US4869254A - Method and apparatus for calculating arterial oxygen saturation - Google Patents
Method and apparatus for calculating arterial oxygen saturation Download PDFInfo
- Publication number
- US4869254A US4869254A US07/175,115 US17511588A US4869254A US 4869254 A US4869254 A US 4869254A US 17511588 A US17511588 A US 17511588A US 4869254 A US4869254 A US 4869254A
- Authority
- US
- United States
- Prior art keywords
- maximum
- transmittance
- minimum
- detected
- minimum transmittance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
Definitions
- This invention relates to non-invasive pulse oximetry and specifically to an improved method and apparatus for calculating arterial saturation during transient conditions based upon photoelectric determination of a patient's plethysmograph.
- This specification is accompanied by a software appendix.
- Non-invasive photoelectric pulse oximetry has been previously described in U.S. Pat. Nos. 4,407,290, 4,266,554, 4,086,915, 3,998,550, 3,704,706, European Patent Application No. 102,816 published Mar. 13, 1984, European Patent Application No. 104,772 published Apr. 4, 1984, European Patent Application No. 104,771 published Apr. 4, 1984, and PCT International Publication WO86/05674 published October 9, 1986.
- Pulse oximeters are commercially available from Nellcor Incorporated, Hayward, Calif., U.S.A., and are known as, for example, Pulse Oximeter Model N-100 (herein “N-100 oximeter”) and Model N-200 (herein “N-200 oximeter”).
- Pulse oximeters typically measure and display various blood flow characteristics including but not limited to blood oxygen saturation of hemoglobin in arterial blood, volume of individual blood pulsations supplying the flesh, and the rate of blood pulsations corresponding to each heartbeat of the patient.
- the oximeters pass light through human or animal body tissue where blood perfuses the tissue such as a finger, an ear, the nasal septum or the scalp, and photoelectrically sense the absorption of light in the tissue. The amount of light adsorbed is then used to calculate the amount of blood constituent being measured.
- the light passed through the tissue is selected to be of one or more wavelengths that is absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood.
- the amount of transmitted light passed through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption.
- the N-100 oximeter is a microprocessor controlled device that measures oxygen saturation of hemoglobin using light from two light emitting diodes ("LED's"), one having a discrete frequency of about 660 nanometers in the red light range and the other having a discrete frequency of about 925 nanometers in the infrared range.
- the N-100 oximeter microprocessor uses a four-state clock to provide a bipolar drive current for the two LED's so that a positive current pulse drives the infrared LED and a negative current pulse drives the red LED to illuminate alternately the two LED's so that the incident light will pass through, e.g., a fingertip, and the detected o transmitted light will be detected by a single photodetector.
- the clock uses a high strobing rate, e.g., one thousand five hundred cycles per second, to be easily distinguished from other light sources.
- the photodetector current changes in response to the red and infrared light transmitted in sequence and is converted to a voltage signal, amplified, and separated by a two-channel synchronous detector--one channel for processing the red light waveform and the other channel for processing the infrared light waveform.
- the separated signals are filtered to remove the strobing frequency, electrical noise, and ambient noise and then digitized by an analog to digital converter ("ADC").
- incident light and transmitted light refers to light generated by the LED or other light source, as distinguished from ambient or environmental light.
- the light source intensity may be adjusted to accommodate variations among patients' skin color, flesh thickness, hair, blood, and other variants.
- the light transmitted is thus modulated by the absorption of light in the variants, particularly the arterial blood pulse or pulsatile component, and is referred to as the plethysmograph waveform, or the optical signal.
- the digital representation of the optical signal is referred to as the digital optical signal.
- the portion of the digital optical signal that refers to the pulsatile component is labeled the optical pulse.
- the detected digital optical signal is processed by the microprocessor of the N-100 oximeter to analyze and identify optical pulses corresponding to arterial pulses and to develop a history as to pulse periodicity, pulse shape, and determined oxygen saturation.
- the N-100 oximeter microprocessor decides whether or not to accept a detected pulse as corresponding to an arterial pulse by comparing the detected pulse against the pulse history. To be accepted, a detected pulse must meet certain predetermined criteria, for example, the expected size of the pulse, when the pulse is expected to occur, and the expected ratio of the red light to infrared light of the detected optical pulse in accordance with a desired degree of confidence.
- Identified individual optical pulses accepted for processing are used to compute the oxygen saturation from the ratio of maximum and minimum pulse levels as seen by the red wavelength compared to the maximum and minimum pulse levels as seen by the infrared wavelength, in accordance with the following equation: ##EQU1## wherein BO1 is the extinction coefficient for oxygenated hemoglobin at light wavelength 1 (Infrared)
- BO2 is the extinction coefficient for oxygenated hemoglobin at light wavelength 2 (red)
- BR1 is the extinction coefficient for reduced hemoglobin at light wavelength 1
- BR2 is the extinction coefficient for reduced hemoglobin at light wavelength 2
- light wavelength 1 is infrared light
- light wavelength 2 is red light
- I min2 is the minimum light transmitted at light wavelength 2
- I max1 is the maximum light transmitted at light wavelength 1
- I min1 is the minimum light transmitted at light wavelength 1
- the various extinction coefficients are determinable by empirical study as are well known to those of skill in the art.
- the natural log of the ratios may be calculated by use of the Taylor expansion series for the natural log.
- the relative oxygen content of the patient's arterial pulses remains about the same from pulse to pulse and the average background absorption between pulses remains about the same. Consequently, the red and infrared light that is transmitted through the pulsatile flow produces a regularly modulated plethysmograph waveform having periodic optical pulses of comparable shape and amplitude and a steady state background transmittance. This regular pulse provides for an accurate determination of the oxygen saturation of the blood based on the detected relative maximum and minimum transmittance of the red and infrared light.
- the accuracy of the estimation is of particular concern during rapid desaturation, where average oxygen saturation drops rapidly, but the saturation determination based on the detected optical signals indicates a greater drop than has actually occurred.
- the determined saturation thus may actuate low limit saturation alarms on an oximeter device that can result in unnecessary and wasteful efforts to resuscitate a patient not in danger.
- any small change in overall or background transmittance can have a relatively large effect in the difference in maximum and minimum intensity of the light levels.
- the transmittance effect of changing oxygen saturation is opposite in direction for the red light at 660 nanometers than for infrared light at 910 nanometers, this can result in over-estimation of the pulsatile ratio during periods when saturation is decreasing, and under-estimation during periods when saturation is increasing.
- This invention provides a method and apparatus for compensating for the artifactual errors in light transmittance during blood volume changes or transient saturation changes (hereinafter collectively referred to as "transient conditions"), thereby providing for improved accuracy of oxygen saturation calculations during transient conditions.
- the invention provides apparatus for processing the detected optical signals during transient conditions so that the distortion in transmittance caused by the transient can be compensated.
- the compensation is made by converting a transient plethysmograph waveform into a steady state waveform whereby the ratio of the maximum and minimum transmittance can be determined based on the converted waveform and used in making the saturation determination.
- the compensation is made by dividing the detected optical signal by its low frequency components, i.e., the background and transient frequencies below the heart beat frequency, from which quotient signal the compensated maximum and minimum transmittance values can be detected and used in making the saturation determination.
- the words compensate, correct and adjust are intended to have the same meaning in that the actual detected value is converted to an artificial value that results in a more accurate estimation of the actual oxygen saturation of the patient.
- the detected optical signals are obtained conventionally by passing red and infrared light through a patient's blood perfused tissue, detecting the transmitted light which is modulated by the blood flow, and providing red and infrared detected optical signals that are preferably separately processed and optionally converted from analog to digital signals.
- the corresponding red and infrared digital optical signals are then processed in accordance with the present invention and the light modulation ratios are determined based on the resulting corrected transmittance pulse and used to calculate oxygen saturation.
- the transient error is corrected by linear interpolation whereby the determined maxima and minima for a first and second optical pulses are obtained, the second pulse following the first and preferably immediately following the first pulse, and the respective rates of change in the transmittance of that wavelength is determined from the maximum transmittance point of the first detected pulse to the second detected pulse.
- tmax(n) is the time of occurrence of the detected maximum transmittance at the n maximum
- tmin(n) is the time of occurrence of the detected minimum transmittance of the wavelength at the n minimum
- Vmax(n) is the detected optical signal maximum value at the maximum transmittance of the wavelength at the n maximum
- Vmax(n)* is the corrected value, for n being the first optical pulse, and n+1 being the second optical pulse of that wavelength.
- the corrected maximum value and the detected (uncorrected) minimum value thus provide an adjusted optical pulse maximum and minimum that correspond more closely to the actual oxygen saturation in the patient's blood at that time, notwithstanding the transient condition.
- using the adjusted pulse values in place of the detected pulse values in the modulation ratio for calculating oxygen saturation provides a more accurate measure of oxygen saturation than would otherwise be obtained during transient operation.
- the transient error is corrected by linear interpolation whereby the determined maxima and minima for a first and second optical pulses are obtained, the second pulse following the first and preferably immediately following the first pulse, and the respective rates of change in the transmittance of that wavelength is determined from the minimum transmittance point of the first detected pulse to the minimum of the second detected pulse.
- tmax(n) is the time of occurence of the detected maximum transmittance at the n maximum
- tmin(n) is the time of occurrence of the detected minimum transmittance of the wavelength at the n minimum
- Vmin(n) is the detected optical signal minimum value at the minimum transmittance of the wavelength at the n minimum
- Vmin(n)* is the corrected value, for n being the second optical pulse, and n-1 being the first optical pulse of that wavelength.
- the compensated minimum value and the detected (uncompensated) maximum value thus provide an adjusted optical pulse maximum and minimum that correspond more closely to the actual oxygen saturation in the patient's blood at that time, notwithstanding the transient condition.
- using the adjusted pulse values in place of the detected pulse values in the modulation ratio for calculating oxygen saturation provides a more accurate measure of oxygen saturation than would otherwise be obtained during transient operation.
- the linear interpolation routine may be applied to the detected signal at all times, rather than only when transient conditions are detected.
- the algorithm may be applied to compensate the detected other minimum or maximum transmittance values by appropriate adjustment of the algorithm terms.
- the amount of oxygen saturation can be then determined from this adjusted optical pulse signal by determining the relative maxima and minima as compensated for the respective wavelengths and using that information in determining the modulation ratios of the known Lambert-Beers equations.
- the present invention may be applied to any pulsatile flow detected by light absorption or transmittance corresponding to the flow having transient changes or conditions, whether based on the occurrence of individual pulses or averaged pulses.
- the detected optical signals can be processed and corrected in accordance with the present invention by using the frequency characteristics of the detected optical signal.
- the optical signals for a given wavelength corresponding to the pulsatile arterial blood flow have spectral components including a zero frequency at the background transmittance intensity level, a fundamental frequency at the frequency of the beating heart, and additional harmonic frequencies at multiples of the fundamental frequency. Noise, spurious signals, and motion artifact that appear in the detected optical signal have frequencies that spread across the spectrum. Transient changes to the background transmittance intensity appear as low frequency signals that are below the heart rate frequency.
- the detected optical signal is split into two portions.
- the first domain signal can be divided into the unfiltered signal, thereby to correct for changes in the pulsatile amplitude in the unfiltered signal portion on a continuous basis, for the background transmittance during steady state conditions, during artifactual blood volume changes and transient saturation transmittance changes. It may be appropriate to amplify the separated or filtered signal, the unfiltered signal, or the resulting quotient signal to obtain an adjusted signal having an appropriate amplitude and resolution for making the saturation determination.
- Separation of the low frequency components may be realized in either the time domain or the frequency domain.
- the separation may occur by passing one portion of the analog detected optical signal through conventional electronic circuits such as low pass filters configured to avoid any phase shifting to obtain a filtered signal having only the background and low frequency components, and then passing the filtered signal and a portion of the unfiltered analog detected signal into dividing amplifiers to divide the low passed signal into the unfiltered signal in phase.
- This process results in a compensated optical signal that can be processed as if it were the actual detected optical signal to determine the relative maxima and minima of the detected pulses for the saturation calculations.
- the detected optical signal may be digitized and processed using digital signal processing techniques to filter the detected signal and divide the filtered signal into the unfiltered detected signal.
- Digital processing techniques also may be applied to process the detected optical signal in the frequency domain by the application of well-known Fourier Transforms.
- a time-measure of the detected optical signal for a predetermined number of heartbeats is collected and transformed into its spectral components.
- the frequency components are then separated into two domains, the first domain including spectral components below the measured heart rate so that it includes the zero frequency spectral components of the background intensity and any gradual changes in the background intensity corresponding to the transient condition, and the second domain being above the first so that it includes the spectral components of the fundamental and higher order harmonics of the fundamental for the number of heartbeats in the sample.
- the separation must occur so that no phase shifting occurs in the first domain.
- the filtered first domain spectral components can be transformed back into the time domain, into the background and changing background intensity, and divided into the unfiltered detected pulsatile waveform in phase thereby compensating for transient conditions in the unfiltered waveform.
- the time-measure is updated to include the patient's current condition, the division of the unfiltered waveform by its low frequency components thus corrects the pulsatile amplitude for changes in the background transmittance on a continuous basis.
- the oxygen saturation calculation can be based upon the compensated quotient waveform.
- this frequency compensation embodiment may be used all the time.
- the apparatus of the preferred embodiment present invention can be used for either time domain or frequency domain transient correction, and includes inputs for the detected optical signals, an analog to digital converter for converting the analog plethysmograph signal to the digital optical signals (unless the plethysmograph signals are provided in digital form), and a digital signal processing section for receiving the digital signals and processing the digital detected optical signal in accordance with one of the foregoing analysis techniques of the present invention, including a for controlling the microprocessor, and display devices.
- the apparatus of the present invention is a part of an oximeter device which has the capability to detect the red and infrared light absorption.
- the apparatus of this invention is a part of the Nellcor N-200 oximeter which includes a 16 bit microprocessor manufactured by Intel Corporation, Model No. 8088, software for controlling the microprocessor to perform the operations of the preferred embodiment of the time domain analysis techniques of present invention (in addition to the conventional oximeter functions), and has structure and processing methods that are unrelated to the present invention, and therefore are not discussed herein.
- the software could be modified to perform the frequency domain analysis techniques of the present invention.
- FIG. 1 is a block diagram of the apparatus of this invention and the apparatus associated with the present invention.
- FIG. 2 is a detailed circuit schematic of the saturation preamplifier in the patient module of FIG. 1.
- FIGS. 3A and 3B are detailed circuit schematic of the saturation analog front end circuit of FIG. 1.
- FIG. 4 is a detailed circuit schematic of the LED drive circuit of FIG. 1.
- FIGS. 5A and 5B are a detailed circuit schematic of the analog to digital converter section of FIG. 1.
- FIGS. 6A, 6B and 6C are a detailed circuit schematic of the digital signal processing section of FIG. 1.
- FIGS. 7a, 7b, 7c, 7d, 7e, and 7f are graphical representations of detected optical signals during steady state and transient conditions.
- the preferred embodiment of the present invention relates to the apparatus for processing the detected analog optical plethysmograph signal and comprises portions of analog to digital conversion section ("ADC converter") 1000 and digital signal processing section ("DSP") 2000, including the software for driving microprocessor 2040, which processes the digitized optical signals in accordance with the present invention to determine the oxygen saturation of hemoglobin in arterial blood.
- ADC converter analog to digital conversion section
- DSP digital signal processing section
- the apparatus for obtaining the detected analog optical signals from the patient that is part of or is associated with the commercially available Nellcor N-200 Pulse Oximeter.
- Such apparatus include plethysmograph sensor 100 for detecting optical signals including periodic optical pulses, patient module 200 for interfacing plethysmograph sensor 100 with saturation analog front end circuit 300, and saturation analog circuit 300 for processing the detected optical signals into separate red and infrared channels that can be digitized.
- the N-200 oximeter also includes LED drive circuit 600 for strobing the red and infrared LEDs in plethysmograph sensor 100 at the proper intensity to obtain a detected optical signal that is acceptable for processing, and various regulated power supplies (not shown) for driving or biasing the associated circuits, as well as ADC 1000 and DSP 2000, from line current or storage batteries.
