US6343223B1 - Oximeter sensor with offset emitters and detector and heating device - Google Patents
Oximeter sensor with offset emitters and detector and heating device Download PDFInfo
- Publication number
- US6343223B1 US6343223B1 US09/483,098 US48309800A US6343223B1 US 6343223 B1 US6343223 B1 US 6343223B1 US 48309800 A US48309800 A US 48309800A US 6343223 B1 US6343223 B1 US 6343223B1
- Authority
- US
- United States
- Prior art keywords
- sensor
- tissue region
- thermistor
- light
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 18
- 239000000853 adhesive Substances 0.000 claims description 17
- 230000001070 adhesive effect Effects 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 8
- 230000004888 barrier function Effects 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 239000012790 adhesive layer Substances 0.000 claims description 5
- 230000004882 diastolic arterial blood pressure Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims 1
- 239000008280 blood Substances 0.000 abstract description 22
- 210000004369 blood Anatomy 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 8
- 230000008081 blood perfusion Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 10
- 210000000624 ear auricle Anatomy 0.000 description 8
- 238000002496 oximetry Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000010412 perfusion Effects 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 5
- 238000009529 body temperature measurement Methods 0.000 description 4
- 230000000747 cardiac effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000010792 warming Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000541 pulsatile effect Effects 0.000 description 3
- 238000002106 pulse oximetry Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 206010015719 Exsanguination Diseases 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000004872 arterial blood pressure Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 208000012641 Pigmentation disease Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000010073 coating (rubber) Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000036757 core body temperature Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000035487 diastolic blood pressure Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004873 systolic arterial blood pressure Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6814—Head
- A61B5/6815—Ear
- A61B5/6816—Ear lobe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14552—Details of sensors specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1491—Heated applicators
Definitions
- the present invention relates to oximeter sensors, and in particular oximeter sensors with a heating element to improve perfusion.
- Pulse oximetry is typically used to measure various blood characteristics including, but not limited to, the blood-oxygen saturation of hemoglobin in arterial blood, and the rate of blood pulsations corresponding to a heart rate of a patient. Measurement of these characteristics has been accomplished by use of a non-invasive sensor which passes light through a portion of the patient's tissue where blood perfuses the tissue, and photoelectrically senses the absorption of light in such tissue. The amount of light absorbed is then used to calculate the amount of blood constituent being measured.
- the light passed through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood.
- the amount of transmitted or reflected light passed through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption.
- such sensors For measuring blood oxygen level, such sensors have been provided with light sources and photodetectors that are adapted to operate at two different wavelengths, in accordance with known techniques for measuring blood oxygen saturation.
- Heaters have been used in sensors to improve the perfusion, or amount of blood, adjacent the sensor. This will thus improve the measurement since the light will encounter a larger volume of blood, giving a better signal-to-noise ratio for the oximeter reading.
- U.S. Pat. No. 4,926,867 shows a piece of metal used as a heater in an oximeter sensor. A separate thermistor is used to measure the amount of heat so that the heater can be controlled to avoid burning the patient.
- Pulse oximeter sensors are often attached to a digit, or ear. These sites on a patient provide an adequate level of blood perfusion for measuring the oxygenation of the blood hemoglobin. In addition, the distance across these appendages is sufficiently short to allow the detection of transmitted red or infrared light.
- One type of sensor is a clothespin-type clip which attaches across the earlobe, with the emitter and detector opposite each other. Such conventional sensors sometime suffer from poor sensitivity and poor calibration or accuracy. This type of sensor often applies pressure which exsanguinates the tissue and alters the blood present leading to accuracy errors.
- One type of oximeter sensor will add a diffusing optic to diffuse the light emitted from the light-emitting diodes (LEDs) to cause it to pass through more tissue, and thus more blood.
- LEDs light-emitting diodes
- An example of a pulse oximeter sensor using such a diffusing element is shown in U.S. Pat. No. 4,407,290.
- Nonin Medical, Inc. Another type of clip-on sensor is marketed by Nonin Medical, Inc. for attaching to an ear. Instead of using a transmission sensor where light is transmitted from an emitter on one side of the ear through the ear to a detector on the other side, a reflectance sensor is used with both the emitter and detector on the same side of the ear.
- the Nonin medical sensor has spacing between the emitter and the detector of approximately 4 mm, which is similar to the thickness of a typical earlobe.
- a reflective surface is provided to reflect the light from the emitter back to the detector.
- the typical distance of a standard, bandaid-type reflectance sensor which can attach to the forehead or other part of the body is 6-10 mm. Traditionally, a spacing of this magnitude was felt to be appropriate to ensure that a measurable amount of light could be detected with sufficient pulsatile signal components.
- the present invention provides a method and apparatus for improving blood perfusion by both heating a patient's skin and providing emitters and a detector which are offset from each other. Since the emitters and detector are not directly opposite each other, the light is forced to pass through more blood perfused tissue (with blood perfusion enhanced by heating) to pass from the emitters to the detector. This causes the light emitted by the emitters to pass through more blood-perfused tissue to reach the detector than it would on the direct path through the appendage if the emitters and detector were opposite each other.
- the heater is a thermistor.
- the thermistor generates controlled heat, and is not just used for sensing the temperature.
- the thermistor is located in the vicinity of the light emitter and photodetector to warm the optically-probed tissue region. As heat is dissipated, temperature changes are sensed as resistance changes according to Ohm's law. Active thermal regulation by varying the amount of thermistor current and power can safeguard against burning the tissue while maximizing perfusion. The combination of heating and offset increase the amount of blood that the light from the emitters passes through.
- the thermistor is a positive temperature coefficient (PTC) thermistor rather than the more common, negative temperature coefficient (NTC) thermistor.
- PTC positive temperature coefficient
- NTC negative temperature coefficient
- the PTC provides a highly desirable safety feature as poor connections yield a perceived, higher-than-normal resistance indication. As a result, the actual thermistor temperature is regulated at a lower-than-expected temperature, avoiding the chance of burns.
- Another advantage of the same thermistor being used for both generating heat and temperature measurement is that there is no thermal gradient between the heating element and the sensing element as in the prior art. This allows for a faster response time, which is critical for maintaining a tight temperature range.
- the thermistor's resistance can be conventionally determined either by a two-wire or a four-wire method.
- the four-wire method is typically used when the connections used in the two-wire method would have resistances that could significantly affect the measurement.
- one pair of wires is used to inject a known current through the thermistor, while the other pair is used to sense the voltage across the thermistor. This enables a highly accurate determination of the thermistor's temperature.
- a simple bridge circuit with a setpoint resistor may be used to automatically bias the thermistor at a particular resistance/temperature. Once the thermistor's desired operating resistance is known from the factory, the appropriate value of the setpoint resistor can be employed in the circuit. This simple circuit could be integrated into the sensor itself or in the remote monitor.
- the senor includes at least one reflecting surface for redirecting light back to the blood-perfused tissue in the region of the offset between the emitters and detector.
- the offset distance is at least greater than, and more preferably at least twice as great as, the direct, shortest path through the appendage.
- a reflectance-type sensor is used, with a reflective surface on the opposite side of the appendage.
- the distance between the emitter and detector is greater than, and preferably twice as great as, the shortest, direct distance through the appendage.
- FIG. 1 is a diagram of a pulse oximetry system including the present invention.
- FIG. 2 is a diagram illustrating four-wire measurement in one embodiment of the invention.
- FIG. 3 is a diagram of an embodiment using a large area thermistor and a reflective type oximeter sensor.
- FIG. 4 is a circuit diagram of an embodiment of a bridge circuit for regulating the thermistor temperature.
- FIG. 5A is a diagram of a prior art emitter and detector configuration.
- FIGS. 5B-5G are diagrams of different embodiments of the configuration of the emitter and detector according to the invention.
- FIGS. 6A and 6B are end and side views of an ear sensor according to the invention.
- FIGS. 7A and 7B are side and top views of a nostril sensor according to the invention.
- FIGS. 8 and 9 are diagrams of alternate embodiments illustrating curves in the sensor.
- FIG. 10 is a diagram of a sensor with foam for distributing applied pressure.
- FIG. 11 is a diagram of an adhesive reflectance sensor with a thermistor.
- FIG. 1 is a block diagram of one preferred embodiment of the invention.
- FIG. 1 shows a pulse oximeter 17 (or sensor reader) which is connected to a non-invasive sensor 15 attached to patient tissue 18 .
- Light from sensor LEDs 14 passes into the patient tissue 18 , and after being transmitted through or reflected from tissue 18 , the light is received by photosensor 16 .
- Either two or three LEDs or other light sources can be used depending upon the embodiment of the present invention.
- the LEDs and photosensor are offset as described in more detail below with respect to FIGS. 5-10.
- Photosensor 16 converts the received energy into an electrical signal, which is then fed to input amplifier 20 .
- Light sources other than LEDs can be used.
- lasers could be used, or a white light source could be used with appropriate wavelength filters either at the transmitting or receiving ends.
- the light could be delivered to the patient site with fiber optics, with the light source in the sensor or remotely located.
- Time Processing Unit (TPU) 48 sends control signals to the LED drive 32 , to alternately activate the LEDs, typically in alteration. Again, depending on the embodiment, the drive may control two or any additional desired number of LEDs.
- the signal received from input amplifier 20 is passed through three different channels as shown in this embodiment for three different wavelengths. Alternately, two channels for two wavelengths could be used, or N channels for N wavelengths. Each channel includes an analog switch 40 , a low pass filter 42 , and an analog to digital (A/D) converter 38 . Control lines 69 from TPU 48 select the appropriate channel at the time the corresponding LED 14 is being driven, in synchronization.
- a queued serial module (QSM) 46 receives the digital data from each of the channels via data lines 79 .
- CPU 50 transfers the data from QSM 46 into RAM 52 as QSM 46 periodically fills up.
- QSM 46 , TPU 48 , CPU 50 and RAM 52 are part of one integrated circuit, such as a microcontroller.
- a thermistor 60 is shown mounted in sensor 15 .
- Thermistor 60 could be mounted adjacent the photodetector or the LEDs, or nearby.
- a thermistor control circuit 62 provides the power and current to the thermistor to deliver the desired heat, while measuring the resulting resistance, and thus the temperature.
- the thermistor can either be a positive temperature coefficient (PTC) or a negative temperature coefficient (NTC) thermistor.
- the thermistor is used in a dual capacity to dissipate thermal heat energy and self-monitor its temperature for the safe operation in a “warmed” oximeter sensor.
- a positive temperature coefficient (PTC) thermistor is more desirable than a negative temperature coefficient (NTC) thermistor for oximetry/medical applications.
- NTC negative temperature coefficient
- the power dissipation decreases with increasing temperature due to the increased resistance at higher temperatures.
- connection resistances within the sensor cable and/or connections the increased series resistance would be perceived by the oximeter as a falsely higher temperature. This is desirable as the oximeter would regulate the sensor at a lower (safe) temperature and avoid the possibility for patient burns.
- PTC thermistors generally have thermal coefficients that are smaller than for NTC, special PTC thermistors may be used.
- the nonlinear behavior of the switching or nonlinear PTC thermistors is desirable. These are available from Advanced Thermal products, St. Mary's, PA and other sources. The material is processed so the switching temperature is between 40-50° C., generally.
- a PTC transistor with a phase transition where the resistance suddenly increases, in the region between 40-50° C.
- This can be controlled in a number of different ways, such as by appropriate doping of the thermistor material.
- the PTC thermistor is regulated at 39-41° C. This is just slightly above normal (37° C.) core body temperature but below the burn threshold of 42-43° C. It has been shown recently that general warming of the tissue region probed by the oximetry sensor increases localized perfusion and increases the strength of the pulsatile oximetry signal. The benefit of this includes an increase in the acquisition and accuracy of the oximetry measurement and an increase in the tolerance to motion artifact.
- An advantage of the same thermistor being used for both generating heat and for measuring it is that there is no thermal gradient between the heating element and the sensing element as in the prior art. This allows for a faster response time, which is critical in maintaining a temperature within a tight range, as required.
