012-03-19 | 2013-09-19 | Boston Scientific Scimed, Inc. | Expandable electrode device and methods for nerve modulation |
US20130274674A1 (en) | 2011-08-24 | 2013-10-17 | Ablative Solutions, Inc. | Intravascular ablation catheter with precision depth of penetration calibration |
US20130274673A1 (en) | 2011-08-24 | 2013-10-17 | Ablative Solutions, Inc. | Intravascular ablation catheter with enhanced fluoroscopic visibility |
US20130274614A1 (en) | 2012-04-12 | 2013-10-17 | Neuro Ablation, Inc. | Mapping and ablation of nerves within arteries and tissues |
US8562573B1 (en) | 2012-06-05 | 2013-10-22 | Fischell Innovations, Llc | Guiding catheter for accessing the renal arteries |
US20130282000A1 (en) | 2012-04-19 | 2013-10-24 | St. Jude Medical, Cardiology Division, Inc. | Non-electric field renal denervation electrode |
US20130282084A1 (en) | 2004-09-10 | 2013-10-24 | Vessix Vascular, Inc. | Apparatus and Method for Treatment of In-Stent Restenosis |
EP2656807A1 (en) | 2010-12-21 | 2013-10-30 | Terumo Kabushiki Kaisha | Balloon catheter and electrification system |
US20130289555A1 (en) | 2009-10-27 | 2013-10-31 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US20130289369A1 (en) | 2012-04-27 | 2013-10-31 | Volcano Corporation | Methods and Apparatus for Renal Neuromodulation |
US20130289686A1 (en) | 2012-04-29 | 2013-10-31 | Synecor Llc | Intravascular electrode arrays for neuromodulation |
WO2013169741A1 (en) | 2012-05-08 | 2013-11-14 | Stein Emily A | Agents and devices for affecting nerve function |
US8584681B2 (en) | 1998-01-07 | 2013-11-19 | Asthmatx, Inc. | Method for treating an asthma attack |
WO2013188689A1 (en) | 2012-06-13 | 2013-12-19 | Harrington Douglas C | Devices and methods for renal denervation |
EP2675458A1 (en) | 2011-02-18 | 2013-12-25 | Medivation Technologies, Inc. | Compounds and methods for treatment of hypertension |
US20140018789A1 (en) | 2004-11-05 | 2014-01-16 | Asthmatx, Inc. | Energy delivery devices and methods |
US20140025069A1 (en) | 2012-07-17 | 2014-01-23 | Boston Scientific Scimed, Inc. | Renal nerve modulation catheter design |
CN103549993A (en) | 2013-11-21 | 2014-02-05 | 何芬 | Guide wire and catheter system for radiofrequency ablation of renal artery sympathetic nerves |
WO2014031167A1 (en) | 2012-08-22 | 2014-02-27 | Medivation Technologies, Inc. | Compounds and methods for treatment of hypertension |
US20140058374A1 (en) | 2012-08-22 | 2014-02-27 | Boston Scientific Scimed, Inc. | Multiple electrode rf ablation catheter and method |
WO2014036160A2 (en) | 2012-08-28 | 2014-03-06 | Boston Scientific Scimed, Inc. | Renal nerve modulation and ablation catheter electrode design |
US20140074089A1 (en) | 2012-09-13 | 2014-03-13 | Nihon Kohden Corporation | Catheter |
US20140074083A1 (en) | 2012-09-13 | 2014-03-13 | Boston Scientific Scimed, Inc. | Renal nerve modulation balloon and methods of making and using the same |
WO2014056460A1 (en) | 2012-08-29 | 2014-04-17 | 第三军医大学第一附属医院 | Multifunctional ablation catheter system for renal sympathetic denervation |
WO2014070820A2 (en) | 2012-11-02 | 2014-05-08 | Lixiao Wang | Chemical ablation formulations and methods of treatments for various diseases |
WO2014070999A2 (en) | 2012-11-05 | 2014-05-08 | Landy Toth | Systems, methods, and devices for monitoring and treatment of tissues within and/or through a lumen wall |
US20140135661A1 (en) | 2012-11-13 | 2014-05-15 | Silk Road Medical, Inc. | Devices and methods for endoluminal delivery of either fluid or energy for denervation |
EP2731531A1 (en) | 2011-07-12 | 2014-05-21 | Verve Medical, Inc. | Renal nerve denervation via the renal pelvis |
US20140142408A1 (en) | 2007-05-09 | 2014-05-22 | St. Jude Medical, Cardiology Division, Inc. | Basket catheter having multiple electrodes |
US8740849B1 (en) | 2012-10-29 | 2014-06-03 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
US8758334B2 (en) | 2011-12-09 | 2014-06-24 | Metavention, Inc. | Hepatic neuromodulation devices |
US20140180077A1 (en) | 2012-12-21 | 2014-06-26 | Volcano Corporation | Tissue ablation catheter and methods of ablating tissue |
US20140180196A1 (en) | 2006-10-18 | 2014-06-26 | Vessix Vascular, Inc. | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
US20140188103A1 (en) | 2012-12-31 | 2014-07-03 | Volcano Corporation | Methods and Apparatus for Neuromodulation Utilizing Optical-Acoustic Sensors |
WO2014110579A1 (en) | 2013-01-14 | 2014-07-17 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter |
US20140207136A1 (en) | 2012-05-04 | 2014-07-24 | St. Jude Medical, Inc. | Multiple staggered electrodes connected via flexible joints |
WO2014118734A2 (en) | 2013-01-31 | 2014-08-07 | David Prutchi | Unipolar and/or bipolar ablation catheter |
US20140228829A1 (en) | 2013-02-13 | 2014-08-14 | St. Jude Medical, Cardiology Division, Inc. | Laser-based devices and methods for renal denervation |
US20140243821A1 (en) | 2011-09-30 | 2014-08-28 | Covidien Lp | Energy delivery device and methods of use |
US20140246465A1 (en) | 2013-03-03 | 2014-09-04 | Joan Darnell Peterson | Fish n stow |
US20140276752A1 (en) | 2013-03-15 | 2014-09-18 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
US20140276124A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Quantification of renal denervation via alterations in renal blood flow pre/post ablation |
US20140276756A1 (en) | 2013-03-15 | 2014-09-18 | Boston Scientific Scimed, Inc. | Wall-sparing renal nerve ablation catheter with spaced electrode structures |
US20140276742A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Feedback systems and methods for renal denervation utilizing balloon catheter |
US20140276762A1 (en) | 2013-03-13 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheters and systems including rotational monitoring means |
US20140276766A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Ablation system, methods, and controllers |
US20140276747A1 (en) | 2013-03-15 | 2014-09-18 | Abbott Cardiovascular Systems Inc. | System and method for denervation |
US20140276728A1 (en) | 2013-03-14 | 2014-09-18 | Kyphon Sarl | Radio frequencey catheter to target ligamentum flavum |
US20140276746A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Feedback systems and methods utilizing two or more sites along denervation catheter |
US20140271717A1 (en) | 2013-03-14 | 2014-09-18 | Kyphon Sarl | Devices containing a chemical denervation agent and methods for treating chronic back pain using chemical denervation |
US20140276733A1 (en) | 2013-03-14 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations |
US20140276724A1 (en) | 2013-03-13 | 2014-09-18 | Kyphon Sarl | Radiofrequency inflatable device |
WO2014150425A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Cardiology Division, Inc. | Multi-electrode ablation system with a controller for determining a thermal gain of each electrode |
WO2014152344A2 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device for intravascular therapy and/or diagnosis |
WO2014150204A1 (en) | 2013-03-15 | 2014-09-25 | Kyphon SÀRL | Rf enabled inflatable bone tamp |
US20140296279A1 (en) | 2011-04-28 | 2014-10-02 | Mercator Medsystems, Inc. | Intravascular delivery of nanoparticle compositions and uses thereof |
WO2014163990A1 (en) | 2013-03-12 | 2014-10-09 | Boston Scientific Scimed, Inc. | Medical systems and methods for modulating nerves |
US20140303617A1 (en) | 2013-03-05 | 2014-10-09 | Neuro Ablation, Inc. | Intravascular nerve ablation devices & methods |
US20140316496A1 (en) | 2012-11-21 | 2014-10-23 | NeuroTronik IP Holding (Jersey) Limited | Intravascular Electrode Arrays for Neuromodulation |
WO2014176205A1 (en) | 2013-04-25 | 2014-10-30 | St. Jude Medical, Cardiology Division, Inc. | Electrode assembly for catheter system |
WO2014179768A1 (en) | 2013-05-02 | 2014-11-06 | Harrington Douglas C | Devices and methods for detection and treatment of the aorticorenal ganglion |
US20140336494A1 (en) | 2011-12-30 | 2014-11-13 | St. Jude Medical, Atrial Fibrillation Division Inc | Electrode support structure assemblies |
US20140350533A1 (en) | 2010-10-11 | 2014-11-27 | Kelo Tec, Llc | Contactless photodisruptive laser cataract surgery |
WO2014189887A2 (en) | 2013-05-20 | 2014-11-27 | Mayo Foundation For Medical Education And Research | Devices and methods for ablation of tissue |
US20140350551A1 (en) | 2013-05-21 | 2014-11-27 | St. Jude Medical, Cardiology Division, Inc. | Electrode assembly for catheter system |
WO2014197688A1 (en) | 2013-06-06 | 2014-12-11 | Boston Scientific Scimed, Inc. | Devices for delivering energy and related methods of use |
US20140378906A1 (en) | 2012-10-29 | 2014-12-25 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with mechanical support structures |
US20150018656A1 (en) | 2013-03-14 | 2015-01-15 | St. Jude Medical, Inc. | Methods, systems, and apparatus for neural signal detection |
US20150018818A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
EP2844190A1 (en) | 2012-04-30 | 2015-03-11 | St. Jude Medical, Cardiology Division, Inc. | Aortic valve holder with stent protection and/or ability to decrease valve profile |
US20150105715A1 (en) | 2013-10-15 | 2015-04-16 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US20150105772A1 (en) | 2013-10-14 | 2015-04-16 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US20150112327A1 (en) | 2013-10-23 | 2015-04-23 | St. Jude Medical, Cardiology Division, Inc. | Electrode assembly for catheter system including thermoplastic-based struts |
EP2870933A1 (en) | 2013-11-12 | 2015-05-13 | St. Jude Medical, Cardiology Division, Inc. | Transfemoral mitral valve repair delivery device |
US20150132409A1 (en) | 2010-01-26 | 2015-05-14 | Northwind Medical, Inc. | Agents and devices for affecting nerve function |
US9033917B2 (en) | 2012-08-15 | 2015-05-19 | Abbott Cardiovascular Systems Inc. | Needle catheter for delivery of agents directly into vessel wall |
US9055956B2 (en) | 2005-06-22 | 2015-06-16 | Covidien Lp | Methods and apparatus for introducing tumescent fluid to body tissue |
US9056185B2 (en) | 2011-08-24 | 2015-06-16 | Ablative Solutions, Inc. | Expandable catheter system for fluid injection into and deep to the wall of a blood vessel |
EP2895095A2 (en) | 2012-09-17 | 2015-07-22 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US20150223866A1 (en) | 2014-02-07 | 2015-08-13 | Verve Medical, Inc. | Methods and systems for ablation of the renal pelvis |
US9108030B2 (en) | 2013-03-14 | 2015-08-18 | Covidien Lp | Fluid delivery catheter with pressure-actuating needle deployment and retraction |
US20150289770A1 (en) | 2011-08-26 | 2015-10-15 | Symap Holding Limited | System and method for locating and identifying the functional nerves innervating the wall of arteries and catheters for same |
US9179962B2 (en) | 2012-10-29 | 2015-11-10 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
EP2954865A1 (en) | 2013-02-07 | 2015-12-16 | Shanghai Golden Leaf Med Tec Co., Ltd | Radio frequency ablation method, system and radio frequency ablation device thereof |
US9237925B2 (en) | 2011-04-22 | 2016-01-19 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US20160058489A1 (en) | 2012-10-29 | 2016-03-03 | Ablative Solutions, Inc. | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
US9278196B2 (en) | 2011-08-24 | 2016-03-08 | Ablative Solutions, Inc. | Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation |
EP2999436A1 (en) | 2013-05-20 | 2016-03-30 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
JP2016083302A (en) | 2014-10-28 | 2016-05-19 | テルモ株式会社 | Ablation catheter |
JP2016086999A (en) | 2014-10-31 | 2016-05-23 | テルモ株式会社 | Ablation catheter |
EP3027144A1 (en) | 2013-08-01 | 2016-06-08 | Tendyne Holdings, Inc. | Epicardial anchor devices and methods |
US20160157933A1 (en) | 2012-11-05 | 2016-06-09 | Boston Scientific Scimed, Inc. | Devices and methods for delivering energy to body lumens |
US20160242661A1 (en) | 2013-10-25 | 2016-08-25 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
EP3060148A1 (en) | 2013-10-25 | 2016-08-31 | Ablative Solutions, Inc. | Intravascular catheter with peri-vascular nerve activity sensors |
EP3082656A1 (en) | 2013-12-17 | 2016-10-26 | Edwards Lifesciences Corporation | Inverted leaflet prosthetic valve |
US20160310200A1 (en) | 2015-04-24 | 2016-10-27 | Neurotronic, Inc. | Chemical ablation and method of treatment for various diseases |
EP3110369A1 (en) | 2014-02-28 | 2017-01-04 | Highlife SAS | Transcatheter valve prosthesis |
EP3110368A1 (en) | 2014-02-28 | 2017-01-04 | Highlife SAS | Transcatheter valve prosthesis |
US9554849B2 (en) | 2012-10-29 | 2017-01-31 | Ablative Solutions, Inc. | Transvascular method of treating hypertension |
EP3132773A1 (en) | 2008-05-01 | 2017-02-22 | Edwards Lifesciences Corporation | Device for replacing mitral valve |
EP3132828A1 (en) | 2009-10-30 | 2017-02-22 | ReCor Medical, Inc. | Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation |
WO2017062640A1 (en) | 2015-10-09 | 2017-04-13 | Evalve, Inc. | A delivery catheter handle and methods of use |
US20170100248A1 (en) | 2013-10-29 | 2017-04-13 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US9629719B2 (en) | 2010-04-23 | 2017-04-25 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US20170119526A1 (en) | 2015-11-03 | 2017-05-04 | Edwards Lifesciences Corporation | Adapter for prosthesis delivery device and methods of use |
US20170128205A1 (en) | 2015-11-10 | 2017-05-11 | Edwards Lifesciences Corporation | Implant delivery capsule |
US20170128198A1 (en) | 2011-10-21 | 2017-05-11 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
US20170128206A1 (en) | 2011-09-22 | 2017-05-11 | Transmural Systems Llc | Devices, systems and methods for repairing lumenal systems |
WO2017096157A1 (en) | 2015-12-03 | 2017-06-08 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
US20170156860A1 (en) | 2012-09-14 | 2017-06-08 | Millipede, Inc. | Mitral valve inversion prostheses |
US20170165054A1 (en) | 2014-03-18 | 2017-06-15 | StJude Medical, Cardiology Division, Inc. | Mitral valve replacement toggle cell securement |
US20170165055A1 (en) | 2006-06-01 | 2017-06-15 | Edwards Lifesciences Corporation | Mitral valve prosthesis |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US20170172737A1 (en) | 2015-12-22 | 2017-06-22 | Nvt Ag | Prosthetic mitral valve coaptation enhancement device |
WO2017101232A1 (en) | 2015-12-15 | 2017-06-22 | 先健科技(深圳)有限公司 | Artificial heart valve stent, artificial heart valve and implantation method |
US9687342B2 (en) | 2011-01-11 | 2017-06-27 | Hans Reiner Figulla | Valve prosthesis for replacing an atrioventricular valve of the heart with anchoring element |
US9687343B2 (en) | 2014-03-11 | 2017-06-27 | Highlife Sas | Transcatheter valve prosthesis |
US20170181851A1 (en) | 2009-04-10 | 2017-06-29 | Lon Sutherland ANNEST | Device and Method for Temporary or Permanent Suspension of an Implantable Scaffolding Containing an Orifice for Placement of a Prosthetic or Bio-Prosthetic Valve |
US9694121B2 (en) | 1999-08-09 | 2017-07-04 | Cardiokinetix, Inc. | Systems and methods for improving cardiac function |
US9693859B2 (en) | 2007-09-26 | 2017-07-04 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US9693862B2 (en) | 2012-07-31 | 2017-07-04 | Edwards Lifesciences Corporation | Holders for prosthetic heart valves |
US20170189181A1 (en) | 2007-09-28 | 2017-07-06 | St. Jude Medical, Llc | Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features |
US20170189180A1 (en) | 2007-09-28 | 2017-07-06 | St. Jude Medical, Llc | Two-stage collapsible/expandable prosthetic heart valves and anchoring systems |
US20170189179A1 (en) | 2014-05-19 | 2017-07-06 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US9700409B2 (en) | 2013-11-06 | 2017-07-11 | St. Jude Medical, Cardiology Division, Inc. | Reduced profile prosthetic heart valve |
US9700411B2 (en) | 2010-08-17 | 2017-07-11 | St. Jude Medical, Inc. | Delivery system for collapsible heart valve |
EP3191027A1 (en) | 2014-09-12 | 2017-07-19 | Mitral Valve Technologies Sàrl | Mitral repair and replacement devices and methods |
WO2017127939A1 (en) | 2016-01-29 | 2017-08-03 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
WO2017136596A1 (en) | 2016-02-04 | 2017-08-10 | Millipede, Inc. | Mitral valve inversion prostheses |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9730794B2 (en) | 2004-01-23 | 2017-08-15 | Edwards Lifesciences Corporation | Prosthetic mitral valve |
US20170231762A1 (en) | 2009-09-29 | 2017-08-17 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US20170231763A1 (en) | 2013-05-22 | 2017-08-17 | Valcare, Inc. | Transcatheter prosthetic valve for mitral or tricuspid valve replacement |
EP3206628A1 (en) | 2014-10-16 | 2017-08-23 | Jacques Seguin | Intervalvular implant for a mitral valve |
US9750606B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
US9750607B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
US20170258585A1 (en) | 2016-03-08 | 2017-09-14 | Edwards Lifesciences Corporation | Valve implant with integrated sensor and transmitter |
US9763782B2 (en) | 2005-04-21 | 2017-09-19 | Edwards Lifesciences Ag | Apparatus for treating a heart valve |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9763658B2 (en) | 2002-08-02 | 2017-09-19 | Cedars-Sinai Medical Center | Methods and apparatus for atrioventricular valve repair |
US20170266001A1 (en) | 2012-07-30 | 2017-09-21 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
US9770328B2 (en) | 2000-09-20 | 2017-09-26 | Mvrx, Inc. | Heart valve annulus device and method of using same |
US20170281345A1 (en) | 2001-03-23 | 2017-10-05 | Edwards Lifesciences Corporation | Method for treating an aortic valve |
US20170290659A1 (en) | 2016-04-11 | 2017-10-12 | Biotronik Ag | Heart valve prosthesis |
EP3229736A1 (en) | 2014-12-09 | 2017-10-18 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US20170296339A1 (en) | 2004-03-11 | 2017-10-19 | Percutaneous Cardiovascular Solutions Pty Ltd | Percutaneous heart valve prosthesis |
US20170319333A1 (en) | 2016-05-03 | 2017-11-09 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
WO2017196977A1 (en) | 2016-05-13 | 2017-11-16 | Cardiosolutions, Inc. | Heart valve implant and methods for delivering and implanting same |
WO2017196909A1 (en) | 2016-05-12 | 2017-11-16 | St. Jude Medical, Cardiology Division, Inc. | Mitral heart valve replacement |
WO2017196511A1 (en) | 2016-05-10 | 2017-11-16 | William Joseph Drasler | Two component mitral valve |
US20170325948A1 (en) | 2015-05-14 | 2017-11-16 | Dan Wallace | Replacement mitral valves |
WO2017197064A1 (en) | 2016-05-13 | 2017-11-16 | St. Jude Medical, Cardiology Division, Inc. | Mitral valve delivery device |