- the invention requires two input signals, the two plethysmograph or detected optical signals at the first and second wavelengths (e.g., red and infrared). More than two wavelengths may be used. If analog signals are provided, they must be within or be adjusted by, for example, offset amplifiers to be within the voltage input range for the ADC. In circumstances where the signals have been digitized already, they must be bit compatible with the digital signal processing devices, DSP.
- the plethysmograph signal is obtained in a conventional manner for a non-invasive oximeter, typically by illuminating the patient's tissue with red and infrared light in an alternating fashion, for example, in the manner described above for the N-100 oximeter.
- sensor circuit 100 has red LED 110 and infrared LED 120 connected in parallel, anode to cathode, so that the LED drive current alternately illuminates one LED and then the other LED.
- Circuit 100 also includes photodetector 130, preferably a photodiode, which detects the level of light transmitted through the patient's tissue, e.g., finger 140, as a single, analog optical signal containing both the red and infrared light plethysmographic, detected optical signal waveforms.
- photodetector 130 preferably a photodiode, which detects the level of light transmitted through the patient's tissue, e.g., finger 140, as a single, analog optical signal containing both the red and infrared light plethysmographic, detected optical signal waveforms.
- patient module 200 includes preamplifier 210 for preamplifying the analog detected optical signal of photodetector 130.
- Preamplifier 210 may be an operational amplifier configured as a current to voltage converter, biased by a positive voltage to extend the dynamic range of the system, thereby converting the photocurrent of photodiode 130 into a usable voltage signal.
- Patient module 200 also includes leads for passing the LED drive voltages to LEDs 110 and 120.
- saturation analog front end circuit 300 receives the analog optical signal from patient module 200 and filters and processes the detected signal to provide separate red and infrared analog voltage signals corresponding to the detected red and infrared optical pulses.
- the voltage signal is passed through low pass filter 310 to remove unwanted high frequency components above, for example, 100 khz, AC coupled through capacitor 325 to remove the DC component, passed through high pass filter 320 to remove any unwanted low frequencies below, for example, 20 hertz, and passed through buffer 320 and passed through programmable gain stage 330 to amplify and optimize the signal level presented to synchronous detector 340.
- Synchronous detector 340 removes any common mode signals present and splits the time multiplexed optical signal into two channels, one representing the red voltage signals and the other representing the infrared voltage signals. Each signal is then passed through respective filter chains having two 2-pole 20 hertz low pass filters 350 and 360, and offset amplifier 370 and 380. The filtered voltage signals now contain the signal information corresponding to the red and infrared detected optical signals. Additionally, circuits for use in preventing overdriving the amplifiers in saturation circuit 300 may be applied, for example, level-sensing circuits 312 and 314 (located before and after low pass filter 310 respectively) for indicating unacceptable LED drive current, and level sensing circuit 315 (located after programmable gain amplifier 330) for indicating unacceptable input amplifier gain setting.
- ADC 1000 provides the analog to digital conversions required by the N-200 oximeter.
- the input signals are passed through multiplexer 1010 and buffer amplifier 1020.
- the converter stage includes offset amplifier 1030 and programmable gain circuitry 1040 which allows a portion of the signal to be removed and the remainder to be further amplified for greater resolution, sample and hold circuit 1050, comparator 1060, and 12-bit digital to analog converter 1080.
- the buffered signal is passed through offset amplifier 1030 to add a DC bias to the signal wherein a portion of the signal is removed and the balance is amplified by being passed through programmable gain circuitry 1040 to improve the resolution.
- the amplified signal is then passed through sample and hold circuit 1050, the output of which is fed to one input of comparator 1060.
- the other input of comparator 1060 is the output of digital to analog (“DAC") converter 1080 so that when the inputs to comparator 1060 are the same, the analog voltage at the sample and hold circuit is given the corresponding digital word in DAC converter 1080 which is then stored in an appropriate memory device as the digitized data for the sample and the next sample is sent to sample and hold circuit 1050 to be digitized.
- DAC digital to analog
- DAC 1080 also generates the sensor LED drive voltages, under the control of microprocessor 2040, using analog multiplexer 610, which separates the incoming analog signal into one of two channels for respectively driving the red and infrared LEDs, having respective sample and hold circuits 620 and 630, and LED driver circuit 640 for converting the respective analog voltage signals into the respective positive and negative bipolar current signals for driving LEDs 110 and 120.
- DSP 2000 controls all aspects of the signal processing operation including the signal input and output and intermediate processing.
- the apparatus includes 16-bit microprocessor 2040 and its associated support circuitry including data bus 10, random access memory (RAM) 2020, read only memory (ROM) 2030, a conventional LED display device 2010 (not described in detail), system timing circuit 2050 for providing the necessary clock synchronizing signals.
- microprocessor 2040 is a model 8088 microprocessor, manufactured by Intel Corporation, Santa Clara, California. Alternate microprocessors may be used, such as any of model Nos. 8086, 80186, and 80286, also made by Intel Corporation.
- the N-200 oximeter incorporating the present invention is designed to determine the oxygen saturation in one of two modes, an unintegrated mode wherein the oxygen saturation determination is made on the basis of pulses detected in the optical pulse signal that are determined to be optical pulses in accordance with conventional pulse detection techniques, and in an ECG synchronization mode wherein the determination is based on enhanced periodic data obtained by processing the detected optical signal and the ECG waveform of the patient in accordance with an invention that is not a part of the present invention.
- the present invention applies to the calculation of saturation based on detecting maximum and minimum transmittance of two or more wavelengths, whether the determination is made pulse by pulse (the unintegrated mode) or based on an averaged or composite pulse that is updated with the occurrence of additional pulses to reflect the patient's actual condition (the ECG synchronized mode).
- Interrupt programs control the collection and digitization of incoming optical signal data. As particular events occur, various software flags are raised which transfer operation to various routines that are called from a main loop processing routine.
- the detected optical signal waveform is sampled at a rate of 57 samples per second.
- a software flag indicating the presence of data is set.
- This set flag calls a routine referred to as MUNCH, which processes each new digitized optical signal waveform sample to identify pairs of maximum and minimum amplitudes corresponding to a pulse.
- the MUNCH routine first queries whether or not there is ECG synchronization. If there is ECG synchronization, then the MUNCH routine obtains the enhanced composite pulse data in the ECG synchronization mode.
- MUNCH obtains the red and infrared optical signal sample stored in DATBUF, in the unintegrated mode.
- the determined maximum and minimum pairs are then sent to a processing routine for processing the pairs.
- conventional techniques are used for evaluating whether a detected pulse pair is acceptable for processing as an arterial pulse and performing the saturation calculation, whether the pulse pair is obtained from DATBUF or from the enhanced composite pulse data.
- the MUNCH routine takes the first coming pulse data and determines the maximum and minimum transmittance for each of the red and infrared detected optical signals, takes the second coming pulse data, and determines the relative maximum and minimum transmittance.
- the routine for processing the pairs applies the aforementioned algorithm to the first and second pulse data of each wavelength and determines the corrected minimum transmittance for the second pulse each wavelength. Then the oxygen saturation can be determined using the corrected minimum and detected maximum transmittance for the second pulses of the red and infrared optical signals.
- FIGS. 7a and 7b show representative plethysmograph waveforms for a patient's steady state condition for the red and infrared detected optical signals.
- Vmaxr(n) equals 1.01 volts
- Vmin(n) is the detected optical signal minimum value at the minimum transmittance at the n pulse minimum.
- a saturation of 81% corresponds to a healthy patient experiencing a degree of hypoxia for which some corrective action would be taken.
- Vmaxr(2) 1.002 v
- Vmaxi(3) 1.028 v
- Vmini(3) 1.020 v.
- the determined saturation ratio R of 1.5 based on the detected transmittance corresponds to a calculated oxygen saturation of about 65% for the patient, which corresponds to severe hypoxia in an otherwise healthy patient.
- the corrected R value corresponds to the same R for the steady state conditions and the actual oxygen saturation of the patient.
- Vmaxr(2) 1.018 v
- Vminr(2) 1.010 v
- Vmaxr(3) 1.028 v
- Vminr(3) 1.020 v
- the corrected R value corresponds to the same R for the steady state conditions and the actual oxygen saturation of the patient.
- the detected values are as follows:
- Vmaxr(2) 1.012 v
- Vmaxr(3) 1.002 v
- the determined saturation ratio R of 1.4 based on the detected transmittance corresponds to a calculated oxygen saturation of about 51% for the patient, which corresponds to severe hypoxia in an otherwise healthy patient. This contrasts with the known saturation of about 81% and demonstrates the magnitude of the under-estimation of the oxygen saturation (over-estimation of desaturation) due to the distortion in transmittance of the red and infrared light caused by transient conditions.
- the corrected R value corresponds to the same R for the steady state conditions and the actual oxygen saturation of the patient.
- the detected values are as follows:
- Vmaxr(2) 1.012 v
- Vminr(2) 1.002 v
- Vmaxr(3) 1.022 v
- Vminr(3) 1.012 v
- the corrected R value corresponds to the same R for the steady state conditions and the actual oxygen saturation of the patient.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Saccharide Compounds (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
Abstract
Description
__________________________________________________________________________ Circuit Tables REF # CHIP MFR PART # Manufacturer DESCRIPTION OF CHIP __________________________________________________________________________ FIG. 2 210 U2 LF442 NATIONAL DUAL LOW POWER OP AMP SEMICONDUCTOR FIG. 3 312 U27 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 312 U28 LP365N NATIONAL QUAD VOLTAGE COMPARATOR SEMICONDUCTOR 310 U27 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 320 U27 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 330 U44 MP7524LN MICROPOWER 8-BIT DAC 330 U32 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 330 U32 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 315 U20 LP365N NATIONAL QUAD VOLTAGE COMPARATOR SEMICONDUCTOR 340 U32 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 340 U14 DG243CJ SILICONIX ANALOG SWITCH INCORPORATED 340 U7 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 340 U13 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 350 U7 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 360 U13 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 370 U7 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 380 U13 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 340 U19 DG211CJ SILICONIX CMOS ANALOG SWITCH INCORPORATED FIG. 4 640 U19 DG211CJ SILICONIX CMOS ANALOG SWITCH INCORPORATED 640 U32 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR F1G. 5 1010 U24 DG528CK SILICONIX OCTAL ANALOG SWITCH INCORPORATED 1020 U25 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 1030 U25 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 1040 U38 AD7524LN ANALOG DEVICES DAC 1040 U42 74HC374 TEXAS HIGH SPEED CMOS INSTRUMENTS 1040 U37 LF442N NATIONAL LOW POWER OP AMP SEMICONDUCTOR 1050 U36 LF398N NATIONAL SAMPLE & HOLD OP AMP SEMICONDUCTOR 1060 U29 LM211P TEXAS LOW OFFSET VOLTAGE COMPARATOR INSTRUMENTS 1080 U43 AD7548KN ANALOG DEVICES CMOS 12-BIT DAC 1080 U31 LF411ACN NATIONAL LOW OFFSET OP AMP SEMICONDUCTOR 1080 U25 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 610 U18 DG528CK SILICONIX OCTAL ANALOG SWITCH INCORPORATED 620 U11 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR 630 U11 LF444 NATIONAL QUAD JFET OP AMP SEMICONDUCTOR FIG. 6 U2 82C84A-2 NEC CMOS 8 MHZ CLOCK GENERATOR U1 74HC74 TEXAS HIGH SPEED CMOS INSTRUMENTS U1 74HC74 TEXAS HIGH SPEED CMOS INSTRUMENTS 2040 U8 MSM8OC88RS-2 OKI ELECTRIC CPU 8MHZ, 125ns U3 74HC74 TEXAS HIGH SPEED CMOS INSTRUMENTS U33 74HC374 TEXAS HIGH SPEED CMOS INSTRUMENTS U9 74HCO4 TEXAS HIGH SPEED CMOS INSTRUMENTS U3 74HC74 TEXAS HIGH SPEED CMOS INSTRUMENTS U9 74HCO4 TEXAS HIGH SPEED CMOS INSTRUMENTS U19 74HCOO TEXAS HIGH SPEED CMOS INSTRUMENTS U9 74HCO4 TEXAS HIGH SPEED CMOS INSTRUMENTS 2030 U21 MBM27C512-25 FUJITSU LIMITED CMOS 64K × 8 ROM 2020 U15 DS1242 DALLAS CMOS 32K × 8 RAM SEMICONDUCTOR U23 74HC138 TEXAS HIGH SPEED CMOS INSTRUMENTS U17 74HC138 TEXAS HIGH SPEED CMOS INSTRUMENTS U19 74HCOO TEXAS HIGH SPEED CMOS INSTRUMENTS U19 74HCOO TEXAS HIGH SPEED CMOS INSTRUMENTS U16 82C51A OKI ELECTRIC CMOS UART U22 MSM82C59A-2RS OKI ELECTRIC CMOS INTERRUPT CONTROLLER 2050 U34 MSM82C53-2 OKI ELECTRIC CMOS TRIPLE TIMER 2050 U38 MSM82C53-2 OKI ELECTRIC CMOS TRIPLE TIMER 2050 U9 74HCO4 TEXAS HIGH SPEED CMOS INSTRUMENTS 2050 U39 74HC393 TEXAS HIGH SPEED CMOS INSTRUMENTS 2050 U35 D2732A INTEL 4096 × 8 ROM CORPORATION 2050 U40 74HC374 TEXAS HIGH SPEED CMOS INSTRUMENTS 2050 U28 74HC374 TEXAS HIGH SFEED CMOS INSTRUMENTS __________________________________________________________________________
__________________________________________________________________________ CRMIN - CORRECT MINIMUM - ASSUMES BX CONTAINS Ymin(n) __________________________________________________________________________ CR1MIN: PUSH AX PUSH DX MOV AX.PVMIN1 ;GET Ymin(N-1) JMP SHORT CRMIN4 CR2MIN: PUSH AX PUSH DX MOV AX,PVMIN2 ;GET Ymin(n-1) CRMIN4: CMP AX,BX ;IF Ymin(n-1) = Ymin(n) RETURN JE SHORT CRMIN2 CMP CORRSW,0 JE SHORT CRMIN2 CMP BPCTR,3 ;IF BAD PULSE COUNTER < 3, THEN A BAD PULSE JC SHORT CRMIN2 ;DON'T CORRECT CMP PERIOD,0 JE SHORT CRMIN2 OR AX,AX JZ SHORT, CRMIN2 CALL CORR CRMIN2: Software POP DX Appendix POP AX RET __________________________________________________________________________ CORR: ;CORRECT MINIMUM - ASSUMES BX = Ymin(n) AND AX = Ymin(n-1) ; CORRECTED Ymin(n) = Ymin(n-1) + (t/T)*(Ymin(n) - Ymin(n-1)) ; WHERE t = PERIOD OF MIN TO MAX, AND ; T = PERIOD __________________________________________________________________________ CMP AX,BX ;Ymin(n-1) < = Ymin(n)? PUSH BX ;SAVE Ymin(n) PUSHF MOV CL,1 ;SET DIRECTION FLAG ACCORDINGLY JC SHORT CORR4 DEC CL CORR4: CMP DIRMIN.CL ;DIRECTION THE SAME? MOV DIRMIN,CL ;SAVE ANYWAY JE SHORT CORR5 ;SAME, CONTINUE POPF POP BX JMP SHORT CORR2 ;NOT SAME, ABANDON SHIP CORR5: SUB BX,AX ;Ymin(n) - Ymin(n-1) PUSH AX ;SAVE Ymin(n-1) JNF SHORT CORR6 NEG BX CORR6: PUSH BX ;SAVE :DELTA: MOV AX,MAXMINPCTR MOV CX,PERIOD MOV BX,CX SUB CX,AX ;PERIOD - MAXMINPCTR JNS SHORT CORR9 POP BX ;RESULT SHOULD BE POSITIVE POP AX POPF POP BX ;RESTORE ORIGINAL Ymin(n) JMP SHORT CORR2 CORR9: CMP CX.PERIOD ;MUST BE LESS THAN PERIOD JC SHORT CORR10 POP BX POP AX POPF POP BX ;RESTORE ORIGINAL Ymin(n) JMP SHORT CORR2 CORR10: XCHG DX,CX ;CX = PERIOD - MAXMINPCTR or bx,bx ;no zero divisor jz cr10a cmp bx,bx ;dx must be ( bx jbe cr10a xor ax,ax div bx ;CX = (PERIOD - MAXMINPCTR)/PERIOD mov cx,ax ;save result in cx jmp short cr10b cr10a: mov cx,0f fffh cr10b: POP AX ;GET :DELTA: XOR DX,DX MUL CX OR AH,AH JNS SHORT CORR8 INC DL CORR8: ;DX = (t/T)*: DELTA: POP AX ;GET ORIGINAL Ymin(n-1) POPF JC SHORT CORR7 NEG DX CORR7: ADD AX,DX ;Ymin(n-1) + [(t/T)*(Ymin(n) - Ymin(N-1))] POP BX ;DISGARD ORIGINAL Ymin(n) MOV BX,AX CORR2: RET __________________________________________________________________________
Claims (17)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/175,115 US4869254A (en) | 1988-03-30 | 1988-03-30 | Method and apparatus for calculating arterial oxygen saturation |
EP89105501A EP0335356B1 (en) | 1988-03-30 | 1989-03-29 | Method and apparatus for compensating for distortion in a pulse oximetry device |
JP1077940A JP2602321B2 (en) | 1988-03-30 | 1989-03-29 | Method and apparatus for calculating arterial oxygen saturation based on plethysmograph including transient state |
FI891493A FI891493A (en) | 1988-03-30 | 1989-03-29 | FOERFARANDE OCH ANORDNING MED VILKEN PULSENS SYREMAETTNING RAEKNAS PAO BASEN AV TRANSIENTER INNEHAOLLANDE PULSVOLYMMAETNING. |
AT89105501T ATE135547T1 (en) | 1988-03-30 | 1989-03-29 | METHOD AND DEVICE FOR COMPENSATING DISTORTIONS IN A PULSE OXIMETER |
DE68925988T DE68925988T2 (en) | 1988-03-30 | 1989-03-29 | Method and device for compensating for distortions in a pulse oximeter |
CA000595258A CA1327402C (en) | 1988-03-30 | 1989-03-30 | Method and apparatus for calculating arterial oxygen saturation based on plethysmographs including transients |
US07/389,633 US5078136A (en) | 1988-03-30 | 1989-08-04 | Method and apparatus for calculating arterial oxygen saturation based plethysmographs including transients |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/175,115 US4869254A (en) | 1988-03-30 | 1988-03-30 | Method and apparatus for calculating arterial oxygen saturation |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/389,633 Division US5078136A (en) | 1988-03-30 | 1989-08-04 | Method and apparatus for calculating arterial oxygen saturation based plethysmographs including transients |
Publications (1)
Publication Number | Publication Date |
---|---|
US4869254A true US4869254A (en) | 1989-09-26 |
Family
ID=22638970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/175,115 Expired - Lifetime US4869254A (en) | 1988-03-30 | 1988-03-30 | Method and apparatus for calculating arterial oxygen saturation |
Country Status (7)
Country | Link |
---|---|
US (1) | US4869254A (en) |
EP (1) | EP0335356B1 (en) |
JP (1) | JP2602321B2 (en) |
AT (1) | ATE135547T1 (en) |
CA (1) | CA1327402C (en) |
DE (1) | DE68925988T2 (en) |
FI (1) | FI891493A (en) |
Cited By (187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5040539A (en) * | 1989-05-12 | 1991-08-20 | The United States Of America | Pulse oximeter for diagnosis of dental pulp pathology |
US5094239A (en) * | 1989-10-05 | 1992-03-10 | Colin Electronics Co., Ltd. | Composite signal implementation for acquiring oximetry signals |
US5127406A (en) * | 1988-12-19 | 1992-07-07 | Nihon Kohden Corporation | Apparatus for measuring concentration of substances in blood |
US5226417A (en) * | 1991-03-11 | 1993-07-13 | Nellcor, Inc. | Apparatus for the detection of motion transients |
US5246002A (en) * | 1992-02-11 | 1993-09-21 | Physio-Control Corporation | Noise insensitive pulse transmittance oximeter |
US5291886A (en) * | 1990-11-27 | 1994-03-08 | Kowa Company Ltd. | Apparatus for measuring blood flow |
US5349519A (en) * | 1989-09-15 | 1994-09-20 | Hewlett-Packard Company | Method for digitally processing signals containing information regarding arterial blood flow |
US5368224A (en) * | 1992-10-23 | 1994-11-29 | Nellcor Incorporated | Method for reducing ambient noise effects in electronic monitoring instruments |
US5372134A (en) * | 1993-05-24 | 1994-12-13 | Richardson; Joseph W. | Aviation hypoxia monitor |
US5398680A (en) * | 1989-11-01 | 1995-03-21 | Polson; Michael J. R. | Pulse oximeter with improved accuracy and response time |
WO1995026013A1 (en) * | 1994-03-24 | 1995-09-28 | Minnesota Mining And Manufacturing Company | Biometric, personal authentication system |
US5482036A (en) * | 1991-03-07 | 1996-01-09 | Masimo Corporation | Signal processing apparatus and method |
US5490505A (en) * | 1991-03-07 | 1996-02-13 | Masimo Corporation | Signal processing apparatus |
US5503148A (en) * | 1994-11-01 | 1996-04-02 | Ohmeda Inc. | System for pulse oximetry SPO2 determination |
US5505199A (en) * | 1994-12-01 | 1996-04-09 | Kim; Bill H. | Sudden infant death syndrome monitor |
US5553615A (en) * | 1994-01-31 | 1996-09-10 | Minnesota Mining And Manufacturing Company | Method and apparatus for noninvasive prediction of hematocrit |
US5575284A (en) * | 1994-04-01 | 1996-11-19 | University Of South Florida | Portable pulse oximeter |
US5632272A (en) * | 1991-03-07 | 1997-05-27 | Masimo Corporation | Signal processing apparatus |
US5673701A (en) * | 1994-10-07 | 1997-10-07 | Non Invasive Technology, Inc. | Optical techniques for examination of biological tissue |
US5776060A (en) * | 1997-02-20 | 1998-07-07 | University Of Alabama In Huntsville | Method and apparatus for measuring blood oxygen saturation within a retinal vessel with light having several selected wavelengths |
US5779631A (en) * | 1988-11-02 | 1998-07-14 | Non-Invasive Technology, Inc. | Spectrophotometer for measuring the metabolic condition of a subject |
US5782755A (en) * | 1993-11-15 | 1998-07-21 | Non-Invasive Technology, Inc. | Monitoring one or more solutes in a biological system using optical techniques |
US5800349A (en) * | 1996-10-15 | 1998-09-01 | Nonin Medical, Inc. | Offset pulse oximeter sensor |
US5820558A (en) * | 1994-12-02 | 1998-10-13 | Non-Invasive Technology, Inc. | Optical techniques for examination of biological tissue |
US5830137A (en) * | 1996-11-18 | 1998-11-03 | University Of South Florida | Green light pulse oximeter |
US5921921A (en) * | 1996-12-18 | 1999-07-13 | Nellcor Puritan-Bennett | Pulse oximeter with sigma-delta converter |
US5934277A (en) * | 1991-09-03 | 1999-08-10 | Datex-Ohmeda, Inc. | System for pulse oximetry SpO2 determination |
US5935076A (en) * | 1997-02-10 | 1999-08-10 | University Of Alabama In Huntsville | Method and apparatus for accurately measuring the transmittance of blood within a retinal vessel |
US5954053A (en) * | 1995-06-06 | 1999-09-21 | Non-Invasive Technology, Inc. | Detection of brain hematoma |
US5961450A (en) * | 1993-12-17 | 1999-10-05 | Nellcor Puritan Bennett Incorporated | Medical sensor with amplitude independent output |
US5978691A (en) * | 1996-07-19 | 1999-11-02 | Mills; Alexander Knight | Device and method for noninvasive continuous determination of blood gases, pH, hemoglobin level, and oxygen content |
US6002952A (en) * | 1997-04-14 | 1999-12-14 | Masimo Corporation | Signal processing apparatus and method |
US6058324A (en) * | 1993-06-17 | 2000-05-02 | Non-Invasive Technology, Inc. | Examination and imaging of biological tissue |
US6094592A (en) * | 1998-05-26 | 2000-07-25 | Nellcor Puritan Bennett, Inc. | Methods and apparatus for estimating a physiological parameter using transforms |
US6115621A (en) * | 1997-07-30 | 2000-09-05 | Nellcor Puritan Bennett Incorporated | Oximetry sensor with offset emitters and detector |
US6144444A (en) * | 1998-11-06 | 2000-11-07 | Medtronic Avecor Cardiovascular, Inc. | Apparatus and method to determine blood parameters |
US6161031A (en) * | 1990-08-10 | 2000-12-12 | Board Of Regents Of The University Of Washington | Optical imaging methods |
US6272367B1 (en) | 1992-06-17 | 2001-08-07 | Non-Invasive Technology, Inc. | Examination of a biological tissue using photon migration between a plurality of input and detection locations |
US6343223B1 (en) * | 1997-07-30 | 2002-01-29 | Mallinckrodt Inc. | Oximeter sensor with offset emitters and detector and heating device |
US6400973B1 (en) | 1998-01-20 | 2002-06-04 | Bowden's Automated Products, Inc. | Arterial blood flow simulator |
US6408198B1 (en) | 1999-12-17 | 2002-06-18 | Datex-Ohmeda, Inc. | Method and system for improving photoplethysmographic analyte measurements by de-weighting motion-contaminated data |
US20020128544A1 (en) * | 1991-03-07 | 2002-09-12 | Diab Mohamed K. | Signal processing apparatus |
US6493565B1 (en) | 1993-11-15 | 2002-12-10 | Non-Invasive Technology, Inc. | Examination of biological tissue by monitoring one or more solutes |
US20030028086A1 (en) * | 2000-09-29 | 2003-02-06 | Heckel Donald W. | Pulse oximetry method and system with improved motion correction |
US6542772B1 (en) | 1994-12-02 | 2003-04-01 | Non-Invasive Technology, Inc. | Examination and imaging of biological tissue |
US6549795B1 (en) | 1991-05-16 | 2003-04-15 | Non-Invasive Technology, Inc. | Spectrophotometer for tissue examination |
US6589172B2 (en) * | 2000-06-05 | 2003-07-08 | Glenn Williams | Switching device for an array of multiple medical sensors |
US20030163050A1 (en) * | 2002-02-22 | 2003-08-28 | Dekker Andreas Lubbertus Aloysius Johannes | Monitoring physiological parameters based on variations in a photoplethysmographic baseline signal |
US20030166997A1 (en) * | 1994-12-02 | 2003-09-04 | Britton Chance | Examination of scattering properties of biological tissue |
US20030214409A1 (en) * | 2002-05-13 | 2003-11-20 | Scott Laboratories, Inc. | System and method for transparent early detection, warning, and intervention during a medical procedure |
US6694157B1 (en) | 1998-02-10 | 2004-02-17 | Daedalus I , L.L.C. | Method and apparatus for determination of pH pCO2, hemoglobin, and hemoglobin oxygen saturation |
US6702752B2 (en) | 2002-02-22 | 2004-03-09 | Datex-Ohmeda, Inc. | Monitoring respiration based on plethysmographic heart rate signal |
US6709402B2 (en) | 2002-02-22 | 2004-03-23 | Datex-Ohmeda, Inc. | Apparatus and method for monitoring respiration with a pulse oximeter |
US6714803B1 (en) | 1991-09-03 | 2004-03-30 | Datex-Ohmeda, Inc. | Pulse oximetry SpO2 determination |
US20040158135A1 (en) * | 1995-08-07 | 2004-08-12 | Nellcor Incorporated, A Delaware Corporation | Pulse oximeter sensor off detector |
US6785568B2 (en) | 1992-05-18 | 2004-08-31 | Non-Invasive Technology Inc. | Transcranial examination of the brain |
US6805673B2 (en) | 2002-02-22 | 2004-10-19 | Datex-Ohmeda, Inc. | Monitoring mayer wave effects based on a photoplethysmographic signal |
US20040260186A1 (en) * | 2002-02-22 | 2004-12-23 | Dekker Andreas Lubbertus Aloysius Johannes | Monitoring physiological parameters based on variations in a photoplethysmographic signal |
US20050038344A1 (en) * | 1998-02-13 | 2005-02-17 | Britton Chance | Transabdominal examination, monitoring and imaging of tissue |
US20050046436A1 (en) * | 2003-07-21 | 2005-03-03 | Gerd Frankowsky | Calibration device for the calibration of a tester channel of a tester device and a test system |
US20050197583A1 (en) * | 1998-02-11 | 2005-09-08 | Britton Chance | Detection, imaging and characterization of breast tumors |
US20050228291A1 (en) * | 1998-02-11 | 2005-10-13 | Britton Chance | Imaging and characterization of brain tissue |
US6987994B1 (en) | 1991-09-03 | 2006-01-17 | Datex-Ohmeda, Inc. | Pulse oximetry SpO2 determination |
US20060092328A1 (en) * | 2004-11-03 | 2006-05-04 | Ralph Anderson | System for reducing signal interference in modulated signal communication |
US7177686B1 (en) | 1999-11-10 | 2007-02-13 | Pacesetter, Inc. | Using photo-plethysmography to monitor autonomic tone and performing pacing optimization based on monitored autonomic tone |
US7194293B2 (en) | 2004-03-08 | 2007-03-20 | Nellcor Puritan Bennett Incorporated | Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics |
US20070136013A1 (en) * | 2005-12-09 | 2007-06-14 | William Premerlani | Methods and systems for measuring a rate of change of requency |
US20080097175A1 (en) * | 2006-09-29 | 2008-04-24 | Boyce Robin S | System and method for display control of patient monitor |
WO2008050070A2 (en) | 2006-10-25 | 2008-05-02 | Sagem Securite | Method for validating a biometrical acquisition, mainly a body imprint |
US20080114226A1 (en) * | 2006-09-29 | 2008-05-15 | Doug Music | Systems and methods for user interface and identification in a medical device |
US7376453B1 (en) | 1993-10-06 | 2008-05-20 | Masimo Corporation | Signal processing apparatus |
US7377794B2 (en) | 2005-03-01 | 2008-05-27 | Masimo Corporation | Multiple wavelength sensor interconnect |
US7403806B2 (en) | 2005-06-28 | 2008-07-22 | General Electric Company | System for prefiltering a plethysmographic signal |
US20080306361A1 (en) * | 2007-06-11 | 2008-12-11 | Joshua Friedman | Optical screening device |
US20080306470A1 (en) * | 2007-06-11 | 2008-12-11 | Joshua Friedman | Optical screening device |
US7477924B2 (en) | 2006-05-02 | 2009-01-13 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7483731B2 (en) | 2005-09-30 | 2009-01-27 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7486979B2 (en) | 2005-09-30 | 2009-02-03 | Nellcor Puritan Bennett Llc | Optically aligned pulse oximetry sensor and technique for using the same |