- FIG. 2 illustrates a four-wire measurement system for a thermistor of the present invention.
- FIG. 2 shows a monitor 64 with a current drive circuit 66 and a voltage measurement circuit 68 . Each are separately connected by two wires to a connector 70 close to sensor 15 . From connector 70 , the four wires are converted into two wires for connecting to the actual sensor. Alternately, the four wires can extend all the way to thermistor 60 .
- Current drive circuit 66 is programmable to provide the appropriate amount of current to achieve the desired power dissipation and temperature through thermistor 60 .
- Voltage measurement circuit 68 simultaneously measures the resulting voltage, which will allow the determination of the resistance from the known drive current. By using four wires to a position close to the sensor, the resistance effects of the wiring and any connections are also taken into account.
- Memory chip 12 in one embodiment is used to store thermal coefficients of the thermistor or other thermal parameters of the sensor. These parameters can then be read by the oximeter monitor 64 and used by its CPU 50 to determine an appropriate drive current for the thermistor.
- the temperature control is done in part by the hardware and in part by software in the CPU.
- the amount of power dissipated in the thermistor is controlled by the resistance measurement, which corresponds to a temperature measurement.
- the sensor could be any type of sensor, such as a durable sensor or a disposable sensor. It could attach to any body part, such as the earlobe, finger, etc.
- the sensor could be a reflectance or a transmittance sensor.
- thermistors Since commercially available thermistors often vary significantly in their actual resistance value, the thermistors can either be trimmed at the factory, or a precision resistor could be placed in series or in parallel to adjust the resistance to the desired value.
- the senor 72 uses a single thermistor element 74 with a reflectance geometry.
- the thermistor is opposite to the reflectance sensor emitter 76 and detector 78 . This allows a large warming surface to contact the tissue 80 for the ear sensor.
- the thermistor need not directly contact the skin because the thermal loading could be asymmetrically strong to cause a lengthwise thermal gradient and an error in the temperature measurement.
- the thermistor is in close contact for maximum heat transfer but is somewhat embedded inside the sensor housing.
- a thin layer between the thermistor and contact surface may act as a buffer to allow a uniform, heat-spreading action.
- FIG. 4 is a circuit diagram of an alternate embodiment which allows a thermistor to be set to a desired temperature without intervention by a microprocessor.
- a floating resistive bridge circuit 80 can be biased at high or low current. Alternately, this current bias can be made continuously adjustable. The nulling of the bridge signifies when the setpoint temperature has been met.
- a setpoint resistor 82 is adjusted for the proper setpoint temperature (resistance) of the thermistor 84 . When the thermistor's resistance (temperature) is too high, a comparator circuit 86 is switched to cause the bridge to be biased in the low current mode to minimize the current through the thermistor (by turning off transistor Q 1 , forcing the current through resistor RQ).
- the comparator circuit is switched to cause the bridge to be biased in the high current mode supplying more current and thus more power to the thermistor (turning on transistor Q 1 , bypassing resistor RQ). There must be some voltage (current) supplied to the bridge to allow for sensing of the thermistor's resistance for the null measurement of the bridge circuit.
- thermal regulation circuit could be built. However, it has been found that this circuit works very well with no significant temperature overshoot/undershoot. This is due to the intrinsic self-measurement nature of the system with no thermal delay time between the warming element and the temperature sensor. Typical maximum power dissipation for effective application of a warmed earlobe sensor is less than 0.5 watts per side. With proper heat spreading, the thermistor is efficient at delivering the thermal energy without incurring a large thermal gradient from the thermistor to the tissue. This would give the best tissue temperature and the best performance.
- the circuit consists of only a few components as shown. The benefit of this would be the requirement of only a single power supply connection and utilizing an existing ground connection. An adapter cable could be used with older instruments to supply the additional supply lead.
- FIG. 5A illustrates a prior art configuration in which an emitter 112 is opposite a detector 114 across an earlobe, nostril, digit, or other appendage 116 .
- the present invention provides an offset emitter and sensor to improve upon this arrangement, providing more area for the light to penetrate between emitter and detector.
- the figures below show thermistor 60 , which provides a heating function to further enhance blood perfusion. Alternately, a simple heater can be substituted for thermistor 60 .
- clip type sensors are shown below, an adhesive sensor could be used, with reflectance oximetry. Alternately, adhesives could be used to attach a transmissive sensor on an appendage, with adhesives on one or both sides of the appendage.
- FIG. 5B illustrates an offset configuration in which an emitter 118 is offset from a detector 120 as can been seen, providing a longer light transmission path 122 .
- Emitter 118 is typically a pair of emitters, an infrared range emitter and a red range emitter, which are mounted in a portion 124 of a sensor probe.
- Detector 120 is a photodetector which is mounted in a portion 126 of a sensor probe.
- FIG. 5C illustrates an alternate embodiment in which emitter 128 is spaced from a detector 130 by an offset distance which is more than twice the width of appendage 132 . As can be seen, this provides a much longer transmission path 138 .
- FIG. 5D illustrates an embodiment similar to FIG. 5C, where a pair of reflectors 133 and 134 have been added.
- the reflectors 133 and 134 cause the light path 136 in FIG. 5D to be longer than the light path 138 in FIG. 5 C. This is due to light which goes across the entire appendage being reflected back in, and then back in from the other surface, bouncing back and forth between the reflectors until it reaches the detector from the emitter.
- the light which reaches the detector from the emitter is substantially the light which moves in a path through the body of the appendage, since light which would hit the edges would typically be absorbed, rather than being reflected.
- the reflective surface 133 may be, for instance, a white surface which will reflect both red and infrared light. This will enhance the path length of both red and infrared light.
- the reflective surface 133 may be “colored” to reflect red light more than infrared light (or vice versa) to compensate for skin pigmentation effects.
- FIGS. 5E and 5F show alternate embodiments in which the emitter and detector are on the same side of the appendage in a reflectance configuration.
- an emitter 140 and a detector 142 are in a portion 144 of a sensor attached to an appendage 146 , such as an earlobe.
- the sensor which may be a clip-on type sensor, has a second portion 148 opposite portion 144 .
- Portion 148 includes a reflective surface 150 .
- the light path 152 will thus be reflected back from surface 150 , providing more light to detector 142 than would be found in a typical reflectance configuration. (Please note that the light path shown in these figures is merely illustrative).
- the use of reflector 150 allows not only more light to be directed back into the tissue to arrive at detector 142 , but allows a larger space between emitter 140 and detector 142 .
- the distance L between the emitter and detector in FIG. 5E is preferably greater than the width t of the appendage, and preferably a value of L which is at least twice t.
- FIG. 5F shows an alternate embodiment to that of FIG. 5E in which a second reflector 154 is added between the emitter 140 and detector 142 in portion 144 of the sensor probe. This prevents the light from being absorbed in the body of the sensor 144 between emitter 140 and detector 142 on the same side.
- a reflector on one side will improve performance over a sensor without such a reflector, while a reflector on both sides would typically give even more enhanced performance. However, even a single reflector provides a significant improvement in the amount of light reaching the detector.
- Shunt barrier 156 prevents light from shunting directly between emitter 140 and detector 142 through sensor body 144 without passing through appendage 146 .
- Examples of shunt barriers are set forth in commonly-owned copending application entitled SHUNT BARRIER IN PULSE OXIMETER SENSOR, application Ser. No. 08/611,151, filed Mar. 5, 1996.
- FIG. 5G shows an alternate embodiment in which two emitters, 161 and 163 , have a different offset distance from the detector. This can be used to partially compensate for a difference in absorption of red and infrared.
- FIG. 6A shows an end view of one embodiment of an ear clip sensor according to the present invention.
- a bent piece of metal 160 holds pads 162 and 164 , which contain the light emitters and detector, respectively. Bent metal 160 is springy to provide pressure applying the pads 162 , 164 against the earlobe.
- the pads ( 162 and 164 ) are rigid since the earlobe conforms easily.
- slowly deformable spring material is used, which is an assembly which provides the gripping action but has a damping component which prevents quick movements. (e.g., metal sheet as the spring with a rubber coating of laminate).
- pad 162 is shown, along with the position of an emitter 166 . Shown in phantom is the position on the other pad where detector 168 would be located.
- FIGS. 7A and 7B show a similar configuration for a nostril sensor, which is basically more slender and narrow.
- a bent metal 170 provides the springiness for pads 172 and 174 .
- Pad 172 includes an emitter 176
- pad 174 includes a detector 178 .
- an optional optical diffuser 180 for diffusing the light from emitter 176 , which causes a further spreading or mixing of light and may enhance the amount of tissue penetrated in some instances.
- FIG. 7A shows a side view with the relative position of emitter 176 and detector 178 shown in phantom.
- FIG. 8 illustrates an exaggerated view of the construction of one embodiment of the sensor of FIGS. 6A, 6 B, 7 A and 7 B.
- an emitter 180 and detector 182 are shown.
- Emitter 180 is mounted on the edge of a curved portion 184 of one end of the sensor, while detector 182 is mounted near the end of a curved portion 186 on the other side of the sensor.
- the curvature in FIG. 8 would range from zero (no curvature) to less than 15% depth of offset distance or to less than 30% depth of offset distance.
- These curved portions ensure that less pressure will be applied to the appendage in-between the emitter and detector. Instead, more pressure is applied, for instance, to points 188 and 190 , which are outside of the region in-between the emitter and detector.
- this configuration reduces the exsanguination of the tissue in-between the emitter and detector. It is desirable that some pressure is applied throughout to reduce the amount of venous pooling in the tissue.
- the spring force of the metal clip in the embodiments of FIGS. 6-10 has sufficient pressure so that it exceeds the typical venous pressure of a patient, but does not exceed the diastolic arterial pressure.
- the signal received by the detector will include both a DC component and an AC component.
- the AC and DC components are monitored to determine variations in the oxygen saturation.
- By having a pressure greater than the venous pressure contributions to the AC waveform from the venous blood are limited, thus enhancing the sensitivity to variations in the arterial blood pressure. Since the pressure of the clip is less than that of the arterial pressure, it does not inhibit the arterial AC signal significantly.
- the pressure applied to the spring is such that the pressure exerted on the tissue is equal to the force applied by the spring divided by the contact area to the tissue. Since the system is in steady state, the compressed tissue will be at a minimum pressure exerted by the contact surfaces.
- Typical venous pressure, diastolic and systolic arterial pressures are ⁇ 10-35 mmHg, 80 mmHg, and 120 mmHg, respectively. Functionally, these vary due to the location of the vascular bed and the patient's condition. Low arterial diastolic blood pressure ( ⁇ 30 mmHg) may occur in sick patients. The sensor would/could be adjusted for an average pressure of 15-30 mmHg. It is more desirable to be a little low. Removal of most venous pooling would occur with light to moderate pressure ( ⁇ 15 mmHg). This would give the most enhancement of the pulse modulation by removing unnecessary DC (non-pulsatile) absorption by the blood.
- the sensor's pressure may be adjusted by mechanical means to optimize for the best pulse modulation.
- adhesives 192 and 194 are applied to the interior surface of the clip sensor in FIG. 8 to enhance the securing of the sensor to the appendage. Preferably, this is done in combination with a slight curve of the sensor (which is exaggerated in FIG. 8 ).
- the use of an adhesive improves the contact of the sensor to the appendage, and limits the susceptibility to motion artifact which might vary the distance or degree of contact between the sensor and the appendage. In addition, due to the curved shape, the likelihood of a gap between the sensor body and the skin is avoided. If the adhesive is thin enough or contains a black barrier segment, it will not shunt appreciably.
- Such an adhesive can also be used in the sensor configurations of FIGS. 6, 7 and 9 . The good contact provided by the adhesive also provides for better thermal conductance.
- FIG. 9 illustrates a sensor with concave and convex surfaces 196 and 198 .
- the particular curvature can be matched to the desired patient site.
- FIG. 10 illustrates the addition of a foam 199 between a sensor spring 100 and a pad 102 . Foam 199 can help distribute the pressure from the spring.
- FIG. 11 illustrates an embodiment of a reflectance sensor mounted with an adhesive.