US20170333186A1 (en) | 2014-11-26 | 2017-11-23 | Konstantinos Spargias | Transcatheter prosthetic heart valve and delivery system |
US9827092B2 (en) | 2011-12-16 | 2017-11-28 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US9827101B2 (en) | 2006-05-18 | 2017-11-28 | Edwards Lifesciences Ag | Device and method for improving heart valve function |
US9833313B2 (en) | 2013-03-11 | 2017-12-05 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter valve replacement |
US9833315B2 (en) | 2011-08-11 | 2017-12-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
EP3250154A1 (en) | 2015-01-26 | 2017-12-06 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
US20170348100A1 (en) | 2010-05-05 | 2017-12-07 | Neovasc Tiara, Inc. | Transcatheter mitral valve prosthesis |
US9839511B2 (en) | 2013-10-05 | 2017-12-12 | Sino Medical Sciences Technology Inc. | Device and method for mitral valve regurgitation treatment |
US20170354499A1 (en) | 2013-07-17 | 2017-12-14 | Juan F. Granada | System and method for cardiac valve repair and replacement |
US9844435B2 (en) | 2013-03-01 | 2017-12-19 | St. Jude Medical, Cardiology Division, Inc. | Transapical mitral valve replacement |
EP3256077A1 (en) | 2015-02-13 | 2017-12-20 | Millipede, Inc. | Valve replacement using rotational anchors |
WO2017218671A1 (en) | 2016-06-16 | 2017-12-21 | Jianlu Ma | Method and design for a mitral regurgitation treatment device |
US20170360549A1 (en) | 2014-07-17 | 2017-12-21 | Millipede, Inc. | Adjustable endolumenal implant for reshaping the mitral valve annulus |
US20170360585A1 (en) | 2013-11-11 | 2017-12-21 | Edwards Lifesciences Cardiaq Llc | Systems and methods for manufacturing a stent frame |
US9848880B2 (en) | 2013-11-20 | 2017-12-26 | James E. Coleman | Adjustable heart valve implant |
EP3258883A1 (en) | 2015-02-20 | 2017-12-27 | 4C Medical Technologies, Inc. | Devices, systems and methods for cardiac treatment |
US9861480B2 (en) | 2004-09-14 | 2018-01-09 | Edwards Lifesciences Ag | Device and method for treatment of heart valve regurgitation |
WO2018017886A1 (en) | 2016-07-21 | 2018-01-25 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
EP3273910A2 (en) | 2015-03-24 | 2018-01-31 | St. Jude Medical, Cardiology Division, Inc. | Mitral heart valve replacement |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4787495A (en) | 1984-11-30 | 1988-11-29 | Creative Technology, Inc. | Method and apparatus for selective scrap metal collection |
US5058670A (en) | 1989-05-15 | 1991-10-22 | Crawford Douglas W | Oriented valve and latch for side pocket mandrel |
US5478396A (en) * | 1992-09-28 | 1995-12-26 | Advanced Silicon Materials, Inc. | Production of high-purity polycrystalline silicon rod for semiconductor applications |
US5352199A (en) * | 1993-05-28 | 1994-10-04 | Numed, Inc. | Balloon catheter |
US8865788B2 (en) * | 1996-02-13 | 2014-10-21 | The General Hospital Corporation | Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices |
US6129734A (en) * | 1997-01-21 | 2000-10-10 | Shturman Cardiology Systems, Inc. | Rotational atherectomy device with radially expandable prime mover coupling |
JP3041967U (en) | 1997-03-28 | 1997-10-03 | 明男 中村 | Flame detection system |
US6134444A (en) | 1998-03-30 | 2000-10-17 | Motorola, Inc. | Method and apparatus for balancing uplink and downlink transmissions in a communication system |
JP2000005189A (en) * | 1998-06-24 | 2000-01-11 | Terumo Corp | Catheter for removing foreign matter |
KR100392227B1 (en) * | 1999-12-16 | 2003-07-22 | 주식회사 폴리플러스 | Polyetherketone and heat-resistant PVC blend containing the same |
DE102004021942A1 (en) | 2004-05-04 | 2005-12-01 | Adam Opel Ag | Locking device for motor vehicle door, has electrical actuators which are operated to move blocking bolt and locking bolt, respectively, where bus bar is coupled/decoupled with bolt, in respective unloaded/loaded condition of store |
-
2005
- 2005-12-09 EP EP05853460.3A patent/EP1819304B1/en active Active
- 2005-12-09 JP JP2007545650A patent/JP5219518B2/en not_active Expired - Fee Related
- 2005-12-09 US US11/299,246 patent/US7803168B2/en active Active
- 2005-12-09 CN CN2005800425231A patent/CN101076290B/en not_active Expired - Fee Related
- 2005-12-09 WO PCT/US2005/044543 patent/WO2006063199A2/en active Application Filing
-
2010
- 2010-08-27 US US12/870,270 patent/US20100324554A1/en not_active Abandoned
-
2012
- 2012-12-03 US US13/692,613 patent/US9414852B2/en not_active Expired - Fee Related
-
2016
- 2016-07-18 US US15/212,797 patent/US10350004B2/en active Active
-
2019
- 2019-07-15 US US16/511,947 patent/US11272982B2/en active Active
Patent Citations (918)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US931795A (en) | 1908-11-30 | 1909-08-24 | George James Packe | Bottle for teething liquids and other liquids or materials. |
US3526219A (en) | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
US3589363A (en) | 1967-07-25 | 1971-06-29 | Cavitron Corp | Material removal apparatus and method employing high frequency vibrations |
US3565062A (en) | 1968-06-13 | 1971-02-23 | Ultrasonic Systems | Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like |
US3667474A (en) | 1970-01-05 | 1972-06-06 | Konstantin Vasilievich Lapkin | Dilator for performing mitral and tricuspidal commissurotomy per atrium cordis |
JPS499882A (en) | 1972-04-10 | 1974-01-28 | ||
US3752162A (en) | 1972-04-10 | 1973-08-14 | Dow Corning | Artificial cutaneous stoma |
US3823717A (en) | 1972-04-22 | 1974-07-16 | R Pohlman | Apparatus for disintegrating concretions in body cavities of living organisms by means of an ultrasonic probe |
US3861391A (en) | 1972-07-02 | 1975-01-21 | Blackstone Corp | Apparatus for disintegration of urinary calculi |
US3896811A (en) | 1972-08-31 | 1975-07-29 | Karl Storz | Ultrasonic surgical instrument |
US4188952A (en) | 1973-12-28 | 1980-02-19 | Loschilov Vladimir I | Surgical instrument for ultrasonic separation of biological tissue |
US6014590A (en) | 1974-03-04 | 2000-01-11 | Ep Technologies, Inc. | Systems and methods employing structures having asymmetric mechanical properties to support diagnostic or therapeutic elements in contact with tissue in interior body regions |
US4046150A (en) | 1975-07-17 | 1977-09-06 | American Hospital Supply Corporation | Medical instrument for locating and removing occlusive objects |
US4042979A (en) | 1976-07-12 | 1977-08-23 | Angell William W | Valvuloplasty ring and prosthetic method |
US4431006A (en) | 1982-01-07 | 1984-02-14 | Technicare Corporation | Passive ultrasound needle probe locator |
US4445509A (en) | 1982-02-04 | 1984-05-01 | Auth David C | Method and apparatus for removal of enclosed abnormal deposits |
US4484579A (en) | 1982-07-19 | 1984-11-27 | University Of Pittsburgh | Commissurotomy catheter apparatus and method |
US4587958A (en) | 1983-04-04 | 1986-05-13 | Sumitomo Bakelite Company Limited | Ultrasonic surgical device |
US4692139A (en) | 1984-03-09 | 1987-09-08 | Stiles Frank B | Catheter for effecting removal of obstructions from a biological duct |
US4646736A (en) | 1984-09-10 | 1987-03-03 | E. R. Squibb & Sons, Inc. | Transluminal thrombectomy apparatus |
US4960411A (en) | 1984-09-18 | 1990-10-02 | Medtronic Versaflex, Inc. | Low profile sterrable soft-tip catheter |
US4589419A (en) | 1984-11-01 | 1986-05-20 | University Of Iowa Research Foundation | Catheter for treating arterial occlusion |
US4824436A (en) | 1985-04-09 | 1989-04-25 | Harvey Wolinsky | Method for the prevention of restenosis |
US4750902A (en) | 1985-08-28 | 1988-06-14 | Sonomed Technology, Inc. | Endoscopic ultrasonic aspirators |
US4790812A (en) | 1985-11-15 | 1988-12-13 | Hawkins Jr Irvin F | Apparatus and method for removing a target object from a body passsageway |
US4787388A (en) | 1985-11-29 | 1988-11-29 | Schneider - Shiley Ag | Method for opening constricted regions in the cardiovascular system |
US4990134A (en) | 1986-01-06 | 1991-02-05 | Heart Technology, Inc. | Transluminal microdissection device |
US4990134B1 (en) | 1986-01-06 | 1996-11-05 | Heart Techn Inc | Transluminal microdissection device |
EP0233100A1 (en) | 1986-01-14 | 1987-08-19 | l'Université Libre de Bruxelles | Pharmaceutical composition containing a local anaesthetic and/or a central analgesic encapsulated in multilamellar liposomes |
JPS62181225A (en) | 1986-01-14 | 1987-08-08 | イ−ル−セルタ−ク,ソシエテ,アノニム | Anesthetic medicine composition |
US4709698A (en) | 1986-05-14 | 1987-12-01 | Thomas J. Fogarty | Heatable dilation catheter |
US4777951A (en) | 1986-09-19 | 1988-10-18 | Mansfield Scientific, Inc. | Procedure and catheter instrument for treating patients for aortic stenosis |
US4747821A (en) | 1986-10-22 | 1988-05-31 | Intravascular Surgical Instruments, Inc. | Catheter with high speed moving working head |
US5314407A (en) | 1986-11-14 | 1994-05-24 | Heart Technology, Inc. | Clinically practical rotational angioplasty system |
US4808153A (en) | 1986-11-17 | 1989-02-28 | Ultramed Corporation | Device for removing plaque from arteries |
US5058570A (en) | 1986-11-27 | 1991-10-22 | Sumitomo Bakelite Company Limited | Ultrasonic surgical apparatus |
US4878495A (en) | 1987-05-15 | 1989-11-07 | Joseph Grayzel | Valvuloplasty device with satellite expansion means |
US4841977A (en) | 1987-05-26 | 1989-06-27 | Inter Therapy, Inc. | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
US4796629A (en) | 1987-06-03 | 1989-01-10 | Joseph Grayzel | Stiffened dilation balloon catheter device |
US4898575A (en) | 1987-08-31 | 1990-02-06 | Medinnovations, Inc. | Guide wire following tunneling catheter system and method for transluminal arterial atherectomy |
US4819751A (en) | 1987-10-16 | 1989-04-11 | Baxter Travenol Laboratories, Inc. | Valvuloplasty catheter and method |
US4870953A (en) | 1987-11-13 | 1989-10-03 | Donmicheal T Anthony | Intravascular ultrasonic catheter/probe and method for treating intravascular blockage |
US4909252A (en) | 1988-05-26 | 1990-03-20 | The Regents Of The Univ. Of California | Perfusion balloon catheter |
WO1990000060A1 (en) | 1988-06-30 | 1990-01-11 | Collagen Corporation | Collagen wound healing matrices and process for their production |
US4920954A (en) | 1988-08-05 | 1990-05-01 | Sonic Needle Corporation | Ultrasonic device for applying cavitation forces |
US4919133A (en) | 1988-08-18 | 1990-04-24 | Chiang Tien Hon | Catheter apparatus employing shape memory alloy structures |
US5496311A (en) | 1988-10-28 | 1996-03-05 | Boston Scientific Corporation | Physiologic low stress angioplasty |
US5904679A (en) | 1989-01-18 | 1999-05-18 | Applied Medical Resources Corporation | Catheter with electrosurgical cutter |
US5087244A (en) | 1989-01-31 | 1992-02-11 | C. R. Bard, Inc. | Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen |
US5078717A (en) | 1989-04-13 | 1992-01-07 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
US4936281A (en) | 1989-04-13 | 1990-06-26 | Everest Medical Corporation | Ultrasonically enhanced RF ablation catheter |
US6165187A (en) | 1989-08-18 | 2000-12-26 | Endo Vascular Instruments, Inc. | Method of enlarging a lumen of an artery |
US5282484A (en) | 1989-08-18 | 1994-02-01 | Endovascular Instruments, Inc. | Method for performing a partial atherectomy |
US5156610A (en) | 1989-08-18 | 1992-10-20 | Evi Corporation | Catheter atherotome |
US5071424A (en) | 1989-08-18 | 1991-12-10 | Evi Corporation | Catheter atherotome |
US5211651A (en) | 1989-08-18 | 1993-05-18 | Evi Corporation | Catheter atherotome |
US4986830A (en) | 1989-09-22 | 1991-01-22 | Schneider (U.S.A.) Inc. | Valvuloplasty catheter with balloon which remains stable during inflation |
US5076276A (en) | 1989-11-01 | 1991-12-31 | Olympus Optical Co., Ltd. | Ultrasound type treatment apparatus |
US5344395A (en) | 1989-11-13 | 1994-09-06 | Scimed Life Systems, Inc. | Apparatus for intravascular cavitation or delivery of low frequency mechanical energy |
US5069664A (en) | 1990-01-25 | 1991-12-03 | Inter Therapy, Inc. | Intravascular ultrasonic angioplasty probe |
US5158564A (en) | 1990-02-14 | 1992-10-27 | Angiomed Ag | Atherectomy apparatus |
US5326341A (en) | 1990-03-30 | 1994-07-05 | Alza Corporation | Iontorphoretic delivery device |
US6389314B2 (en) | 1990-05-07 | 2002-05-14 | Andrew Jonathan Feiring | Method and apparatus for inducing the permeation of medication into internal tissue |
US5840081A (en) | 1990-05-18 | 1998-11-24 | Andersen; Henning Rud | System and method for implanting cardiac valves |
US6582462B1 (en) | 1990-05-18 | 2003-06-24 | Heartport, Inc. | Valve prosthesis for implantation in the body and a catheter for implanting such valve prosthesis |
US5190540A (en) | 1990-06-08 | 1993-03-02 | Cardiovascular & Interventional Research Consultants, Inc. | Thermal balloon angioplasty |
US5106302A (en) | 1990-09-26 | 1992-04-21 | Ormco Corporation | Method of fracturing interfaces with an ultrasonic tool |
US5269291A (en) | 1990-12-10 | 1993-12-14 | Coraje, Inc. | Miniature ultrasonic transducer for plaque ablation |
JP3041967B2 (en) | 1990-12-13 | 2000-05-15 | ソニー株式会社 | Digital signal coding device |
US5248296A (en) | 1990-12-24 | 1993-09-28 | Sonic Needle Corporation | Ultrasonic device having wire sheath |
US7066904B2 (en) | 1990-12-28 | 2006-06-27 | Boston Scientific Scimed, Inc. | Triggered release hydrogel drug delivery system |
US20030114791A1 (en) | 1990-12-28 | 2003-06-19 | Arthur Rosenthal | Triggered release hydrogel drug delivery system |
US6524274B1 (en) | 1990-12-28 | 2003-02-25 | Scimed Life Systems, Inc. | Triggered release hydrogel drug delivery system |
US5102402A (en) | 1991-01-04 | 1992-04-07 | Medtronic, Inc. | Releasable coatings on balloon catheters |
WO1992011898A1 (en) | 1991-01-07 | 1992-07-23 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
US5997497A (en) | 1991-01-11 | 1999-12-07 | Advanced Cardiovascular Systems | Ultrasound catheter having integrated drug delivery system and methods of using same |
US5957882A (en) | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US5267954A (en) | 1991-01-11 | 1993-12-07 | Baxter International Inc. | Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels |
US6454757B1 (en) | 1991-01-11 | 2002-09-24 | Advanced Cardiovascular Systems, Inc. | Ultrasonic method for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US6454737B1 (en) | 1991-01-11 | 2002-09-24 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty-atherectomy catheter and method of use |
US5304115A (en) | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
JPH06504516A (en) | 1991-01-23 | 1994-05-26 | エクソン ケミカル パテンツ インコーポレイテッド | Method for producing substantially binder-free zeolite |
EP0497041A1 (en) | 1991-01-31 | 1992-08-05 | Baxter International Inc. | Automated infusion pump with replaceable memory cartridges |
US5465717A (en) | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
US5345936A (en) | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
USRE36939E (en) | 1991-03-22 | 2000-10-31 | Ekos Corporation | Composition for therapy of diseases with ultrasonic and pharmaceutical liquid composition containing the same |
US5443446A (en) | 1991-04-04 | 1995-08-22 | Shturman Cardiology Systems, Inc. | Method and apparatus for in vivo heart valve decalcification |
WO1992017118A1 (en) | 1991-04-04 | 1992-10-15 | Shturman Cardiology Systems, Inc. | Method and apparatus for in vivo heart valve decalcification |
US5295958A (en) | 1991-04-04 | 1994-03-22 | Shturman Cardiology Systems, Inc. | Method and apparatus for in vivo heart valve decalcification |
US6309379B1 (en) | 1991-05-23 | 2001-10-30 | Lloyd K. Willard | Sheath for selective delivery of multiple intravascular devices and methods of use thereof |
WO1992020291A1 (en) | 1991-05-24 | 1992-11-26 | Applied Medical Resources, Inc. | Articulating tissue cutter assembly |
US20010044591A1 (en) | 1991-07-16 | 2001-11-22 | Heartport, Inc. | System for cardiac procedures |
US5419767A (en) | 1992-01-07 | 1995-05-30 | Thapliyal And Eggers Partners | Methods and apparatus for advancing catheters through severely occluded body lumens |
US5489297A (en) | 1992-01-27 | 1996-02-06 | Duran; Carlos M. G. | Bioprosthetic heart valve with absorbable stent |
US5306250A (en) | 1992-04-02 | 1994-04-26 | Indiana University Foundation | Method and apparatus for intravascular drug delivery |
US5255679A (en) | 1992-06-02 | 1993-10-26 | Cardiac Pathways Corporation | Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method |
US5772590A (en) | 1992-06-30 | 1998-06-30 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire |
US5411025A (en) * | 1992-06-30 | 1995-05-02 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array |
US5304120A (en) | 1992-07-01 | 1994-04-19 | Btx Inc. | Electroporation method and apparatus for insertion of drugs and genes into endothelial cells |
US5538504A (en) | 1992-07-14 | 1996-07-23 | Scimed Life Systems, Inc. | Intra-extravascular drug delivery catheter and method |
US5318014A (en) | 1992-09-14 | 1994-06-07 | Coraje, Inc. | Ultrasonic ablation/dissolution transducer |
US5471982A (en) | 1992-09-29 | 1995-12-05 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5540679A (en) | 1992-10-05 | 1996-07-30 | Boston Scientific Corporation | Device and method for heating tissue in a patient's body |
US5916227A (en) | 1992-10-07 | 1999-06-29 | Scimed Life Systems, Inc. | Ablation devices and methods of use |
US5667490A (en) | 1992-10-07 | 1997-09-16 | Scimed Life Systems, Inc. | Ablation device drive assembly including catheter connector |
US5938670A (en) | 1992-10-07 | 1999-08-17 | Scimed Life Systems, Inc. | Ablation devices and methods of use |
US5356418A (en) | 1992-10-28 | 1994-10-18 | Shturman Cardiology Systems, Inc. | Apparatus and method for rotational atherectomy |
US5876374A (en) | 1992-11-02 | 1999-03-02 | Localmed, Inc. | Catheter sleeve for use with a balloon catheter |
US5665098A (en) | 1992-11-09 | 1997-09-09 | Endovascular Instruments, Inc. | Unitary removal of plaque |
US5807306A (en) | 1992-11-09 | 1998-09-15 | Cortrak Medical, Inc. | Polymer matrix drug delivery apparatus |
US5571122A (en) | 1992-11-09 | 1996-11-05 | Endovascular Instruments, Inc. | Unitary removal of plaque |
US5397293A (en) | 1992-11-25 | 1995-03-14 | Misonix, Inc. | Ultrasonic device with sheath and transverse motion damping |
US6651672B2 (en) | 1993-02-22 | 2003-11-25 | Heartport, Inc. | Devices for less-invasive intracardiac interventions |
US6346074B1 (en) | 1993-02-22 | 2002-02-12 | Heartport, Inc. | Devices for less invasive intracardiac interventions |
US6679268B2 (en) | 1993-02-22 | 2004-01-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US20040117032A1 (en) | 1993-02-22 | 2004-06-17 | Roth Alex T. | Devices for less-invasive intracardiac interventions |