US7499740B2 (en) | 2004-02-25 | 2009-03-03 | Nellcor Puritan Bennett Llc | Techniques for detecting heart pulses and reducing power consumption in sensors |
US20090062660A1 (en) * | 2002-07-10 | 2009-03-05 | Britton Chance | Examination and imaging of brain cognitive functions |
US7522948B2 (en) | 2006-05-02 | 2009-04-21 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7555327B2 (en) | 2005-09-30 | 2009-06-30 | Nellcor Puritan Bennett Llc | Folding medical sensor and technique for using the same |
US7574244B2 (en) | 2005-08-08 | 2009-08-11 | Nellcor Puritan Bennett Llc | Compliant diaphragm medical sensor and technique for using the same |
US7574245B2 (en) | 2006-09-27 | 2009-08-11 | Nellcor Puritan Bennett Llc | Flexible medical sensor enclosure |
US7590439B2 (en) | 2005-08-08 | 2009-09-15 | Nellcor Puritan Bennett Llc | Bi-stable medical sensor and technique for using the same |
US20090281402A1 (en) * | 1998-02-13 | 2009-11-12 | Britton Chance | Transabdominal examination, monitoring and imaging of tissue |
US7650177B2 (en) | 2005-09-29 | 2010-01-19 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US7657295B2 (en) | 2005-08-08 | 2010-02-02 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7658652B2 (en) | 2006-09-29 | 2010-02-09 | Nellcor Puritan Bennett Llc | Device and method for reducing crosstalk |
US7676253B2 (en) | 2005-09-29 | 2010-03-09 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7680522B2 (en) | 2006-09-29 | 2010-03-16 | Nellcor Puritan Bennett Llc | Method and apparatus for detecting misapplied sensors |
US7684842B2 (en) | 2006-09-29 | 2010-03-23 | Nellcor Puritan Bennett Llc | System and method for preventing sensor misuse |
US7689259B2 (en) | 2000-04-17 | 2010-03-30 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US7690378B1 (en) | 2004-07-21 | 2010-04-06 | Pacesetter, Inc. | Methods, systems and devices for monitoring respiratory disorders |
US7706896B2 (en) | 2006-09-29 | 2010-04-27 | Nellcor Puritan Bennett Llc | User interface and identification in a medical device system and method |
US7720516B2 (en) | 1996-10-10 | 2010-05-18 | Nellcor Puritan Bennett Llc | Motion compatible sensor for non-invasive optical blood analysis |
US7796403B2 (en) | 2006-09-28 | 2010-09-14 | Nellcor Puritan Bennett Llc | Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit |
US20100280348A1 (en) * | 2009-04-30 | 2010-11-04 | Brian Jeffrey Wenzel | Method and implantable system for blood-glucose concentration monitoring using parallel methodologies |
US7865223B1 (en) | 2005-03-14 | 2011-01-04 | Peter Bernreuter | In vivo blood spectrometry |
US7869849B2 (en) | 2006-09-26 | 2011-01-11 | Nellcor Puritan Bennett Llc | Opaque, electrically nonconductive region on a medical sensor |
US7880884B2 (en) | 2008-06-30 | 2011-02-01 | Nellcor Puritan Bennett Llc | System and method for coating and shielding electronic sensor components |
US7881762B2 (en) | 2005-09-30 | 2011-02-01 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US7881790B1 (en) | 2004-07-19 | 2011-02-01 | Pacesetter, Inc. | Reducing data acquisition, power and processing for photoplethysmography and other applications |
US7887345B2 (en) | 2008-06-30 | 2011-02-15 | Nellcor Puritan Bennett Llc | Single use connector for pulse oximetry sensors |
US7890153B2 (en) | 2006-09-28 | 2011-02-15 | Nellcor Puritan Bennett Llc | System and method for mitigating interference in pulse oximetry |
US7894869B2 (en) | 2007-03-09 | 2011-02-22 | Nellcor Puritan Bennett Llc | Multiple configuration medical sensor and technique for using the same |
US7899510B2 (en) | 2005-09-29 | 2011-03-01 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7904139B2 (en) | 1999-08-26 | 2011-03-08 | Non-Invasive Technology Inc. | Optical examination of biological tissue using non-contact irradiation and detection |
US7909768B1 (en) | 2004-07-19 | 2011-03-22 | Pacesetter, Inc. | Reducing data acquisition, power and processing for hemodynamic signal sampling |
US7920913B1 (en) | 2007-06-29 | 2011-04-05 | Pacesetter, Inc. | Systems and methods for increasing implantable sensor accuracy |
US7925511B2 (en) | 2006-09-29 | 2011-04-12 | Nellcor Puritan Bennett Llc | System and method for secure voice identification in a medical device |
US20110095749A1 (en) * | 2009-10-28 | 2011-04-28 | Joseph Yossi Harlev | Optical sensor assembly for installation on a current carrying cable |
US20110095750A1 (en) * | 2009-10-28 | 2011-04-28 | Joseph Yossi Harlev | Method for measuring current in an electric power distribution system |
US8019400B2 (en) | 1994-10-07 | 2011-09-13 | Masimo Corporation | Signal processing apparatus |
US8055321B2 (en) | 2005-03-14 | 2011-11-08 | Peter Bernreuter | Tissue oximetry apparatus and method |
US8062221B2 (en) | 2005-09-30 | 2011-11-22 | Nellcor Puritan Bennett Llc | Sensor for tissue gas detection and technique for using the same |
US8068891B2 (en) | 2006-09-29 | 2011-11-29 | Nellcor Puritan Bennett Llc | Symmetric LED array for pulse oximetry |
US8073518B2 (en) | 2006-05-02 | 2011-12-06 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US8071935B2 (en) | 2008-06-30 | 2011-12-06 | Nellcor Puritan Bennett Llc | Optical detector with an overmolded faraday shield |
US8070508B2 (en) | 2007-12-31 | 2011-12-06 | Nellcor Puritan Bennett Llc | Method and apparatus for aligning and securing a cable strain relief |
US8092993B2 (en) | 2007-12-31 | 2012-01-10 | Nellcor Puritan Bennett Llc | Hydrogel thin film for use as a biosensor |
US8092386B1 (en) | 2006-12-22 | 2012-01-10 | Pacesetter, Inc. | Method and implantable system for blood-glucose concentration monitoring |
US8092379B2 (en) | 2005-09-29 | 2012-01-10 | Nellcor Puritan Bennett Llc | Method and system for determining when to reposition a physiological sensor |
US8112375B2 (en) | 2008-03-31 | 2012-02-07 | Nellcor Puritan Bennett Llc | Wavelength selection and outlier detection in reduced rank linear models |
US8116839B1 (en) | 2005-02-25 | 2012-02-14 | General Electric Company | System for detecting potential probe malfunction conditions in a pulse oximeter |
US8133176B2 (en) | 1999-04-14 | 2012-03-13 | Tyco Healthcare Group Lp | Method and circuit for indicating quality and accuracy of physiological measurements |
US8145288B2 (en) | 2006-08-22 | 2012-03-27 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8160683B2 (en) | 2006-09-29 | 2012-04-17 | Nellcor Puritan Bennett Llc | System and method for integrating voice with a medical device |
US8175667B2 (en) | 2006-09-29 | 2012-05-08 | Nellcor Puritan Bennett Llc | Symmetric LED array for pulse oximetry |
US8175671B2 (en) | 2006-09-22 | 2012-05-08 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8190224B2 (en) | 2006-09-22 | 2012-05-29 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8199007B2 (en) | 2007-12-31 | 2012-06-12 | Nellcor Puritan Bennett Llc | Flex circuit snap track for a biometric sensor |
US8219170B2 (en) | 2006-09-20 | 2012-07-10 | Nellcor Puritan Bennett Llc | System and method for practicing spectrophotometry using light emitting nanostructure devices |
US8221319B2 (en) | 2009-03-25 | 2012-07-17 | Nellcor Puritan Bennett Llc | Medical device for assessing intravascular blood volume and technique for using the same |
US8224412B2 (en) | 2000-04-17 | 2012-07-17 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US8233954B2 (en) | 2005-09-30 | 2012-07-31 | Nellcor Puritan Bennett Llc | Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same |
US8260391B2 (en) | 2005-09-12 | 2012-09-04 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
CN101347334B (en) * | 2007-07-19 | 2012-09-05 | 深圳迈瑞生物医疗电子股份有限公司 | Method and device for measuring blood oxygen saturation |
US8265724B2 (en) | 2007-03-09 | 2012-09-11 | Nellcor Puritan Bennett Llc | Cancellation of light shunting |
US8280469B2 (en) | 2007-03-09 | 2012-10-02 | Nellcor Puritan Bennett Llc | Method for detection of aberrant tissue spectra |
US8290730B2 (en) | 2009-06-30 | 2012-10-16 | Nellcor Puritan Bennett Ireland | Systems and methods for assessing measurements in physiological monitoring devices |
US8311601B2 (en) | 2009-06-30 | 2012-11-13 | Nellcor Puritan Bennett Llc | Reflectance and/or transmissive pulse oximeter |
US8346328B2 (en) | 2007-12-21 | 2013-01-01 | Covidien Lp | Medical sensor and technique for using the same |
US8352004B2 (en) | 2007-12-21 | 2013-01-08 | Covidien Lp | Medical sensor and technique for using the same |
US8364220B2 (en) | 2008-09-25 | 2013-01-29 | Covidien Lp | Medical sensor and technique for using the same |
US8366613B2 (en) | 2007-12-26 | 2013-02-05 | Covidien Lp | LED drive circuit for pulse oximetry and method for using same |
US8391941B2 (en) | 2009-07-17 | 2013-03-05 | Covidien Lp | System and method for memory switching for multiple configuration medical sensor |
US8396527B2 (en) | 2006-09-22 | 2013-03-12 | Covidien Lp | Medical sensor for reducing signal artifacts and technique for using the same |
US8417309B2 (en) | 2008-09-30 | 2013-04-09 | Covidien Lp | Medical sensor |
US8417310B2 (en) | 2009-08-10 | 2013-04-09 | Covidien Lp | Digital switching in multi-site sensor |
US8423112B2 (en) | 2008-09-30 | 2013-04-16 | Covidien Lp | Medical sensor and technique for using the same |
US8428675B2 (en) | 2009-08-19 | 2013-04-23 | Covidien Lp | Nanofiber adhesives used in medical devices |
US8433383B2 (en) | 2001-10-12 | 2013-04-30 | Covidien Lp | Stacked adhesive optical sensor |
US8437822B2 (en) | 2008-03-28 | 2013-05-07 | Covidien Lp | System and method for estimating blood analyte concentration |
US8442608B2 (en) | 2007-12-28 | 2013-05-14 | Covidien Lp | System and method for estimating physiological parameters by deconvolving artifacts |
US8452364B2 (en) | 2007-12-28 | 2013-05-28 | Covidien LLP | System and method for attaching a sensor to a patient's skin |
US8452366B2 (en) | 2009-03-16 | 2013-05-28 | Covidien Lp | Medical monitoring device with flexible circuitry |
US8483790B2 (en) | 2002-10-18 | 2013-07-09 | Covidien Lp | Non-adhesive oximeter sensor for sensitive skin |
US8505821B2 (en) | 2009-06-30 | 2013-08-13 | Covidien Lp | System and method for providing sensor quality assurance |
US8509869B2 (en) | 2009-05-15 | 2013-08-13 | Covidien Lp | Method and apparatus for detecting and analyzing variations in a physiologic parameter |
US8517941B1 (en) | 2007-10-23 | 2013-08-27 | Pacesetter, Inc. | Implantable cardiac device and method for monitoring blood-glucose concentration |
US8521246B2 (en) | 2010-07-29 | 2013-08-27 | Covidien Lp | Cable cross talk suppression |
US8560034B1 (en) | 1993-10-06 | 2013-10-15 | Masimo Corporation | Signal processing apparatus |
US8577434B2 (en) | 2007-12-27 | 2013-11-05 | Covidien Lp | Coaxial LED light sources |
US8634891B2 (en) | 2009-05-20 | 2014-01-21 | Covidien Lp | Method and system for self regulation of sensor component contact pressure |
US8636667B2 (en) | 2009-07-06 | 2014-01-28 | Nellcor Puritan Bennett Ireland | Systems and methods for processing physiological signals in wavelet space |
US8725226B2 (en) | 2008-11-14 | 2014-05-13 | Nonin Medical, Inc. | Optical sensor path selection |
US8781544B2 (en) | 2007-03-27 | 2014-07-15 | Cercacor Laboratories, Inc. | Multiple wavelength optical sensor |
US8801613B2 (en) | 2009-12-04 | 2014-08-12 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US8897850B2 (en) | 2007-12-31 | 2014-11-25 | Covidien Lp | Sensor with integrated living hinge and spring |
US8914088B2 (en) | 2008-09-30 | 2014-12-16 | Covidien Lp | Medical sensor and technique for using the same |
US8965471B2 (en) | 2007-04-21 | 2015-02-24 | Cercacor Laboratories, Inc. | Tissue profile wellness monitor |
US9010634B2 (en) | 2009-06-30 | 2015-04-21 | Covidien Lp | System and method for linking patient data to a patient and providing sensor quality assurance |
US9072439B2 (en) | 2011-01-20 | 2015-07-07 | Nitto Denko Corporation | Photoplethysmographic device and methods therefore |
US9134344B2 (en) | 2009-10-28 | 2015-09-15 | Gridview Optical Solutions, Llc. | Optical sensor assembly for installation on a current carrying cable |
US9146358B2 (en) | 2013-07-16 | 2015-09-29 | Gridview Optical Solutions, Llc | Collimator holder for electro-optical sensor |
WO2016210334A1 (en) * | 2015-06-26 | 2016-12-29 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
US9535097B2 (en) | 2012-07-19 | 2017-01-03 | Gridview Optical Solutions, Llc. | Electro-optic current sensor with high dynamic range and accuracy |
US9782132B2 (en) | 2012-10-07 | 2017-10-10 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
US9839381B1 (en) | 2009-11-24 | 2017-12-12 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US10244949B2 (en) | 2012-10-07 | 2019-04-02 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
USD850626S1 (en) | 2013-03-15 | 2019-06-04 | Rhythm Diagnostic Systems, Inc. | Health monitoring apparatuses |
US10610159B2 (en) | 2012-10-07 | 2020-04-07 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
US11154215B2 (en) | 2016-12-05 | 2021-10-26 | Medipines Corporation | System and methods for respiratory measurements using breathing gas samples |
US11903700B2 (en) | 2019-08-28 | 2024-02-20 | Rds | Vital signs monitoring systems and methods |
US12029586B2 (en) | 2006-10-12 | 2024-07-09 | Masimo Corporation | Oximeter probe off indicator defining probe off space |
US12109047B2 (en) | 2019-01-25 | 2024-10-08 | Rds | Health monitoring systems and methods |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPN740796A0 (en) * | 1996-01-04 | 1996-01-25 | Circuitry Systems Limited | Biomedical data collection apparatus |
ES2173457T3 (en) * | 1996-07-26 | 2002-10-16 | Linde Medical Sensors Ag | PROCEDURE TO DETERMINE THE OXYGEN SATURATION IN THE TISSUE IRRIGATED WITH BLOOD DOES NOT INVASIVE. |
WO2004019780A1 (en) * | 2002-08-28 | 2004-03-11 | Akiyasu Fukumura | In-vivo oxygen saturation degree determining method and instrument using near infrared radiation, and sensor sensitivity reference calibrator used for the instrument |
KR100552681B1 (en) * | 2003-04-25 | 2006-02-20 | 삼성전자주식회사 | Sleep apnea diagnostic apparatus and method |
GB2413078C (en) | 2004-01-08 | 2012-08-15 | Dialog Devices Ltd | A system or method for assessing a subject's pedalblood circulation. |
US20090301489A1 (en) * | 2006-07-12 | 2009-12-10 | Nicolas Bloch | Respiratory gas supply circuit to feed crew members and passengers of an aircraft with oxygen |
US8369944B2 (en) | 2007-06-06 | 2013-02-05 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US8271082B2 (en) | 2007-06-07 | 2012-09-18 | Zoll Medical Corporation | Medical device configured to test for user responsiveness |
US7974689B2 (en) | 2007-06-13 | 2011-07-05 | Zoll Medical Corporation | Wearable medical treatment device with motion/position detection |