- the sensor has an adhesive layer 200 , which is bonded to an underlying substrate 202 .
- Substrate 202 may be a polyester strip, for example.
- Emitter 204 and photodetector 206 are mounted to be applied to a first side of an ear, with the sensor folding around the ear near line 208 .
- An opening 205 allows light from the emitter to reach the ear, and a similar opening is used for the photodetector. These openings may optionally be covered with a transparent layer.
- the sensor wraps around the ear, with the adhesive holding the part with a thermistor 210 on a second side of the ear, opposite the emitter and photodetector.
- An opening 209 is shown for allowing the thermistor direct contact with the adhesive layer, but this may optionally be eliminated, with thermal contact being provided through both flexible substrate 202 and adhesive layer 200 .
- the thermistor could be on the same side of the ear, and/or the entire sensor could be mounted on the same side of the ear.
- the adhesive 200 is a thermally conductive material. It both avoids direct contact of thermistor 210 with the ear, and provides good heat conduction between the thermistor and the ear.
- the substrate 202 is shown folded over on itself, with the electrical components and connecting lines inside.
- the connecting lines extend to contacts 212 , which can be coupled to an oximeter monitor with an appropriate connector. More details on such a flex sensor may be seen in U.S. Pat. No. 5,469,845, issued Nov. 28, 1995.
- the present invention provides a number of advantages.
- the cardiac pulse modulation or AC portion of the detected signal has been observed in experiments to be increased by greater than three times (providing greater than 1% IR modulation of the DC signal at 100% SpO 2 ).
- This increased AC cardiac signal level is believed to be due to the longer absorption path length.
- the increased AC cardiac signal amplitude allows it to be more easily processed by the oximeter electronics and software.
- the increased AC cardiac modulation level limits the sensor's susceptibility to noise due to either motion artifact or EMI interference.
- the present invention also provides more stable DC levels.
- the path length is dominated by the offset distance rather than the tissue thickness since the offset distance is much greater. This offset distance for any one particular sensor is consistent from patient to patient.
- the increased distance between the emitter and detector limits the amount of direct optical shunting through the tissue, thus further limiting the corrupting effect on the DC level.
- the present invention may be embodied in other specific forms without departing from the essential characteristics thereof.
- the thermistor could be placed at any location on the sensor, and some or all of the monitoring or drive circuit could be located on the sensor, on an adapter or connector, or in a remote monitor. Accordingly, the foregoing description is intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Optics & Photonics (AREA)
- Otolaryngology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/483,098 US6343223B1 (en) | 1997-07-30 | 2000-01-14 | Oximeter sensor with offset emitters and detector and heating device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/903,120 US6115621A (en) | 1997-07-30 | 1997-07-30 | Oximetry sensor with offset emitters and detector |
US09/447,449 US6466808B1 (en) | 1999-11-22 | 1999-11-22 | Single device for both heating and temperature measurement in an oximeter sensor |
US09/483,098 US6343223B1 (en) | 1997-07-30 | 2000-01-14 | Oximeter sensor with offset emitters and detector and heating device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/447,449 Continuation-In-Part US6466808B1 (en) | 1997-07-30 | 1999-11-22 | Single device for both heating and temperature measurement in an oximeter sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
US6343223B1 true US6343223B1 (en) | 2002-01-29 |
Family
ID=27034980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/483,098 Expired - Lifetime US6343223B1 (en) | 1997-07-30 | 2000-01-14 | Oximeter sensor with offset emitters and detector and heating device |
Country Status (1)
Country | Link |
---|---|
US (1) | US6343223B1 (en) |
Cited By (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020003231A1 (en) * | 1999-12-21 | 2002-01-10 | Xerox Corporation | Semi-transparent power monitor integrated with a light producing module |
US20030004423A1 (en) * | 2000-03-02 | 2003-01-02 | Itamar Medical Ltd. | Method and apparatus for the non-invasive detection of particular sleep-state conditions by monitoring the peripheral vascular system |
US20040221370A1 (en) * | 2002-10-01 | 2004-11-11 | Nellcor Puritan Bennett Incorporated | Headband with tension indicator |
US20040257557A1 (en) * | 2003-06-19 | 2004-12-23 | Optix Lp | Method and apparatus for optical sampling to reduce interfering variances |
US20050049471A1 (en) * | 2003-08-25 | 2005-03-03 | Aceti John Gregory | Pulse oximetry methods and apparatus for use within an auditory canal |
US20050059869A1 (en) * | 2003-09-15 | 2005-03-17 | John Scharf | Physiological monitoring system and improved sensor device |
US20050059870A1 (en) * | 2003-08-25 | 2005-03-17 | Aceti John Gregory | Processing methods and apparatus for monitoring physiological parameters using physiological characteristics present within an auditory canal |
US20050187449A1 (en) * | 2004-02-25 | 2005-08-25 | Nellcor Puritan Bennett Inc. | Oximeter red and IR zero calibration control |
US20060030764A1 (en) * | 1999-04-14 | 2006-02-09 | Mallinckrodt Inc. | Method and circuit for indicating quality and accuracy of physiological measurements |
US20060195028A1 (en) * | 2003-06-25 | 2006-08-31 | Don Hannula | Hat-based oximeter sensor |
US20070027376A1 (en) * | 2005-07-29 | 2007-02-01 | Nihon Kohden Corporation | Probe adapted to be used with pulse oximeter |
US20070032716A1 (en) * | 2005-08-08 | 2007-02-08 | William Raridan | Medical sensor having a deformable region and technique for using the same |
US20070032708A1 (en) * | 2005-08-08 | 2007-02-08 | Darius Eghbal | Compliant diaphragm medical sensor and technique for using the same |
US20070073123A1 (en) * | 2005-09-29 | 2007-03-29 | Raridan William B Jr | Medical sensor and technique for using the same |
US20070073122A1 (en) * | 2005-09-29 | 2007-03-29 | Carine Hoarau | Medical sensor and technique for using the same |
US20070068527A1 (en) * | 2005-09-29 | 2007-03-29 | Baker Clark R Jr | Method and system for determining when to reposition a physiological sensor |
US20070078307A1 (en) * | 2005-09-30 | 2007-04-05 | Debreczeny Martin P | Sensor for tissue gas detection and technique for using the same |
US20070078318A1 (en) * | 2005-09-30 | 2007-04-05 | Carl Kling | Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same |
US20070078309A1 (en) * | 2005-09-30 | 2007-04-05 | Matlock George L | Optically aligned pulse oximetry sensor and technique for using the same |
US20070078315A1 (en) * | 2005-09-30 | 2007-04-05 | Carl Kling | Clip-style medical sensor and technique for using the same |
US20070078317A1 (en) * | 2005-09-30 | 2007-04-05 | Matlock George L | Folding medical sensor and technique for using the same |
US20070208240A1 (en) * | 2004-02-25 | 2007-09-06 | Nellcor Puritan Bennett Inc. | Techniques for detecting heart pulses and reducing power consumption in sensors |
US20070282181A1 (en) * | 2006-06-01 | 2007-12-06 | Carol Findlay | Visual medical sensor indicator |
US20080058622A1 (en) * | 2006-08-22 | 2008-03-06 | Baker Clark R | Medical sensor for reducing signal artifacts and technique for using the same |
US20080064940A1 (en) * | 2006-09-12 | 2008-03-13 | Raridan William B | Sensor cable design for use with spectrophotometric sensors and method of using the same |
US20080071154A1 (en) * | 2006-09-20 | 2008-03-20 | Nellcor Puritan Bennett Inc. | System and method for practicing spectrophotometry using light emitting nanostructure devices |
US20080076980A1 (en) * | 2006-09-22 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Medical sensor for reducing signal artifacts and technique for using the same |
US20080076982A1 (en) * | 2006-09-26 | 2008-03-27 | Ollerdessen Albert L | Opaque, electrically nonconductive region on a medical sensor |
US20080076994A1 (en) * | 2006-09-22 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Medical sensor for reducing signal artifacts and technique for using the same |
US20080076987A1 (en) * | 2006-09-27 | 2008-03-27 | Nellcor Puritan Bennett Inc. | Flexible medical sensor enclosure |
US20080081967A1 (en) * | 2006-09-29 | 2008-04-03 | Nellcor Puritan Bennett Incorporated | Method and apparatus for detecting misapplied sensors |
US20080081973A1 (en) * | 2006-09-28 | 2008-04-03 | Nellcor Puritan Bennett Incorporated | System and method for mitigating interference in pulse oximetry |
US20080117616A1 (en) * | 2006-09-28 | 2008-05-22 | Nellcor Puritan Bennett Inc. | Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit |
US20080221427A1 (en) * | 2007-03-09 | 2008-09-11 | Nellcor Puritan Bennett Llc | Cancellation of light shunting |
US20080221414A1 (en) * | 2007-03-09 | 2008-09-11 | Nellcor Puritan Bennett Llc | Method for detection of aberrant tissue spectra |
US7477924B2 (en) | 2006-05-02 | 2009-01-13 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7483731B2 (en) | 2005-09-30 | 2009-01-27 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US20090069652A1 (en) * | 2007-09-07 | 2009-03-12 | Lee Hans C | Method and Apparatus for Sensing Blood Oxygen |
US20090076353A1 (en) * | 2007-09-18 | 2009-03-19 | Cardiac Pacemakers, Inc. | Implantable electro-optical sensor |
US7522948B2 (en) | 2006-05-02 | 2009-04-21 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US20090168385A1 (en) * | 2007-12-31 | 2009-07-02 | Nellcor Puritan Bennett Llc | Flex circuit snap track for a biometric sensor |
US20090171224A1 (en) * | 2007-12-31 | 2009-07-02 | Nellcor Puritan Bennett Llc | Sensor with integrated living hinge and spring |
US20090168050A1 (en) * | 2007-12-27 | 2009-07-02 | Nellcor Puritan Bennett Llc | Optical Sensor System And Method |
US20090167205A1 (en) * | 2007-12-26 | 2009-07-02 | Nellcor Puritan Bennett Llc | LED Drive Circuit And Method For Using Same |
US20090171166A1 (en) * | 2007-12-31 | 2009-07-02 | Nellcor Puritan Bennett Llc | Oximeter with location awareness |
US20090173518A1 (en) * | 2007-12-31 | 2009-07-09 | Nellcor Puritan Bennett Llc | Method And Apparatus For Aligning And Securing A Cable Strain Relief |
US20090187085A1 (en) * | 2007-12-28 | 2009-07-23 | Nellcor Puritan Bennett Llc | System And Method For Estimating Physiological Parameters By Deconvolving Artifacts |
US20090221885A1 (en) * | 2008-02-25 | 2009-09-03 | Cardiac Pacemakers, Inc. | Optical Window Assembly for Implantable Medical Device |