US6401720B1 (en) | 1993-02-22 | 2002-06-11 | John H. Stevens | Method and apparatus for thoracoscopic intracardiac procedures |
US7100614B2 (en) | 1993-02-22 | 2006-09-05 | Heartport, Inc. | Method of Forming a Lesion in Heart Tissue |
US20040019348A1 (en) | 1993-02-22 | 2004-01-29 | Stevens John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US5829447A (en) | 1993-02-22 | 1998-11-03 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US6079414A (en) | 1993-02-22 | 2000-06-27 | Heartport, Inc. | Method for thoracoscopic intracardiac procedures including septal defect |
US5823956A (en) | 1993-02-22 | 1998-10-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
US5924424A (en) | 1993-02-22 | 1999-07-20 | Heartport, Inc. | Method and apparatus for thoracoscopic intracardiac procedures |
WO1994021168A1 (en) | 1993-03-16 | 1994-09-29 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5476495A (en) | 1993-03-16 | 1995-12-19 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
US5636634A (en) | 1993-03-16 | 1997-06-10 | Ep Technologies, Inc. | Systems using guide sheaths for introducing, deploying, and stabilizing cardiac mapping and ablation probes |
WO1994021165A1 (en) | 1993-03-16 | 1994-09-29 | Ep Technologies, Inc. | Guide sheaths for cardiac mapping and ablation |
US6216044B1 (en) | 1993-03-16 | 2001-04-10 | Ep Technologies, Inc. | Medical device with three dimensional collapsible basket structure |
US5709874A (en) | 1993-04-14 | 1998-01-20 | Emory University | Device for local drug delivery and methods for using the same |
US5590654A (en) | 1993-06-07 | 1997-01-07 | Prince; Martin R. | Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent |
US5860974A (en) | 1993-07-01 | 1999-01-19 | Boston Scientific Corporation | Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft |
US6004269A (en) | 1993-07-01 | 1999-12-21 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
WO1995001751A1 (en) | 1993-07-01 | 1995-01-19 | Boston Scientific Corporation | Imaging, electrical potential sensing, and ablation catheters |
US6357447B1 (en) | 1993-10-15 | 2002-03-19 | Ep Technologies, Inc. | Surface coatings for catheters, direct contacting diagnostic and therapeutic devices |
WO1995010319A1 (en) | 1993-10-15 | 1995-04-20 | Ep Technologies, Inc. | Electrodes for creating lesions in body tissue |
US5584879A (en) | 1993-12-13 | 1996-12-17 | Brigham & Women's Hospital | Aortic valve supporting device |
US5419777A (en) | 1994-03-10 | 1995-05-30 | Bavaria Medizin Technologie Gmbh | Catheter for injecting a fluid or medicine |
US5588962A (en) | 1994-03-29 | 1996-12-31 | Boston Scientific Corporation | Drug treatment of diseased sites deep within the body |
US5464395A (en) | 1994-04-05 | 1995-11-07 | Faxon; David P. | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway |
US6056744A (en) | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
US6405732B1 (en) | 1994-06-24 | 2002-06-18 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US20020077592A1 (en) | 1994-06-30 | 2002-06-20 | Boston Scientific Corporation | Replenishable stent and delivery system |
EP0774991A1 (en) | 1994-08-08 | 1997-05-28 | Schneider (Usa) Inc. | Drug delivery and dilatation-drug delivery catheters in a rapid exchange configuration |
US5609151A (en) | 1994-09-08 | 1997-03-11 | Medtronic, Inc. | Method for R-F ablation |
US5695507A (en) | 1994-10-03 | 1997-12-09 | Boston Scientific Corporation Northwest Technology Center, Inc. | Transluminal thrombectomy apparatus |
US6353751B1 (en) | 1994-10-11 | 2002-03-05 | Ep Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrodes structures |
US5722401A (en) | 1994-10-19 | 1998-03-03 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe |
US5817144A (en) | 1994-10-25 | 1998-10-06 | Latis, Inc. | Method for contemporaneous application OF laser energy and localized pharmacologic therapy |
US6689086B1 (en) | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US5588960A (en) | 1994-12-01 | 1996-12-31 | Vidamed, Inc. | Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence |
WO1996034559A1 (en) | 1995-05-01 | 1996-11-07 | Cordis Webster, Inc. | Unique electrode configurations for cardiovascular electrode catheter with built-in deflection method and central puller wire |
US6830568B1 (en) | 1995-05-10 | 2004-12-14 | Randy J. Kesten | Guiding catheter system for ablating heart tissue |
US5827229A (en) | 1995-05-24 | 1998-10-27 | Boston Scientific Corporation Northwest Technology Center, Inc. | Percutaneous aspiration thrombectomy catheter system |
US5865801A (en) | 1995-07-18 | 1999-02-02 | Houser; Russell A. | Multiple compartmented balloon catheter with external pressure sensing |
WO1997003604A1 (en) | 1995-07-18 | 1997-02-06 | Houser Russell A | Multiple compartmented balloon catheter with external pressure sensing |
US5681336A (en) | 1995-09-07 | 1997-10-28 | Boston Scientific Corporation | Therapeutic device for treating vien graft lesions |
US20030028114A1 (en) | 1995-09-20 | 2003-02-06 | Texas Heart Institute | Method and apparatus for detecting vulnerable atherosclerotic plaque |
US6763261B2 (en) | 1995-09-20 | 2004-07-13 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
WO1997017892A1 (en) | 1995-11-13 | 1997-05-22 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe and method |
US5725494A (en) | 1995-11-30 | 1998-03-10 | Pharmasonics, Inc. | Apparatus and methods for ultrasonically enhanced intraluminal therapy |
US6321109B2 (en) | 1996-02-15 | 2001-11-20 | Biosense, Inc. | Catheter based surgery |
US6152899A (en) | 1996-03-05 | 2000-11-28 | Vnus Medical Technologies, Inc. | Expandable catheter having improved electrode design, and method for applying energy |
US5954742A (en) | 1996-03-16 | 1999-09-21 | Osypka; Peter | Dilatation catheter |
US5843016A (en) | 1996-03-18 | 1998-12-01 | Physion S.R.L. | Electromotive drug administration for treatment of acute urinary outflow obstruction |
US7022105B1 (en) | 1996-05-06 | 2006-04-04 | Novasys Medical Inc. | Treatment of tissue in sphincters, sinuses and orifices |
WO1997042990A1 (en) | 1996-05-13 | 1997-11-20 | Medtronic, Inc. | Techniques for treating epilepsy by brain stimulation and drug infusion |
US6295712B1 (en) | 1996-07-15 | 2001-10-02 | Shturman Cardiology Systems, Inc. | Rotational atherectomy device |
US5662671A (en) | 1996-07-17 | 1997-09-02 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US6010522A (en) | 1996-07-17 | 2000-01-04 | Embol-X, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US6309399B1 (en) | 1996-07-17 | 2001-10-30 | Scimed Life Systems, Inc. | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
US6843797B2 (en) | 1996-07-26 | 2005-01-18 | Kensey Nash Corporation | System and method of use for revascularizing stenotic bypass grafts and other occluded blood vessels |
US5782931A (en) | 1996-07-30 | 1998-07-21 | Baxter International Inc. | Methods for mitigating calcification and improving durability in glutaraldehyde-fixed bioprostheses and articles manufactured by such methods |
US6869439B2 (en) | 1996-09-19 | 2005-03-22 | United States Surgical Corporation | Ultrasonic dissector |
US5704908A (en) | 1996-10-10 | 1998-01-06 | Genetronics, Inc. | Electroporation and iontophoresis catheter with porous balloon |
US7632268B2 (en) | 1996-10-11 | 2009-12-15 | BÂRRX Medical, Inc. | System for tissue ablation |
US6283951B1 (en) | 1996-10-11 | 2001-09-04 | Transvascular, Inc. | Systems and methods for delivering drugs to selected locations within the body |
US5848969A (en) | 1996-10-28 | 1998-12-15 | Ep Technologies, Inc. | Systems and methods for visualizing interior tissue regions using expandable imaging structures |
US6658279B2 (en) | 1996-10-28 | 2003-12-02 | Ep Technologies, Inc. | Ablation and imaging catheter |
US6217595B1 (en) | 1996-11-18 | 2001-04-17 | Shturman Cardiology Systems, Inc. | Rotational atherectomy device |
US5910129A (en) * | 1996-12-19 | 1999-06-08 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US6706011B1 (en) | 1996-12-27 | 2004-03-16 | Douglas Murphy-Chutorian | Laser assisted drug delivery |
US5873811A (en) | 1997-01-10 | 1999-02-23 | Sci-Med Life Systems | Composition containing a radioactive component for treatment of vessel wall |
US8027740B2 (en) | 1997-03-13 | 2011-09-27 | Biocardia, Inc. | Drug delivery catheters that attach to tissue and methods for their use |
US7556624B2 (en) | 1997-04-07 | 2009-07-07 | Asthmatx, Inc. | Method of increasing gas exchange of a lung |
US6117128A (en) | 1997-04-30 | 2000-09-12 | Kenton W. Gregory | Energy delivery catheter and method for the use thereof |
US5989208A (en) | 1997-05-16 | 1999-11-23 | Nita; Henry | Therapeutic ultrasound system |
US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
EP1009303A1 (en) | 1997-07-08 | 2000-06-21 | The Regents of the University of California | Circumferential ablation device assembly and method |
US20030050637A1 (en) | 1997-07-08 | 2003-03-13 | Maguire Mark A. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
US6024740A (en) | 1997-07-08 | 2000-02-15 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6869431B2 (en) | 1997-07-08 | 2005-03-22 | Atrionix, Inc. | Medical device with sensor cooperating with expandable member |
US20030176816A1 (en) | 1997-07-08 | 2003-09-18 | Maguire Mark A. | Medical device with sensor cooperating with expandable member |
US20050165391A1 (en) | 1997-07-08 | 2005-07-28 | Maguire Mark A. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
US20100049186A1 (en) | 1997-08-13 | 2010-02-25 | Ams Research Corporation | Noninvasive devices, methods, and systems for shrinking of tissues |
US6494890B1 (en) | 1997-08-14 | 2002-12-17 | Shturman Cardiology Systems, Inc. | Eccentric rotational atherectomy device |
US6132444A (en) | 1997-08-14 | 2000-10-17 | Shturman Cardiology Systems, Inc. | Eccentric drive shaft for atherectomy device and method for manufacture |
US6638288B1 (en) | 1997-08-14 | 2003-10-28 | Shturman Cardiology Systems, Inc. | Eccentric drive shaft for atherectomy device and method for manufacture |
US7396355B2 (en) | 1997-09-11 | 2008-07-08 | Vnus Medical Technologies, Inc. | Method and apparatus for applying energy to biological tissue including the use of tumescent tissue compression |
US8257725B2 (en) | 1997-09-26 | 2012-09-04 | Abbott Laboratories | Delivery of highly lipophilic agents via medical devices |
WO1999016370A1 (en) | 1997-09-30 | 1999-04-08 | Boston Scientific Corporation | Deflectable interstitial ablation device |
US6238389B1 (en) | 1997-09-30 | 2001-05-29 | Boston Scientific Corporation | Deflectable interstitial ablation device |
US6231516B1 (en) | 1997-10-14 | 2001-05-15 | Vacusense, Inc. | Endoluminal implant with therapeutic and diagnostic capability |
US20010000041A1 (en) | 1997-12-19 | 2001-03-15 | Selmon Matthew R. | Methods and apparatus for crossing vascular occlusions |
US20140046319A1 (en) | 1998-01-07 | 2014-02-13 | Asthmatx, Inc. | Methods of treating a lung |
US8584681B2 (en) | 1998-01-07 | 2013-11-19 | Asthmatx, Inc. | Method for treating an asthma attack |
US6254635B1 (en) | 1998-02-02 | 2001-07-03 | St. Jude Medical, Inc. | Calcification-resistant medical articles |
US20040103516A1 (en) | 1998-02-03 | 2004-06-03 | Bolduc Lee R. | Intravascular device and method of manufacture and use |
WO1999039648A1 (en) | 1998-02-10 | 1999-08-12 | Dubrul William R | Entrapping apparatus and method for use |
US20020143324A1 (en) | 1998-02-19 | 2002-10-03 | Curon Medical, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US7165551B2 (en) | 1998-02-19 | 2007-01-23 | Curon Medical, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
US6974456B2 (en) | 1998-02-19 | 2005-12-13 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
US20020139379A1 (en) | 1998-02-19 | 2002-10-03 | Curon Medical, Inc. | Method for treating a sphincter |
US6562034B2 (en) | 1998-02-19 | 2003-05-13 | Curon Medical, Inc. | Electrodes for creating lesions in tissue regions at or near a sphincter |
WO1999044522A1 (en) | 1998-03-06 | 1999-09-10 | Conway-Stuart Medical, Inc. | Apparatus to electrosurgically treat esophageal sphincters |
US6749607B2 (en) | 1998-03-06 | 2004-06-15 | Curon Medical, Inc. | Apparatus to treat esophageal sphincters |
US6423032B2 (en) | 1998-03-13 | 2002-07-23 | Arteria Medical Science, Inc. | Apparatus and methods for reducing embolization during treatment of carotid artery disease |
US6389311B1 (en) | 1998-03-26 | 2002-05-14 | Scimed Life Systems, Inc. | Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in interior body regions |
WO1999049799A1 (en) | 1998-03-30 | 1999-10-07 | Arthrocare Corporation | Systems and methods for electrosurgical removal of calcified deposits |
JP2002509756A (en) | 1998-03-30 | 2002-04-02 | アースロケア コーポレイション | Method and apparatus for removing substances or calcified deposits |
US6047700A (en) | 1998-03-30 | 2000-04-11 | Arthrocare Corporation | Systems and methods for electrosurgical removal of calcified deposits |
US7407671B2 (en) | 1998-03-31 | 2008-08-05 | Boston Scientific Scimed, Inc. | Temperature controlled solute delivery system |
US6219577B1 (en) | 1998-04-14 | 2001-04-17 | Global Vascular Concepts, Inc. | Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues |
US20020082552A1 (en) | 1998-04-14 | 2002-06-27 | Schneider (Usa) Inc. | Medical device with sponge coating for controlled drug release |
WO1999052424A1 (en) | 1998-04-14 | 1999-10-21 | Global Vascular Concepts, Inc. | Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues |
US6714822B2 (en) | 1998-04-30 | 2004-03-30 | Medtronic, Inc. | Apparatus and method for expanding a stimulation lead body in situ |
US7407502B2 (en) | 1998-05-08 | 2008-08-05 | Cytyc Corporation | Radio-frequency generator for powering an ablation device |
US6211247B1 (en) | 1998-05-13 | 2001-04-03 | Pharmascience Inc | Administration of resveratrol to prevent or treat restenosis following coronary intervention |
WO1999062413A1 (en) | 1998-05-29 | 1999-12-09 | Applied Medical Resources Corporation | Improved electrosurgical catheter apparatus and method |
US7425212B1 (en) | 1998-06-10 | 2008-09-16 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy |
US6292695B1 (en) | 1998-06-19 | 2001-09-18 | Wilton W. Webster, Jr. | Method and apparatus for transvascular treatment of tachycardia and fibrillation |
US7413556B2 (en) | 1998-06-29 | 2008-08-19 | Ekos Corporation | Sheath for use with an ultrasound element |
US6322559B1 (en) | 1998-07-06 | 2001-11-27 | Vnus Medical Technologies, Inc. | Electrode catheter having coil structure |
US6689148B2 (en) | 1998-08-14 | 2004-02-10 | Incept Llc | Methods and apparatus for intraluminal deposition of hydrogels |
US6379373B1 (en) | 1998-08-14 | 2002-04-30 | Confluent Surgical, Inc. | Methods and apparatus for intraluminal deposition of hydrogels |
US8257724B2 (en) | 1998-09-24 | 2012-09-04 | Abbott Laboratories | Delivery of highly lipophilic agents via medical devices |
US6036689A (en) | 1998-09-24 | 2000-03-14 | Tu; Lily Chen | Ablation device for treating atherosclerotic tissues |
US20060240070A1 (en) | 1998-09-24 | 2006-10-26 | Cromack Keith R | Delivery of highly lipophilic agents via medical devices |
US6319251B1 (en) | 1998-09-24 | 2001-11-20 | Hosheng Tu | Medical device and methods for treating intravascular restenosis |
US6231513B1 (en) | 1998-10-14 | 2001-05-15 | Daum Gmbh | Contrast agent for ultrasonic imaging |
US6575933B1 (en) | 1998-11-30 | 2003-06-10 | Cryocath Technologies Inc. | Mechanical support for an expandable membrane |
US6129725A (en) | 1998-12-04 | 2000-10-10 | Tu; Lily Chen | Methods for reduction of restenosis |
US6296619B1 (en) | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
US20040064090A1 (en) | 1999-01-11 | 2004-04-01 | Gad Keren | Apparatus and methods for treating congestive heart disease |
US7329236B2 (en) | 1999-01-11 | 2008-02-12 | Flowmedica, Inc. | Intra-aortic renal drug delivery catheter |
US7335192B2 (en) | 1999-01-11 | 2008-02-26 | Flowmedica, Inc. | Apparatus and methods for treating congestive heart disease |
US7766892B2 (en) | 1999-01-11 | 2010-08-03 | Gad Keren | Apparatus and methods for treating congestive heart disease |
US6695830B2 (en) | 1999-01-15 | 2004-02-24 | Scimed Life Systems, Inc. | Method for delivering medication into an arterial wall for prevention of restenosis |
US6236883B1 (en) | 1999-02-03 | 2001-05-22 | The Trustees Of Columbia University In The City Of New York | Methods and systems for localizing reentrant circuits from electrogram features |
US6484052B1 (en) | 1999-03-30 | 2002-11-19 | The Regents Of The University Of California | Optically generated ultrasound for enhanced drug delivery |
US6409723B1 (en) | 1999-04-02 | 2002-06-25 | Stuart D. Edwards | Treating body tissue by applying energy and substances |
US6572612B2 (en) | 1999-04-05 | 2003-06-03 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
US20010007070A1 (en) | 1999-04-05 | 2001-07-05 | Medtronic, Inc. | Ablation catheter assembly and method for isolating a pulmonary vein |
US20040044350A1 (en) | 1999-04-09 | 2004-03-04 | Evalve, Inc. | Steerable access sheath and methods of use |
US20040092962A1 (en) | 1999-04-09 | 2004-05-13 | Evalve, Inc., A Delaware Corporation | Multi-catheter steerable guiding system and methods of use |
US6149647A (en) | 1999-04-19 | 2000-11-21 | Tu; Lily Chen | Apparatus and methods for tissue treatment |
WO2000062699A2 (en) | 1999-04-21 | 2000-10-26 | Broncus Technologies, Inc. | Modification of airways by application of energy |
US6595959B1 (en) | 1999-04-23 | 2003-07-22 | Alexander A. Stratienko | Cardiovascular sheath/catheter |
US6514236B1 (en) | 1999-04-23 | 2003-02-04 | Alexander A. Stratienko | Method for treating a cardiovascular condition |
US6245045B1 (en) | 1999-04-23 | 2001-06-12 | Alexander Andrew Stratienko | Combination sheath and catheter for cardiovascular use |
US6302870B1 (en) | 1999-04-29 | 2001-10-16 | Precision Vascular Systems, Inc. | Apparatus for injecting fluids into the walls of blood vessels, body cavities, and the like |
EP1634542A1 (en) | 1999-05-04 | 2006-03-15 | Curon Medical, Inc. | Integrated tissue heating and cooling apparatus |
US6505080B1 (en) | 1999-05-04 | 2003-01-07 | Medtronic, Inc. | Method and apparatus for inhibiting or minimizing calcification of aortic valves |
US6648854B1 (en) | 1999-05-14 | 2003-11-18 | Scimed Life Systems, Inc. | Single lumen balloon-tipped micro catheter with reinforced shaft |
EP1180004A1 (en) | 1999-05-18 | 2002-02-20 | Silhouette Medical Inc. | Surgical weight control device |
US6692490B1 (en) | 1999-05-18 | 2004-02-17 | Novasys Medical, Inc. | Treatment of urinary incontinence and other disorders by application of energy and drugs |