US8140154B2 (en) | 2007-06-13 | 2012-03-20 | Zoll Medical Corporation | Wearable medical treatment device |
JP4571220B2 (en) * | 2009-05-13 | 2010-10-27 | ネルコー ピューリタン ベネット エルエルシー | Data signal adaptive averaging method and apparatus |
WO2011146448A1 (en) | 2010-05-18 | 2011-11-24 | Zoll Medical Corporation | Wearable therapeutic device |
WO2011146482A1 (en) | 2010-05-18 | 2011-11-24 | Zoll Medical Corporation | Wearable ambulatory medical device with multiple sensing electrodes |
US9937355B2 (en) | 2010-11-08 | 2018-04-10 | Zoll Medical Corporation | Remote medical device alarm |
WO2012078857A2 (en) | 2010-12-09 | 2012-06-14 | Zoll Medical Corporation | Electrode with redundant impedance reduction |
US9007216B2 (en) | 2010-12-10 | 2015-04-14 | Zoll Medical Corporation | Wearable therapeutic device |
US9427564B2 (en) | 2010-12-16 | 2016-08-30 | Zoll Medical Corporation | Water resistant wearable medical device |
EP2689363B1 (en) | 2011-03-25 | 2022-07-27 | Zoll Medical Corporation | System and method for adapting alarms in a wearable medical device |
US8897860B2 (en) | 2011-03-25 | 2014-11-25 | Zoll Medical Corporation | Selection of optimal channel for rate determination |
US9684767B2 (en) | 2011-03-25 | 2017-06-20 | Zoll Medical Corporation | System and method for adapting alarms in a wearable medical device |
US8600486B2 (en) | 2011-03-25 | 2013-12-03 | Zoll Medical Corporation | Method of detecting signal clipping in a wearable ambulatory medical device |
EP2704625A4 (en) | 2011-05-02 | 2014-10-01 | Zoll Medical Corp | Patient-worn energy delivery apparatus and techniques for sizing same |
US8644925B2 (en) | 2011-09-01 | 2014-02-04 | Zoll Medical Corporation | Wearable monitoring and treatment device |
CN102512178B (en) * | 2011-12-23 | 2014-04-09 | 深圳市理邦精密仪器股份有限公司 | Blood oxygen measurer and method |
US10328266B2 (en) | 2012-05-31 | 2019-06-25 | Zoll Medical Corporation | External pacing device with discomfort management |
IN2014DN09885A (en) | 2012-05-31 | 2015-08-07 | Zoll Medical Corp | |
US11097107B2 (en) | 2012-05-31 | 2021-08-24 | Zoll Medical Corporation | External pacing device with discomfort management |
US9999393B2 (en) | 2013-01-29 | 2018-06-19 | Zoll Medical Corporation | Delivery of electrode gel using CPR puck |
US8880196B2 (en) | 2013-03-04 | 2014-11-04 | Zoll Medical Corporation | Flexible therapy electrode |
US9597523B2 (en) | 2014-02-12 | 2017-03-21 | Zoll Medical Corporation | System and method for adapting alarms in a wearable medical device |
WO2016100906A1 (en) | 2014-12-18 | 2016-06-23 | Zoll Medical Corporation | Pacing device with acoustic sensor |
WO2016149583A1 (en) | 2015-03-18 | 2016-09-22 | Zoll Medical Corporation | Medical device with acoustic sensor |
EP4137201A1 (en) | 2015-11-23 | 2023-02-22 | Zoll Medical Corporation | Garments for wearable medical devices |
US11617538B2 (en) | 2016-03-14 | 2023-04-04 | Zoll Medical Corporation | Proximity based processing systems and methods |
US11009870B2 (en) | 2017-06-06 | 2021-05-18 | Zoll Medical Corporation | Vehicle compatible ambulatory defibrillator |
US10646707B2 (en) | 2017-11-30 | 2020-05-12 | Zoll Medical Corporation | Medical devices with rapid sensor recovery |
US11568984B2 (en) | 2018-09-28 | 2023-01-31 | Zoll Medical Corporation | Systems and methods for device inventory management and tracking |
WO2020069308A1 (en) | 2018-09-28 | 2020-04-02 | Zoll Medical Corporation | Adhesively coupled wearable medical device |
WO2020139880A1 (en) | 2018-12-28 | 2020-07-02 | Zoll Medical Corporation | Wearable medical device response mechanisms and methods of use |
CN112642061A (en) | 2019-10-09 | 2021-04-13 | Zoll医疗公司 | Modular electrotherapy device |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3412729A (en) * | 1965-08-30 | 1968-11-26 | Nasa Usa | Method and apparatus for continuously monitoring blood oxygenation, blood pressure, pulse rate and the pressure pulse curve utilizing an ear oximeter as transducer |
US3704706A (en) * | 1969-10-23 | 1972-12-05 | Univ Drexel | Heart rate and respiratory monitor |
US3994284A (en) * | 1975-12-31 | 1976-11-30 | Systron Donner Corporation | Flow rate computer adjunct for use with an impedance plethysmograph and method |
US3998550A (en) * | 1974-10-14 | 1976-12-21 | Minolta Camera Corporation | Photoelectric oximeter |
US4086915A (en) * | 1975-04-30 | 1978-05-02 | Harvey I. Kofsky | Ear oximetry process and apparatus |
US4266554A (en) * | 1978-06-22 | 1981-05-12 | Minolta Camera Kabushiki Kaisha | Digital oximeter |
US4305398A (en) * | 1977-12-30 | 1981-12-15 | Minolta Camera Kabushiki Kaisha | Eye fundus oximeter |
US4407290A (en) * | 1981-04-01 | 1983-10-04 | Biox Technology, Inc. | Blood constituent measuring device and method |
EP0102816A2 (en) * | 1982-09-02 | 1984-03-14 | Nellcor Incorporated | Pulse oximeter |
EP0104772A2 (en) * | 1982-09-02 | 1984-04-04 | Nellcor Incorporated | Calibrated optical oximeter probe |
EP0104771A2 (en) * | 1982-09-02 | 1984-04-04 | Nellcor Incorporated | Pulse oximeter monitor |
US4545387A (en) * | 1979-07-24 | 1985-10-08 | Balique Georges A | Apparatus for recording, control and early detection of cardiovascular diseases |
US4586513A (en) * | 1982-02-19 | 1986-05-06 | Minolta Camera Kabushiki Kaisha | Noninvasive device for photoelectrically measuring the property of arterial blood |
WO1986005674A1 (en) * | 1985-04-01 | 1986-10-09 | Nellcor Incorporated | Method and apparatus for detecting optical pulses |
US4651741A (en) * | 1985-05-30 | 1987-03-24 | Baxter Travenol Laboratories, Inc. | Method and apparatus for determining oxygen saturation in vivo |
US4759369A (en) * | 1986-07-07 | 1988-07-26 | Novametrix Medical Systems, Inc. | Pulse oximeter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3629447A1 (en) * | 1985-08-30 | 1987-04-09 | Criticare Systems Inc | Method and device for oxymetry |
US4869253A (en) * | 1986-08-18 | 1989-09-26 | Physio-Control Corporation | Method and apparatus for indicating perfusion and oxygen saturation trends in oximetry |
-
1988
- 1988-03-30 US US07/175,115 patent/US4869254A/en not_active Expired - Lifetime
-
1989
- 1989-03-29 DE DE68925988T patent/DE68925988T2/en not_active Expired - Lifetime
- 1989-03-29 JP JP1077940A patent/JP2602321B2/en not_active Expired - Fee Related
- 1989-03-29 AT AT89105501T patent/ATE135547T1/en not_active IP Right Cessation
- 1989-03-29 EP EP89105501A patent/EP0335356B1/en not_active Expired - Lifetime
- 1989-03-29 FI FI891493A patent/FI891493A/en not_active IP Right Cessation
- 1989-03-30 CA CA000595258A patent/CA1327402C/en not_active Expired - Fee Related
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3412729A (en) * | 1965-08-30 | 1968-11-26 | Nasa Usa | Method and apparatus for continuously monitoring blood oxygenation, blood pressure, pulse rate and the pressure pulse curve utilizing an ear oximeter as transducer |
US3704706A (en) * | 1969-10-23 | 1972-12-05 | Univ Drexel | Heart rate and respiratory monitor |
US3998550A (en) * | 1974-10-14 | 1976-12-21 | Minolta Camera Corporation | Photoelectric oximeter |
US4086915A (en) * | 1975-04-30 | 1978-05-02 | Harvey I. Kofsky | Ear oximetry process and apparatus |
US3994284A (en) * | 1975-12-31 | 1976-11-30 | Systron Donner Corporation | Flow rate computer adjunct for use with an impedance plethysmograph and method |
US4305398A (en) * | 1977-12-30 | 1981-12-15 | Minolta Camera Kabushiki Kaisha | Eye fundus oximeter |
US4266554A (en) * | 1978-06-22 | 1981-05-12 | Minolta Camera Kabushiki Kaisha | Digital oximeter |
US4545387A (en) * | 1979-07-24 | 1985-10-08 | Balique Georges A | Apparatus for recording, control and early detection of cardiovascular diseases |
US4407290A (en) * | 1981-04-01 | 1983-10-04 | Biox Technology, Inc. | Blood constituent measuring device and method |
US4407290B1 (en) * | 1981-04-01 | 1986-10-14 | ||
US4586513A (en) * | 1982-02-19 | 1986-05-06 | Minolta Camera Kabushiki Kaisha | Noninvasive device for photoelectrically measuring the property of arterial blood |
EP0104771A2 (en) * | 1982-09-02 | 1984-04-04 | Nellcor Incorporated | Pulse oximeter monitor |
EP0104772A2 (en) * | 1982-09-02 | 1984-04-04 | Nellcor Incorporated | Calibrated optical oximeter probe |
EP0102816A2 (en) * | 1982-09-02 | 1984-03-14 | Nellcor Incorporated | Pulse oximeter |
WO1986005674A1 (en) * | 1985-04-01 | 1986-10-09 | Nellcor Incorporated | Method and apparatus for detecting optical pulses |
US4651741A (en) * | 1985-05-30 | 1987-03-24 | Baxter Travenol Laboratories, Inc. | Method and apparatus for determining oxygen saturation in vivo |
US4759369A (en) * | 1986-07-07 | 1988-07-26 | Novametrix Medical Systems, Inc. | Pulse oximeter |
Non-Patent Citations (2)
Title |
---|
Cohen et al., "Self-Balancing System for Medical and Physiological Instrumentation," IEEE Trans. Bio-Med. Eng., vol. BME-18, p. 66, (1971). |
Cohen et al., Self Balancing System for Medical and Physiological Instrumentation, IEEE Trans. Bio Med. Eng., vol. BME 18, p. 66, (1971). * |
Cited By (383)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5779631A (en) * | 1988-11-02 | 1998-07-14 | Non-Invasive Technology, Inc. | Spectrophotometer for measuring the metabolic condition of a subject |
US5127406A (en) * | 1988-12-19 | 1992-07-07 | Nihon Kohden Corporation | Apparatus for measuring concentration of substances in blood |
US5040539A (en) * | 1989-05-12 | 1991-08-20 | The United States Of America | Pulse oximeter for diagnosis of dental pulp pathology |
US5349519A (en) * | 1989-09-15 | 1994-09-20 | Hewlett-Packard Company | Method for digitally processing signals containing information regarding arterial blood flow |
US5094239A (en) * | 1989-10-05 | 1992-03-10 | Colin Electronics Co., Ltd. | Composite signal implementation for acquiring oximetry signals |
US5398680A (en) * | 1989-11-01 | 1995-03-21 | Polson; Michael J. R. | Pulse oximeter with improved accuracy and response time |
US6161031A (en) * | 1990-08-10 | 2000-12-12 | Board Of Regents Of The University Of Washington | Optical imaging methods |
US5291886A (en) * | 1990-11-27 | 1994-03-08 | Kowa Company Ltd. | Apparatus for measuring blood flow |
US6157850A (en) * | 1991-03-07 | 2000-12-05 | Masimo Corporation | Signal processing apparatus |
US8046042B2 (en) | 1991-03-07 | 2011-10-25 | Masimo Corporation | Signal processing apparatus |
US7383070B2 (en) | 1991-03-07 | 2008-06-03 | Masimo Corporation | Signal processing apparatus |
US5482036A (en) * | 1991-03-07 | 1996-01-09 | Masimo Corporation | Signal processing apparatus and method |
US5490505A (en) * | 1991-03-07 | 1996-02-13 | Masimo Corporation | Signal processing apparatus |
US6501975B2 (en) | 1991-03-07 | 2002-12-31 | Masimo Corporation | Signal processing apparatus and method |
US8948834B2 (en) | 1991-03-07 | 2015-02-03 | Masimo Corporation | Signal processing apparatus |
US8942777B2 (en) | 1991-03-07 | 2015-01-27 | Masimo Corporation | Signal processing apparatus |
US6826419B2 (en) | 1991-03-07 | 2004-11-30 | Masimo Corporation | Signal processing apparatus and method |
US5632272A (en) * | 1991-03-07 | 1997-05-27 | Masimo Corporation | Signal processing apparatus |
US20040236196A1 (en) * | 1991-03-07 | 2004-11-25 | Diab Mohamed K. | Signal processing apparatus |
US5685299A (en) * | 1991-03-07 | 1997-11-11 | Masimo Corporation | Signal processing apparatus |
US7215984B2 (en) | 1991-03-07 | 2007-05-08 | Masimo Corporation | Signal processing apparatus |
US7215986B2 (en) | 1991-03-07 | 2007-05-08 | Masimo Corporation | Signal processing apparatus |
US5769785A (en) * | 1991-03-07 | 1998-06-23 | Masimo Corporation | Signal processing apparatus and method |
US7937130B2 (en) | 1991-03-07 | 2011-05-03 | Masimo Corporation | Signal processing apparatus |
US6263222B1 (en) | 1991-03-07 | 2001-07-17 | Masimo Corporation | Signal processing apparatus |
US20020128544A1 (en) * | 1991-03-07 | 2002-09-12 | Diab Mohamed K. | Signal processing apparatus |
US7962190B1 (en) | 1991-03-07 | 2011-06-14 | Masimo Corporation | Signal processing apparatus |
US7254433B2 (en) | 1991-03-07 | 2007-08-07 | Masimo Corporation | Signal processing apparatus |
US6236872B1 (en) | 1991-03-07 | 2001-05-22 | Masimo Corporation | Signal processing apparatus |
US7454240B2 (en) | 1991-03-07 | 2008-11-18 | Masimo Corporation | Signal processing apparatus |
US8036728B2 (en) | 1991-03-07 | 2011-10-11 | Masimo Corporation | Signal processing apparatus |
US8364226B2 (en) | 1991-03-07 | 2013-01-29 | Masimo Corporation | Signal processing apparatus |
US8046041B2 (en) | 1991-03-07 | 2011-10-25 | Masimo Corporation | Signal processing apparatus |
US7469157B2 (en) | 1991-03-07 | 2008-12-23 | Masimo Corporation | Signal processing apparatus |
US6745060B2 (en) * | 1991-03-07 | 2004-06-01 | Masimo Corporation | Signal processing apparatus |
US6650917B2 (en) * | 1991-03-07 | 2003-11-18 | Masimo Corporation | Signal processing apparatus |
US7530955B2 (en) | 1991-03-07 | 2009-05-12 | Masimo Corporation | Signal processing apparatus |
USRE38492E1 (en) | 1991-03-07 | 2004-04-06 | Masimo Corporation | Signal processing apparatus and method |
US6036642A (en) * | 1991-03-07 | 2000-03-14 | Masimo Corporation | Signal processing apparatus and method |
USRE38476E1 (en) * | 1991-03-07 | 2004-03-30 | Masimo Corporation | Signal processing apparatus |
US20040064020A1 (en) * | 1991-03-07 | 2004-04-01 | Diab Mohamed K. | Signal processing apparatus |
US6081735A (en) * | 1991-03-07 | 2000-06-27 | Masimo Corporation | Signal processing apparatus |
US7509154B2 (en) | 1991-03-07 | 2009-03-24 | Masimo Corporation | Signal processing apparatus |
US8128572B2 (en) | 1991-03-07 | 2012-03-06 | Masimo Corporation | Signal processing apparatus |
US7496393B2 (en) | 1991-03-07 | 2009-02-24 | Masimo Corporation | Signal processing apparatus |
US6206830B1 (en) | 1991-03-07 | 2001-03-27 | Masimo Corporation | Signal processing apparatus and method |
US5226417A (en) * | 1991-03-11 | 1993-07-13 | Nellcor, Inc. | Apparatus for the detection of motion transients |
US6549795B1 (en) | 1991-05-16 | 2003-04-15 | Non-Invasive Technology, Inc. | Spectrophotometer for tissue examination |
US5934277A (en) * | 1991-09-03 | 1999-08-10 | Datex-Ohmeda, Inc. | System for pulse oximetry SpO2 determination |
US6385471B1 (en) | 1991-09-03 | 2002-05-07 | Datex-Ohmeda, Inc. | System for pulse oximetry SpO2 determination |
US6714803B1 (en) | 1991-09-03 | 2004-03-30 | Datex-Ohmeda, Inc. | Pulse oximetry SpO2 determination |
US6987994B1 (en) | 1991-09-03 | 2006-01-17 | Datex-Ohmeda, Inc. | Pulse oximetry SpO2 determination |
US5246002A (en) * | 1992-02-11 | 1993-09-21 | Physio-Control Corporation | Noise insensitive pulse transmittance oximeter |
US5873821A (en) * | 1992-05-18 | 1999-02-23 | Non-Invasive Technology, Inc. | Lateralization spectrophotometer |