US20090247083A1 (en) * | 2008-03-31 | 2009-10-01 | Nellcor Puritan Bennett Llc | Wavelength Selection And Outlier Detection In Reduced Rank Linear Models |
US20090247845A1 (en) * | 2008-03-28 | 2009-10-01 | Nellcor Puritan Bennett Llc | System And Method For Estimating Blood Analyte Concentration |
US20090247854A1 (en) * | 2008-03-27 | 2009-10-01 | Nellcor Puritan Bennett Llc | Retractable Sensor Cable For A Pulse Oximeter |
US20090323267A1 (en) * | 2008-06-30 | 2009-12-31 | Besko David P | Optical Detector With An Overmolded Faraday Shield |
US20090323067A1 (en) * | 2008-06-30 | 2009-12-31 | Medina Casey V | System And Method For Coating And Shielding Electronic Sensor Components |
US7650177B2 (en) | 2005-09-29 | 2010-01-19 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US7657295B2 (en) | 2005-08-08 | 2010-02-02 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7658652B2 (en) | 2006-09-29 | 2010-02-09 | Nellcor Puritan Bennett Llc | Device and method for reducing crosstalk |
US20100036267A1 (en) * | 2008-08-07 | 2010-02-11 | Wen-Chien Liao | Analysis device and analyzing method for autonomic nerve state |
US7684842B2 (en) | 2006-09-29 | 2010-03-23 | Nellcor Puritan Bennett Llc | System and method for preventing sensor misuse |
US20100076319A1 (en) * | 2008-09-25 | 2010-03-25 | Nellcor Puritan Bennett Llc | Pathlength-Corrected Medical Spectroscopy |
US20100076337A1 (en) * | 2008-09-25 | 2010-03-25 | Nellcor Puritan Bennett Llc | Medical Sensor And Technique For Using The Same |
US7689259B2 (en) | 2000-04-17 | 2010-03-30 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US20100081901A1 (en) * | 2008-09-30 | 2010-04-01 | Nellcor Puritan Bennett Llc | Medical Sensor And Technique For Using The Same |
US20100081912A1 (en) * | 2008-09-30 | 2010-04-01 | Nellcor Puritan Bennett Llc | Ultrasound-Optical Doppler Hemometer and Technique for Using the Same |
US20100234706A1 (en) * | 2009-03-16 | 2010-09-16 | Nellcor Puritan Bennett Llc | Medical Monitoring Device With Flexible Circuitry |
US20100249550A1 (en) * | 2009-03-25 | 2010-09-30 | Neilcor Puritan Bennett LLC | Method And Apparatus For Optical Filtering Of A Broadband Emitter In A Medical Sensor |
US7810359B2 (en) | 2002-10-01 | 2010-10-12 | Nellcor Puritan Bennett Llc | Headband with tension indicator |
US20100280344A1 (en) * | 2005-09-12 | 2010-11-04 | Nellcor Puritan Benneth LLC | Medical sensor for reducing motion artifacts and technique for using the same |
US20100292548A1 (en) * | 2009-05-15 | 2010-11-18 | Nellcor Puritan Bennett Llc | Method And Apparatus For Detecting And Analyzing Variations In A Physiologic Parameter |
US20100298678A1 (en) * | 2009-05-20 | 2010-11-25 | Nellcor Puritan Bennett Llc | Method And System For Self Regulation Of Sensor Component Contact Pressure |
US20100327063A1 (en) * | 2009-06-30 | 2010-12-30 | Nellcor Puritan Bennett Llc | System and method for providing sensor quality assurance |
US20100327057A1 (en) * | 2009-06-30 | 2010-12-30 | Nellcor Puritan Bennett Llc | System and method for linking patient data to a patient and providing sensor quality assurance |
US20100331638A1 (en) * | 2009-06-30 | 2010-12-30 | Nellcor Puritan Bennett Llc | Reflectance and/or transmissive pulse oximeter |
US20100331631A1 (en) * | 2009-06-30 | 2010-12-30 | Nellcor Puritan Bennett Llc | Oxygen saturation ear sensor design that optimizes both attachment method and signal quality |
US20110015507A1 (en) * | 2009-07-17 | 2011-01-20 | Nellcor Puritan Bennett Llc | System and method for memory switching for multiple configuration medical sensor |
US20110034789A1 (en) * | 2009-08-10 | 2011-02-10 | Nellcor Puritan Bennett Llc | Digital switching in multi-site sensor |
US7887345B2 (en) | 2008-06-30 | 2011-02-15 | Nellcor Puritan Bennett Llc | Single use connector for pulse oximetry sensors |
US7894869B2 (en) | 2007-03-09 | 2011-02-22 | Nellcor Puritan Bennett Llc | Multiple configuration medical sensor and technique for using the same |
US20110046461A1 (en) * | 2009-08-19 | 2011-02-24 | Nellcor Puritan Bennett Llc | Nanofiber adhesives used in medical devices |
US8068891B2 (en) | 2006-09-29 | 2011-11-29 | Nellcor Puritan Bennett Llc | Symmetric LED array for pulse oximetry |
US8073518B2 (en) | 2006-05-02 | 2011-12-06 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US8092993B2 (en) | 2007-12-31 | 2012-01-10 | Nellcor Puritan Bennett Llc | Hydrogel thin film for use as a biosensor |
US8175667B2 (en) | 2006-09-29 | 2012-05-08 | Nellcor Puritan Bennett Llc | Symmetric LED array for pulse oximetry |
US8224412B2 (en) | 2000-04-17 | 2012-07-17 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US8221319B2 (en) | 2009-03-25 | 2012-07-17 | Nellcor Puritan Bennett Llc | Medical device for assessing intravascular blood volume and technique for using the same |
US8346328B2 (en) | 2007-12-21 | 2013-01-01 | Covidien Lp | Medical sensor and technique for using the same |
US8352004B2 (en) | 2007-12-21 | 2013-01-08 | Covidien Lp | Medical sensor and technique for using the same |
US8364220B2 (en) | 2008-09-25 | 2013-01-29 | Covidien Lp | Medical sensor and technique for using the same |
US8396527B2 (en) | 2006-09-22 | 2013-03-12 | Covidien Lp | Medical sensor for reducing signal artifacts and technique for using the same |
US8412297B2 (en) | 2003-10-01 | 2013-04-02 | Covidien Lp | Forehead sensor placement |
US8417309B2 (en) | 2008-09-30 | 2013-04-09 | Covidien Lp | Medical sensor |
US8423112B2 (en) | 2008-09-30 | 2013-04-16 | Covidien Lp | Medical sensor and technique for using the same |
US8425431B1 (en) | 2007-02-26 | 2013-04-23 | Sylvana Kotila | Blood sample obtaining device |
US8452364B2 (en) | 2007-12-28 | 2013-05-28 | Covidien LLP | System and method for attaching a sensor to a patient's skin |
WO2013081956A1 (en) | 2011-11-29 | 2013-06-06 | U.S. Department Of Veterans Affairs | Method and pulse oximeter apparatus using chemical heating |
US8483790B2 (en) | 2002-10-18 | 2013-07-09 | Covidien Lp | Non-adhesive oximeter sensor for sensitive skin |
US8515515B2 (en) | 2009-03-25 | 2013-08-20 | Covidien Lp | Medical sensor with compressible light barrier and technique for using the same |
US8532729B2 (en) | 2011-03-31 | 2013-09-10 | Covidien Lp | Moldable ear sensor |
US8577434B2 (en) | 2007-12-27 | 2013-11-05 | Covidien Lp | Coaxial LED light sources |
US8577435B2 (en) | 2011-03-31 | 2013-11-05 | Covidien Lp | Flexible bandage ear sensor |
US8649839B2 (en) | 1996-10-10 | 2014-02-11 | Covidien Lp | Motion compatible sensor for non-invasive optical blood analysis |
US8649838B2 (en) | 2010-09-22 | 2014-02-11 | Covidien Lp | Wavelength switching for pulse oximetry |
US8768426B2 (en) | 2011-03-31 | 2014-07-01 | Covidien Lp | Y-shaped ear sensor with strain relief |
US8781548B2 (en) | 2009-03-31 | 2014-07-15 | Covidien Lp | Medical sensor with flexible components and technique for using the same |
US8852095B2 (en) | 2011-10-27 | 2014-10-07 | Covidien Lp | Headband for use with medical sensor |
US20150126831A1 (en) * | 2013-11-04 | 2015-05-07 | Covidien Lp | Medical sensor with ambient light shielding |
US9138181B2 (en) | 2011-12-16 | 2015-09-22 | Covidien Lp | Medical sensor for use with headband |
US9186102B2 (en) | 2009-09-03 | 2015-11-17 | Cercacor Laboratories, Inc. | Emitter driver for noninvasive patient monitor |
US20170000394A1 (en) * | 2015-07-02 | 2017-01-05 | Masimo Corporation | Advanced pulse oximetry sensor |
EP3139162A1 (en) * | 2015-09-07 | 2017-03-08 | EXIAS Medical GmbH | Movable measurement cell |
WO2017047402A1 (en) * | 2015-09-14 | 2017-03-23 | 株式会社村田製作所 | Heating type oximeter |
US10078052B2 (en) | 2014-08-28 | 2018-09-18 | Apple Inc. | Reflective surface treatments for optical sensors |
US10258265B1 (en) | 2008-07-03 | 2019-04-16 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10842395B2 (en) | 2011-11-24 | 2020-11-24 | Itamar Medical Ltd. | Apparatus for monitoring arterial pulse waves in diagnosing various medical conditions |
US10952621B2 (en) | 2017-12-05 | 2021-03-23 | Cardiac Pacemakers, Inc. | Multimodal analyte sensor optoelectronic interface |
CN112741604A (en) * | 2019-10-31 | 2021-05-04 | 倍灵科技(知识产权)有限公司 | Tester for optical measuring device |
US11089983B2 (en) | 2017-12-01 | 2021-08-17 | Cardiac Pacemakers, Inc. | Multimodal analyte sensors for medical devices |
US11109797B2 (en) | 2017-09-05 | 2021-09-07 | Apple Inc. | Portable electronic device having an integrated bio-sensor |
US11129557B2 (en) | 2017-05-31 | 2021-09-28 | Cardiac Pacemakers, Inc. | Implantable medical device with chemical sensor |
WO2022013592A1 (en) * | 2020-07-13 | 2022-01-20 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Optical measurement system for monitoring physiological parameters of a user |
US11439304B2 (en) | 2017-08-10 | 2022-09-13 | Cardiac Pacemakers, Inc. | Systems and methods including electrolyte sensor fusion |
US11571151B2 (en) | 2017-08-23 | 2023-02-07 | Cardiac Pacemakers, Inc. | Implantable chemical sensor with staged activation |
US11638532B2 (en) | 2008-07-03 | 2023-05-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US12004853B2 (en) | 2017-07-26 | 2024-06-11 | Cardiac Pacemakers, Inc. | Systems and methods for disambiguation of posture |
US12114974B2 (en) | 2020-01-13 | 2024-10-15 | Masimo Corporation | Wearable device with physiological parameters monitoring |
US12230393B2 (en) | 2005-03-01 | 2025-02-18 | Willow Laboratories, Inc. | Multiple wavelength sensor emitters |
Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4805623A (en) * | 1987-09-04 | 1989-02-21 | Vander Corporation | Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment |
US4807631A (en) * | 1987-10-09 | 1989-02-28 | Critikon, Inc. | Pulse oximetry system |
US4819752A (en) * | 1987-10-02 | 1989-04-11 | Datascope Corp. | Blood constituent measuring device and method |
US4822568A (en) * | 1986-03-28 | 1989-04-18 | Minoru Tomita | Apparatus for measuring aggregation rate of whole blood red blood cells |
US4824242A (en) * | 1986-09-26 | 1989-04-25 | Sensormedics Corporation | Non-invasive oximeter and method |
US4869254A (en) * | 1988-03-30 | 1989-09-26 | Nellcor Incorporated | Method and apparatus for calculating arterial oxygen saturation |
US4869253A (en) * | 1986-08-18 | 1989-09-26 | Physio-Control Corporation | Method and apparatus for indicating perfusion and oxygen saturation trends in oximetry |
US4926867A (en) * | 1986-05-27 | 1990-05-22 | Sumitomo Electric Industries, Ltd. | Light-reflecting and heating type oximeter |
US4928692A (en) * | 1985-04-01 | 1990-05-29 | Goodman David E | Method and apparatus for detecting optical pulses |
US5007423A (en) * | 1989-10-04 | 1991-04-16 | Nippon Colin Company Ltd. | Oximeter sensor temperature control |
US5028787A (en) * | 1989-01-19 | 1991-07-02 | Futrex, Inc. | Non-invasive measurement of blood glucose |
US5048524A (en) * | 1989-03-03 | 1991-09-17 | Camino Laboratories, Inc. | Blood parameter measurement |
US5119815A (en) * | 1988-12-21 | 1992-06-09 | Nim, Incorporated | Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation |
US5213099A (en) * | 1991-09-30 | 1993-05-25 | The United States Of America As Represented By The Secretary Of The Air Force | Ear canal pulse/oxygen saturation measuring device |
US5219400A (en) * | 1991-06-11 | 1993-06-15 | The United States Of America As Represented By The Secretary Of The Army | Noninvasive method for quantitation of oxyhemoglobin saturation by near-infrared reflectance spectrophotometry |
US5246002A (en) * | 1992-02-11 | 1993-09-21 | Physio-Control Corporation | Noise insensitive pulse transmittance oximeter |
US5259381A (en) * | 1986-08-18 | 1993-11-09 | Physio-Control Corporation | Apparatus for the automatic calibration of signals employed in oximetry |
US5300769A (en) * | 1992-12-29 | 1994-04-05 | Abbott Laboratories | Method and system of compensating for signal artifacts in a fiber-optic sensing system |
US5313940A (en) * | 1991-05-15 | 1994-05-24 | Nihon Kohden Corporation | Photo-electric pulse wave measuring probe |
US5348004A (en) * | 1993-03-31 | 1994-09-20 | Nellcor Incorporated | Electronic processor for pulse oximeter |
US5351685A (en) * | 1991-08-05 | 1994-10-04 | Nellcor Incorporated | Condensed oximeter system with noise reduction software |
US5355882A (en) * | 1992-07-09 | 1994-10-18 | Nihon Kohden Corporation | Pulse oximeter |
US5368224A (en) * | 1992-10-23 | 1994-11-29 | Nellcor Incorporated | Method for reducing ambient noise effects in electronic monitoring instruments |
US5372134A (en) * | 1993-05-24 | 1994-12-13 | Richardson; Joseph W. | Aviation hypoxia monitor |
US5373850A (en) * | 1990-01-29 | 1994-12-20 | Terumo Kabushiki Kaisha | Flow-velocity sensor probe |
US5379238A (en) * | 1989-03-03 | 1995-01-03 | Stark; Edward W. | Signal processing method and apparatus |
US5408998A (en) * | 1994-03-10 | 1995-04-25 | Ethicon Endo-Surgery | Video based tissue oximetry |
US5413101A (en) * | 1993-03-15 | 1995-05-09 | Nihon Kohden Corporation | Pulse oximeter probe |
US5490523A (en) * | 1994-06-29 | 1996-02-13 | Nonin Medical Inc. | Finger clip pulse oximeter |
US5503148A (en) * | 1994-11-01 | 1996-04-02 | Ohmeda Inc. | System for pulse oximetry SPO2 determination |
US5551422A (en) * | 1992-11-09 | 1996-09-03 | Boehringer Mannheim Gmbh | Method and apparatus for analytical determination of glucose in a biological matrix |
US5551423A (en) * | 1993-01-26 | 1996-09-03 | Nihon Kohden Corporation | Pulse oximeter probe |
US5596986A (en) * | 1989-03-17 | 1997-01-28 | Scico, Inc. | Blood oximeter |
US5770454A (en) * | 1994-05-19 | 1998-06-23 | Boehringer Mannheim Gmbh | Method and aparatus for determining an analyte in a biological sample |
US5800349A (en) * | 1996-10-15 | 1998-09-01 | Nonin Medical, Inc. | Offset pulse oximeter sensor |
US5817008A (en) * | 1996-10-31 | 1998-10-06 | Spacelabs Medical, Inc. | Conformal pulse oximetry sensor and monitor |
-
2000
- 2000-01-14 US US09/483,098 patent/US6343223B1/en not_active Expired - Lifetime
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4928692A (en) * | 1985-04-01 | 1990-05-29 | Goodman David E | Method and apparatus for detecting optical pulses |
US4822568A (en) * | 1986-03-28 | 1989-04-18 | Minoru Tomita | Apparatus for measuring aggregation rate of whole blood red blood cells |
US4926867A (en) * | 1986-05-27 | 1990-05-22 | Sumitomo Electric Industries, Ltd. | Light-reflecting and heating type oximeter |
US4869253A (en) * | 1986-08-18 | 1989-09-26 | Physio-Control Corporation | Method and apparatus for indicating perfusion and oxygen saturation trends in oximetry |
US5259381A (en) * | 1986-08-18 | 1993-11-09 | Physio-Control Corporation | Apparatus for the automatic calibration of signals employed in oximetry |
US4824242A (en) * | 1986-09-26 | 1989-04-25 | Sensormedics Corporation | Non-invasive oximeter and method |
US4805623A (en) * | 1987-09-04 | 1989-02-21 | Vander Corporation | Spectrophotometric method for quantitatively determining the concentration of a dilute component in a light- or other radiation-scattering environment |
US4819752A (en) * | 1987-10-02 | 1989-04-11 | Datascope Corp. | Blood constituent measuring device and method |
US4807631A (en) * | 1987-10-09 | 1989-02-28 | Critikon, Inc. | Pulse oximetry system |
US4869254A (en) * | 1988-03-30 | 1989-09-26 | Nellcor Incorporated | Method and apparatus for calculating arterial oxygen saturation |
US5119815A (en) * | 1988-12-21 | 1992-06-09 | Nim, Incorporated | Apparatus for determining the concentration of a tissue pigment of known absorbance, in vivo, using the decay characteristics of scintered electromagnetic radiation |
US5028787A (en) * | 1989-01-19 | 1991-07-02 | Futrex, Inc. | Non-invasive measurement of blood glucose |
US5048524A (en) * | 1989-03-03 | 1991-09-17 | Camino Laboratories, Inc. | Blood parameter measurement |
US5379238A (en) * | 1989-03-03 | 1995-01-03 | Stark; Edward W. | Signal processing method and apparatus |
US5596986A (en) * | 1989-03-17 | 1997-01-28 | Scico, Inc. | Blood oximeter |
US5007423A (en) * | 1989-10-04 | 1991-04-16 | Nippon Colin Company Ltd. | Oximeter sensor temperature control |
US5373850A (en) * | 1990-01-29 | 1994-12-20 | Terumo Kabushiki Kaisha | Flow-velocity sensor probe |
US5313940A (en) * | 1991-05-15 | 1994-05-24 | Nihon Kohden Corporation | Photo-electric pulse wave measuring probe |
US5219400A (en) * | 1991-06-11 | 1993-06-15 | The United States Of America As Represented By The Secretary Of The Army | Noninvasive method for quantitation of oxyhemoglobin saturation by near-infrared reflectance spectrophotometry |
US5351685A (en) * | 1991-08-05 | 1994-10-04 | Nellcor Incorporated | Condensed oximeter system with noise reduction software |
US5213099A (en) * | 1991-09-30 | 1993-05-25 | The United States Of America As Represented By The Secretary Of The Air Force | Ear canal pulse/oxygen saturation measuring device |
US5246002A (en) * | 1992-02-11 | 1993-09-21 | Physio-Control Corporation | Noise insensitive pulse transmittance oximeter |
US5355882A (en) * | 1992-07-09 | 1994-10-18 | Nihon Kohden Corporation | Pulse oximeter |
US5368224A (en) * | 1992-10-23 | 1994-11-29 | Nellcor Incorporated | Method for reducing ambient noise effects in electronic monitoring instruments |
US5551422A (en) * | 1992-11-09 | 1996-09-03 | Boehringer Mannheim Gmbh | Method and apparatus for analytical determination of glucose in a biological matrix |
US5300769A (en) * | 1992-12-29 | 1994-04-05 | Abbott Laboratories | Method and system of compensating for signal artifacts in a fiber-optic sensing system |
US5551423A (en) * | 1993-01-26 | 1996-09-03 | Nihon Kohden Corporation | Pulse oximeter probe |
US5413101A (en) * | 1993-03-15 | 1995-05-09 | Nihon Kohden Corporation | Pulse oximeter probe |
US5348004A (en) * | 1993-03-31 | 1994-09-20 | Nellcor Incorporated | Electronic processor for pulse oximeter |
US5372134A (en) * | 1993-05-24 | 1994-12-13 | Richardson; Joseph W. | Aviation hypoxia monitor |
US5408998A (en) * | 1994-03-10 | 1995-04-25 | Ethicon Endo-Surgery | Video based tissue oximetry |
US5770454A (en) * | 1994-05-19 | 1998-06-23 | Boehringer Mannheim Gmbh | Method and aparatus for determining an analyte in a biological sample |
US5490523A (en) * | 1994-06-29 | 1996-02-13 | Nonin Medical Inc. | Finger clip pulse oximeter |
US5503148A (en) * | 1994-11-01 | 1996-04-02 | Ohmeda Inc. | System for pulse oximetry SPO2 determination |
US5800349A (en) * | 1996-10-15 | 1998-09-01 | Nonin Medical, Inc. | Offset pulse oximeter sensor |
US5817008A (en) * | 1996-10-31 | 1998-10-06 | Spacelabs Medical, Inc. | Conformal pulse oximetry sensor and monitor |
Cited By (278)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8649839B2 (en) | 1996-10-10 | 2014-02-11 | Covidien Lp | Motion compatible sensor for non-invasive optical blood analysis |
US20060030764A1 (en) * | 1999-04-14 | 2006-02-09 | Mallinckrodt Inc. | Method and circuit for indicating quality and accuracy of physiological measurements |
US8133176B2 (en) | 1999-04-14 | 2012-03-13 | Tyco Healthcare Group Lp | Method and circuit for indicating quality and accuracy of physiological measurements |
US20030057533A1 (en) * | 1999-12-21 | 2003-03-27 | Francesco Lemmi | Amorphous silicon sensor with micro-spring interconnects for achieving high uniformity in integrated light-emitting sources |
US6794725B2 (en) * | 1999-12-21 | 2004-09-21 | Xerox Corporation | Amorphous silicon sensor with micro-spring interconnects for achieving high uniformity in integrated light-emitting sources |
US20020003231A1 (en) * | 1999-12-21 | 2002-01-10 | Xerox Corporation | Semi-transparent power monitor integrated with a light producing module |
US7042015B2 (en) | 1999-12-21 | 2006-05-09 | Xerox Corporation | Semi-transparent power monitor integrated with a light producing module |
US20030004423A1 (en) * | 2000-03-02 | 2003-01-02 | Itamar Medical Ltd. | Method and apparatus for the non-invasive detection of particular sleep-state conditions by monitoring the peripheral vascular system |
US7806831B2 (en) * | 2000-03-02 | 2010-10-05 | Itamar Medical Ltd. | Method and apparatus for the non-invasive detection of particular sleep-state conditions by monitoring the peripheral vascular system |
US8078246B2 (en) | 2000-04-17 | 2011-12-13 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US7689259B2 (en) | 2000-04-17 | 2010-03-30 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US8224412B2 (en) | 2000-04-17 | 2012-07-17 | Nellcor Puritan Bennett Llc | Pulse oximeter sensor with piece-wise function |
US7899509B2 (en) | 2002-10-01 | 2011-03-01 | Nellcor Puritan Bennett Llc | Forehead sensor placement |
US7698909B2 (en) | 2002-10-01 | 2010-04-20 | Nellcor Puritan Bennett Llc | Headband with tension indicator |
US7822453B2 (en) | 2002-10-01 | 2010-10-26 | Nellcor Puritan Bennett Llc | Forehead sensor placement |
US8452367B2 (en) | 2002-10-01 | 2013-05-28 | Covidien Lp | Forehead sensor placement |
US7810359B2 (en) | 2002-10-01 | 2010-10-12 | Nellcor Puritan Bennett Llc | Headband with tension indicator |
US20110009723A1 (en) * | 2002-10-01 | 2011-01-13 | Nellcor Puritan Bennett Llc | Forehead sensor placement |
US20040221370A1 (en) * | 2002-10-01 | 2004-11-11 | Nellcor Puritan Bennett Incorporated | Headband with tension indicator |
US8483790B2 (en) | 2002-10-18 | 2013-07-09 | Covidien Lp | Non-adhesive oximeter sensor for sensitive skin |
US6992772B2 (en) * | 2003-06-19 | 2006-01-31 | Optix Lp | Method and apparatus for optical sampling to reduce interfering variances |
JP2006528004A (en) * | 2003-06-19 | 2006-12-14 | オプティクス エルピー | Optical specimen collection method and apparatus for reducing interference fluctuations |
EP1639346A4 (en) * | 2003-06-19 | 2008-06-04 | Optix Lp | Method and apparatus for optical sampling to reduce interfering variances |
WO2004112574A3 (en) * | 2003-06-19 | 2005-04-14 | Optix Lp | Method and apparatus for optical sampling to reduce interfering variances |
US20040257557A1 (en) * | 2003-06-19 | 2004-12-23 | Optix Lp | Method and apparatus for optical sampling to reduce interfering variances |