DE29909082U1 (en) | 1999-05-25 | 1999-07-22 | Starck, Bernd, Dipl.-Ing., 75443 Ötisheim | Stimulation, sensing and / or defibrillation electrode and balloon catheter for inserting the electrode |
US20020183682A1 (en) | 1999-06-04 | 2002-12-05 | Nissim Darvish | Drug delivery device |
US20020007192A1 (en) | 1999-06-17 | 2002-01-17 | Pederson Gary J. | Stent securement by balloon modification |
US20030074039A1 (en) | 1999-06-25 | 2003-04-17 | Puskas John D. | Devices and methods for vagus nerve stimulation |
US7426409B2 (en) | 1999-06-25 | 2008-09-16 | Board Of Regents, The University Of Texas System | Method and apparatus for detecting vulnerable atherosclerotic plaque |
US6283947B1 (en) | 1999-07-13 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Local drug delivery injection catheter |
US6235044B1 (en) | 1999-08-04 | 2001-05-22 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire for filtering during ablation of mycardial or vascular tissue |
US20080097426A1 (en) | 1999-08-04 | 2008-04-24 | Boston Scientific Scimed, Inc. | Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue |
US7326226B2 (en) | 1999-08-04 | 2008-02-05 | Boston Scientific Scimed, Inc. | Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue |
WO2001010343A1 (en) | 1999-08-04 | 2001-02-15 | Scimed Life Systems, Inc. | Filter flush system and methods of use |
US6168579B1 (en) | 1999-08-04 | 2001-01-02 | Scimed Life Systems, Inc. | Filter flush system and methods of use |
US6673090B2 (en) | 1999-08-04 | 2004-01-06 | Scimed Life Systems, Inc. | Percutaneous catheter and guidewire for filtering during ablation of myocardial or vascular tissue |
US20040220556A1 (en) | 1999-08-05 | 2004-11-04 | Broncus Technologies, Inc. | Devices and methods for maintaining collateral channels in tissue |
US9694121B2 (en) | 1999-08-09 | 2017-07-04 | Cardiokinetix, Inc. | Systems and methods for improving cardiac function |
US6829497B2 (en) | 1999-09-21 | 2004-12-07 | Jamil Mogul | Steerable diagnostic catheters |
US20040186468A1 (en) | 1999-09-28 | 2004-09-23 | Edwards Stuart D. | Treatment of urinary incontinence and other disorders by application of energy and drugs |
WO2001022897A1 (en) | 1999-09-28 | 2001-04-05 | Novasys Medical, Inc. | Treatment of tissue by application of energy and drugs |
JP2003510126A (en) | 1999-09-28 | 2003-03-18 | ノヴァシス メディカル インコーポレイテッド | Tissue treatment by application of energy and drugs |
US7326235B2 (en) | 1999-09-28 | 2008-02-05 | Novasys Medical, Inc. | Treatment of urinary incontinence and other disorders by application of energy and drugs |
CA2384866A1 (en) | 1999-09-28 | 2001-04-05 | Stuart D. Edwards | Treatment of tissue by application of energy and drugs |
WO2001037746A1 (en) | 1999-11-22 | 2001-05-31 | Boston Scientific Limited | Apparatus for mapping and coagulating soft tissue in or around body orifices |
US7184811B2 (en) | 1999-11-22 | 2007-02-27 | Boston Scientific Scimed, Inc. | Apparatus for mapping and coagulating soft tissue in or around body orifices |
US6454775B1 (en) | 1999-12-06 | 2002-09-24 | Bacchus Vascular Inc. | Systems and methods for clot disruption and retrieval |
US6494891B1 (en) | 1999-12-30 | 2002-12-17 | Advanced Cardiovascular Systems, Inc. | Ultrasonic angioplasty transmission member |
US6623453B1 (en) | 2000-01-19 | 2003-09-23 | Vanny Corporation | Chemo-thermo applicator for cancer treatment |
US7706882B2 (en) | 2000-01-19 | 2010-04-27 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area |
US6692738B2 (en) | 2000-01-27 | 2004-02-17 | The General Hospital Corporation | Delivery of therapeutic biologicals from implantable tissue matrices |
WO2001074255A1 (en) | 2000-03-31 | 2001-10-11 | Bacchus Vascular Inc. | Expansible shearing catheters for thrombus and occlusive material removal |
US20010031981A1 (en) | 2000-03-31 | 2001-10-18 | Evans Michael A. | Method and device for locating guidewire and treating chronic total occlusions |
US6565588B1 (en) | 2000-04-05 | 2003-05-20 | Pathway Medical Technologies, Inc. | Intralumenal material removal using an expandable cutting device |
US20040006358A1 (en) | 2000-04-05 | 2004-01-08 | Pathway Medical Technologies, Inc. | Intralumenal material removal using a cutting device for differential cutting |
US20040243162A1 (en) | 2000-04-05 | 2004-12-02 | Pathway Medical Technologies, Inc. | Interventional catheter assemblies and control systems |
US20040230212A1 (en) | 2000-04-05 | 2004-11-18 | Pathway Medical Technologies, Inc. | Medical sealed tubular structures |
US6818001B2 (en) | 2000-04-05 | 2004-11-16 | Pathway Medical Technologies, Inc. | Intralumenal material removal systems and methods |
US20040230213A1 (en) | 2000-04-05 | 2004-11-18 | Pathway Medical Technologies, Inc. | Liquid seal assembly for a rotating torque tube |
US6558382B2 (en) | 2000-04-27 | 2003-05-06 | Medtronic, Inc. | Suction stabilized epicardial ablation devices |
US8162933B2 (en) | 2000-04-27 | 2012-04-24 | Medtronic, Inc. | Vibration sensitive ablation device and method |
US20010039419A1 (en) | 2000-04-27 | 2001-11-08 | Medtronic, Inc. | Vibration sensitive ablation device and method |
US20070118107A1 (en) | 2000-04-27 | 2007-05-24 | Francischelli David E | Vibration sensitive ablation device and method |
US6837886B2 (en) | 2000-05-03 | 2005-01-04 | C.R. Bard, Inc. | Apparatus and methods for mapping and ablation in electrophysiology procedures |
US20010044596A1 (en) | 2000-05-10 | 2001-11-22 | Ali Jaafar | Apparatus and method for treatment of vascular restenosis by electroporation |
US20040243097A1 (en) | 2000-05-12 | 2004-12-02 | Robert Falotico | Antiproliferative drug and delivery device |
US6752805B2 (en) | 2000-06-13 | 2004-06-22 | Atrionix, Inc. | Surgical ablation probe for forming a circumferential lesion |
US7837720B2 (en) | 2000-06-20 | 2010-11-23 | Boston Scientific Corporation | Apparatus for treatment of tissue adjacent a bodily conduit with a gene or drug-coated compression balloon |
US20030069619A1 (en) | 2000-06-20 | 2003-04-10 | Fenn Alan J. | System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumors |
US6788977B2 (en) | 2000-06-20 | 2004-09-07 | Celsion Corporation | System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumor |
EP1512383A2 (en) | 2000-06-26 | 2005-03-09 | Rex Medical, L.P. | Vascular device for valve leaflet apposition |
US20040073243A1 (en) | 2000-06-29 | 2004-04-15 | Concentric Medical, Inc., A Delaware Corporation | Systems, methods and devices for removing obstructions from a blood vessel |
US20020077627A1 (en) * | 2000-07-25 | 2002-06-20 | Johnson Theodore C. | Method for detecting and treating tumors using localized impedance measurement |
US6497711B1 (en) | 2000-08-16 | 2002-12-24 | Scimed Life Systems, Inc. | Therectomy device having a light weight drive shaft and an imaging device |
US20020103445A1 (en) | 2000-08-24 | 2002-08-01 | Rahdert David A. | Thermography catheter with flexible circuit temperature sensors |
US6511496B1 (en) | 2000-09-12 | 2003-01-28 | Advanced Cardiovascular Systems, Inc. | Embolic protection device for use in interventional procedures |
US9770328B2 (en) | 2000-09-20 | 2017-09-26 | Mvrx, Inc. | Heart valve annulus device and method of using same |
US6845267B2 (en) | 2000-09-28 | 2005-01-18 | Advanced Bionics Corporation | Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation |
US20040082978A1 (en) | 2000-09-28 | 2004-04-29 | Harrison William Vanbrooks | Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation |
US20020099439A1 (en) | 2000-09-29 | 2002-07-25 | Schwartz Robert S. | Venous valvuloplasty device and method |
US20030236455A1 (en) | 2000-10-05 | 2003-12-25 | Scimed Life Systems, Inc. | Probe assembly for mapping and ablating pulmonary vein tissue and method of using same |
US6640120B1 (en) | 2000-10-05 | 2003-10-28 | Scimed Life Systems, Inc. | Probe assembly for mapping and ablating pulmonary vein tissue and method of using same |
WO2002028421A1 (en) | 2000-10-06 | 2002-04-11 | University Of Washington | Methods of inhibition of stenosis and/or sclerosis of the aortic valve |
US20030233099A1 (en) | 2000-10-17 | 2003-12-18 | Broncus Technologies, Inc. | Modification of airways by application of energy |
US20130253623A1 (en) | 2000-10-17 | 2013-09-26 | Asthmatx, Inc. | Modification of airways by application of energy |
US7104987B2 (en) | 2000-10-17 | 2006-09-12 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US7854734B2 (en) | 2000-10-17 | 2010-12-21 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
US6616624B1 (en) | 2000-10-30 | 2003-09-09 | Cvrx, Inc. | Systems and method for controlling renovascular perfusion |
US7485104B2 (en) | 2000-10-30 | 2009-02-03 | Cvrx, Inc. | Systems and methods for controlling renovascular perfusion |
US20090105631A1 (en) | 2000-10-30 | 2009-04-23 | Robert Kieval | Systems and methods for controlling renovascular perfusion |
US6579308B1 (en) | 2000-11-28 | 2003-06-17 | Scimed Life Systems, Inc. | Stent devices with detachable distal or proximal wires |
US7481803B2 (en) | 2000-11-28 | 2009-01-27 | Flowmedica, Inc. | Intra-aortic renal drug delivery catheter |
US20040122421A1 (en) | 2000-12-07 | 2004-06-24 | the Gov. of the U.S.A. as represented by the Secretary of the Dept of Health and Human Services | Endoluminal radiofrequency cauterization system |
US7122033B2 (en) | 2000-12-07 | 2006-10-17 | The United States Of America As Represented By The Department Of Health And Human Services | Endoluminal radiofrequency cauterization system |
US6623452B2 (en) | 2000-12-19 | 2003-09-23 | Scimed Life Systems, Inc. | Drug delivery catheter having a highly compliant balloon with infusion holes |
US20020082637A1 (en) | 2000-12-22 | 2002-06-27 | Cardiovascular Systems, Inc. | Catheter and method for making the same |
US20060280858A1 (en) | 2001-01-05 | 2006-12-14 | Lyudmila Kokish | Balloon catheter for delivering therapeutic agents |
US7507235B2 (en) | 2001-01-13 | 2009-03-24 | Medtronic, Inc. | Method and system for organ positioning and stabilization |
WO2002058549A1 (en) | 2001-01-26 | 2002-08-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Endoluminal expandable implant with integrated sensor system |
US6723064B2 (en) | 2001-03-21 | 2004-04-20 | Advanced Medical Applications, Inc. | Ultrasonic catheter drug delivery method and device |
US20170281345A1 (en) | 2001-03-23 | 2017-10-05 | Edwards Lifesciences Corporation | Method for treating an aortic valve |
US20020151918A1 (en) | 2001-04-17 | 2002-10-17 | Scimed Life Systems, Inc. | In-stent ablative tool |
US20040088002A1 (en) | 2001-04-30 | 2004-05-06 | Boyle William J. | Deployment and recovery control systems for embolic protection devices |
US6645223B2 (en) | 2001-04-30 | 2003-11-11 | Advanced Cardiovascular Systems, Inc. | Deployment and recovery control systems for embolic protection devices |
US20020165532A1 (en) | 2001-05-01 | 2002-11-07 | Cardima, Inc. | Helically shaped electrophysiology catheter |
US20070066959A1 (en) | 2001-06-11 | 2007-03-22 | Mercator Medsystems, Inc. | Electroporation Microneedle and Methods For Its Use |
US7127284B2 (en) | 2001-06-11 | 2006-10-24 | Mercator Medsystems, Inc. | Electroporation microneedle and methods for its use |
US20040043030A1 (en) | 2001-07-31 | 2004-03-04 | Immunomedics, Inc. | Polymeric delivery systems |
WO2003024311A2 (en) | 2001-09-20 | 2003-03-27 | The Regents Of The University Of California | A microfabricated surgical device for interventional procedures |
US7666163B2 (en) | 2001-09-20 | 2010-02-23 | The Regents Of The University Of California | Microfabricated surgical device for interventional procedures |
US20040057955A1 (en) | 2001-10-05 | 2004-03-25 | O'brien Kevin D. | Methods of inhibition of stenosis and/or sclerosis of the aortic valve |
US6852118B2 (en) | 2001-10-19 | 2005-02-08 | Shturman Cardiology Systems, Inc. | Self-indexing coupling for rotational angioplasty device |
US20030082225A1 (en) | 2001-10-19 | 2003-05-01 | Mason Paul Arthur | Sterile, breathable patch for treating wound pain |
US20030139689A1 (en) | 2001-11-19 | 2003-07-24 | Leonid Shturman | High torque, low profile intravascular guidewire system |
WO2003043685A2 (en) | 2001-11-19 | 2003-05-30 | Cardiovascular Systems, Inc | High torque, low profile intravascular guidewire system |
US6849075B2 (en) | 2001-12-04 | 2005-02-01 | Estech, Inc. | Cardiac ablation devices and methods |
US6811801B2 (en) | 2001-12-12 | 2004-11-02 | Abbott Laboratories | Methods and compositions for brightening the color of thermally processed nutritionals |
US6748255B2 (en) | 2001-12-14 | 2004-06-08 | Biosense Webster, Inc. | Basket catheter with multiple location sensors |
US20070106257A1 (en) | 2002-01-22 | 2007-05-10 | Mercator Medsystems Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US20070106256A1 (en) | 2002-01-22 | 2007-05-10 | Mercator Medsystems Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US20070106251A1 (en) | 2002-01-22 | 2007-05-10 | Mercator Medsystems Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US20070106250A1 (en) | 2002-01-22 | 2007-05-10 | Mercator Medsystems Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US20060189941A1 (en) | 2002-01-22 | 2006-08-24 | Mercator Medsystems, Inc. | Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation |
US20070106255A1 (en) | 2002-01-22 | 2007-05-10 | Mercator Medsystems Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US20140303569A1 (en) | 2002-01-22 | 2014-10-09 | Mercator Medsystems, Inc. | Methods and Kits for Volumetric Distribution of Pharmaceutical Agents via the Vascular Adventitia and Microcirculation |
US8708995B2 (en) | 2002-01-22 | 2014-04-29 | Mercator Medsystems, Inc. | Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation |
US20070100318A1 (en) | 2002-01-22 | 2007-05-03 | Mercator Medsystems, Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US20070106249A1 (en) | 2002-01-22 | 2007-05-10 | Mercator Medsystems Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US7744584B2 (en) | 2002-01-22 | 2010-06-29 | Mercator Medsystems, Inc. | Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation |
US20030144658A1 (en) | 2002-01-31 | 2003-07-31 | Yitzhack Schwartz | Radio frequency pulmonary vein isolation |
US20070078620A1 (en) | 2002-02-13 | 2007-04-05 | Mercator Medsystems Inc. | Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia |
US20030158584A1 (en) | 2002-02-19 | 2003-08-21 | Cates Adam W | Chronically-implanted device for sensing and therapy |
WO2003082080A2 (en) | 2002-03-27 | 2003-10-09 | Cvrx, Inc. | Electrode structures and methods for their use in cardiovascular reflex control |
US6767544B2 (en) | 2002-04-01 | 2004-07-27 | Allergan, Inc. | Methods for treating cardiovascular diseases with botulinum toxin |
US20100222851A1 (en) | 2002-04-08 | 2010-09-02 | Ardian, Inc. | Methods for monitoring renal neuromodulation |
US20110202098A1 (en) | 2002-04-08 | 2011-08-18 | Ardian, Inc. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
US20060025821A1 (en) | 2002-04-08 | 2006-02-02 | Mark Gelfand | Methods and devices for renal nerve blocking |
US20060041277A1 (en) | 2002-04-08 | 2006-02-23 | Mark Deem | Methods and apparatus for renal neuromodulation |
US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
WO2006022790A1 (en) | 2002-04-08 | 2006-03-02 | Ardian, Inc. | Methods and devices for renal nerve blocking |
US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US20050192638A1 (en) | 2002-04-08 | 2005-09-01 | Mark Gelfand | Methods and devices for renal nerve blocking |
US8131371B2 (en) | 2002-04-08 | 2012-03-06 | Ardian, Inc. | Methods and apparatus for monopolar renal neuromodulation |
US20120172837A1 (en) | 2002-04-08 | 2012-07-05 | Ardian, Inc. | Methods for inhibiting renal nerve activity via an intra-to-extravascular approach |
US20030216792A1 (en) | 2002-04-08 | 2003-11-20 | Levin Howard R. | Renal nerve stimulation method and apparatus for treatment of patients |
US20100137860A1 (en) | 2002-04-08 | 2010-06-03 | Ardian, Inc. | Apparatus for performing a non-continuous circumferential treatment of a body lumen |
US6978174B2 (en) | 2002-04-08 | 2005-12-20 | Ardian, Inc. | Methods and devices for renal nerve blocking |
US20080213331A1 (en) | 2002-04-08 | 2008-09-04 | Ardian, Inc. | Methods and devices for renal nerve blocking |
US20060111672A1 (en) | 2002-05-28 | 2006-05-25 | Mercator Medsystems, Inc. | Methods and apparatus for aspiration and priming of inflatable structures in catheters |
US6748953B2 (en) | 2002-06-11 | 2004-06-15 | Scimed Life Systems, Inc. | Method for thermal treatment of type II endoleaks in arterial aneurysms |
JP2004016333A (en) | 2002-06-13 | 2004-01-22 | Unique Medical Co Ltd | Catheter for extradural anesthesia, and electrostimulator using the catheter for extradural anesthesia |
US7465298B2 (en) | 2002-06-28 | 2008-12-16 | Mercator Medsystems, Inc. | Methods and systems for delivering liquid substances to tissues surrounding body lumens |
US20050007219A1 (en) | 2002-07-11 | 2005-01-13 | Qing Ma | Microelectromechanical (MEMS) switching apparatus |
WO2004011055A2 (en) | 2002-07-31 | 2004-02-05 | Scimed Life Systems, Inc. | Implantable or insertable medical devices for controlled drug delivery |
US9763658B2 (en) | 2002-08-02 | 2017-09-19 | Cedars-Sinai Medical Center | Methods and apparatus for atrioventricular valve repair |
US6855123B2 (en) | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
US6893414B2 (en) | 2002-08-12 | 2005-05-17 | Breg, Inc. | Integrated infusion and aspiration system and method |
US20040039412A1 (en) | 2002-08-20 | 2004-02-26 | Takaaki Isshiki | Thrombus capture catheter |
JP2004097807A (en) | 2002-08-20 | 2004-04-02 | Nipro Corp | Thrombus capturing catheter |
US6991617B2 (en) | 2002-08-21 | 2006-01-31 | Hektner Thomas R | Vascular treatment method and device |
US20040064093A1 (en) | 2002-08-21 | 2004-04-01 | Hektner Thomas R. | Vascular treatment method and device |
US20040092858A1 (en) | 2002-08-28 | 2004-05-13 | Heart Leaflet Technologies, Inc. | Leaflet valve |
US20040092989A1 (en) | 2002-08-28 | 2004-05-13 | Heart Leaflet Technologies, Inc | Delivery device for leaflet valve |
US20040127979A1 (en) | 2002-08-28 | 2004-07-01 | Heart Leaflet Technologies, Inc | Method of treating diseased valve |
US20040044286A1 (en) | 2002-08-29 | 2004-03-04 | Hossack Norman Hugh | Ultrasonic imaging devices and methods of fabrication |
US6780183B2 (en) | 2002-09-16 | 2004-08-24 | Biosense Webster, Inc. | Ablation catheter having shape-changing balloon |
US7364566B2 (en) | 2002-09-20 | 2008-04-29 | Flowmedica, Inc. | Method and apparatus for intra-aortic substance delivery to a branch vessel |