US20050113656A1 (en) * | 1992-05-18 | 2005-05-26 | Britton Chance | Hemoglobinometers and the like for measuring the metabolic condition of a subject |
US6785568B2 (en) | 1992-05-18 | 2004-08-31 | Non-Invasive Technology Inc. | Transcranial examination of the brain |
US20020147400A1 (en) * | 1992-06-17 | 2002-10-10 | Non-Invasive Technology, Inc., Delaware Corporation | Examination of subjects using photon migration with high directionality techniques |
US7010341B2 (en) | 1992-06-17 | 2006-03-07 | Noninvasive Technology, Inc. | Examination of subjects using photon migration with high directionality techniques |
US20080161697A1 (en) * | 1992-06-17 | 2008-07-03 | Britton Chance | Examination of subjects using photon migration with high directionality techniques |
US6272367B1 (en) | 1992-06-17 | 2001-08-07 | Non-Invasive Technology, Inc. | Examination of a biological tissue using photon migration between a plurality of input and detection locations |
US5368224A (en) * | 1992-10-23 | 1994-11-29 | Nellcor Incorporated | Method for reducing ambient noise effects in electronic monitoring instruments |
US5372134A (en) * | 1993-05-24 | 1994-12-13 | Richardson; Joseph W. | Aviation hypoxia monitor |
US6058324A (en) * | 1993-06-17 | 2000-05-02 | Non-Invasive Technology, Inc. | Examination and imaging of biological tissue |
US7376453B1 (en) | 1993-10-06 | 2008-05-20 | Masimo Corporation | Signal processing apparatus |
US7328053B1 (en) | 1993-10-06 | 2008-02-05 | Masimo Corporation | Signal processing apparatus |
US8560034B1 (en) | 1993-10-06 | 2013-10-15 | Masimo Corporation | Signal processing apparatus |
US6493565B1 (en) | 1993-11-15 | 2002-12-10 | Non-Invasive Technology, Inc. | Examination of biological tissue by monitoring one or more solutes |
US5782755A (en) * | 1993-11-15 | 1998-07-21 | Non-Invasive Technology, Inc. | Monitoring one or more solutes in a biological system using optical techniques |
US5961450A (en) * | 1993-12-17 | 1999-10-05 | Nellcor Puritan Bennett Incorporated | Medical sensor with amplitude independent output |
US5553615A (en) * | 1994-01-31 | 1996-09-10 | Minnesota Mining And Manufacturing Company | Method and apparatus for noninvasive prediction of hematocrit |
US5755226A (en) * | 1994-01-31 | 1998-05-26 | Minnesota Mining And Manufacturing Company | Method and apparatus for noninvasive prediction of hematocrit |
WO1995026013A1 (en) * | 1994-03-24 | 1995-09-28 | Minnesota Mining And Manufacturing Company | Biometric, personal authentication system |
US5719950A (en) * | 1994-03-24 | 1998-02-17 | Minnesota Mining And Manufacturing Company | Biometric, personal authentication system |
US6011985A (en) * | 1994-04-01 | 2000-01-04 | University Of South Florida | Medical diagnostic instrument using light-to-frequency converter |
US6496711B1 (en) | 1994-04-01 | 2002-12-17 | University Of Florida | Pulse oximeter probe |
US5575284A (en) * | 1994-04-01 | 1996-11-19 | University Of South Florida | Portable pulse oximeter |
US8019400B2 (en) | 1994-10-07 | 2011-09-13 | Masimo Corporation | Signal processing apparatus |
US5673701A (en) * | 1994-10-07 | 1997-10-07 | Non Invasive Technology, Inc. | Optical techniques for examination of biological tissue |
US8755856B2 (en) | 1994-10-07 | 2014-06-17 | Masimo Corporation | Signal processing apparatus |
US8359080B2 (en) | 1994-10-07 | 2013-01-22 | Masimo Corporation | Signal processing apparatus |
US8463349B2 (en) | 1994-10-07 | 2013-06-11 | Masimo Corporation | Signal processing apparatus |
US8126528B2 (en) | 1994-10-07 | 2012-02-28 | Masimo Corporation | Signal processing apparatus |
US5503148A (en) * | 1994-11-01 | 1996-04-02 | Ohmeda Inc. | System for pulse oximetry SPO2 determination |
US5505199A (en) * | 1994-12-01 | 1996-04-09 | Kim; Bill H. | Sudden infant death syndrome monitor |
US5820558A (en) * | 1994-12-02 | 1998-10-13 | Non-Invasive Technology, Inc. | Optical techniques for examination of biological tissue |
US20040073101A1 (en) * | 1994-12-02 | 2004-04-15 | Britton Chance | Optical techniques for examination of biological tissue |
US6542772B1 (en) | 1994-12-02 | 2003-04-01 | Non-Invasive Technology, Inc. | Examination and imaging of biological tissue |
US7139603B2 (en) | 1994-12-02 | 2006-11-21 | Non-Invasive Technology Inc | Optical techniques for examination of biological tissue |
US20060149142A1 (en) * | 1994-12-02 | 2006-07-06 | Britton Chance | Monitoring one or more solutes in a biological system using optical techniques |
US20030166997A1 (en) * | 1994-12-02 | 2003-09-04 | Britton Chance | Examination of scattering properties of biological tissue |
US6957094B2 (en) | 1994-12-02 | 2005-10-18 | Non-Invasive Technology, Inc. | Examination of scattering properties of biological tissue |
US5954053A (en) * | 1995-06-06 | 1999-09-21 | Non-Invasive Technology, Inc. | Detection of brain hematoma |
US20040158135A1 (en) * | 1995-08-07 | 2004-08-12 | Nellcor Incorporated, A Delaware Corporation | Pulse oximeter sensor off detector |
US7302284B2 (en) | 1995-08-07 | 2007-11-27 | Nellcor Puritan Bennett Llc | Pulse oximeter with parallel saturation calculation modules |
US20050143634A1 (en) * | 1995-08-07 | 2005-06-30 | Nellcor Incorporated, A Delaware Corporation | Method and apparatus for estimating a physiological parameter |
US7336983B2 (en) | 1995-08-07 | 2008-02-26 | Nellcor Puritan Bennett Llc | Pulse oximeter with parallel saturation calculation modules |
US7315753B2 (en) | 1995-08-07 | 2008-01-01 | Nellcor Puritan Bennett Llc | Pulse oximeter with parallel saturation calculation modules |
US20040181134A1 (en) * | 1995-08-07 | 2004-09-16 | Nellcor Puritan Bennett Incorporated | Pulse oximeter with parallel saturation calculation modules |
US20050085735A1 (en) * | 1995-08-07 | 2005-04-21 | Nellcor Incorporated, A Delaware Corporation | Method and apparatus for estimating a physiological parameter |
US20050124871A1 (en) * | 1995-08-07 | 2005-06-09 | Nellcor Puritan Bennett Incorporated | Pulse oximeter with parallel saturation calculation modules |
US7931599B2 (en) | 1995-08-07 | 2011-04-26 | Nellcor Puritan Bennett Llc | Method and apparatus for estimating a physiological parameter |
US7865224B2 (en) | 1995-08-07 | 2011-01-04 | Nellcor Puritan Bennett Llc | Method and apparatus for estimating a physiological parameter |
US20110071375A1 (en) * | 1995-08-07 | 2011-03-24 | Nellcor Incorporated, A Delaware Corporation | Method and apparatus for estimating physiological parameters using model-based adaptive filtering |
US6836679B2 (en) | 1995-08-07 | 2004-12-28 | Nellcor Puritan Bennett Incorporated | Method and apparatus for estimating physiological parameters using model-based adaptive filtering |
US20060183988A1 (en) * | 1995-08-07 | 2006-08-17 | Baker Clark R Jr | Pulse oximeter with parallel saturation calculation modules |
US7130671B2 (en) | 1995-08-07 | 2006-10-31 | Nellcor Puritan Bennett Incorporated | Pulse oximeter sensor off detector |
US5978691A (en) * | 1996-07-19 | 1999-11-02 | Mills; Alexander Knight | Device and method for noninvasive continuous determination of blood gases, pH, hemoglobin level, and oxygen content |
US7720516B2 (en) | 1996-10-10 | 2010-05-18 | Nellcor Puritan Bennett Llc | Motion compatible sensor for non-invasive optical blood analysis |
US8649839B2 (en) | 1996-10-10 | 2014-02-11 | Covidien Lp | Motion compatible sensor for non-invasive optical blood analysis |
US5800349A (en) * | 1996-10-15 | 1998-09-01 | Nonin Medical, Inc. | Offset pulse oximeter sensor |
US6330468B1 (en) | 1996-11-18 | 2001-12-11 | University Of South Florida | System using green light to determine parmeters of a cardiovascular system |
US5830137A (en) * | 1996-11-18 | 1998-11-03 | University Of South Florida | Green light pulse oximeter |
US5921921A (en) * | 1996-12-18 | 1999-07-13 | Nellcor Puritan-Bennett | Pulse oximeter with sigma-delta converter |
US5935076A (en) * | 1997-02-10 | 1999-08-10 | University Of Alabama In Huntsville | Method and apparatus for accurately measuring the transmittance of blood within a retinal vessel |
US5776060A (en) * | 1997-02-20 | 1998-07-07 | University Of Alabama In Huntsville | Method and apparatus for measuring blood oxygen saturation within a retinal vessel with light having several selected wavelengths |
US8190227B2 (en) | 1997-04-14 | 2012-05-29 | Masimo Corporation | Signal processing apparatus and method |
US6067462A (en) * | 1997-04-14 | 2000-05-23 | Masimo Corporation | Signal processing apparatus and method |
US7471971B2 (en) | 1997-04-14 | 2008-12-30 | Masimo Corporation | Signal processing apparatus and method |
US7499741B2 (en) | 1997-04-14 | 2009-03-03 | Masimo Corporation | Signal processing apparatus and method |
US8180420B2 (en) | 1997-04-14 | 2012-05-15 | Masimo Corporation | Signal processing apparatus and method |
US6699194B1 (en) | 1997-04-14 | 2004-03-02 | Masimo Corporation | Signal processing apparatus and method |
US8888708B2 (en) | 1997-04-14 | 2014-11-18 | Masimo Corporation | Signal processing apparatus and method |
US7489958B2 (en) | 1997-04-14 | 2009-02-10 | Masimo Corporation | Signal processing apparatus and method |
US9289167B2 (en) | 1997-04-14 | 2016-03-22 | Masimo Corporation | Signal processing apparatus and method |
US6002952A (en) * | 1997-04-14 | 1999-12-14 | Masimo Corporation | Signal processing apparatus and method |
US6343223B1 (en) * | 1997-07-30 | 2002-01-29 | Mallinckrodt Inc. | Oximeter sensor with offset emitters and detector and heating device |
US6115621A (en) * | 1997-07-30 | 2000-09-05 | Nellcor Puritan Bennett Incorporated | Oximetry sensor with offset emitters and detector |
US6400973B1 (en) | 1998-01-20 | 2002-06-04 | Bowden's Automated Products, Inc. | Arterial blood flow simulator |
US6694157B1 (en) | 1998-02-10 | 2004-02-17 | Daedalus I , L.L.C. | Method and apparatus for determination of pH pCO2, hemoglobin, and hemoglobin oxygen saturation |
US20050197583A1 (en) * | 1998-02-11 | 2005-09-08 | Britton Chance | Detection, imaging and characterization of breast tumors |
US7610082B2 (en) | 1998-02-11 | 2009-10-27 | Non-Invasive Technology, Inc. | Optical system and method for in-vivo transcranial examination of brain tissue of a subject |
US20050228291A1 (en) * | 1998-02-11 | 2005-10-13 | Britton Chance | Imaging and characterization of brain tissue |
US7627365B2 (en) | 1998-02-11 | 2009-12-01 | Non-Invasive Technology Inc. | Detection, imaging and characterization of breast tumors |
US20100174160A1 (en) * | 1998-02-11 | 2010-07-08 | Britton Chance | Detection, imaging and characterization of brain tissue |
US20090281402A1 (en) * | 1998-02-13 | 2009-11-12 | Britton Chance | Transabdominal examination, monitoring and imaging of tissue |
US20050038344A1 (en) * | 1998-02-13 | 2005-02-17 | Britton Chance | Transabdominal examination, monitoring and imaging of tissue |
US6094592A (en) * | 1998-05-26 | 2000-07-25 | Nellcor Puritan Bennett, Inc. | Methods and apparatus for estimating a physiological parameter using transforms |
US6144444A (en) * | 1998-11-06 | 2000-11-07 | Medtronic Avecor Cardiovascular, Inc. | Apparatus and method to determine blood parameters |
US8133176B2 (en) | 1999-04-14 | 2012-03-13 | Tyco Healthcare Group Lp | Method and circuit for indicating quality and accuracy of physiological measurements |
US7904139B2 (en) | 1999-08-26 | 2011-03-08 | Non-Invasive Technology Inc. | Optical examination of biological tissue using non-contact irradiation and detection |
US7206636B1 (en) | 1999-11-10 | 2007-04-17 | Pacesetter, Inc. | Pacing optimization based on changes in pulse amplitude and pulse amplitude variability |
US7177686B1 (en) | 1999-11-10 | 2007-02-13 | Pacesetter, Inc. | Using photo-plethysmography to monitor autonomic tone and performing pacing optimization based on monitored autonomic tone |
US6408198B1 (en) | 1999-12-17 | 2002-06-18 | Datex-Ohmeda, Inc. | Method and system for improving photoplethysmographic analyte measurements by de-weighting motion-contaminated data |
US7689259B2 (en) | 2000-04-17 | 2010-03-30 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US8224412B2 (en) | 2000-04-17 | 2012-07-17 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US8078246B2 (en) | 2000-04-17 | 2011-12-13 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US6589172B2 (en) * | 2000-06-05 | 2003-07-08 | Glenn Williams | Switching device for an array of multiple medical sensors |
US20030028086A1 (en) * | 2000-09-29 | 2003-02-06 | Heckel Donald W. | Pulse oximetry method and system with improved motion correction |
US6839582B2 (en) | 2000-09-29 | 2005-01-04 | Datex-Ohmeda, Inc. | Pulse oximetry method and system with improved motion correction |
US8433383B2 (en) | 2001-10-12 | 2013-04-30 | Covidien Lp | Stacked adhesive optical sensor |
US6702752B2 (en) | 2002-02-22 | 2004-03-09 | Datex-Ohmeda, Inc. | Monitoring respiration based on plethysmographic heart rate signal |
US6709402B2 (en) | 2002-02-22 | 2004-03-23 | Datex-Ohmeda, Inc. | Apparatus and method for monitoring respiration with a pulse oximeter |
US6805673B2 (en) | 2002-02-22 | 2004-10-19 | Datex-Ohmeda, Inc. | Monitoring mayer wave effects based on a photoplethysmographic signal |
US20040260186A1 (en) * | 2002-02-22 | 2004-12-23 | Dekker Andreas Lubbertus Aloysius Johannes | Monitoring physiological parameters based on variations in a photoplethysmographic signal |
US20030163050A1 (en) * | 2002-02-22 | 2003-08-28 | Dekker Andreas Lubbertus Aloysius Johannes | Monitoring physiological parameters based on variations in a photoplethysmographic baseline signal |
US7001337B2 (en) | 2002-02-22 | 2006-02-21 | Datex-Ohmeda, Inc. | Monitoring physiological parameters based on variations in a photoplethysmographic signal |
US6896661B2 (en) | 2002-02-22 | 2005-05-24 | Datex-Ohmeda, Inc. | Monitoring physiological parameters based on variations in a photoplethysmographic baseline signal |
US20030214409A1 (en) * | 2002-05-13 | 2003-11-20 | Scott Laboratories, Inc. | System and method for transparent early detection, warning, and intervention during a medical procedure |
US7034692B2 (en) | 2002-05-13 | 2006-04-25 | Scott Laboratories, Inc. | System and method for transparent early detection, warning, and intervention during a medical procedure |
US20090062660A1 (en) * | 2002-07-10 | 2009-03-05 | Britton Chance | Examination and imaging of brain cognitive functions |
US20110172509A1 (en) * | 2002-07-10 | 2011-07-14 | Britton Chance | Examination of biological tissue using non-contact optical probes |
US8761866B2 (en) | 2002-07-10 | 2014-06-24 | Non-Invasive Technology Inc. | Examination and imaging of brain cognitive functions |
US7983741B2 (en) | 2002-07-10 | 2011-07-19 | Non-Invasive Technology Inc. | Examination and imaging of brain cognitive functions |
US8483790B2 (en) | 2002-10-18 | 2013-07-09 | Covidien Lp | Non-adhesive oximeter sensor for sensitive skin |