EP1639346A2 (en) * | 2003-06-19 | 2006-03-29 | Optix Lp | Method and apparatus for optical sampling to reduce interfering variances |
US20060195028A1 (en) * | 2003-06-25 | 2006-08-31 | Don Hannula | Hat-based oximeter sensor |
US20060264722A1 (en) * | 2003-06-25 | 2006-11-23 | Don Hannula | Hat-based oximeter sensor |
US7877127B2 (en) | 2003-06-25 | 2011-01-25 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US7877126B2 (en) | 2003-06-25 | 2011-01-25 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US20060264724A1 (en) * | 2003-06-25 | 2006-11-23 | Don Hannula | Hat-based oximeter sensor |
US7813779B2 (en) | 2003-06-25 | 2010-10-12 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US20060264725A1 (en) * | 2003-06-25 | 2006-11-23 | Don Hannula | Hat-based oximeter sensor |
US7979102B2 (en) | 2003-06-25 | 2011-07-12 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US7809420B2 (en) | 2003-06-25 | 2010-10-05 | Nellcor Puritan Bennett Llc | Hat-based oximeter sensor |
US20050059870A1 (en) * | 2003-08-25 | 2005-03-17 | Aceti John Gregory | Processing methods and apparatus for monitoring physiological parameters using physiological characteristics present within an auditory canal |
US7107088B2 (en) | 2003-08-25 | 2006-09-12 | Sarnoff Corporation | Pulse oximetry methods and apparatus for use within an auditory canal |
US20050049471A1 (en) * | 2003-08-25 | 2005-03-03 | Aceti John Gregory | Pulse oximetry methods and apparatus for use within an auditory canal |
US20050059869A1 (en) * | 2003-09-15 | 2005-03-17 | John Scharf | Physiological monitoring system and improved sensor device |
US8412297B2 (en) | 2003-10-01 | 2013-04-02 | Covidien Lp | Forehead sensor placement |
WO2005082238A1 (en) * | 2004-02-25 | 2005-09-09 | Nellcor Puritan Bennett Incorporated | Oximeter red and ir zero calibration control |
US7499740B2 (en) | 2004-02-25 | 2009-03-03 | Nellcor Puritan Bennett Llc | Techniques for detecting heart pulses and reducing power consumption in sensors |
US20050187449A1 (en) * | 2004-02-25 | 2005-08-25 | Nellcor Puritan Bennett Inc. | Oximeter red and IR zero calibration control |
US7373192B2 (en) | 2004-02-25 | 2008-05-13 | Nellcor Puritan Bennett Inc. | Oximeter red and IR zero calibration control |
US20070208240A1 (en) * | 2004-02-25 | 2007-09-06 | Nellcor Puritan Bennett Inc. | Techniques for detecting heart pulses and reducing power consumption in sensors |
US12230393B2 (en) | 2005-03-01 | 2025-02-18 | Willow Laboratories, Inc. | Multiple wavelength sensor emitters |
US7742794B2 (en) * | 2005-07-29 | 2010-06-22 | Nihon Kohden Corporation | Probe adapted to be used with pulse oximeter |
US20070027376A1 (en) * | 2005-07-29 | 2007-02-01 | Nihon Kohden Corporation | Probe adapted to be used with pulse oximeter |
US7684843B2 (en) | 2005-08-08 | 2010-03-23 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7693559B2 (en) | 2005-08-08 | 2010-04-06 | Nellcor Puritan Bennett Llc | Medical sensor having a deformable region and technique for using the same |
US8311602B2 (en) | 2005-08-08 | 2012-11-13 | Nellcor Puritan Bennett Llc | Compliant diaphragm medical sensor and technique for using the same |
US7657296B2 (en) | 2005-08-08 | 2010-02-02 | Nellcor Puritan Bennett Llc | Unitary medical sensor assembly and technique for using the same |
US8528185B2 (en) | 2005-08-08 | 2013-09-10 | Covidien Lp | Bi-stable medical sensor and technique for using the same |
US7657295B2 (en) | 2005-08-08 | 2010-02-02 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7647084B2 (en) | 2005-08-08 | 2010-01-12 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7657294B2 (en) | 2005-08-08 | 2010-02-02 | Nellcor Puritan Bennett Llc | Compliant diaphragm medical sensor and technique for using the same |
US7738937B2 (en) | 2005-08-08 | 2010-06-15 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US20070032716A1 (en) * | 2005-08-08 | 2007-02-08 | William Raridan | Medical sensor having a deformable region and technique for using the same |
US20070032708A1 (en) * | 2005-08-08 | 2007-02-08 | Darius Eghbal | Compliant diaphragm medical sensor and technique for using the same |
US7590439B2 (en) | 2005-08-08 | 2009-09-15 | Nellcor Puritan Bennett Llc | Bi-stable medical sensor and technique for using the same |
US20070032710A1 (en) * | 2005-08-08 | 2007-02-08 | William Raridan | Bi-stable medical sensor and technique for using the same |
US7574244B2 (en) | 2005-08-08 | 2009-08-11 | Nellcor Puritan Bennett Llc | Compliant diaphragm medical sensor and technique for using the same |
US8260391B2 (en) | 2005-09-12 | 2012-09-04 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US20100280344A1 (en) * | 2005-09-12 | 2010-11-04 | Nellcor Puritan Benneth LLC | Medical sensor for reducing motion artifacts and technique for using the same |
US20070068527A1 (en) * | 2005-09-29 | 2007-03-29 | Baker Clark R Jr | Method and system for determining when to reposition a physiological sensor |
US8060171B2 (en) | 2005-09-29 | 2011-11-15 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US7899510B2 (en) | 2005-09-29 | 2011-03-01 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7904130B2 (en) | 2005-09-29 | 2011-03-08 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7869850B2 (en) | 2005-09-29 | 2011-01-11 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US20110130638A1 (en) * | 2005-09-29 | 2011-06-02 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7729736B2 (en) | 2005-09-29 | 2010-06-01 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8092379B2 (en) | 2005-09-29 | 2012-01-10 | Nellcor Puritan Bennett Llc | Method and system for determining when to reposition a physiological sensor |
US8965473B2 (en) | 2005-09-29 | 2015-02-24 | Covidien Lp | Medical sensor for reducing motion artifacts and technique for using the same |
US7676253B2 (en) | 2005-09-29 | 2010-03-09 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US20070073122A1 (en) * | 2005-09-29 | 2007-03-29 | Carine Hoarau | Medical sensor and technique for using the same |
US8600469B2 (en) | 2005-09-29 | 2013-12-03 | Covidien Lp | Medical sensor and technique for using the same |
US7650177B2 (en) | 2005-09-29 | 2010-01-19 | Nellcor Puritan Bennett Llc | Medical sensor for reducing motion artifacts and technique for using the same |
US20070073123A1 (en) * | 2005-09-29 | 2007-03-29 | Raridan William B Jr | Medical sensor and technique for using the same |
US20070073126A1 (en) * | 2005-09-29 | 2007-03-29 | Raridan William B Jr | Medical sensor and technique for using the same |
US20070078307A1 (en) * | 2005-09-30 | 2007-04-05 | Debreczeny Martin P | Sensor for tissue gas detection and technique for using the same |
US7555327B2 (en) | 2005-09-30 | 2009-06-30 | Nellcor Puritan Bennett Llc | Folding medical sensor and technique for using the same |
US8352009B2 (en) | 2005-09-30 | 2013-01-08 | Covidien Lp | Medical sensor and technique for using the same |
US8386002B2 (en) | 2005-09-30 | 2013-02-26 | Covidien Lp | Optically aligned pulse oximetry sensor and technique for using the same |
US20070078315A1 (en) * | 2005-09-30 | 2007-04-05 | Carl Kling | Clip-style medical sensor and technique for using the same |
US7486979B2 (en) | 2005-09-30 | 2009-02-03 | Nellcor Puritan Bennett Llc | Optically aligned pulse oximetry sensor and technique for using the same |
US8233954B2 (en) | 2005-09-30 | 2012-07-31 | Nellcor Puritan Bennett Llc | Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same |
US20070078309A1 (en) * | 2005-09-30 | 2007-04-05 | Matlock George L | Optically aligned pulse oximetry sensor and technique for using the same |
US20090234210A1 (en) * | 2005-09-30 | 2009-09-17 | Nellcor Puritan Bennett Llc | Folding medical sensor and technique for using the same |
US20070078317A1 (en) * | 2005-09-30 | 2007-04-05 | Matlock George L | Folding medical sensor and technique for using the same |
US20090118603A1 (en) * | 2005-09-30 | 2009-05-07 | Nellcor Puritan Bennett Llc | Optically aligned pulse oximetry sensor and technique for using the same |
US20070078318A1 (en) * | 2005-09-30 | 2007-04-05 | Carl Kling | Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same |
US7483731B2 (en) | 2005-09-30 | 2009-01-27 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8352010B2 (en) | 2005-09-30 | 2013-01-08 | Covidien Lp | Folding medical sensor and technique for using the same |
US7881762B2 (en) | 2005-09-30 | 2011-02-01 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US8062221B2 (en) | 2005-09-30 | 2011-11-22 | Nellcor Puritan Bennett Llc | Sensor for tissue gas detection and technique for using the same |
US7522948B2 (en) | 2006-05-02 | 2009-04-21 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US7477924B2 (en) | 2006-05-02 | 2009-01-13 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8437826B2 (en) | 2006-05-02 | 2013-05-07 | Covidien Lp | Clip-style medical sensor and technique for using the same |
US8073518B2 (en) | 2006-05-02 | 2011-12-06 | Nellcor Puritan Bennett Llc | Clip-style medical sensor and technique for using the same |
US20070282181A1 (en) * | 2006-06-01 | 2007-12-06 | Carol Findlay | Visual medical sensor indicator |
US8145288B2 (en) | 2006-08-22 | 2012-03-27 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8577436B2 (en) | 2006-08-22 | 2013-11-05 | Covidien Lp | Medical sensor for reducing signal artifacts and technique for using the same |
US20080058622A1 (en) * | 2006-08-22 | 2008-03-06 | Baker Clark R | Medical sensor for reducing signal artifacts and technique for using the same |
US20080064940A1 (en) * | 2006-09-12 | 2008-03-13 | Raridan William B | Sensor cable design for use with spectrophotometric sensors and method of using the same |
US20080071154A1 (en) * | 2006-09-20 | 2008-03-20 | Nellcor Puritan Bennett Inc. | System and method for practicing spectrophotometry using light emitting nanostructure devices |
US8219170B2 (en) | 2006-09-20 | 2012-07-10 | Nellcor Puritan Bennett Llc | System and method for practicing spectrophotometry using light emitting nanostructure devices |
US8190225B2 (en) | 2006-09-22 | 2012-05-29 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US20080076980A1 (en) * | 2006-09-22 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Medical sensor for reducing signal artifacts and technique for using the same |
US20080076996A1 (en) * | 2006-09-22 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Medical sensor for reducing signal artifacts and technique for using the same |
US20080076994A1 (en) * | 2006-09-22 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Medical sensor for reducing signal artifacts and technique for using the same |
US20080076981A1 (en) * | 2006-09-22 | 2008-03-27 | Nellcor Puritan Bennett Incorporated | Medical sensor for reducing signal artifacts and technique for using the same |