US7241273B2 (en) | 2002-09-20 | 2007-07-10 | Flowmedica, Inc. | Intra-aortic renal delivery catheter |
US6702748B1 (en) | 2002-09-20 | 2004-03-09 | Flowcardia, Inc. | Connector for securing ultrasound catheter to transducer |
US7563247B2 (en) | 2002-09-20 | 2009-07-21 | Angiodynamics, Inc. | Intra-aortic renal delivery catheter |
WO2004028583A2 (en) | 2002-09-26 | 2004-04-08 | Angiotech International Ag | Perivascular wraps |
US20040062852A1 (en) | 2002-09-30 | 2004-04-01 | Medtronic, Inc. | Method for applying a drug coating to a medical device |
US7917208B2 (en) | 2002-10-04 | 2011-03-29 | Microchips, Inc. | Medical device for controlled drug delivery and cardiac monitoring and/or stimulation |
US20070106293A1 (en) | 2002-10-25 | 2007-05-10 | Hakan Oral | Ablation catheters |
US20040082910A1 (en) | 2002-10-29 | 2004-04-29 | Constantz Brent R. | Devices and methods for treating aortic valve stenosis |
DE10252325A1 (en) | 2002-11-11 | 2004-05-27 | Berchtold Holding Gmbh | Thermal ablation probe for minimal invasive body tissue high frequency thermal treatment has temperature sensor on star shaped flexible arms with adjustable protrusion from insulating sheath |
US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
WO2004049976A1 (en) | 2002-12-03 | 2004-06-17 | Boston Scientific Limited | Treating arrhythmias by altering properties of tissue |
DE10257146A1 (en) | 2002-12-06 | 2004-06-24 | Admedes Schuessler Gmbh | Thermal ablation probe for minimal invasive body tissue high frequency thermal treatment has temperature sensor on star shaped flexible arms with adjustable protrusion from insulating sheath |
US6746463B1 (en) | 2003-01-27 | 2004-06-08 | Scimed Life Systems, Inc | Device for percutaneous cutting and dilating a stenosis of the aortic valve |
US20040199191A1 (en) | 2003-01-27 | 2004-10-07 | Leonard Schwartz | Device for percutaneous cutting and dilating a stenosis of the aortic valve |
US20040253304A1 (en) | 2003-01-29 | 2004-12-16 | Yossi Gross | Active drug delivery in the gastrointestinal tract |
WO2005001513A2 (en) | 2003-03-12 | 2005-01-06 | Itt Manufacturing Enterprises, Inc. | Apparatus and method for rapid detection of objects with time domain impulsive signals |
US7141041B2 (en) | 2003-03-19 | 2006-11-28 | Mercator Medsystems, Inc. | Catheters having laterally deployable needles |
US8021362B2 (en) | 2003-03-27 | 2011-09-20 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
US7972330B2 (en) | 2003-03-27 | 2011-07-05 | Terumo Kabushiki Kaisha | Methods and apparatus for closing a layered tissue defect |
US20040230117A1 (en) | 2003-04-17 | 2004-11-18 | Tosaya Carol A. | Non-contact damage-free ultrasonic cleaning of implanted or natural structures having moving parts and located in a living body |
WO2004093728A2 (en) | 2003-04-18 | 2004-11-04 | Alexander Khairkhahan | Percutaneous transcatheter heart valve replacement |
US20090142306A1 (en) | 2003-04-22 | 2009-06-04 | Mercator Medsystems, Inc. | Methods and systems for treating ischemic tissues |
WO2004096097A2 (en) | 2003-04-25 | 2004-11-11 | Boston Scientific Limited | Cutting stent and balloon |
WO2005007000A1 (en) | 2003-05-13 | 2005-01-27 | Celsion Corporation | Method and apparatus for treatment of tissue adjacent a bodily conduit with a compression balloon |
US7297475B2 (en) | 2003-05-16 | 2007-11-20 | Terumo Kabushiki Kaisha | Medicament injection kit and medicament injection method |
US7529589B2 (en) | 2003-06-04 | 2009-05-05 | Synecor Llc | Intravascular electrophysiological system and methods |
WO2004112657A1 (en) | 2003-06-20 | 2004-12-29 | Medtronic Vascular Inc. | Cardiac valve annulus compressor system |
WO2005002466A2 (en) | 2003-07-08 | 2005-01-13 | Ventor Technologies Ltd. | Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices |
US7678123B2 (en) | 2003-07-14 | 2010-03-16 | Nmt Medical, Inc. | Tubular patent foramen ovale (PFO) closure device with catch system |
US20050075662A1 (en) | 2003-07-18 | 2005-04-07 | Wesley Pedersen | Valvuloplasty catheter |
WO2005007219A2 (en) | 2003-07-18 | 2005-01-27 | Intervalve, Inc. | Valvuloplasty devices and methods |
WO2005009285A2 (en) | 2003-07-21 | 2005-02-03 | The Trustees Of The University Of Pennsylvania | Percutaneous heart valve |
US7670335B2 (en) | 2003-07-21 | 2010-03-02 | Biosense Webster, Inc. | Ablation device with spiral array ultrasound transducer |
WO2005009506A2 (en) | 2003-07-22 | 2005-02-03 | Corazon Technologies, Inc. | Devices and methods for treating aortic valve stenosis |
DE202004021953U1 (en) | 2003-09-12 | 2013-06-19 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
DE202004021944U1 (en) | 2003-09-12 | 2013-07-16 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
US20050096647A1 (en) * | 2003-09-12 | 2005-05-05 | Minnow Medical, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
WO2005041748A2 (en) | 2003-09-12 | 2005-05-12 | Minnow Medical, Llc | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US20130066316A1 (en) | 2003-09-12 | 2013-03-14 | Vessix Vascular, Inc. | Selectable eccentric remodeling and/or ablation |
DE202004021941U1 (en) | 2003-09-12 | 2013-05-13 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
DE202004021942U1 (en) | 2003-09-12 | 2013-05-13 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
DE202004021949U1 (en) | 2003-09-12 | 2013-05-27 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
DE202004021951U1 (en) | 2003-09-12 | 2013-06-19 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
US7291146B2 (en) | 2003-09-12 | 2007-11-06 | Minnow Medical, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
DE202004021952U1 (en) | 2003-09-12 | 2013-06-19 | Vessix Vascular, Inc. | Selectable eccentric remodeling and / or ablation of atherosclerotic material |
US20050090820A1 (en) | 2003-10-24 | 2005-04-28 | Sinus Rhythm Technologies, Inc. | Methods and devices for creating electrical block at specific sites in cardiac tissue with targeted tissue ablation |
US20050177103A1 (en) | 2003-11-10 | 2005-08-11 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050186243A1 (en) | 2003-11-10 | 2005-08-25 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050186242A1 (en) | 2003-11-10 | 2005-08-25 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050181004A1 (en) | 2003-11-10 | 2005-08-18 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US7241736B2 (en) | 2003-11-10 | 2007-07-10 | Angiotech International Ag | Compositions and methods for treating diverticular disease |
US20050149173A1 (en) | 2003-11-10 | 2005-07-07 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050149175A1 (en) | 2003-11-10 | 2005-07-07 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20070254833A1 (en) | 2003-11-10 | 2007-11-01 | Angiotech International Ag | Compositions and methods for treating diverticular disease |
US20050175661A1 (en) | 2003-11-10 | 2005-08-11 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050154445A1 (en) | 2003-11-10 | 2005-07-14 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050154454A1 (en) | 2003-11-10 | 2005-07-14 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050175662A1 (en) | 2003-11-10 | 2005-08-11 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050154453A1 (en) | 2003-11-10 | 2005-07-14 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US20050165467A1 (en) | 2003-11-10 | 2005-07-28 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents |
US7273469B1 (en) | 2003-12-31 | 2007-09-25 | Advanced Cardiovascular Systems, Inc. | Modified needle catheter for directional orientation delivery |
US9730794B2 (en) | 2004-01-23 | 2017-08-15 | Edwards Lifesciences Corporation | Prosthetic mitral valve |
US20170333188A1 (en) | 2004-01-23 | 2017-11-23 | Edwards Lifesciences Corporation | Prosthetic mitral valve |
US20050182479A1 (en) | 2004-02-13 | 2005-08-18 | Craig Bonsignore | Connector members for stents |
US20170296339A1 (en) | 2004-03-11 | 2017-10-19 | Percutaneous Cardiovascular Solutions Pty Ltd | Percutaneous heart valve prosthesis |
US8007495B2 (en) | 2004-03-31 | 2011-08-30 | Biosense Webster, Inc. | Catheter for circumferential ablation at or near a pulmonary vein |
US20050228286A1 (en) | 2004-04-07 | 2005-10-13 | Messerly Jeffrey D | Medical system having a rotatable ultrasound source and a piercing tip |
US20060018949A1 (en) | 2004-04-07 | 2006-01-26 | Bausch & Lomb Incorporated | Injectable biodegradable drug delivery system |
US20050267556A1 (en) | 2004-05-28 | 2005-12-01 | Allan Shuros | Drug eluting implants to prevent cardiac apoptosis |
US7640046B2 (en) | 2004-06-18 | 2009-12-29 | Cardiac Pacemakers, Inc. | Methods and apparatuses for localizing myocardial infarction during catheterization |
US20050283195A1 (en) | 2004-06-18 | 2005-12-22 | Pastore Joseph M | Methods and apparatuses for localizing myocardial infarction during catheterization |
US7197354B2 (en) | 2004-06-21 | 2007-03-27 | Mediguide Ltd. | System for determining the position and orientation of a catheter |
WO2006009376A2 (en) | 2004-07-20 | 2006-01-26 | Lg Electronics Inc. | Drying machine |
CA2575458A1 (en) | 2004-07-28 | 2006-03-02 | Ardian, Inc. | Methods and devices for renal nerve blocking |
US20130282084A1 (en) | 2004-09-10 | 2013-10-24 | Vessix Vascular, Inc. | Apparatus and Method for Treatment of In-Stent Restenosis |
US7532938B2 (en) | 2004-09-10 | 2009-05-12 | The Cleveland Clinic Foundation | Intraluminal electrode assembly |
US9861480B2 (en) | 2004-09-14 | 2018-01-09 | Edwards Lifesciences Ag | Device and method for treatment of heart valve regurgitation |
EP2329859A1 (en) | 2004-10-05 | 2011-06-08 | Ardian, Inc. | Apparatus for renal neuromodulation |
EP2457615A1 (en) | 2004-10-05 | 2012-05-30 | Ardian, Inc. | Apparatus for renal neuromodulation |
EP1802370A2 (en) | 2004-10-05 | 2007-07-04 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
WO2006041881A2 (en) | 2004-10-05 | 2006-04-20 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US20140018789A1 (en) | 2004-11-05 | 2014-01-16 | Asthmatx, Inc. | Energy delivery devices and methods |
US20140025063A1 (en) | 2004-11-05 | 2014-01-23 | Asthmatx, Inc. | Energy delivery devices and methods |
US20060247619A1 (en) | 2004-11-05 | 2006-11-02 | Asthmatx, Inc. | Medical device with procedure improvement features |
US20140018790A1 (en) | 2004-11-05 | 2014-01-16 | Asthmatx, Inc. | Energy delivery devices and methods |
US20060247618A1 (en) | 2004-11-05 | 2006-11-02 | Asthmatx, Inc. | Medical device with procedure improvement features |
US7905862B2 (en) | 2004-11-15 | 2011-03-15 | Cytyc Corporation | Method and system for drug delivery |
US7558625B2 (en) | 2004-11-18 | 2009-07-07 | Transpharma Medical Ltd. | Combined micro-channel generation and iontophoresis for transdermal delivery of pharmaceutical agents |
US7803168B2 (en) | 2004-12-09 | 2010-09-28 | The Foundry, Llc | Aortic valve repair |
US20100324554A1 (en) | 2004-12-09 | 2010-12-23 | The Foundry, Llc | Aortic Valve Repair |
CN101076290A (en) | 2004-12-09 | 2007-11-21 | 铸造品公司 | Aortic valve repair |
US9414852B2 (en) | 2004-12-09 | 2016-08-16 | Twelve, Inc. | Aortic valve repair |
US20170014183A1 (en) | 2004-12-09 | 2017-01-19 | Twelve, Inc. | Aortic Valve Repair |
WO2006063199A2 (en) | 2004-12-09 | 2006-06-15 | The Foundry, Inc. | Aortic valve repair |
US20090216317A1 (en) | 2005-03-23 | 2009-08-27 | Cromack Keith R | Delivery of Highly Lipophilic Agents Via Medical Devices |
US8364237B2 (en) | 2005-03-28 | 2013-01-29 | Vessix Vascular, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
US9763782B2 (en) | 2005-04-21 | 2017-09-19 | Edwards Lifesciences Ag | Apparatus for treating a heart valve |
WO2006116198A2 (en) | 2005-04-21 | 2006-11-02 | Asthmatx, Inc. | Control methods and devices for energy delivery |
EP1874211A2 (en) | 2005-04-21 | 2008-01-09 | Asthmatx, Inc. | Control methods and devices for energy delivery |
US20070248639A1 (en) | 2005-05-20 | 2007-10-25 | Omeros Corporation | Cyclooxygenase inhibitor and calcium channel antagonist compositions and methods for use in urological procedures |
US20060263393A1 (en) | 2005-05-20 | 2006-11-23 | Omeros Corporation | Cyclooxygenase inhibitor and calcium channel antagonist compositions and methods for use in urological procedures |
US8337492B2 (en) | 2005-06-20 | 2012-12-25 | Medtronic Ablation Frontiers Llc | Ablation catheter |
US7850685B2 (en) | 2005-06-20 | 2010-12-14 | Medtronic Ablation Frontiers Llc | Ablation catheter |
US9055956B2 (en) | 2005-06-22 | 2015-06-16 | Covidien Lp | Methods and apparatus for introducing tumescent fluid to body tissue |
CN2855350Y (en) | 2005-09-01 | 2007-01-10 | 迈德医疗科技(上海)有限公司 | Probe electrode device for RF ablation treatment |
US20080317818A1 (en) | 2005-09-09 | 2008-12-25 | May Griffith | Interpenetrating Networks, and Related Methods and Compositions |
US20090024195A1 (en) | 2005-09-12 | 2009-01-22 | The Cleveland Clinic Foundation | Method and apparatus for renal neuromodulation |
US20110166499A1 (en) | 2005-09-20 | 2011-07-07 | Ardian, Inc. | Methods and apparatus for inducing controlled renal neuromodulation |
US20070299043A1 (en) | 2005-10-03 | 2007-12-27 | Hunter William L | Anti-scarring drug combinations and use thereof |
US20070208134A1 (en) | 2005-10-03 | 2007-09-06 | Hunter William L | Anti-scarring drug combinations and use thereof |
US7200445B1 (en) | 2005-10-21 | 2007-04-03 | Asthmatx, Inc. | Energy delivery devices and methods |
US20100228122A1 (en) | 2005-10-27 | 2010-09-09 | Artenga Inc. | Microbubble medical devices |
EP1782852A1 (en) | 2005-11-04 | 2007-05-09 | F.Hoffmann-La Roche Ag | Device for automatic delivery of a liquid medicament into the body of a patient |
US20080045890A1 (en) | 2005-12-16 | 2008-02-21 | Mercator Medsystems, Inc. | Methods and systems for ablating tissue |
US20070278103A1 (en) | 2006-01-31 | 2007-12-06 | Nanocopoeia, Inc. | Nanoparticle coating of surfaces |
US20070207186A1 (en) | 2006-03-04 | 2007-09-06 | Scanlon John J | Tear and abrasion resistant expanded material and reinforcement |
US20070219576A1 (en) | 2006-03-16 | 2007-09-20 | Medtronic Vascular, Inc. | Reversibly and Radially Expandable Electroactive Polymer Element for Temporary Occlusion of a Vessel |
EP2010103A2 (en) | 2006-04-14 | 2009-01-07 | Edwards Lifesciences Corporation | Holders for prosthetic aortic heart valves |
US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
US9827101B2 (en) | 2006-05-18 | 2017-11-28 | Edwards Lifesciences Ag | Device and method for improving heart valve function |
US20070269385A1 (en) | 2006-05-18 | 2007-11-22 | Mercator Medsystems, Inc | Devices, methods, and systems for delivering therapeutic agents for the treatment of sinusitis, rhinitis, and other disorders |
US20100268217A1 (en) | 2006-05-24 | 2010-10-21 | Emcision Limited | Vessel sealing device and methods |
US20100217162A1 (en) | 2006-05-25 | 2010-08-26 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US20080004596A1 (en) | 2006-05-25 | 2008-01-03 | Palo Alto Institute | Delivery of agents by microneedle catheter |
US20170165055A1 (en) | 2006-06-01 | 2017-06-15 | Edwards Lifesciences Corporation | Mitral valve prosthesis |
US20070287994A1 (en) | 2006-06-12 | 2007-12-13 | Pankaj Amrit Patel | Endoscopically Introducible Expandable Bipolar Probe |
US20090076409A1 (en) | 2006-06-28 | 2009-03-19 | Ardian, Inc. | Methods and systems for thermally-induced renal neuromodulation |
US8409172B2 (en) | 2006-08-03 | 2013-04-02 | Hansen Medical, Inc. | Systems and methods for performing minimally invasive procedures |
US20090221955A1 (en) | 2006-08-08 | 2009-09-03 | Bacoustics, Llc | Ablative ultrasonic-cryogenic methods |
US7540870B2 (en) | 2006-08-08 | 2009-06-02 | Bacoustics, Llc | Ablative ultrasonic-cryogenic apparatus |
US20080064957A1 (en) | 2006-09-07 | 2008-03-13 | Spence Paul A | Ultrasonic implant, systems and methods related to diverting material in blood flow away from the head |
US20080082109A1 (en) | 2006-09-08 | 2008-04-03 | Hansen Medical, Inc. | Robotic surgical system with forward-oriented field of view guide instrument navigation |
US8119183B2 (en) | 2006-09-11 | 2012-02-21 | Enbio Limited | Method of doping surfaces |
US8016786B2 (en) | 2006-09-21 | 2011-09-13 | Mercator Medsystems, Inc. | Dual modulus balloon for interventional procedures |
US8721590B2 (en) | 2006-09-21 | 2014-05-13 | Mercator Medsystems, Inc. | Dual modulus balloon for interventional procedures |
US20140107478A1 (en) | 2006-09-21 | 2014-04-17 | Mercator Medsystems, Inc. | Dual Modulus Balloon for Interventional Procedures |
US7691080B2 (en) | 2006-09-21 | 2010-04-06 | Mercator Medsystems, Inc. | Dual modulus balloon for interventional procedures |
US20080086072A1 (en) | 2006-10-04 | 2008-04-10 | Bonutti Peter M | Methods and devices for controlling biologic microenvironments |
US8388680B2 (en) | 2006-10-18 | 2013-03-05 | Guided Delivery Systems, Inc. | Methods and devices for catheter advancement and delivery of substances therethrough |
US20140180196A1 (en) | 2006-10-18 | 2014-06-26 | Vessix Vascular, Inc. | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
US20080172035A1 (en) | 2006-10-18 | 2008-07-17 | Starksen Niel F | Methods and devices for catheter advancement and delivery of substances therethrough |
US20080208162A1 (en) | 2007-02-26 | 2008-08-28 | Joshi Ashok V | Device and Method For Thermophoretic Fluid Delivery |
US20090074828A1 (en) | 2007-04-04 | 2009-03-19 | Massachusetts Institute Of Technology | Poly(amino acid) targeting moieties |
US20080245371A1 (en) | 2007-04-06 | 2008-10-09 | William Harwick Gruber | Systems, methods and devices for performing gynecological procedures |
US20110213231A1 (en) | 2007-05-09 | 2011-09-01 | Hall Sacha C | Bendable catheter arms having varied flexibility |
US20140142408A1 (en) | 2007-05-09 | 2014-05-22 | St. Jude Medical, Cardiology Division, Inc. | Basket catheter having multiple electrodes |
US8263104B2 (en) | 2007-06-08 | 2012-09-11 | Northwestern University | Polymer nanofilm coatings |
US9693859B2 (en) | 2007-09-26 | 2017-07-04 | St. Jude Medical, Llc | Collapsible prosthetic heart valves |
US20100256616A1 (en) | 2007-09-26 | 2010-10-07 | Retrovascular, Inc. | Recanalizing occluded vessels using radiofrequency energy |
EP3245980A1 (en) | 2007-09-26 | 2017-11-22 | St. Jude Medical, LLC | Collapsible prosthetic heart valves |
US20170189181A1 (en) | 2007-09-28 | 2017-07-06 | St. Jude Medical, Llc | Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features |
US20170189180A1 (en) | 2007-09-28 | 2017-07-06 | St. Jude Medical, Llc | Two-stage collapsible/expandable prosthetic heart valves and anchoring systems |
US20100324472A1 (en) | 2007-11-14 | 2010-12-23 | Pathway Medical Technologies, Inc. | Delivery and administration of compositions using interventional catheters |