US20050046436A1 (en) * | 2003-07-21 | 2005-03-03 | Gerd Frankowsky | Calibration device for the calibration of a tester channel of a tester device and a test system |
US7499740B2 (en) | 2004-02-25 | 2009-03-03 | Nellcor Puritan Bennett Llc | Techniques for detecting heart pulses and reducing power consumption in sensors |
US7474907B2 (en) | 2004-03-08 | 2009-01-06 | Nellcor Puritan Bennett Inc. | Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics |
US7194293B2 (en) | 2004-03-08 | 2007-03-20 | Nellcor Puritan Bennett Incorporated | Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics |
US8560036B2 (en) | 2004-03-08 | 2013-10-15 | Covidien Lp | Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics |
US7890154B2 (en) | 2004-03-08 | 2011-02-15 | Nellcor Puritan Bennett Llc | Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics |
US20070208242A1 (en) * | 2004-03-08 | 2007-09-06 | Nellcor Puritan Bennett Inc. | Selection of ensemble averaging weights for a pulse oximeter based on signal quality metrics |
US7881790B1 (en) | 2004-07-19 | 2011-02-01 | Pacesetter, Inc. | Reducing data acquisition, power and processing for photoplethysmography and other applications |
US8617080B2 (en) | 2004-07-19 | 2013-12-31 | Pacesetter, Inc. | Reducing data acquisition, power and processing for hemodynamic signal sampling |
US20110201946A1 (en) * | 2004-07-19 | 2011-08-18 | Turcott Robert G | Reducing data acquisition, power and processing for hemodynamic signal sampling |
US7909768B1 (en) | 2004-07-19 | 2011-03-22 | Pacesetter, Inc. | Reducing data acquisition, power and processing for hemodynamic signal sampling |
US7690378B1 (en) | 2004-07-21 | 2010-04-06 | Pacesetter, Inc. | Methods, systems and devices for monitoring respiratory disorders |
US20100152560A1 (en) * | 2004-07-21 | 2010-06-17 | Pacesetter, Inc. | Methods, systems and devices for monitoring respiratory disorders |
US9022030B2 (en) | 2004-07-21 | 2015-05-05 | Pacesetter, Inc. | Methods, systems and devices for monitoring respiratory disorders |
US7623990B2 (en) | 2004-11-03 | 2009-11-24 | Draeger Medical Systems, Inc. | System for reducing signal interference in modulated signal communication |
US20060092328A1 (en) * | 2004-11-03 | 2006-05-04 | Ralph Anderson | System for reducing signal interference in modulated signal communication |
US8116839B1 (en) | 2005-02-25 | 2012-02-14 | General Electric Company | System for detecting potential probe malfunction conditions in a pulse oximeter |
US8050728B2 (en) | 2005-03-01 | 2011-11-01 | Masimo Laboratories, Inc. | Multiple wavelength sensor drivers |
US7596398B2 (en) | 2005-03-01 | 2009-09-29 | Masimo Laboratories, Inc. | Multiple wavelength sensor attachment |
US8224411B2 (en) | 2005-03-01 | 2012-07-17 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US10123726B2 (en) | 2005-03-01 | 2018-11-13 | Cercacor Laboratories, Inc. | Configurable physiological measurement system |
US10856788B2 (en) | 2005-03-01 | 2020-12-08 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US10327683B2 (en) | 2005-03-01 | 2019-06-25 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US9167995B2 (en) | 2005-03-01 | 2015-10-27 | Cercacor Laboratories, Inc. | Physiological parameter confidence measure |
US9241662B2 (en) | 2005-03-01 | 2016-01-26 | Cercacor Laboratories, Inc. | Configurable physiological measurement system |
US7764982B2 (en) | 2005-03-01 | 2010-07-27 | Masimo Laboratories, Inc. | Multiple wavelength sensor emitters |
US8929964B2 (en) | 2005-03-01 | 2015-01-06 | Cercacor Laboratories, Inc. | Multiple wavelength sensor drivers |
US9750443B2 (en) | 2005-03-01 | 2017-09-05 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US7761127B2 (en) | 2005-03-01 | 2010-07-20 | Masimo Laboratories, Inc. | Multiple wavelength sensor substrate |
US8912909B2 (en) | 2005-03-01 | 2014-12-16 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US8849365B2 (en) | 2005-03-01 | 2014-09-30 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US8130105B2 (en) | 2005-03-01 | 2012-03-06 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US10984911B2 (en) | 2005-03-01 | 2021-04-20 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US8255027B2 (en) | 2005-03-01 | 2012-08-28 | Cercacor Laboratories, Inc. | Multiple wavelength sensor substrate |
US8301217B2 (en) | 2005-03-01 | 2012-10-30 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US8385996B2 (en) | 2005-03-01 | 2013-02-26 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US7729733B2 (en) | 2005-03-01 | 2010-06-01 | Masimo Laboratories, Inc. | Configurable physiological measurement system |
US8718735B2 (en) | 2005-03-01 | 2014-05-06 | Cercacor Laboratories, Inc. | Physiological parameter confidence measure |
US8634889B2 (en) | 2005-03-01 | 2014-01-21 | Cercacor Laboratories, Inc. | Configurable physiological measurement system |
US12283374B2 (en) | 2005-03-01 | 2025-04-22 | Willow Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US12230393B2 (en) | 2005-03-01 | 2025-02-18 | Willow Laboratories, Inc. | Multiple wavelength sensor emitters |
US7647083B2 (en) | 2005-03-01 | 2010-01-12 | Masimo Laboratories, Inc. | Multiple wavelength sensor equalization |
US7957780B2 (en) | 2005-03-01 | 2011-06-07 | Masimo Laboratories, Inc. | Physiological parameter confidence measure |
US11545263B2 (en) | 2005-03-01 | 2023-01-03 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US9351675B2 (en) | 2005-03-01 | 2016-05-31 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US9131882B2 (en) | 2005-03-01 | 2015-09-15 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US7377794B2 (en) | 2005-03-01 | 2008-05-27 | Masimo Corporation | Multiple wavelength sensor interconnect |
US8483787B2 (en) | 2005-03-01 | 2013-07-09 | Cercacor Laboratories, Inc. | Multiple wavelength sensor drivers |
US10251585B2 (en) | 2005-03-01 | 2019-04-09 | Cercacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US11430572B2 (en) | 2005-03-01 | 2022-08-30 | Cercacor Laboratories, Inc. | Multiple wavelength sensor emitters |
US7563110B2 (en) | 2005-03-01 | 2009-07-21 | Masimo Laboratories, Inc. | Multiple wavelength sensor interconnect |
US8190223B2 (en) | 2005-03-01 | 2012-05-29 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US9549696B2 (en) | 2005-03-01 | 2017-01-24 | Cercacor Laboratories, Inc. | Physiological parameter confidence measure |
US8581732B2 (en) | 2005-03-01 | 2013-11-12 | Carcacor Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
US20110060200A1 (en) * | 2005-03-14 | 2011-03-10 | Peter Bernreuter | In vivo blood spectrometry |
US8055321B2 (en) | 2005-03-14 | 2011-11-08 | Peter Bernreuter | Tissue oximetry apparatus and method |
US7865223B1 (en) | 2005-03-14 | 2011-01-04 | Peter Bernreuter | In vivo blood spectrometry |
US8923942B2 (en) | 2005-03-14 | 2014-12-30 | Peter Bernreuter | In vivo blood spectrometry |
US9364176B2 (en) | 2005-03-14 | 2016-06-14 | Peter Bernreuter | Tissue oximetry apparatus and method |
US7403806B2 (en) | 2005-06-28 | 2008-07-22 | General Electric Company | System for prefiltering a plethysmographic signal |
US8311602B2 (en) | 2005-08-08 | 2012-11-13 | Nellcor Puritan Bennett Llc | Compliant diaphragm medical sensor and technique for using the same |
US7684843B2 (en) | 2005-08-08 | 2010-03-23 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8528185B2 (en) | 2005-08-08 | 2013-09-10 | Covidien Lp | Bi-stable medical sensor and technique for using the same |
US7738937B2 (en) | 2005-08-08 | 2010-06-15 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7657296B2 (en) | 2005-08-08 | 2010-02-02 | Nellcor Puritan Bennett Llc | Unitary medical sensor assembly and technique for using the same |
US7693559B2 (en) | 2005-08-08 | 2010-04-06 | Nellcor Puritan Bennett Llc | Medical sensor having a deformable region and technique for using the same |
US7647084B2 (en) | 2005-08-08 | 2010-01-12 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7657295B2 (en) | 2005-08-08 | 2010-02-02 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7590439B2 (en) | 2005-08-08 | 2009-09-15 | Nellcor Puritan Bennett Llc | Bi-stable medical sensor and technique for using the same |
US7657294B2 (en) | 2005-08-08 | 2010-02-02 | Nellcor Puritan Bennett Llc | Compliant diaphragm medical sensor and technique for using the same |
US7574244B2 (en) | 2005-08-08 | 2009-08-11 | Nellcor Puritan Bennett Llc | Compliant diaphragm medical sensor and technique for using the same |
US8260391B2 (en) | 2005-09-12 | 2012-09-04 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US7904130B2 (en) | 2005-09-29 | 2011-03-08 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8965473B2 (en) | 2005-09-29 | 2015-02-24 | Covidien Lp | Medical sensor for reducing motion artifacts and technique for using the same |
US7869850B2 (en) | 2005-09-29 | 2011-01-11 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US8060171B2 (en) | 2005-09-29 | 2011-11-15 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US8600469B2 (en) | 2005-09-29 | 2013-12-03 | Covidien Lp | Medical sensor and technique for using the same |
US7729736B2 (en) | 2005-09-29 | 2010-06-01 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7899510B2 (en) | 2005-09-29 | 2011-03-01 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7676253B2 (en) | 2005-09-29 | 2010-03-09 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8092379B2 (en) | 2005-09-29 | 2012-01-10 | Nellcor Puritan Bennett Llc | Method and system for determining when to reposition a physiological sensor |
US7650177B2 (en) | 2005-09-29 | 2010-01-19 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US8352009B2 (en) | 2005-09-30 | 2013-01-08 | Covidien Lp | Medical sensor and technique for using the same |
US8386002B2 (en) | 2005-09-30 | 2013-02-26 | Covidien Lp | Optically aligned pulse oximetry sensor and technique for using the same |
US7483731B2 (en) | 2005-09-30 | 2009-01-27 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7486979B2 (en) | 2005-09-30 | 2009-02-03 | Nellcor Puritan Bennett Llc | Optically aligned pulse oximetry sensor and technique for using the same |
US8233954B2 (en) | 2005-09-30 | 2012-07-31 | Nellcor Puritan Bennett Llc | Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same |
US7555327B2 (en) | 2005-09-30 | 2009-06-30 | Nellcor Puritan Bennett Llc | Folding medical sensor and technique for using the same |
US8352010B2 (en) | 2005-09-30 | 2013-01-08 | Covidien Lp | Folding medical sensor and technique for using the same |
US7881762B2 (en) | 2005-09-30 | 2011-02-01 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US8062221B2 (en) | 2005-09-30 | 2011-11-22 | Nellcor Puritan Bennett Llc | Sensor for tissue gas detection and technique for using the same |
US20070136013A1 (en) * | 2005-12-09 | 2007-06-14 | William Premerlani | Methods and systems for measuring a rate of change of requency |
US7328114B2 (en) | 2005-12-09 | 2008-02-05 | General Electric Company | Methods and systems for measuring a rate of change of frequency |
US7477924B2 (en) | 2006-05-02 | 2009-01-13 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8437826B2 (en) | 2006-05-02 | 2013-05-07 | Covidien Lp | Clip-style medical sensor and technique for using the same |
US7522948B2 (en) | 2006-05-02 | 2009-04-21 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8073518B2 (en) | 2006-05-02 | 2011-12-06 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US8145288B2 (en) | 2006-08-22 | 2012-03-27 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8577436B2 (en) | 2006-08-22 | 2013-11-05 | Covidien Lp | Medical sensor for reducing signal artifacts and technique for using the same |
US8219170B2 (en) | 2006-09-20 | 2012-07-10 | Nellcor Puritan Bennett Llc | System and method for practicing spectrophotometry using light emitting nanostructure devices |
US8195264B2 (en) | 2006-09-22 | 2012-06-05 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8190225B2 (en) | 2006-09-22 | 2012-05-29 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8175671B2 (en) | 2006-09-22 | 2012-05-08 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8396527B2 (en) | 2006-09-22 | 2013-03-12 | Covidien Lp | Medical sensor for reducing signal artifacts and technique for using the same |
US8190224B2 (en) | 2006-09-22 | 2012-05-29 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US7869849B2 (en) | 2006-09-26 | 2011-01-11 | Nellcor Puritan Bennett Llc | Opaque, electrically nonconductive region on a medical sensor |
US7574245B2 (en) | 2006-09-27 | 2009-08-11 | Nellcor Puritan Bennett Llc | Flexible medical sensor enclosure |
US8315685B2 (en) | 2006-09-27 | 2012-11-20 | Nellcor Puritan Bennett Llc | Flexible medical sensor enclosure |
US7796403B2 (en) | 2006-09-28 | 2010-09-14 | Nellcor Puritan Bennett Llc | Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit |
US7890153B2 (en) | 2006-09-28 | 2011-02-15 | Nellcor Puritan Bennett Llc | System and method for mitigating interference in pulse oximetry |
US8660626B2 (en) | 2006-09-28 | 2014-02-25 | Covidien Lp | System and method for mitigating interference in pulse oximetry |
US7680522B2 (en) | 2006-09-29 | 2010-03-16 | Nellcor Puritan Bennett Llc | Method and apparatus for detecting misapplied sensors |
US7698002B2 (en) | 2006-09-29 | 2010-04-13 | Nellcor Puritan Bennett Llc | Systems and methods for user interface and identification in a medical device |
US8160726B2 (en) | 2006-09-29 | 2012-04-17 | Nellcor Puritan Bennett Llc | User interface and identification in a medical device system and method |
US8160683B2 (en) | 2006-09-29 | 2012-04-17 | Nellcor Puritan Bennett Llc | System and method for integrating voice with a medical device |
US7794266B2 (en) | 2006-09-29 | 2010-09-14 | Nellcor Puritan Bennett Llc | Device and method for reducing crosstalk |
US7684842B2 (en) | 2006-09-29 | 2010-03-23 | Nellcor Puritan Bennett Llc | System and method for preventing sensor misuse |
US7706896B2 (en) | 2006-09-29 | 2010-04-27 | Nellcor Puritan Bennett Llc | User interface and identification in a medical device system and method |
US20100217104A1 (en) * | 2006-09-29 | 2010-08-26 | Nellcor Puritan Bennett Llc | System and method for display control of patient monitor |
US20080097175A1 (en) * | 2006-09-29 | 2008-04-24 | Boyce Robin S | System and method for display control of patient monitor |
US8175667B2 (en) | 2006-09-29 | 2012-05-08 | Nellcor Puritan Bennett Llc | Symmetric LED array for pulse oximetry |
US7658652B2 (en) | 2006-09-29 | 2010-02-09 | Nellcor Puritan Bennett Llc | Device and method for reducing crosstalk |
US20080114226A1 (en) * | 2006-09-29 | 2008-05-15 | Doug Music | Systems and methods for user interface and identification in a medical device |
US7925511B2 (en) | 2006-09-29 | 2011-04-12 | Nellcor Puritan Bennett Llc | System and method for secure voice identification in a medical device |
US8068891B2 (en) | 2006-09-29 | 2011-11-29 | Nellcor Puritan Bennett Llc | Symmetric LED array for pulse oximetry |
US12029586B2 (en) | 2006-10-12 | 2024-07-09 | Masimo Corporation | Oximeter probe off indicator defining probe off space |
CN101641705B (en) * | 2006-10-25 | 2013-08-21 | 茂福公司 | Method for validating a biometrical acquisition, mainly a body imprint |
WO2008050070A2 (en) | 2006-10-25 | 2008-05-02 | Sagem Securite | Method for validating a biometrical acquisition, mainly a body imprint |
US8092386B1 (en) | 2006-12-22 | 2012-01-10 | Pacesetter, Inc. | Method and implantable system for blood-glucose concentration monitoring |
US7894869B2 (en) | 2007-03-09 | 2011-02-22 | Nellcor Puritan Bennett Llc | Multiple configuration medical sensor and technique for using the same |
US8265724B2 (en) | 2007-03-09 | 2012-09-11 | Nellcor Puritan Bennett Llc | Cancellation of light shunting |
US8280469B2 (en) | 2007-03-09 | 2012-10-02 | Nellcor Puritan Bennett Llc | Method for detection of aberrant tissue spectra |
US8781544B2 (en) | 2007-03-27 | 2014-07-15 | Cercacor Laboratories, Inc. | Multiple wavelength optical sensor |
US10980457B2 (en) | 2007-04-21 | 2021-04-20 | Masimo Corporation | Tissue profile wellness monitor |
US11647923B2 (en) | 2007-04-21 | 2023-05-16 | Masimo Corporation | Tissue profile wellness monitor |
US10251586B2 (en) | 2007-04-21 | 2019-04-09 | Masimo Corporation | Tissue profile wellness monitor |
US12156733B2 (en) | 2007-04-21 | 2024-12-03 | Masimo Corporation | Tissue profile wellness monitor |
US8965471B2 (en) | 2007-04-21 | 2015-02-24 | Cercacor Laboratories, Inc. | Tissue profile wellness monitor |
US9848807B2 (en) | 2007-04-21 | 2017-12-26 | Masimo Corporation | Tissue profile wellness monitor |
US20080306361A1 (en) * | 2007-06-11 | 2008-12-11 | Joshua Friedman | Optical screening device |
US20080306470A1 (en) * | 2007-06-11 | 2008-12-11 | Joshua Friedman | Optical screening device |
US7920913B1 (en) | 2007-06-29 | 2011-04-05 | Pacesetter, Inc. | Systems and methods for increasing implantable sensor accuracy |
CN101347334B (en) * | 2007-07-19 | 2012-09-05 | 深圳迈瑞生物医疗电子股份有限公司 | Method and device for measuring blood oxygen saturation |
US8517941B1 (en) | 2007-10-23 | 2013-08-27 | Pacesetter, Inc. | Implantable cardiac device and method for monitoring blood-glucose concentration |
US8346328B2 (en) | 2007-12-21 | 2013-01-01 | Covidien Lp | Medical sensor and technique for using the same |
US8352004B2 (en) | 2007-12-21 | 2013-01-08 | Covidien Lp | Medical sensor and technique for using the same |
US8366613B2 (en) | 2007-12-26 | 2013-02-05 | Covidien Lp | LED drive circuit for pulse oximetry and method for using same |
US8577434B2 (en) | 2007-12-27 | 2013-11-05 | Covidien Lp | Coaxial LED light sources |
US8452364B2 (en) | 2007-12-28 | 2013-05-28 | Covidien LLP | System and method for attaching a sensor to a patient's skin |
US8442608B2 (en) | 2007-12-28 | 2013-05-14 | Covidien Lp | System and method for estimating physiological parameters by deconvolving artifacts |
US8199007B2 (en) | 2007-12-31 | 2012-06-12 | Nellcor Puritan Bennett Llc | Flex circuit snap track for a biometric sensor |
US8897850B2 (en) | 2007-12-31 | 2014-11-25 | Covidien Lp | Sensor with integrated living hinge and spring |
US8092993B2 (en) | 2007-12-31 | 2012-01-10 | Nellcor Puritan Bennett Llc | Hydrogel thin film for use as a biosensor |
US8070508B2 (en) | 2007-12-31 | 2011-12-06 | Nellcor Puritan Bennett Llc | Method and apparatus for aligning and securing a cable strain relief |
US8437822B2 (en) | 2008-03-28 | 2013-05-07 | Covidien Lp | System and method for estimating blood analyte concentration |
US8112375B2 (en) | 2008-03-31 | 2012-02-07 | Nellcor Puritan Bennett Llc | Wavelength selection and outlier detection in reduced rank linear models |
US7887345B2 (en) | 2008-06-30 | 2011-02-15 | Nellcor Puritan Bennett Llc | Single use connector for pulse oximetry sensors |
US8071935B2 (en) | 2008-06-30 | 2011-12-06 | Nellcor Puritan Bennett Llc | Optical detector with an overmolded faraday shield |
US7880884B2 (en) | 2008-06-30 | 2011-02-01 | Nellcor Puritan Bennett Llc | System and method for coating and shielding electronic sensor components |
US8364220B2 (en) | 2008-09-25 | 2013-01-29 | Covidien Lp | Medical sensor and technique for using the same |
US8423112B2 (en) | 2008-09-30 | 2013-04-16 | Covidien Lp | Medical sensor and technique for using the same |
US8417309B2 (en) | 2008-09-30 | 2013-04-09 | Covidien Lp | Medical sensor |
US8914088B2 (en) | 2008-09-30 | 2014-12-16 | Covidien Lp | Medical sensor and technique for using the same |
US9498158B2 (en) | 2008-11-14 | 2016-11-22 | Nonin Medical, Inc. | Optical sensor path selection |
US8725226B2 (en) | 2008-11-14 | 2014-05-13 | Nonin Medical, Inc. | Optical sensor path selection |
US8452366B2 (en) | 2009-03-16 | 2013-05-28 | Covidien Lp | Medical monitoring device with flexible circuitry |
US8221319B2 (en) | 2009-03-25 | 2012-07-17 | Nellcor Puritan Bennett Llc | Medical device for assessing intravascular blood volume and technique for using the same |
US9282895B2 (en) | 2009-03-30 | 2016-03-15 | Pacesetter, Inc. | Method and implantable system for blood-glucose concentration monitoring using parallel methodologies |
US8630692B2 (en) | 2009-04-30 | 2014-01-14 | Pacesetter, Inc. | Method and implantable system for blood-glucose concentration monitoring using parallel methodologies |
US20100280348A1 (en) * | 2009-04-30 | 2010-11-04 | Brian Jeffrey Wenzel | Method and implantable system for blood-glucose concentration monitoring using parallel methodologies |
US8509869B2 (en) | 2009-05-15 | 2013-08-13 | Covidien Lp | Method and apparatus for detecting and analyzing variations in a physiologic parameter |
US8634891B2 (en) | 2009-05-20 | 2014-01-21 | Covidien Lp | Method and system for self regulation of sensor component contact pressure |
US9010634B2 (en) | 2009-06-30 | 2015-04-21 | Covidien Lp | System and method for linking patient data to a patient and providing sensor quality assurance |
US8311601B2 (en) | 2009-06-30 | 2012-11-13 | Nellcor Puritan Bennett Llc | Reflectance and/or transmissive pulse oximeter |
US8290730B2 (en) | 2009-06-30 | 2012-10-16 | Nellcor Puritan Bennett Ireland | Systems and methods for assessing measurements in physiological monitoring devices |
US8505821B2 (en) | 2009-06-30 | 2013-08-13 | Covidien Lp | System and method for providing sensor quality assurance |
US8636667B2 (en) | 2009-07-06 | 2014-01-28 | Nellcor Puritan Bennett Ireland | Systems and methods for processing physiological signals in wavelet space |
US8391941B2 (en) | 2009-07-17 | 2013-03-05 | Covidien Lp | System and method for memory switching for multiple configuration medical sensor |
US8417310B2 (en) | 2009-08-10 | 2013-04-09 | Covidien Lp | Digital switching in multi-site sensor |
US8428675B2 (en) | 2009-08-19 | 2013-04-23 | Covidien Lp | Nanofiber adhesives used in medical devices |
US20110095749A1 (en) * | 2009-10-28 | 2011-04-28 | Joseph Yossi Harlev | Optical sensor assembly for installation on a current carrying cable |
US20110095750A1 (en) * | 2009-10-28 | 2011-04-28 | Joseph Yossi Harlev | Method for measuring current in an electric power distribution system |
US8076925B2 (en) | 2009-10-28 | 2011-12-13 | Optisense Network, Inc. | Optical sensor assembly for installation on a current carrying cable |
US8395372B2 (en) | 2009-10-28 | 2013-03-12 | Optisense Network, Llc | Method for measuring current in an electric power distribution system |
US9134344B2 (en) | 2009-10-28 | 2015-09-15 | Gridview Optical Solutions, Llc. | Optical sensor assembly for installation on a current carrying cable |
US10750983B2 (en) | 2009-11-24 | 2020-08-25 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US12127833B2 (en) | 2009-11-24 | 2024-10-29 | Willow Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US11534087B2 (en) | 2009-11-24 | 2022-12-27 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US9839381B1 (en) | 2009-11-24 | 2017-12-12 | Cercacor Laboratories, Inc. | Physiological measurement system with automatic wavelength adjustment |
US8801613B2 (en) | 2009-12-04 | 2014-08-12 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US10729402B2 (en) | 2009-12-04 | 2020-08-04 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US12186079B2 (en) | 2009-12-04 | 2025-01-07 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US11571152B2 (en) | 2009-12-04 | 2023-02-07 | Masimo Corporation | Calibration for multi-stage physiological monitors |
US8521246B2 (en) | 2010-07-29 | 2013-08-27 | Covidien Lp | Cable cross talk suppression |
US9072439B2 (en) | 2011-01-20 | 2015-07-07 | Nitto Denko Corporation | Photoplethysmographic device and methods therefore |
US9535097B2 (en) | 2012-07-19 | 2017-01-03 | Gridview Optical Solutions, Llc. | Electro-optic current sensor with high dynamic range and accuracy |
US9817038B2 (en) | 2012-07-19 | 2017-11-14 | Gridview Optical Solutions, Llc. | Electro-optic current sensor with high dynamic range and accuracy |
US10842391B2 (en) | 2012-10-07 | 2020-11-24 | Rds Sas | Health monitoring systems and methods |
US10244949B2 (en) | 2012-10-07 | 2019-04-02 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
US10980486B2 (en) | 2012-10-07 | 2021-04-20 | Rds | Health monitoring systems and methods |
US10993671B2 (en) | 2012-10-07 | 2021-05-04 | Rds | Health monitoring systems and methods |
USD931467S1 (en) | 2012-10-07 | 2021-09-21 | Rds | Health monitoring apparatus |
US10959678B2 (en) | 2012-10-07 | 2021-03-30 | Rds | Health monitoring systems and methods |
US11185291B2 (en) | 2012-10-07 | 2021-11-30 | Rds | Health monitoring systems and methods |
US10413251B2 (en) | 2012-10-07 | 2019-09-17 | Rhythm Diagnostic Systems, Inc. | Wearable cardiac monitor |
US10080527B2 (en) | 2012-10-07 | 2018-09-25 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
US11786182B2 (en) | 2012-10-07 | 2023-10-17 | Rds | Health monitoring systems and methods |
US9782132B2 (en) | 2012-10-07 | 2017-10-10 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
US10863947B2 (en) | 2012-10-07 | 2020-12-15 | Rds Sas | Health monitoring systems and methods |
US10610159B2 (en) | 2012-10-07 | 2020-04-07 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
US11937946B2 (en) | 2012-10-07 | 2024-03-26 | Rds | Wearable cardiac monitor |
USD850626S1 (en) | 2013-03-15 | 2019-06-04 | Rhythm Diagnostic Systems, Inc. | Health monitoring apparatuses |
US9146358B2 (en) | 2013-07-16 | 2015-09-29 | Gridview Optical Solutions, Llc | Collimator holder for electro-optical sensor |
WO2016210334A1 (en) * | 2015-06-26 | 2016-12-29 | Rhythm Diagnostic Systems, Inc. | Health monitoring systems and methods |
JP2018518323A (en) * | 2015-06-26 | 2018-07-12 | リズム ダイアグノスティック システムズ,インク. | System and method for monitoring health status |
CN107735025A (en) * | 2015-06-26 | 2018-02-23 | 节奏诊断系统公司 | Health monitor system and method |
US11154215B2 (en) | 2016-12-05 | 2021-10-26 | Medipines Corporation | System and methods for respiratory measurements using breathing gas samples |
US12109047B2 (en) | 2019-01-25 | 2024-10-08 | Rds | Health monitoring systems and methods |
US11903700B2 (en) | 2019-08-28 | 2024-02-20 | Rds | Vital signs monitoring systems and methods |
Also Published As
Publication number | Publication date |
---|---|
FI891493A0 (en) | 1989-03-29 |
DE68925988T2 (en) | 1996-11-07 |
JP2602321B2 (en) | 1997-04-23 |
JPH02203843A (en) | 1990-08-13 |
EP0335356A2 (en) | 1989-10-04 |
CA1327402C (en) | 1994-03-01 |
EP0335356B1 (en) | 1996-03-20 |
FI891493A (en) | 1989-10-01 |
ATE135547T1 (en) | 1996-04-15 |
EP0335356A3 (en) | 1990-08-29 |
DE68925988D1 (en) | 1996-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4869254A (en) | Method and apparatus for calculating arterial oxygen saturation | |
US5078136A (en) | Method and apparatus for calculating arterial oxygen saturation based plethysmographs including transients | |
US7184809B1 (en) | Pulse amplitude indexing method and apparatus | |
US7215987B1 (en) | Method and apparatus for processing signals reflecting physiological characteristics | |
US5193543A (en) | Method and apparatus for measuring arterial blood constituents | |
EP0335357B1 (en) | Improved method and apparatus for detecting optical pulses | |
US4934372A (en) | Method and apparatus for detecting optical pulses | |
US6702752B2 (en) | Monitoring respiration based on plethysmographic heart rate signal | |
US5662105A (en) | System and method for the extractment of physiological signals | |
CA2354064C (en) | Direct to digital oximeter and method for calculating oxygenation levels | |
US4819752A (en) | Blood constituent measuring device and method | |
JP4056697B2 (en) | Pulse rate determination method and pulse rate determination device | |
CA2460336C (en) | A signal processing method and device for signal-to-noise improvement | |
EP0904727A1 (en) | Pulse rate and heart rate coincidence detection for pulse oximetry | |
US20040054269A1 (en) | Pulse oximeter | |
US20070260132A1 (en) | Method and apparatus for processing signals reflecting physiological characteristics from multiple sensors | |
US20050187446A1 (en) | Techniques for detecting heart pulses and reducing power consumption in sensors | |
WO2008039195A1 (en) | Pulse amplitude indexing method and apparatus | |
AU2002213271A1 (en) | A signal processing method and device for signal-to-noise improvement | |
AU2005221653A1 (en) | Method and apparatus for optical detection of mixed venous and arterial blood pulsation in tissue | |
AU605552B2 (en) | Oximeter apparatus and method for measuring arterial blood constituents | |
WO2008039187A1 (en) | Method and apparatus for processing signals reflecting physiological characteristics | |
AU770773B2 (en) | Direct to digital oximeter and method for calculating oxygenation levels | |
Patterson et al. | Ratiometric artefact reduction in low power, discrete-time, reflective photoplethysmography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NELLCOR, INC., 25495 WHITESELL STREET, HAYWARD, CA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:STONE, ROBERT T.;BRIGGS, DEBORAH A.;REEL/FRAME:004901/0057 Effective date: 19880526 Owner name: NELLCOR, INC.,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STONE, ROBERT T.;BRIGGS, DEBORAH A.;REEL/FRAME:004901/0057 Effective date: 19880526 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: NELLCOR PURITAN BENNETT INCORPORATED, CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:NELLCOR, INCORPORATED;REEL/FRAME:007833/0813 Effective date: 19950825 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: HOME FEDERAL SAVINGS BANK, MINNESOTA Free format text: SECURITY AGREEMENT;ASSIGNOR:ALLIANCE CONCRETE CONCEPTS INC.;REEL/FRAME:022902/0580 Effective date: 20090625 |