US8175671B2 (en) | 2006-09-22 | 2012-05-08 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8190224B2 (en) | 2006-09-22 | 2012-05-29 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8195264B2 (en) | 2006-09-22 | 2012-06-05 | Nellcor Puritan Bennett Llc | Medical sensor for reducing signal artifacts and technique for using the same |
US8396527B2 (en) | 2006-09-22 | 2013-03-12 | Covidien Lp | Medical sensor for reducing signal artifacts and technique for using the same |
US20080076982A1 (en) * | 2006-09-26 | 2008-03-27 | Ollerdessen Albert L | Opaque, electrically nonconductive region on a medical sensor |
US7869849B2 (en) | 2006-09-26 | 2011-01-11 | Nellcor Puritan Bennett Llc | Opaque, electrically nonconductive region on a medical sensor |
US7574245B2 (en) | 2006-09-27 | 2009-08-11 | Nellcor Puritan Bennett Llc | Flexible medical sensor enclosure |
US20090270691A1 (en) * | 2006-09-27 | 2009-10-29 | Nellcor Puritan Bennett Llc | Flexible medical sensor enclosure |
US20080076987A1 (en) * | 2006-09-27 | 2008-03-27 | Nellcor Puritan Bennett Inc. | Flexible medical sensor enclosure |
US8315685B2 (en) | 2006-09-27 | 2012-11-20 | Nellcor Puritan Bennett Llc | Flexible medical sensor enclosure |
US20110124991A1 (en) * | 2006-09-28 | 2011-05-26 | Nellcor Puritan Bennett Llc | System and method for mitigating interference in pulse oximetry |
US7890153B2 (en) | 2006-09-28 | 2011-02-15 | Nellcor Puritan Bennett Llc | System and method for mitigating interference in pulse oximetry |
US20080081973A1 (en) * | 2006-09-28 | 2008-04-03 | Nellcor Puritan Bennett Incorporated | System and method for mitigating interference in pulse oximetry |
US7796403B2 (en) | 2006-09-28 | 2010-09-14 | Nellcor Puritan Bennett Llc | Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit |
US20080117616A1 (en) * | 2006-09-28 | 2008-05-22 | Nellcor Puritan Bennett Inc. | Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit |
US8660626B2 (en) | 2006-09-28 | 2014-02-25 | Covidien Lp | System and method for mitigating interference in pulse oximetry |
US20080081967A1 (en) * | 2006-09-29 | 2008-04-03 | Nellcor Puritan Bennett Incorporated | Method and apparatus for detecting misapplied sensors |
US7684842B2 (en) | 2006-09-29 | 2010-03-23 | Nellcor Puritan Bennett Llc | System and method for preventing sensor misuse |
US7658652B2 (en) | 2006-09-29 | 2010-02-09 | Nellcor Puritan Bennett Llc | Device and method for reducing crosstalk |
US8068891B2 (en) | 2006-09-29 | 2011-11-29 | Nellcor Puritan Bennett Llc | Symmetric LED array for pulse oximetry |
US8175667B2 (en) | 2006-09-29 | 2012-05-08 | Nellcor Puritan Bennett Llc | Symmetric LED array for pulse oximetry |
US7794266B2 (en) | 2006-09-29 | 2010-09-14 | Nellcor Puritan Bennett Llc | Device and method for reducing crosstalk |
US7680522B2 (en) | 2006-09-29 | 2010-03-16 | Nellcor Puritan Bennett Llc | Method and apparatus for detecting misapplied sensors |
US8425431B1 (en) | 2007-02-26 | 2013-04-23 | Sylvana Kotila | Blood sample obtaining device |
US8265724B2 (en) | 2007-03-09 | 2012-09-11 | Nellcor Puritan Bennett Llc | Cancellation of light shunting |
US8280469B2 (en) | 2007-03-09 | 2012-10-02 | Nellcor Puritan Bennett Llc | Method for detection of aberrant tissue spectra |
US7894869B2 (en) | 2007-03-09 | 2011-02-22 | Nellcor Puritan Bennett Llc | Multiple configuration medical sensor and technique for using the same |
US20080221414A1 (en) * | 2007-03-09 | 2008-09-11 | Nellcor Puritan Bennett Llc | Method for detection of aberrant tissue spectra |
US20080221427A1 (en) * | 2007-03-09 | 2008-09-11 | Nellcor Puritan Bennett Llc | Cancellation of light shunting |
US20090069652A1 (en) * | 2007-09-07 | 2009-03-12 | Lee Hans C | Method and Apparatus for Sensing Blood Oxygen |
US8376952B2 (en) * | 2007-09-07 | 2013-02-19 | The Nielsen Company (Us), Llc. | Method and apparatus for sensing blood oxygen |
US20090076353A1 (en) * | 2007-09-18 | 2009-03-19 | Cardiac Pacemakers, Inc. | Implantable electro-optical sensor |
US7805174B2 (en) * | 2007-09-18 | 2010-09-28 | Cardiac Pacemakers, Inc. | Implantable electro-optical sensor |
US8346328B2 (en) | 2007-12-21 | 2013-01-01 | Covidien Lp | Medical sensor and technique for using the same |
US8352004B2 (en) | 2007-12-21 | 2013-01-08 | Covidien Lp | Medical sensor and technique for using the same |
US8366613B2 (en) | 2007-12-26 | 2013-02-05 | Covidien Lp | LED drive circuit for pulse oximetry and method for using same |
US20090167205A1 (en) * | 2007-12-26 | 2009-07-02 | Nellcor Puritan Bennett Llc | LED Drive Circuit And Method For Using Same |
US20090168050A1 (en) * | 2007-12-27 | 2009-07-02 | Nellcor Puritan Bennett Llc | Optical Sensor System And Method |
US8577434B2 (en) | 2007-12-27 | 2013-11-05 | Covidien Lp | Coaxial LED light sources |
US8442608B2 (en) | 2007-12-28 | 2013-05-14 | Covidien Lp | System and method for estimating physiological parameters by deconvolving artifacts |
US20090187085A1 (en) * | 2007-12-28 | 2009-07-23 | Nellcor Puritan Bennett Llc | System And Method For Estimating Physiological Parameters By Deconvolving Artifacts |
US8452364B2 (en) | 2007-12-28 | 2013-05-28 | Covidien LLP | System and method for attaching a sensor to a patient's skin |
US20090168385A1 (en) * | 2007-12-31 | 2009-07-02 | Nellcor Puritan Bennett Llc | Flex circuit snap track for a biometric sensor |
US8070508B2 (en) | 2007-12-31 | 2011-12-06 | Nellcor Puritan Bennett Llc | Method and apparatus for aligning and securing a cable strain relief |
US8897850B2 (en) | 2007-12-31 | 2014-11-25 | Covidien Lp | Sensor with integrated living hinge and spring |
US8199007B2 (en) | 2007-12-31 | 2012-06-12 | Nellcor Puritan Bennett Llc | Flex circuit snap track for a biometric sensor |
US20090171224A1 (en) * | 2007-12-31 | 2009-07-02 | Nellcor Puritan Bennett Llc | Sensor with integrated living hinge and spring |
US20090171166A1 (en) * | 2007-12-31 | 2009-07-02 | Nellcor Puritan Bennett Llc | Oximeter with location awareness |
US20090173518A1 (en) * | 2007-12-31 | 2009-07-09 | Nellcor Puritan Bennett Llc | Method And Apparatus For Aligning And Securing A Cable Strain Relief |
US8092993B2 (en) | 2007-12-31 | 2012-01-10 | Nellcor Puritan Bennett Llc | Hydrogel thin film for use as a biosensor |
US20090221885A1 (en) * | 2008-02-25 | 2009-09-03 | Cardiac Pacemakers, Inc. | Optical Window Assembly for Implantable Medical Device |
US20090247854A1 (en) * | 2008-03-27 | 2009-10-01 | Nellcor Puritan Bennett Llc | Retractable Sensor Cable For A Pulse Oximeter |
US20090247845A1 (en) * | 2008-03-28 | 2009-10-01 | Nellcor Puritan Bennett Llc | System And Method For Estimating Blood Analyte Concentration |
US8437822B2 (en) | 2008-03-28 | 2013-05-07 | Covidien Lp | System and method for estimating blood analyte concentration |
US20090247083A1 (en) * | 2008-03-31 | 2009-10-01 | Nellcor Puritan Bennett Llc | Wavelength Selection And Outlier Detection In Reduced Rank Linear Models |
US8112375B2 (en) | 2008-03-31 | 2012-02-07 | Nellcor Puritan Bennett Llc | Wavelength selection and outlier detection in reduced rank linear models |
US8071935B2 (en) | 2008-06-30 | 2011-12-06 | Nellcor Puritan Bennett Llc | Optical detector with an overmolded faraday shield |
US7887345B2 (en) | 2008-06-30 | 2011-02-15 | Nellcor Puritan Bennett Llc | Single use connector for pulse oximetry sensors |
US20090323067A1 (en) * | 2008-06-30 | 2009-12-31 | Medina Casey V | System And Method For Coating And Shielding Electronic Sensor Components |
US7880884B2 (en) | 2008-06-30 | 2011-02-01 | Nellcor Puritan Bennett Llc | System and method for coating and shielding electronic sensor components |
US20090323267A1 (en) * | 2008-06-30 | 2009-12-31 | Besko David P | Optical Detector With An Overmolded Faraday Shield |
US10631765B1 (en) | 2008-07-03 | 2020-04-28 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10912501B2 (en) | 2008-07-03 | 2021-02-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US12036009B1 (en) | 2008-07-03 | 2024-07-16 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US12023139B1 (en) | 2008-07-03 | 2024-07-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11751773B2 (en) | 2008-07-03 | 2023-09-12 | Masimo Corporation | Emitter arrangement for physiological measurements |
US11647914B2 (en) | 2008-07-03 | 2023-05-16 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11642037B2 (en) | 2008-07-03 | 2023-05-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11642036B2 (en) | 2008-07-03 | 2023-05-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11638532B2 (en) | 2008-07-03 | 2023-05-02 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11484230B2 (en) | 2008-07-03 | 2022-11-01 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11484229B2 (en) | 2008-07-03 | 2022-11-01 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US11426103B2 (en) | 2008-07-03 | 2022-08-30 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10945648B2 (en) | 2008-07-03 | 2021-03-16 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US10912500B2 (en) | 2008-07-03 | 2021-02-09 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10912502B2 (en) | 2008-07-03 | 2021-02-09 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
US10758166B2 (en) | 2008-07-03 | 2020-09-01 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10743803B2 (en) | 2008-07-03 | 2020-08-18 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10709366B1 (en) | 2008-07-03 | 2020-07-14 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10702194B1 (en) | 2008-07-03 | 2020-07-07 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10702195B1 (en) | 2008-07-03 | 2020-07-07 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10624564B1 (en) | 2008-07-03 | 2020-04-21 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10624563B2 (en) | 2008-07-03 | 2020-04-21 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10617338B2 (en) | 2008-07-03 | 2020-04-14 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10610138B2 (en) | 2008-07-03 | 2020-04-07 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10588554B2 (en) | 2008-07-03 | 2020-03-17 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10588553B2 (en) | 2008-07-03 | 2020-03-17 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10582886B2 (en) | 2008-07-03 | 2020-03-10 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10376190B1 (en) | 2008-07-03 | 2019-08-13 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10376191B1 (en) | 2008-07-03 | 2019-08-13 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10335068B2 (en) | 2008-07-03 | 2019-07-02 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10299708B1 (en) | 2008-07-03 | 2019-05-28 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10292628B1 (en) | 2008-07-03 | 2019-05-21 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10258266B1 (en) | 2008-07-03 | 2019-04-16 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US10258265B1 (en) | 2008-07-03 | 2019-04-16 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