US8403881B2 (en) | 2007-12-18 | 2013-03-26 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US20090157057A1 (en) | 2007-12-18 | 2009-06-18 | Searete LLC, a liability corporation of the State of Delaware | Circulatory monitoring systems and methods |
US20090156988A1 (en) | 2007-12-18 | 2009-06-18 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US8317776B2 (en) | 2007-12-18 | 2012-11-27 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
WO2009088678A1 (en) | 2007-12-31 | 2009-07-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Pressure-sensitive flexible polymer bipolar electrode |
US20090203962A1 (en) | 2008-02-07 | 2009-08-13 | Voyage Medical, Inc. | Stent delivery under direct visualization |
US20100023088A1 (en) | 2008-03-27 | 2010-01-28 | Stack Richard S | System and method for transvascularly stimulating contents of the carotid sheath |
US20170348098A1 (en) | 2008-05-01 | 2017-12-07 | Edwards Lifesciences Coporation | Method of replacing mitral valve |
EP3132773A1 (en) | 2008-05-01 | 2017-02-22 | Edwards Lifesciences Corporation | Device for replacing mitral valve |
US20100069837A1 (en) | 2008-09-16 | 2010-03-18 | Boston Scientific Scimed, Inc. | Balloon Assembly and Method for Therapeutic Agent Delivery |
US8403983B2 (en) | 2008-09-29 | 2013-03-26 | Cardiaq Valve Technologies, Inc. | Heart valve |
US20100087782A1 (en) | 2008-10-07 | 2010-04-08 | Roozbeh Ghaffari | Catheter balloon having stretchable integrated circuitry and sensor array |
WO2010042653A1 (en) | 2008-10-07 | 2010-04-15 | Mc10, Inc. | Catheter balloon having stretchable integrated circuitry and sensor array |
WO2010056771A1 (en) | 2008-11-11 | 2010-05-20 | Shifamed Llc | Low profile electrode assembly |
US20120071870A1 (en) | 2008-11-11 | 2012-03-22 | Amr Salahieh | Low Profile Electrode Assembly |
US8295902B2 (en) | 2008-11-11 | 2012-10-23 | Shifamed Holdings, Llc | Low profile electrode assembly |
CN102271607A (en) | 2008-11-11 | 2011-12-07 | 施菲姆德有限责任公司 | Low profile electrode assembly |
US20100204560A1 (en) | 2008-11-11 | 2010-08-12 | Amr Salahieh | Low profile electrode assembly |
EP2352542A1 (en) | 2008-11-14 | 2011-08-10 | Minnow Medical, Inc. | Selective drug delivery in a lumen |
US20130172815A1 (en) | 2008-11-14 | 2013-07-04 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
US8317810B2 (en) | 2008-12-29 | 2012-11-27 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Tissue puncture assemblies and methods for puncturing tissue |
US20100168737A1 (en) | 2008-12-30 | 2010-07-01 | Debby Esther Grunewald | Catheter with multiple electrode assemblies for use at or near tubular regions of the heart |
US20100191232A1 (en) | 2009-01-27 | 2010-07-29 | Boveda Marco Medical Llc | Catheters and methods for performing electrophysiological interventions |
EP2400924A1 (en) | 2009-02-27 | 2012-01-04 | St. Jude Medical, Inc. | Stent features for collapsible prosthetic heart valves |
US20100249702A1 (en) | 2009-03-24 | 2010-09-30 | Abbott Cardiovascular Systems Inc. | Porous catheter balloon and method of making same |
US20170181851A1 (en) | 2009-04-10 | 2017-06-29 | Lon Sutherland ANNEST | Device and Method for Temporary or Permanent Suspension of an Implantable Scaffolding Containing an Orifice for Placement of a Prosthetic or Bio-Prosthetic Valve |
US9199065B2 (en) | 2009-04-22 | 2015-12-01 | Mercator Medsystems, Inc. | Treatment of renal hypertension or carotid sinus syndrome with adventitial pharmaceutical sympathetic denervation or neuromodulation |
US8465752B2 (en) | 2009-04-22 | 2013-06-18 | Mercator Medsystems, Inc. | Treatment of renal hypertension or carotid sinus syndrome with adventitial pharmaceutical sympathetic denervation or neuromodulation |
US20110104061A1 (en) | 2009-04-22 | 2011-05-05 | Mercator Medsystems, Inc. | Treatment of renal hypertension or carotid sinus syndrome with adventitial pharmaceutical sympathetic denervation or neuromodulation |
US20110104060A1 (en) | 2009-04-22 | 2011-05-05 | Mercator Medsystems, Inc. | Treatment of hypertension by renal vascular delivery of guanethidine |
US9011879B2 (en) | 2009-04-22 | 2015-04-21 | Mercator Medsystems, Inc. | Treatment of renal hypertension or carotid sinus syndrome with heated fluid sympathetic denervation or neuromodulation |
US20130204131A1 (en) | 2009-04-22 | 2013-08-08 | Mercator Medsystems, Inc. | Treatment of hypertension by renal vascular delivery of guanethidine |
US8399443B2 (en) | 2009-04-22 | 2013-03-19 | Mercator Medsystems, Inc. | Treatment of hypertension by renal vascular delivery of guanethidine |
US20100286684A1 (en) | 2009-05-07 | 2010-11-11 | Cary Hata | Irrigated ablation catheter with multiple segmented ablation electrodes |
EP2429436A1 (en) | 2009-05-07 | 2012-03-21 | St. Jude Medical, Inc. | Irrigated ablation catheter with multiple segmented ablation electrodes |
US20120029504A1 (en) | 2009-05-13 | 2012-02-02 | Afonso Valtino X | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
EP2429641A1 (en) | 2009-05-13 | 2012-03-21 | Vessix Vascular, Inc. | Directional delivery of energy and bioactives |
EP2470119A1 (en) | 2009-08-27 | 2012-07-04 | Medtronic Inc. | Transcatheter valve delivery systems and methods |
US20170231762A1 (en) | 2009-09-29 | 2017-08-17 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US8740895B2 (en) | 2009-10-27 | 2014-06-03 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US20130289555A1 (en) | 2009-10-27 | 2013-10-31 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US8777943B2 (en) | 2009-10-27 | 2014-07-15 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
US20130289556A1 (en) | 2009-10-27 | 2013-10-31 | Holaira, Inc. | Delivery devices with coolable energy emitting assemblies |
EP3132828A1 (en) | 2009-10-30 | 2017-02-22 | ReCor Medical, Inc. | Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation |
WO2011055143A2 (en) | 2009-11-04 | 2011-05-12 | Emcision Limited | Lumenal remodelling device and methods |
WO2011060200A1 (en) | 2009-11-11 | 2011-05-19 | Innovative Pulmonary Solutions, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
US8979839B2 (en) | 2009-11-13 | 2015-03-17 | St. Jude Medical, Inc. | Assembly of staggered ablation elements |
US20110118726A1 (en) | 2009-11-13 | 2011-05-19 | St. Jude Medical, Inc. | Assembly of staggered ablation elements |
EP2498706A1 (en) | 2009-11-13 | 2012-09-19 | St. Jude Medical, Inc. | Assembly of staggered ablation elements |
EP2509538A2 (en) | 2009-12-08 | 2012-10-17 | Avalon Medical Ltd. | Device and system for transcatheter mitral valve replacement |
US20110137155A1 (en) | 2009-12-09 | 2011-06-09 | Boston Scientific Scimed, Inc. | Delivery device for localized delivery of a therapeutic agent |
WO2011082279A2 (en) | 2009-12-31 | 2011-07-07 | Boston Scientific Scimed, Inc. | Patterned denervation therapy for innervated renal vasculature |
EP2519173A2 (en) | 2009-12-31 | 2012-11-07 | Boston Scientific Scimed, Inc. | Patterned denervation therapy for innervated renal vasculature |
US20110182912A1 (en) | 2010-01-26 | 2011-07-28 | Evans Michael A | Agents and methods for denervation |
US8975233B2 (en) | 2010-01-26 | 2015-03-10 | Northwind Medical, Inc. | Methods for renal denervation |
WO2011094367A1 (en) | 2010-01-26 | 2011-08-04 | Evans Michael A | Methods, devices, and agents for denervation |
US20110184337A1 (en) | 2010-01-26 | 2011-07-28 | Evans Michael A | Methods and devices for denervation |
US20150132409A1 (en) | 2010-01-26 | 2015-05-14 | Northwind Medical, Inc. | Agents and devices for affecting nerve function |
EP2528649A1 (en) | 2010-01-26 | 2012-12-05 | Michael A. Evans | Methods, devices, and agents for denervation |
US9056184B2 (en) | 2010-01-26 | 2015-06-16 | Northwind Medical, Inc. | Methods for renal denervation |
US20160008387A9 (en) | 2010-01-26 | 2016-01-14 | Northwind Medical, Inc. | Agents and devices for affecting nerve function |
US20110257622A1 (en) | 2010-03-24 | 2011-10-20 | Amr Salahieh | Intravascular Tissue Disruption |
US20120116438A1 (en) | 2010-03-24 | 2012-05-10 | Amr Salahieh | Intravascular Tissue Disruption |
WO2011119857A2 (en) | 2010-03-24 | 2011-09-29 | Shifamed, Llc | Intravascular tissue disruption |
US20110301587A1 (en) | 2010-04-06 | 2011-12-08 | Innovative Pulmonary Solutions, Inc. | System and method for pulmonary treatment |
WO2011130534A2 (en) | 2010-04-14 | 2011-10-20 | Boston Scientific Scimed, Inc. | Renal artery denervation apparatus employing helical shaping arrangement |
EP2558016A2 (en) | 2010-04-14 | 2013-02-20 | Boston Scientific Scimed, Inc. | Renal artery denervation apparatus employing helical shaping arrangement |
WO2011133724A2 (en) | 2010-04-20 | 2011-10-27 | Minipumps, Llc | Electrolytically driven drug pump devices |
US9629719B2 (en) | 2010-04-23 | 2017-04-25 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US20170348100A1 (en) | 2010-05-05 | 2017-12-07 | Neovasc Tiara, Inc. | Transcatheter mitral valve prosthesis |
US20170354497A1 (en) | 2010-06-21 | 2017-12-14 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
US20170354496A1 (en) | 2010-06-21 | 2017-12-14 | Edwards Lifesciences Cardiaq Llc | Replacement heart valve |
EP2611389A2 (en) | 2010-07-21 | 2013-07-10 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US20170360426A1 (en) | 2010-07-21 | 2017-12-21 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US9763657B2 (en) | 2010-07-21 | 2017-09-19 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US20120029510A1 (en) | 2010-07-30 | 2012-02-02 | Haverkost Patrick A | RF Electrodes on Multiple Flexible Wires for Renal Nerve Ablation |
US20120029500A1 (en) | 2010-07-30 | 2012-02-02 | Jenson Mark L | Sequential Activation RF Electrode Set for Renal Nerve Ablation |
EP2598068A1 (en) | 2010-07-30 | 2013-06-05 | Boston Scientific Scimed, Inc. | Self-leveling electrode sets for renal nerve ablation |
EP2598067A1 (en) | 2010-07-30 | 2013-06-05 | Boston Scientific Scimed, Inc. | Sequential activation rf electrode set for renal nerve ablation |
EP2598069A1 (en) | 2010-07-30 | 2013-06-05 | Boston Scientific Scimed, Inc. | Rf electrodes on multiple flexible wires for renal nerve ablation |
US9700411B2 (en) | 2010-08-17 | 2017-07-11 | St. Jude Medical, Inc. | Delivery system for collapsible heart valve |
US20140350533A1 (en) | 2010-10-11 | 2014-11-27 | Kelo Tec, Llc | Contactless photodisruptive laser cataract surgery |
US20120265198A1 (en) | 2010-11-19 | 2012-10-18 | Crow Loren M | Renal nerve detection and ablation apparatus and method |
WO2012068471A1 (en) | 2010-11-19 | 2012-05-24 | Boston Scientific Scimed, Inc. | Renal nerve detection and ablation apparatus and method |
EP2640297A1 (en) | 2010-11-19 | 2013-09-25 | Boston Scientific Scimed, Inc. | Renal nerve detection and ablation apparatus and method |
WO2012075156A1 (en) | 2010-12-01 | 2012-06-07 | Boston Scientific Scimed, Inc. | Expandable angular vascular electrode for renal nerve ablation |
US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
US20120157992A1 (en) | 2010-12-15 | 2012-06-21 | Scott Smith | Off-wall electrode device for renal nerve ablation |
EP2656807A1 (en) | 2010-12-21 | 2013-10-30 | Terumo Kabushiki Kaisha | Balloon catheter and electrification system |
US20130296853A1 (en) | 2010-12-21 | 2013-11-07 | Terumo Kabushiki Kaisha | Balloon catheter and electrification system |
US9687342B2 (en) | 2011-01-11 | 2017-06-27 | Hans Reiner Figulla | Valve prosthesis for replacing an atrioventricular valve of the heart with anchoring element |
US20120184952A1 (en) | 2011-01-19 | 2012-07-19 | Jenson Mark L | Low-profile off-wall electrode device for renal nerve ablation |
EP2675458A1 (en) | 2011-02-18 | 2013-12-25 | Medivation Technologies, Inc. | Compounds and methods for treatment of hypertension |
CN202069688U (en) | 2011-03-11 | 2011-12-14 | 北京天助畅运医疗技术股份有限公司 | Radio frequency ablation electrode capable of treating resistant hypertension |
WO2012130337A1 (en) | 2011-04-01 | 2012-10-04 | Flux Medical N.V. | System, device and method for ablation of a vessel's wall from the inside |
WO2012131107A1 (en) | 2011-04-01 | 2012-10-04 | Flux Medical N.V. | System, device and method for ablation of a vessel's wall from the inside |
EP2694158A1 (en) | 2011-04-01 | 2014-02-12 | Flux Medical N.V. | System, device and method for ablation of a vessel's wall from the inside |
US20150231386A1 (en) | 2011-04-08 | 2015-08-20 | Covidien Lp | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
WO2013106054A2 (en) | 2011-04-08 | 2013-07-18 | Vivant Medical, Inc. | Flexible microwave catheters for natural or artificial lumens |
WO2012161875A1 (en) | 2011-04-08 | 2012-11-29 | Tyco Healthcare Group Lp | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
US20120259269A1 (en) | 2011-04-08 | 2012-10-11 | Tyco Healthcare Group Lp | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
EP2694150A1 (en) | 2011-04-08 | 2014-02-12 | Covidien LP | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
US20160235464A1 (en) | 2011-04-22 | 2016-08-18 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US9237925B2 (en) | 2011-04-22 | 2016-01-19 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US8663190B2 (en) | 2011-04-22 | 2014-03-04 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US9131983B2 (en) | 2011-04-22 | 2015-09-15 | Ablative Solutions, Inc. | Methods ablating tissue using a catheter-based injection system |
US20150335384A1 (en) | 2011-04-22 | 2015-11-26 | Ablative Solutions, Inc. | Methods of ablating tissue using a catheter injection system |
US20120271301A1 (en) | 2011-04-22 | 2012-10-25 | Fischell Innovations Llc | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
US20140296279A1 (en) | 2011-04-28 | 2014-10-02 | Mercator Medsystems, Inc. | Intravascular delivery of nanoparticle compositions and uses thereof |
CN102274074A (en) | 2011-05-03 | 2011-12-14 | 上海微创电生理医疗科技有限公司 | Multi-electrode open-type radio frequency ablation catheter |
US8909316B2 (en) | 2011-05-18 | 2014-12-09 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and method of assessing transvascular denervation |
US20120296232A1 (en) | 2011-05-18 | 2012-11-22 | St. Jude Medical, Inc. | Method and apparatus of assessing transvascular denervation |
US20120296329A1 (en) | 2011-05-18 | 2012-11-22 | St. Jude Medical, Inc. | Apparatus and method of assessing transvascular denervation |
US20150112329A1 (en) | 2011-05-18 | 2015-04-23 | St. Jude Medical, Inc. | Apparatus and method of assessing transvascular denervation |
EP2709517A1 (en) | 2011-05-18 | 2014-03-26 | St. Jude Medical, Inc. | Apparatus and method of assessing transvascular denervation |
WO2012158864A1 (en) | 2011-05-18 | 2012-11-22 | St. Jude Medical, Inc. | Apparatus and method of assessing transvascular denervation |
US20140107639A1 (en) | 2011-06-06 | 2014-04-17 | St. Jude Medical Cardiology Division, Inc. | Renal denervation system and method |
WO2012170482A1 (en) | 2011-06-06 | 2012-12-13 | St. Jude Medical, Inc. | Renal denervation system and method |
EP2717795A1 (en) | 2011-06-06 | 2014-04-16 | St. Jude Medical, Inc. | Renal denervation system and method |
WO2013028274A2 (en) | 2011-07-11 | 2013-02-28 | Synecor Llc | System and method for neuromodulation |
EP2731531A1 (en) | 2011-07-12 | 2014-05-21 | Verve Medical, Inc. | Renal nerve denervation via the renal pelvis |
US9833315B2 (en) | 2011-08-11 | 2017-12-05 | Tendyne Holdings, Inc. | Prosthetic valves and related inventions |
US20140358079A1 (en) | 2011-08-24 | 2014-12-04 | Ablative Solutions, Inc. | Intravascular fluid catheter with minimal internal fluid volume |
US20130274674A1 (en) | 2011-08-24 | 2013-10-17 | Ablative Solutions, Inc. | Intravascular ablation catheter with precision depth of penetration calibration |
WO2013028781A1 (en) | 2011-08-24 | 2013-02-28 | Ablative Solutions, Inc. | Catheter system for vessel wall injection and perivascular renal denervation |
US9278196B2 (en) | 2011-08-24 | 2016-03-08 | Ablative Solutions, Inc. | Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation |
US20130053792A1 (en) | 2011-08-24 | 2013-02-28 | Ablative Solutions, Inc. | Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation |
US20150343156A1 (en) | 2011-08-24 | 2015-12-03 | Ablative Solutions, Inc. | Expandable catheter system for fluid injection into and deep to the wall of a blood vessel |
WO2013028812A1 (en) | 2011-08-24 | 2013-02-28 | Heuser Richard R | Devices and methods for treating hypertension with energy |
EP2747688A1 (en) | 2011-08-24 | 2014-07-02 | Ablative Solutions, Inc. | Catheter system for vessel wall injection and perivascular renal denervation |
US20130053732A1 (en) | 2011-08-24 | 2013-02-28 | Richard R. Heuser | Devices and methods for treating hypertension with energy |
US9056185B2 (en) | 2011-08-24 | 2015-06-16 | Ablative Solutions, Inc. | Expandable catheter system for fluid injection into and deep to the wall of a blood vessel |
US20130274673A1 (en) | 2011-08-24 | 2013-10-17 | Ablative Solutions, Inc. | Intravascular ablation catheter with enhanced fluoroscopic visibility |
US20160374568A1 (en) | 2011-08-26 | 2016-12-29 | Symap Holding Limited | System and method for locating and identifying the functional nerves innervating the wall of arteries and catheters for same |
US20150289770A1 (en) | 2011-08-26 | 2015-10-15 | Symap Holding Limited | System and method for locating and identifying the functional nerves innervating the wall of arteries and catheters for same |
US20110306851A1 (en) | 2011-08-26 | 2011-12-15 | Jie Wang | Mapping sympathetic nerve distribution for renal ablation and catheters for same |
US20170128206A1 (en) | 2011-09-22 | 2017-05-11 | Transmural Systems Llc | Devices, systems and methods for repairing lumenal systems |
US20140243821A1 (en) | 2011-09-30 | 2014-08-28 | Covidien Lp | Energy delivery device and methods of use |
US20130090652A1 (en) | 2011-10-10 | 2013-04-11 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
US20130090651A1 (en) | 2011-10-11 | 2013-04-11 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
WO2013055815A1 (en) | 2011-10-11 | 2013-04-18 | Boston Scientific Scimed, Inc. | Off -wall electrode device for nerve modulation |
US20130096554A1 (en) | 2011-10-12 | 2013-04-18 | Boston Scientific Scimed, Inc. | Slotted tube multiple electrode frame and off-wall spacer cage |
US20130096550A1 (en) | 2011-10-18 | 2013-04-18 | Boston Scientific Scimed, Inc. | Ablative catheter with electrode cooling and related methods of use |
US20130096604A1 (en) | 2011-10-18 | 2013-04-18 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
WO2013059735A1 (en) | 2011-10-19 | 2013-04-25 | Mercator Medsystems, Inc. | Localized modulation of tissues and cells to enhance therapeutic effects including renal denervation |
US20130252932A1 (en) | 2011-10-19 | 2013-09-26 | Mercator Medsystems, Inc. | Localized modulation of tissues and cells to enhance therapeutic effects including renal denervation |
US20170128198A1 (en) | 2011-10-21 | 2017-05-11 | Edwards Lifesciences Cardiaq Llc | Actively controllable stent, stent graft, heart valve and method of controlling same |
WO2013063331A1 (en) | 2011-10-26 | 2013-05-02 | Stein Emily A | Agents, methods, and devices for affecting nerve function |
US20150202220A1 (en) | 2011-10-26 | 2015-07-23 | Northwind Medical, Inc. | Agents, methods, and devices for affecting nerve function |
US20130110106A1 (en) | 2011-10-28 | 2013-05-02 | Boston Scientific Scimed, Inc. | Expandable structure for off-wall ablation electrode |
US8951251B2 (en) | 2011-11-08 | 2015-02-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US9414885B2 (en) | 2011-11-08 | 2016-08-16 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US20160324574A1 (en) | 2011-11-08 | 2016-11-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US20150148797A1 (en) | 2011-11-08 | 2015-05-28 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US20130116687A1 (en) | 2011-11-08 | 2013-05-09 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
WO2013070724A1 (en) | 2011-11-08 | 2013-05-16 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
US20130123778A1 (en) | 2011-11-15 | 2013-05-16 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
US20140350553A1 (en) | 2011-11-21 | 2014-11-27 | Denerve Inc. | Renal artery ablation catheter and system |
WO2013077283A1 (en) | 2011-11-21 | 2013-05-30 | 国立大学法人大阪大学 | Renal artery ablation catheter and system |
US20160051465A1 (en) | 2011-12-09 | 2016-02-25 | Metavention, Inc. | Chemical neuromodulation of nerves innervating the liver |
US9114123B2 (en) | 2011-12-09 | 2015-08-25 | Metavention, Inc. | Hepatic neuromodulation using fluids or chemical agents |
US8758334B2 (en) | 2011-12-09 | 2014-06-24 | Metavention, Inc. | Hepatic neuromodulation devices |
US20140296849A1 (en) | 2011-12-09 | 2014-10-02 | Metavention, Inc. | Energy delivery devices for hepatic neuromodulation |
US9827092B2 (en) | 2011-12-16 | 2017-11-28 | Tendyne Holdings, Inc. | Tethers for prosthetic mitral valve |
US20130158509A1 (en) | 2011-12-19 | 2013-06-20 | Paul M. Consigny | System, apparatus, and method for denervating an artery |
US20130158536A1 (en) | 2011-12-19 | 2013-06-20 | Medtronic Advanced Energy Llc | Electrosurgical Devices |
CN202426647U (en) | 2011-12-22 | 2012-09-12 | 王涛 | Multi-pole radio frequency ablation electrode with variable-diameter net basket |
US20140336494A1 (en) | 2011-12-30 | 2014-11-13 | St. Jude Medical, Atrial Fibrillation Division Inc | Electrode support structure assemblies |
WO2013112844A2 (en) | 2012-01-26 | 2013-08-01 | Landy Toth | Controlled sympathectomy and micro-ablation systems and methods |
US20130226166A1 (en) | 2012-02-28 | 2013-08-29 | James E. Chomas | Renal Nerve Neuromodulation Device |
EP2819604A1 (en) | 2012-03-01 | 2015-01-07 | Boston Scientific Scimed, Inc. | Off-wall and contact electrode devices and methods for nerve modulation |
WO2013131046A1 (en) | 2012-03-01 | 2013-09-06 | Boston Scientific Scimed, Inc. | Off-wall and contact electrode devices and methods for nerve modulation |
US20130231659A1 (en) | 2012-03-01 | 2013-09-05 | Boston Scientific Scimed, Inc. | Off-wall and contact electrode devices and methods for nerve modulation |
US20130231658A1 (en) | 2012-03-01 | 2013-09-05 | Boston Scientific Scimed, Inc. | Expandable ablation device and methods for nerve modulation |
WO2013142217A1 (en) | 2012-03-19 | 2013-09-26 | Boston Scientific Scimed, Inc. | Expandable electrode device and methods for nerve modulation |
US20130245622A1 (en) | 2012-03-19 | 2013-09-19 | Boston Scientific Scimed, Inc. | Expandable electrode device and methods for nerve modulation |
US20130274614A1 (en) | 2012-04-12 | 2013-10-17 | Neuro Ablation, Inc. | Mapping and ablation of nerves within arteries and tissues |
US20130282000A1 (en) | 2012-04-19 | 2013-10-24 | St. Jude Medical, Cardiology Division, Inc. | Non-electric field renal denervation electrode |
US20130289369A1 (en) | 2012-04-27 | 2013-10-31 | Volcano Corporation | Methods and Apparatus for Renal Neuromodulation |
US20130289686A1 (en) | 2012-04-29 | 2013-10-31 | Synecor Llc | Intravascular electrode arrays for neuromodulation |
WO2013165920A1 (en) | 2012-04-29 | 2013-11-07 | Synecor Llc | Intravascular electrode arrays for neuromodulation |
EP2844190A1 (en) | 2012-04-30 | 2015-03-11 | St. Jude Medical, Cardiology Division, Inc. | Aortic valve holder with stent protection and/or ability to decrease valve profile |
US20140207136A1 (en) | 2012-05-04 | 2014-07-24 | St. Jude Medical, Inc. | Multiple staggered electrodes connected via flexible joints |
WO2013169741A1 (en) | 2012-05-08 | 2013-11-14 | Stein Emily A | Agents and devices for affecting nerve function |
US8562573B1 (en) | 2012-06-05 | 2013-10-22 | Fischell Innovations, Llc | Guiding catheter for accessing the renal arteries |
US20140012231A1 (en) | 2012-06-05 | 2014-01-09 | Fischell Innovations Llc | Method for accessing a renal artery |
WO2013188689A1 (en) | 2012-06-13 | 2013-12-19 | Harrington Douglas C | Devices and methods for renal denervation |
US20140025069A1 (en) | 2012-07-17 | 2014-01-23 | Boston Scientific Scimed, Inc. | Renal nerve modulation catheter design |
EP2874555A1 (en) | 2012-07-17 | 2015-05-27 | Boston Scientific Scimed, Inc. | Renal nerve modulation catheter design |
WO2014015065A1 (en) | 2012-07-17 | 2014-01-23 | Boston Scientific Scimed, Inc. | Renal nerve modulation catheter design |
US20170266001A1 (en) | 2012-07-30 | 2017-09-21 | Tendyne Holdings, Inc. | Delivery systems and methods for transcatheter prosthetic valves |
US9693862B2 (en) | 2012-07-31 | 2017-07-04 | Edwards Lifesciences Corporation | Holders for prosthetic heart valves |
US9033917B2 (en) | 2012-08-15 | 2015-05-19 | Abbott Cardiovascular Systems Inc. | Needle catheter for delivery of agents directly into vessel wall |
EP2885041A1 (en) | 2012-08-15 | 2015-06-24 | Abbott Cardiovascular Systems, Inc. | Needle catheter for delivery of agents directly into vessel wall |
WO2014031167A1 (en) | 2012-08-22 | 2014-02-27 | Medivation Technologies, Inc. | Compounds and methods for treatment of hypertension |
US20140058374A1 (en) | 2012-08-22 | 2014-02-27 | Boston Scientific Scimed, Inc. | Multiple electrode rf ablation catheter and method |
WO2014036160A2 (en) | 2012-08-28 | 2014-03-06 | Boston Scientific Scimed, Inc. | Renal nerve modulation and ablation catheter electrode design |
WO2014056460A1 (en) | 2012-08-29 | 2014-04-17 | 第三军医大学第一附属医院 | Multifunctional ablation catheter system for renal sympathetic denervation |
CN102885648A (en) | 2012-08-29 | 2013-01-23 | 中国人民解放军第三军医大学第一附属医院 | Sympathetic nerve denervation ablation catheter system for kidneys |
CN102885649A (en) | 2012-08-29 | 2013-01-23 | 中国人民解放军第三军医大学第一附属医院 | Radio frequency cable controlled ablation catheter system for removing sympathetic nerve from kidney |
CN102908188A (en) | 2012-08-29 | 2013-02-06 | 中国人民解放军第三军医大学第一附属医院 | Radio frequency ablation (RFA) catheter system for denervation of renal sympathetic nerves |
CN102908189A (en) | 2012-08-29 | 2013-02-06 | 中国人民解放军第三军医大学第一附属医院 | Multifunctional ablation catheter system for denervation of renal sympathetic nerves |
CN202761434U (en) | 2012-08-29 | 2013-03-06 | 中国人民解放军第三军医大学第一附属医院 | Kidney sympathetic denervation multifunctional ablation catheter system |
CN202843784U (en) | 2012-08-29 | 2013-04-03 | 中国人民解放军第三军医大学第一附属医院 | Renal sympathetic nerve ablation catheter system |
US20140074089A1 (en) | 2012-09-13 | 2014-03-13 | Nihon Kohden Corporation | Catheter |
US20140074083A1 (en) | 2012-09-13 | 2014-03-13 | Boston Scientific Scimed, Inc. | Renal nerve modulation balloon and methods of making and using the same |
US20170156860A1 (en) | 2012-09-14 | 2017-06-08 | Millipede, Inc. | Mitral valve inversion prostheses |
US9173696B2 (en) | 2012-09-17 | 2015-11-03 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
EP2895095A2 (en) | 2012-09-17 | 2015-07-22 | Boston Scientific Scimed, Inc. | Self-positioning electrode system and method for renal nerve modulation |
US20160058489A1 (en) | 2012-10-29 | 2016-03-03 | Ablative Solutions, Inc. | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
EP2911735A1 (en) | 2012-10-29 | 2015-09-02 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
US20160354137A1 (en) | 2012-10-29 | 2016-12-08 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
US9526827B2 (en) | 2012-10-29 | 2016-12-27 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
US9179962B2 (en) | 2012-10-29 | 2015-11-10 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
US9539047B2 (en) | 2012-10-29 | 2017-01-10 | Ablative Solutions, Inc. | Transvascular methods of treating extravascular tissue |
US20140378906A1 (en) | 2012-10-29 | 2014-12-25 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with mechanical support structures |
US9301795B2 (en) | 2012-10-29 | 2016-04-05 | Ablative Solutions, Inc. | Transvascular catheter for extravascular delivery |
US8740849B1 (en) | 2012-10-29 | 2014-06-03 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
US9554849B2 (en) | 2012-10-29 | 2017-01-31 | Ablative Solutions, Inc. | Transvascular method of treating hypertension |
US9254360B2 (en) | 2012-10-29 | 2016-02-09 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with deflection surface support structures |
US9320850B2 (en) | 2012-10-29 | 2016-04-26 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with unique injection fitting |
WO2014070820A2 (en) | 2012-11-02 | 2014-05-08 | Lixiao Wang | Chemical ablation formulations and methods of treatments for various diseases |
EP2914326A2 (en) | 2012-11-02 | 2015-09-09 | Neurotronic, Inc. | Chemical ablation formulations and methods of treatments for various diseases |
US20160157933A1 (en) | 2012-11-05 | 2016-06-09 | Boston Scientific Scimed, Inc. | Devices and methods for delivering energy to body lumens |
WO2014070999A2 (en) | 2012-11-05 | 2014-05-08 | Landy Toth | Systems, methods, and devices for monitoring and treatment of tissues within and/or through a lumen wall |
WO2014078301A1 (en) | 2012-11-13 | 2014-05-22 | Silk Road Medical, Inc. | Devices and methods for endoluminal delivery of either fluid or energy for denervation |
US20140135661A1 (en) | 2012-11-13 | 2014-05-15 | Silk Road Medical, Inc. | Devices and methods for endoluminal delivery of either fluid or energy for denervation |
US20140316496A1 (en) | 2012-11-21 | 2014-10-23 | NeuroTronik IP Holding (Jersey) Limited | Intravascular Electrode Arrays for Neuromodulation |
CN202960760U (en) | 2012-12-13 | 2013-06-05 | 乐普(北京)医疗器械股份有限公司 | Multi-point radiofrequency ablation electrode used for operation of renal sympathetic nerve removal |
US20140180077A1 (en) | 2012-12-21 | 2014-06-26 | Volcano Corporation | Tissue ablation catheter and methods of ablating tissue |
WO2014100226A1 (en) | 2012-12-21 | 2014-06-26 | Huennekens Scott | Tissue ablation catheter and methods of ablating tissue |
US20140188103A1 (en) | 2012-12-31 | 2014-07-03 | Volcano Corporation | Methods and Apparatus for Neuromodulation Utilizing Optical-Acoustic Sensors |
WO2014110579A1 (en) | 2013-01-14 | 2014-07-17 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter |
US20140200578A1 (en) | 2013-01-14 | 2014-07-17 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter |
EP2950734A2 (en) | 2013-01-31 | 2015-12-09 | Renal Dynamics Ltd. | Unipolar and/or bipolar ablation catheter |
US20160008059A1 (en) | 2013-01-31 | 2016-01-14 | Renal Dynamics Ltd. | Ablation catheter with insulation |
WO2014118734A2 (en) | 2013-01-31 | 2014-08-07 | David Prutchi | Unipolar and/or bipolar ablation catheter |
US20150351836A1 (en) | 2013-01-31 | 2015-12-10 | Renal Dynamics Ltd. | Unipolar and/or bipolar ablation catheter |
WO2014118733A2 (en) | 2013-01-31 | 2014-08-07 | David Prutchi | Ablation catheter with insulation |
EP2954865A1 (en) | 2013-02-07 | 2015-12-16 | Shanghai Golden Leaf Med Tec Co., Ltd | Radio frequency ablation method, system and radio frequency ablation device thereof |
US20150374435A1 (en) | 2013-02-07 | 2015-12-31 | Shanghai Golden Leaf Med Tec Co., Ltd | Radio frequency ablation method, system and radio frequency ablation device thereof |
US20140228829A1 (en) | 2013-02-13 | 2014-08-14 | St. Jude Medical, Cardiology Division, Inc. | Laser-based devices and methods for renal denervation |
US9844435B2 (en) | 2013-03-01 | 2017-12-19 | St. Jude Medical, Cardiology Division, Inc. | Transapical mitral valve replacement |
US20140246465A1 (en) | 2013-03-03 | 2014-09-04 | Joan Darnell Peterson | Fish n stow |
US20140303617A1 (en) | 2013-03-05 | 2014-10-09 | Neuro Ablation, Inc. | Intravascular nerve ablation devices & methods |
US9833313B2 (en) | 2013-03-11 | 2017-12-05 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter valve replacement |
WO2014163990A1 (en) | 2013-03-12 | 2014-10-09 | Boston Scientific Scimed, Inc. | Medical systems and methods for modulating nerves |
US20140276724A1 (en) | 2013-03-13 | 2014-09-18 | Kyphon Sarl | Radiofrequency inflatable device |
US20140276762A1 (en) | 2013-03-13 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Ablation catheters and systems including rotational monitoring means |
US20170340440A1 (en) | 2013-03-14 | 2017-11-30 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
EP3011899A1 (en) | 2013-03-14 | 2016-04-27 | St. Jude Medical, Inc. | Systems and apparatus for neural signal detection |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US20150343175A1 (en) | 2013-03-14 | 2015-12-03 | Covidien Lp | Fluid Delivery Catheter with Pressure-Actuating Needle Deployment and Retraction |
US20140276728A1 (en) | 2013-03-14 | 2014-09-18 | Kyphon Sarl | Radio frequencey catheter to target ligamentum flavum |
US20140271717A1 (en) | 2013-03-14 | 2014-09-18 | Kyphon Sarl | Devices containing a chemical denervation agent and methods for treating chronic back pain using chemical denervation |
US20140276733A1 (en) | 2013-03-14 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations |
US9108030B2 (en) | 2013-03-14 | 2015-08-18 | Covidien Lp | Fluid delivery catheter with pressure-actuating needle deployment and retraction |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
EP2967383A1 (en) | 2013-03-14 | 2016-01-20 | St. Jude Medical, Inc. | Systems and apparatus for neural signal detection |
US20150018656A1 (en) | 2013-03-14 | 2015-01-15 | St. Jude Medical, Inc. | Methods, systems, and apparatus for neural signal detection |
WO2014158708A1 (en) | 2013-03-14 | 2014-10-02 | St. Jude Medical, Cardiology Division, Inc. | Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations |
WO2014149552A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Cardiology Division, Inc. | Feedback systems and methods for renal denervation utilizing balloon catheter |
US20140276767A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Ablation system, methods, and controllers |
US20140276773A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Ablation system, methods, and controllers |
WO2014152344A2 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device for intravascular therapy and/or diagnosis |
US20140316400A1 (en) | 2013-03-15 | 2014-10-23 | St. Jude Medical, Cardiology Division, Inc. | Ablation system, methods, and controllers |
US20140276766A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Ablation system, methods, and controllers |
US20140276742A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Feedback systems and methods for renal denervation utilizing balloon catheter |
US20140276124A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Quantification of renal denervation via alterations in renal blood flow pre/post ablation |
US20140276747A1 (en) | 2013-03-15 | 2014-09-18 | Abbott Cardiovascular Systems Inc. | System and method for denervation |
US20140276746A1 (en) | 2013-03-15 | 2014-09-18 | St. Jude Medical, Cardiology Division, Inc. | Feedback systems and methods utilizing two or more sites along denervation catheter |
US20140276756A1 (en) | 2013-03-15 | 2014-09-18 | Boston Scientific Scimed, Inc. | Wall-sparing renal nerve ablation catheter with spaced electrode structures |
WO2014150425A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Cardiology Division, Inc. | Multi-electrode ablation system with a controller for determining a thermal gain of each electrode |
US20140276752A1 (en) | 2013-03-15 | 2014-09-18 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
WO2014149553A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Cardiology Division, Inc. | Quantification of renal denervation via alterations in renal blood flow pre/post ablation |
WO2014150204A1 (en) | 2013-03-15 | 2014-09-25 | Kyphon SÀRL | Rf enabled inflatable bone tamp |
WO2014150455A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Cardiology Division, Inc. | Multi-electrode ablation system with means for determining a common path impedance |
WO2014150441A2 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Cardiology Division, Inc. | Ablation system, methods, and controllers |
WO2014150432A1 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Cardiology Division, Inc. | Ablation system, methods, and controllers |
WO2014149550A2 (en) | 2013-03-15 | 2014-09-25 | St. Jude Medical, Cardiology Division, Inc. | Feedback systems and methods utilizing two or more sites along denervation catheter |
WO2014176205A1 (en) | 2013-04-25 | 2014-10-30 | St. Jude Medical, Cardiology Division, Inc. | Electrode assembly for catheter system |
US20140324043A1 (en) | 2013-04-25 | 2014-10-30 | St. Jude Medical, Cardiology Division, Inc. | Electrode Assembly For Catheter System |
US20140330267A1 (en) | 2013-05-02 | 2014-11-06 | Douglas C. Harrington | Devices And Methods For Detection And Treatment Of The Aorticorenal Ganglion |
WO2014179768A1 (en) | 2013-05-02 | 2014-11-06 | Harrington Douglas C | Devices and methods for detection and treatment of the aorticorenal ganglion |
WO2014189887A2 (en) | 2013-05-20 | 2014-11-27 | Mayo Foundation For Medical Education And Research | Devices and methods for ablation of tissue |
EP2999436A1 (en) | 2013-05-20 | 2016-03-30 | Edwards Lifesciences Corporation | Prosthetic heart valve delivery apparatus |
US20140350551A1 (en) | 2013-05-21 | 2014-11-27 | St. Jude Medical, Cardiology Division, Inc. | Electrode assembly for catheter system |
US20170231763A1 (en) | 2013-05-22 | 2017-08-17 | Valcare, Inc. | Transcatheter prosthetic valve for mitral or tricuspid valve replacement |