US20100036267A1 (en) * | 2008-08-07 | 2010-02-11 | Wen-Chien Liao | Analysis device and analyzing method for autonomic nerve state |
US8257274B2 (en) | 2008-09-25 | 2012-09-04 | Nellcor Puritan Bennett Llc | Medical sensor and technique for using the same |
US8364220B2 (en) | 2008-09-25 | 2013-01-29 | Covidien Lp | Medical sensor and technique for using the same |
US20100076337A1 (en) * | 2008-09-25 | 2010-03-25 | Nellcor Puritan Bennett Llc | Medical Sensor And Technique For Using The Same |
US20100076319A1 (en) * | 2008-09-25 | 2010-03-25 | Nellcor Puritan Bennett Llc | Pathlength-Corrected Medical Spectroscopy |
US8914088B2 (en) | 2008-09-30 | 2014-12-16 | Covidien Lp | Medical sensor and technique for using the same |
US8423112B2 (en) | 2008-09-30 | 2013-04-16 | Covidien Lp | Medical sensor and technique for using the same |
US8417309B2 (en) | 2008-09-30 | 2013-04-09 | Covidien Lp | Medical sensor |
US20100081912A1 (en) * | 2008-09-30 | 2010-04-01 | Nellcor Puritan Bennett Llc | Ultrasound-Optical Doppler Hemometer and Technique for Using the Same |
US20100081901A1 (en) * | 2008-09-30 | 2010-04-01 | Nellcor Puritan Bennett Llc | Medical Sensor And Technique For Using The Same |
US8452366B2 (en) | 2009-03-16 | 2013-05-28 | Covidien Lp | Medical monitoring device with flexible circuitry |
US20100234706A1 (en) * | 2009-03-16 | 2010-09-16 | Nellcor Puritan Bennett Llc | Medical Monitoring Device With Flexible Circuitry |
US8221319B2 (en) | 2009-03-25 | 2012-07-17 | Nellcor Puritan Bennett Llc | Medical device for assessing intravascular blood volume and technique for using the same |
US8515515B2 (en) | 2009-03-25 | 2013-08-20 | Covidien Lp | Medical sensor with compressible light barrier and technique for using the same |
US20100249550A1 (en) * | 2009-03-25 | 2010-09-30 | Neilcor Puritan Bennett LLC | Method And Apparatus For Optical Filtering Of A Broadband Emitter In A Medical Sensor |
US8781548B2 (en) | 2009-03-31 | 2014-07-15 | Covidien Lp | Medical sensor with flexible components and technique for using the same |
US8509869B2 (en) | 2009-05-15 | 2013-08-13 | Covidien Lp | Method and apparatus for detecting and analyzing variations in a physiologic parameter |
US20100292548A1 (en) * | 2009-05-15 | 2010-11-18 | Nellcor Puritan Bennett Llc | Method And Apparatus For Detecting And Analyzing Variations In A Physiologic Parameter |
US20100298678A1 (en) * | 2009-05-20 | 2010-11-25 | Nellcor Puritan Bennett Llc | Method And System For Self Regulation Of Sensor Component Contact Pressure |
US8634891B2 (en) | 2009-05-20 | 2014-01-21 | Covidien Lp | Method and system for self regulation of sensor component contact pressure |
US20100331638A1 (en) * | 2009-06-30 | 2010-12-30 | Nellcor Puritan Bennett Llc | Reflectance and/or transmissive pulse oximeter |
US20100331631A1 (en) * | 2009-06-30 | 2010-12-30 | Nellcor Puritan Bennett Llc | Oxygen saturation ear sensor design that optimizes both attachment method and signal quality |
US20100327063A1 (en) * | 2009-06-30 | 2010-12-30 | Nellcor Puritan Bennett Llc | System and method for providing sensor quality assurance |
US9010634B2 (en) | 2009-06-30 | 2015-04-21 | Covidien Lp | System and method for linking patient data to a patient and providing sensor quality assurance |
US20100327057A1 (en) * | 2009-06-30 | 2010-12-30 | Nellcor Puritan Bennett Llc | System and method for linking patient data to a patient and providing sensor quality assurance |
US8505821B2 (en) | 2009-06-30 | 2013-08-13 | Covidien Lp | System and method for providing sensor quality assurance |
US8311601B2 (en) | 2009-06-30 | 2012-11-13 | Nellcor Puritan Bennett Llc | Reflectance and/or transmissive pulse oximeter |
US20110015507A1 (en) * | 2009-07-17 | 2011-01-20 | Nellcor Puritan Bennett Llc | System and method for memory switching for multiple configuration medical sensor |
US8391941B2 (en) | 2009-07-17 | 2013-03-05 | Covidien Lp | System and method for memory switching for multiple configuration medical sensor |
US8417310B2 (en) | 2009-08-10 | 2013-04-09 | Covidien Lp | Digital switching in multi-site sensor |
US20110034789A1 (en) * | 2009-08-10 | 2011-02-10 | Nellcor Puritan Bennett Llc | Digital switching in multi-site sensor |
US8428675B2 (en) | 2009-08-19 | 2013-04-23 | Covidien Lp | Nanofiber adhesives used in medical devices |
US20110046461A1 (en) * | 2009-08-19 | 2011-02-24 | Nellcor Puritan Bennett Llc | Nanofiber adhesives used in medical devices |
US9668680B2 (en) | 2009-09-03 | 2017-06-06 | Masimo Corporation | Emitter driver for noninvasive patient monitor |
US9186102B2 (en) | 2009-09-03 | 2015-11-17 | Cercacor Laboratories, Inc. | Emitter driver for noninvasive patient monitor |
US8649838B2 (en) | 2010-09-22 | 2014-02-11 | Covidien Lp | Wavelength switching for pulse oximetry |
US8577435B2 (en) | 2011-03-31 | 2013-11-05 | Covidien Lp | Flexible bandage ear sensor |
US8768426B2 (en) | 2011-03-31 | 2014-07-01 | Covidien Lp | Y-shaped ear sensor with strain relief |
US8532729B2 (en) | 2011-03-31 | 2013-09-10 | Covidien Lp | Moldable ear sensor |
US8852095B2 (en) | 2011-10-27 | 2014-10-07 | Covidien Lp | Headband for use with medical sensor |
US10842395B2 (en) | 2011-11-24 | 2020-11-24 | Itamar Medical Ltd. | Apparatus for monitoring arterial pulse waves in diagnosing various medical conditions |
WO2013081956A1 (en) | 2011-11-29 | 2013-06-06 | U.S. Department Of Veterans Affairs | Method and pulse oximeter apparatus using chemical heating |
US9795332B2 (en) | 2011-11-29 | 2017-10-24 | U.S. Department Of Veterans Affairs | Method and pulse oximeter apparatus using chemical heating |
US20170367629A1 (en) * | 2011-11-29 | 2017-12-28 | U.S. Department Of Veterans Affairs | Method and Pulse Oximeter Apparatus Using Chemical Heating |
US10660553B2 (en) | 2011-11-29 | 2020-05-26 | U.S. Department Of Veteran Affairs | Method and pulse oximeter apparatus using chemical heating |
US9138181B2 (en) | 2011-12-16 | 2015-09-22 | Covidien Lp | Medical sensor for use with headband |
US20150126831A1 (en) * | 2013-11-04 | 2015-05-07 | Covidien Lp | Medical sensor with ambient light shielding |
US10078052B2 (en) | 2014-08-28 | 2018-09-18 | Apple Inc. | Reflective surface treatments for optical sensors |
US10687743B1 (en) | 2015-07-02 | 2020-06-23 | Masimo Corporation | Physiological measurement devices, systems, and methods |
US10448871B2 (en) * | 2015-07-02 | 2019-10-22 | Masimo Corporation | Advanced pulse oximetry sensor |
US10722159B2 (en) | 2015-07-02 | 2020-07-28 | Masimo Corporation | Physiological monitoring devices, systems, and methods |
US20170000394A1 (en) * | 2015-07-02 | 2017-01-05 | Masimo Corporation | Advanced pulse oximetry sensor |
US10470695B2 (en) | 2015-07-02 | 2019-11-12 | Masimo Corporation | Advanced pulse oximetry sensor |
US10638961B2 (en) | 2015-07-02 | 2020-05-05 | Masimo Corporation | Physiological measurement devices, systems, and methods |
US10646146B2 (en) | 2015-07-02 | 2020-05-12 | Masimo Corporation | Physiological monitoring devices, systems, and methods |
US10687744B1 (en) | 2015-07-02 | 2020-06-23 | Masimo Corporation | Physiological measurement devices, systems, and methods |
US10687745B1 (en) | 2015-07-02 | 2020-06-23 | Masimo Corporation | Physiological monitoring devices, systems, and methods |
EP3139162A1 (en) * | 2015-09-07 | 2017-03-08 | EXIAS Medical GmbH | Movable measurement cell |
US10086368B2 (en) | 2015-09-07 | 2018-10-02 | EXIAS Medical GmbH | Movable measurement cell |
JPWO2017047402A1 (en) * | 2015-09-14 | 2018-05-17 | 株式会社村田製作所 | Heating oximeter |
WO2017047402A1 (en) * | 2015-09-14 | 2017-03-23 | 株式会社村田製作所 | Heating type oximeter |
US10925526B2 (en) | 2015-09-14 | 2021-02-23 | Murata Manufacturing Co., Ltd. | Heating oximeter |
US11129557B2 (en) | 2017-05-31 | 2021-09-28 | Cardiac Pacemakers, Inc. | Implantable medical device with chemical sensor |
US12004853B2 (en) | 2017-07-26 | 2024-06-11 | Cardiac Pacemakers, Inc. | Systems and methods for disambiguation of posture |
US11439304B2 (en) | 2017-08-10 | 2022-09-13 | Cardiac Pacemakers, Inc. | Systems and methods including electrolyte sensor fusion |
US11571151B2 (en) | 2017-08-23 | 2023-02-07 | Cardiac Pacemakers, Inc. | Implantable chemical sensor with staged activation |
US11109797B2 (en) | 2017-09-05 | 2021-09-07 | Apple Inc. | Portable electronic device having an integrated bio-sensor |
US11089983B2 (en) | 2017-12-01 | 2021-08-17 | Cardiac Pacemakers, Inc. | Multimodal analyte sensors for medical devices |
US10952621B2 (en) | 2017-12-05 | 2021-03-23 | Cardiac Pacemakers, Inc. | Multimodal analyte sensor optoelectronic interface |
CN112741604A (en) * | 2019-10-31 | 2021-05-04 | 倍灵科技(知识产权)有限公司 | Tester for optical measuring device |
US12114974B2 (en) | 2020-01-13 | 2024-10-15 | Masimo Corporation | Wearable device with physiological parameters monitoring |
WO2022013592A1 (en) * | 2020-07-13 | 2022-01-20 | CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement | Optical measurement system for monitoring physiological parameters of a user |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6343223B1 (en) | Oximeter sensor with offset emitters and detector and heating device | |
US6466808B1 (en) | Single device for both heating and temperature measurement in an oximeter sensor | |
US4926867A (en) | Light-reflecting and heating type oximeter | |
US5158082A (en) | Apparatus for heating tissue with a photoplethysmograph sensor | |
JP4767464B2 (en) | Optical device for non-invasive measurement of signals relating to blood and finger holder for the device | |
US6253097B1 (en) | Noninvasive medical monitoring instrument using surface emitting laser devices | |
JP3940437B2 (en) | Infant / newborn pulse oximeter sensor | |
US7720516B2 (en) | Motion compatible sensor for non-invasive optical blood analysis | |
JP4450512B2 (en) | Oxymeter sensor with encoded temperature characteristics | |
US9782110B2 (en) | Opticoustic sensor | |
US7254434B2 (en) | Variable pressure reusable sensor | |
US8437826B2 (en) | Clip-style medical sensor and technique for using the same | |
US8190225B2 (en) | Medical sensor for reducing signal artifacts and technique for using the same | |
US7047056B2 (en) | Hat-based oximeter sensor | |
US6285896B1 (en) | Fetal pulse oximetry sensor | |
US20050209516A1 (en) | Vital signs probe | |
US10925526B2 (en) | Heating oximeter | |
WO2020031147A1 (en) | Pulse oximetry and temperature device | |
WO2022132503A1 (en) | Electro-optical physiologic sensor | |
WO2022203506A1 (en) | Wearable sensor device for contacting skin of a person |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MALLINSKRODT INC., MISSOURI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIN, RODNEY;HOBBS, STEVEN;REEL/FRAME:010821/0482;SIGNING DATES FROM 20000414 TO 20000424 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: TYCO HEALTHCARE GROUP LP, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MALLINCKRODT INC.;REEL/FRAME:026761/0392 Effective date: 20110623 |
|
FPAY | Fee payment |
Year of fee payment: 12 |