WO2014197688A1 (en) | 2013-06-06 | 2014-12-11 | Boston Scientific Scimed, Inc. | Devices for delivering energy and related methods of use |
US20140364926A1 (en) | 2013-06-06 | 2014-12-11 | Boston Scientific Scimed, Inc. | Devices for delivering energy and related methods of use |
US20150018818A1 (en) | 2013-07-11 | 2015-01-15 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
EP3019105A1 (en) | 2013-07-11 | 2016-05-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US20170354499A1 (en) | 2013-07-17 | 2017-12-14 | Juan F. Granada | System and method for cardiac valve repair and replacement |
EP3027144A1 (en) | 2013-08-01 | 2016-06-08 | Tendyne Holdings, Inc. | Epicardial anchor devices and methods |
US9839511B2 (en) | 2013-10-05 | 2017-12-12 | Sino Medical Sciences Technology Inc. | Device and method for mitral valve regurgitation treatment |
US20150105772A1 (en) | 2013-10-14 | 2015-04-16 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation |
US20150105715A1 (en) | 2013-10-15 | 2015-04-16 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
US20150112327A1 (en) | 2013-10-23 | 2015-04-23 | St. Jude Medical, Cardiology Division, Inc. | Electrode assembly for catheter system including thermoplastic-based struts |
US20160242661A1 (en) | 2013-10-25 | 2016-08-25 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
EP3060148A1 (en) | 2013-10-25 | 2016-08-31 | Ablative Solutions, Inc. | Intravascular catheter with peri-vascular nerve activity sensors |
US20170100248A1 (en) | 2013-10-29 | 2017-04-13 | Tendyne Holdings, Inc. | Apparatus and methods for delivery of transcatheter prosthetic valves |
US9700409B2 (en) | 2013-11-06 | 2017-07-11 | St. Jude Medical, Cardiology Division, Inc. | Reduced profile prosthetic heart valve |
US20170360585A1 (en) | 2013-11-11 | 2017-12-21 | Edwards Lifesciences Cardiaq Llc | Systems and methods for manufacturing a stent frame |
EP2870933A1 (en) | 2013-11-12 | 2015-05-13 | St. Jude Medical, Cardiology Division, Inc. | Transfemoral mitral valve repair delivery device |
US9848880B2 (en) | 2013-11-20 | 2017-12-26 | James E. Coleman | Adjustable heart valve implant |
CN103549993A (en) | 2013-11-21 | 2014-02-05 | 何芬 | Guide wire and catheter system for radiofrequency ablation of renal artery sympathetic nerves |
EP3082656A1 (en) | 2013-12-17 | 2016-10-26 | Edwards Lifesciences Corporation | Inverted leaflet prosthetic valve |
EP3102132A1 (en) | 2014-02-07 | 2016-12-14 | Verve Medical, Inc. | Methods and systems for ablation of the renal pelvis |
US20150223866A1 (en) | 2014-02-07 | 2015-08-13 | Verve Medical, Inc. | Methods and systems for ablation of the renal pelvis |
EP3110369A1 (en) | 2014-02-28 | 2017-01-04 | Highlife SAS | Transcatheter valve prosthesis |
EP3110368A1 (en) | 2014-02-28 | 2017-01-04 | Highlife SAS | Transcatheter valve prosthesis |
US9687343B2 (en) | 2014-03-11 | 2017-06-27 | Highlife Sas | Transcatheter valve prosthesis |
US20170165054A1 (en) | 2014-03-18 | 2017-06-15 | StJude Medical, Cardiology Division, Inc. | Mitral valve replacement toggle cell securement |
US20170189179A1 (en) | 2014-05-19 | 2017-07-06 | Edwards Lifesciences Cardiaq Llc | Replacement mitral valve |
US20170360549A1 (en) | 2014-07-17 | 2017-12-21 | Millipede, Inc. | Adjustable endolumenal implant for reshaping the mitral valve annulus |
EP3191027A1 (en) | 2014-09-12 | 2017-07-19 | Mitral Valve Technologies Sàrl | Mitral repair and replacement devices and methods |
EP3206628A1 (en) | 2014-10-16 | 2017-08-23 | Jacques Seguin | Intervalvular implant for a mitral valve |
US9750607B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
US9750605B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
US9750606B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
JP2016083302A (en) | 2014-10-28 | 2016-05-19 | テルモ株式会社 | Ablation catheter |
JP2016086999A (en) | 2014-10-31 | 2016-05-23 | テルモ株式会社 | Ablation catheter |
US20170333186A1 (en) | 2014-11-26 | 2017-11-23 | Konstantinos Spargias | Transcatheter prosthetic heart valve and delivery system |
EP3229736A1 (en) | 2014-12-09 | 2017-10-18 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and methods of use and manufacture |
US20170325941A1 (en) | 2014-12-09 | 2017-11-16 | Dan Wallace | Replacement cardiac valves and methods of use and manufacture |
US9861477B2 (en) | 2015-01-26 | 2018-01-09 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
EP3250154A1 (en) | 2015-01-26 | 2017-12-06 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
US9848983B2 (en) | 2015-02-13 | 2017-12-26 | Millipede, Inc. | Valve replacement using rotational anchors |
EP3256077A1 (en) | 2015-02-13 | 2017-12-20 | Millipede, Inc. | Valve replacement using rotational anchors |
EP3258883A1 (en) | 2015-02-20 | 2017-12-27 | 4C Medical Technologies, Inc. | Devices, systems and methods for cardiac treatment |
EP3273910A2 (en) | 2015-03-24 | 2018-01-31 | St. Jude Medical, Cardiology Division, Inc. | Mitral heart valve replacement |
US20160310200A1 (en) | 2015-04-24 | 2016-10-27 | Neurotronic, Inc. | Chemical ablation and method of treatment for various diseases |
US20170325948A1 (en) | 2015-05-14 | 2017-11-16 | Dan Wallace | Replacement mitral valves |
WO2017062640A1 (en) | 2015-10-09 | 2017-04-13 | Evalve, Inc. | A delivery catheter handle and methods of use |
US20170100250A1 (en) | 2015-10-09 | 2017-04-13 | Evalve, Inc. | Delivery catheter handle and methods of use |
US20170119526A1 (en) | 2015-11-03 | 2017-05-04 | Edwards Lifesciences Corporation | Adapter for prosthesis delivery device and methods of use |
US20170128205A1 (en) | 2015-11-10 | 2017-05-11 | Edwards Lifesciences Corporation | Implant delivery capsule |
WO2017096157A1 (en) | 2015-12-03 | 2017-06-08 | Tendyne Holdings, Inc. | Frame features for prosthetic mitral valves |
WO2017101232A1 (en) | 2015-12-15 | 2017-06-22 | 先健科技(深圳)有限公司 | Artificial heart valve stent, artificial heart valve and implantation method |
US20170172737A1 (en) | 2015-12-22 | 2017-06-22 | Nvt Ag | Prosthetic mitral valve coaptation enhancement device |
EP3184081A1 (en) | 2015-12-22 | 2017-06-28 | Nvt Ag | Prosthetic mitral valve coaptation enhancement device |
WO2017127939A1 (en) | 2016-01-29 | 2017-08-03 | Neovasc Tiara Inc. | Prosthetic valve for avoiding obstruction of outflow |
WO2017136596A1 (en) | 2016-02-04 | 2017-08-10 | Millipede, Inc. | Mitral valve inversion prostheses |
US20170258585A1 (en) | 2016-03-08 | 2017-09-14 | Edwards Lifesciences Corporation | Valve implant with integrated sensor and transmitter |
US20170290659A1 (en) | 2016-04-11 | 2017-10-12 | Biotronik Ag | Heart valve prosthesis |
US20170319333A1 (en) | 2016-05-03 | 2017-11-09 | Tendyne Holdings, Inc. | Apparatus and methods for anterior valve leaflet management |
WO2017196511A1 (en) | 2016-05-10 | 2017-11-16 | William Joseph Drasler | Two component mitral valve |
US20170325945A1 (en) | 2016-05-12 | 2017-11-16 | St. Jude Medical, Cardiology Division, Inc. | Mitral heart valve replacement |
WO2017196909A1 (en) | 2016-05-12 | 2017-11-16 | St. Jude Medical, Cardiology Division, Inc. | Mitral heart valve replacement |
WO2017196977A1 (en) | 2016-05-13 | 2017-11-16 | Cardiosolutions, Inc. | Heart valve implant and methods for delivering and implanting same |
WO2017197064A1 (en) | 2016-05-13 | 2017-11-16 | St. Jude Medical, Cardiology Division, Inc. | Mitral valve delivery device |
US20170360558A1 (en) | 2016-06-16 | 2017-12-21 | Jianlu Ma | Method and design for a mitral regurgitation treatment device |
WO2017218671A1 (en) | 2016-06-16 | 2017-12-21 | Jianlu Ma | Method and design for a mitral regurgitation treatment device |
WO2018017886A1 (en) | 2016-07-21 | 2018-01-25 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
Non-Patent Citations (61)
Title |
---|
"Optison (Perflutren Protein-Type A Microspheres for Injection, USP)." GE Healthcare. General Electric Company. 1997-2005. Web. May 26, 2005. <http://www.amershamhealth-us.com/optison/. |
"Optison (Perflutren Protein—Type A Microspheres for Injection, USP)." GE Healthcare. General Electric Company. 1997-2005. Web. May 26, 2005. <http://www.amershamhealth-us.com/optison/. |
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765. |
Bernard et al., "Aortic Valve Area Evolution After Percutaneous Aortic Valvuloplasty," European Heart Journal vol. 11, No. 2, pp. 98-107. |
BlueCross BlueShield of Northern Carolina Corporate Medical Policy "Balloon valvuloplasty, Percutaneous", (Jun. 1994). |
Bond, et al. "Physics of Ultrasonic Surgery Using Tissue Fragmentation: Part II", Ultrasound Med. & Bio., 1996, vol. 22 (1), pp. 101-117. |
Cimino, et al., "Physics of Ultrasonic Surgery Using Tissue Fragmentation: Part I", Ultrasound Med. & Bio., 1996, vol. 22 (1), pp. 89-100. |
Cimino, Ultrasonic surgery: power quantification and efficiency optimization. Aesthetic surgery journal, 2001, 233-241. |
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831. |
Cowell et al., "A randomized Trial of Intensive Lipid-Lowering Therapy in Calcific Aortic Stenosis," NEJM vol. 352 No. 23, pp. 2005, 2389-2397. |
De Korte et al., "Characterization of plaque components and vulnerability with intravascular ultrasound elastography" Phys. Med. Biol. vol. 45, 2000, pp. 1465-1475. |
Eick, Olaf, "Temperature Controlled Radiofrequency Ablation." Indian Pacing and Electrophysiology Journal, vol. 2. No. 3, 2002, 8 pages. |
European Search Report dated Feb. 22, 2013; Application No. 12180432.2; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Feb. 28, 2013; Application No. 12180427.2; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 4 pages. |
European Search Report dated Jan. 30, 2013; Application No. 12180428.0; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Jan. 30, 2013; Application No. 12180430.6; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Jan. 30, 2013; Application No. 12180431.4; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Jan. 30, 2013; European Application No. 12180426.4; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated May 3, 2012; European Patent Application No. 11192511.1; Applicant: Ardian, Inc. (6 pages). |
European Search Report dated May 3, 2012; European Patent Application No. 11192514.5; Applicant: Ardian, Inc. (7 pages). |
European Search Report for European App. No. 05853460.3, completed Mar. 13, 2015, 3 pages. |
Feldman, "Restenosis Following Successful Balloon Valvuloplasty: Bone Formation in Aortic Valve Leaflets," Cathet Cardiovasc Diagn, vol. 29 No. 1, 1993, pp. 1-7. |
Final Office Action for U.S. Appl. No. 11/299,246, dated Feb. 17, 2010, 6 pages. |
Final Office Action for U.S. Appl. No. 11/299,246, dated Jun. 6, 2008, 5 pages. |
Final Office Action for U.S. Appl. No. 12/870,270, dated Jul. 3, 2012, 7 pages. |
Final Office Action for U.S. Appl. No. 13/692,613, dated Nov. 12, 2015, 14 pages. |
Fitzgerald et al., "Intravascular Sonotherapy Decreased Neointimal Hyperplasia After Stent Implantation in Swine," Circulation, vol. 103, 2001, pp. 1828-1831. |
Freeman et al., "Ultrasonic Aortic Valve Decalcification: Serial Doppler Echocardiographic Follow Up," J Am Coll Cardiol., vol. 16, No. 3, pp. 263-630 (Sep. 1990). |
Greenleaf et al., "Selected Methods for Imaging Elastic Properties of Biological Tissues" Annu. Rev. Biomed. Eng., vol. 5, pp. 57-78, (2003). |
Gunn et al., "New Developments in Therapeutic Ultrasound-Assisted Coronary Angioplasty," Curr Interv Cardiol Rep., vol. 1 No. 4, pp. 281-290, (Dec. 1990). |
Guzman, et al., "Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-To-Bubble Ratio and Blast Radius." Ultrasound in Med. & Biol, vol. 29, No. 8, 2003,1211-1222. |
Hallgrmsson et al., "Chronic Non-Rheumatic Aortic Valvular Disease: a Population Study Based on Autopsies," J Chronic Dis.vol. 32 No. 5, 1979, pp. 355-363. |
Isner et al., "Contrasting Histoarchitecture of calcified leaflets from stenotic bicuspid versus stenotic tricuspid aortic valves," J Am Coll Cardiol., vol. 15, No. 5, pp. 1104-1108, (Apr. 1990). |
Lung et al., "A Prospective Survey of Patients with Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease," Euro Heart Journal, vol. 24, 2003, pp. 1231-1243. |
McBride et al "Aortic Valve Decalcification," J Thorac Cardiovas-Surg, vol. 100, pp. 36-42 (1999). |
Miller et al., "Lysis and Sonoporation of Epidermoid and Phagocytic Monolayer Cells by Diagnostic Ultrasound Activation of Contrast Agent Gas Bodies, " Ultrasound in Med. & Biol., vol. 27, No. 8, pp. 1107-1113 (2001). |
Mohler, "Mechanisms of Aortic Valve Calcificaion," Am J Cardiol, vol. 94 No. 11, 2004, pp. 1396-1402. |
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct2/show/NCT01628198. |
Opposition to European Patent No. EP0930979, Published Jul. 28, 1999, Decision Dated Sep. 12, 2012, 28 pages. |
Otto et al., "Three-Year Outcome After Balloon Aortic Valvuloplasty. Insights into Prognosis of Valvular Aortic Stenosis," Circulation, vol. 89, pp. 642-650. |
Passik et al., "Temporal Changes in the Causes of Aortic Stenosis: A Surgical Pathologic Study of 646 Cases," Mayo Clin Proc, vol. 62, 1987, pp. 19-123. |
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080. |
Quaden et al., "Percutaneoous Aortic Valve Replacement: Resection Before Implantation," Eur J Cardiothorac Surg, vol. 27, 2005, pp. 836-840. |
Riebman et al., "New Concepts in the Management of Patients With Aortic Valve Disease", Abstract, Valvular Heart Disease, JACC, 2004, p. 34A. |
Rosenschein et al., "Percutaneous Transluminal Therapy of Occluded Saphenous Vein Grafts," Circulation, vol. 99, 1999, pp. 26-29. |
Sakata et al., "Percutaneous Balloon Aortic Valvuloplasty: Antegrade Transseptal vs. Conventional Retrograde Transarterial Approach," Catheter Cardiovasc Interv., vol. 64, 2005, p. 314-321. |
Sasaki et al., "Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers" J Periodontol.; vol. 73, No. 6, 2002, pp. 643-652. |
Search Report and Written Opinion dated May 22, 2007 for PCT Application No. PCT/US2005/044543. |
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages. |
U.S. Appl. No. 60/616,254, "Renal neuromodulation", filed Oct. 5, 2004, 25 pages. |
U.S. Appl. No. 60/624,793, "Renal neuromodulation", filed Nov. 2, 2004, 20 pages. |
U.S. Appl. No. 95/002,253, Office Action dated Oct. 23, 2013, 24 pages. |
US 8,398,630 B2, 03/2013, Demarais et al. (withdrawn) |
Van Den Brand et al., "Histological Changes in the Aortic Valve after Balloon Dilation: Evidence for a Delayed Healing Process," Br Heart J, 1992; vol. 67, pp. 445-459. |
Verdaasdonk et al., "The Mechanism of Action of the Ultrasonic Tissue Resectors Disclosed Using High-Speed and Thermal Imaging Techniques," SPIE , vol. 3594, 1999, pp. 221-231. |
Voelker et al., "Inoperative Valvuloplasty in Calcific Aortic Stenosis: a Study Comparing the Mechanism of a Novel Expandable Device with conventional Balloon Dilation," Am Heart J. vol. 122 No. 5, 1999, pp. 1327-1333. |
Waller et al., "Catheter Balloon Valvuloplasty of Stenotic Aortic Valves. Part II: Balloon Valvuloplasty During Life Subsequent Tissue Examination," Clin Cardiol., vol. 14 No. 11, 1991, pp. 924-930. |
Wang, "Balloon Aortic Valvuloplasty," Prog Cardiovasc Dis., vol. 40, No. 1, 1997, pp. 27-36. |
Wilson et al., "Elastography-The movement Begins" Phys. Med. Biol., vol. 45, 2000, pp. 1409-1421. |
Wilson et al., "Elastography—The movement Begins" Phys. Med. Biol., vol. 45, 2000, pp. 1409-1421. |
Yock et al, "Catheter-Based Ultrasound Thrombolysis," Circulation, vol. 95, No. 6, 1997, pp. 1411-1416. |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11272982B2 (en) | 2004-12-09 | 2022-03-15 | Twelve, Inc. | Intravascular treatment catheters |
US12239365B2 (en) | 2015-10-07 | 2025-03-04 | Mayo Foundation For Medical Education And Research | Electroporation for obesity or diabetes treatment |
US11419619B2 (en) * | 2016-06-30 | 2022-08-23 | Les Solutions Médicales Soundbite Inc. | Method and system for treating lesions |
US12186011B2 (en) | 2019-10-21 | 2025-01-07 | Endogenex, Inc. | Devices, systems, and methods for pulsed electric field treatment of the duodenum |
Also Published As
Publication number | Publication date |
---|---|
US20060229659A1 (en) | 2006-10-12 |
US20130345715A1 (en) | 2013-12-26 |
US7803168B2 (en) | 2010-09-28 |
EP1819304A4 (en) | 2015-04-15 |
WO2006063199A2 (en) | 2006-06-15 |
US20100324554A1 (en) | 2010-12-23 |
US11272982B2 (en) | 2022-03-15 |
JP5219518B2 (en) | 2013-06-26 |
WO2006063199A3 (en) | 2007-07-19 |
CN101076290B (en) | 2011-11-23 |
CN101076290A (en) | 2007-11-21 |
EP1819304A2 (en) | 2007-08-22 |
EP1819304B1 (en) | 2023-01-25 |
JP2008522755A (en) | 2008-07-03 |
US20190350651A1 (en) | 2019-11-21 |
US9414852B2 (en) | 2016-08-16 |
US20170014183A1 (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11272982B2 (en) | Intravascular treatment catheters | |
US20250009598A1 (en) | Vibratory Energy Systems and Methods for Occluded Body Cavities | |
JP6358762B2 (en) | Apparatus and method for forming and maintaining an intraatrial pressure relief opening | |
US11357958B2 (en) | Devices and techniques for cardiovascular intervention | |
CN1993090B (en) | Method and system for cardiac valve delivery | |
US10292690B2 (en) | Apparatus and methods to create and maintain an intra-atrial pressure relief opening | |
US8372069B2 (en) | Methods for removing a valve from a vessel | |
JP7298826B2 (en) | Transcatheter device for treating calcified heart valve leaflets | |
JP2015524709A (en) | Shock wave valve formation with multiple balloons | |
JP2011528963A (en) | Fracture of calcified part in heart valve | |
US20230079043A1 (en) | Tip assemblies, systems, and methods for fracturing a frame of a deployed prosthesis | |
US20240023948A1 (en) | Apparatus and methods to create and maintain an intra-atrial pressure relief opening | |
US20220361908A1 (en) | Percutaneous device for intentional laceration of anterior mitral valve leaflet | |
WO2024259166A2 (en) | Cardiovascular devices and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
AS | Assignment |
Owner name: THE FOUNDRY, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE FOUNDRY, INC.;REEL/FRAME:048909/0928 Effective date: 20090402 Owner name: FOUNDRY NEWCO XII, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:THE FOUNDRY, LLC;REEL/FRAME:048909/0960 Effective date: 20130523 Owner name: THE FOUNDRY, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GIFFORD, HANSON;DEEM, MARK E.;BOYD, STEPHEN;REEL/FRAME:048909/0912 Effective date: 20060424 Owner name: TWELVE, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:FOUNDRY NEWCO XII, INC.;REEL/FRAME:048924/0464 Effective date: 20131112 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |