WO2013088546A1 - Capacitor device and electrical equipment for housing capacitor device - Google Patents

Capacitor device and electrical equipment for housing capacitor device Download PDF

Info

Publication number
WO2013088546A1
WO2013088546A1 PCT/JP2011/078994 JP2011078994W WO2013088546A1 WO 2013088546 A1 WO2013088546 A1 WO 2013088546A1 JP 2011078994 W JP2011078994 W JP 2011078994W WO 2013088546 A1 WO2013088546 A1 WO 2013088546A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode
capacitor device
electrodes
external
Prior art date
Application number
PCT/JP2011/078994
Other languages
French (fr)
Japanese (ja)
Inventor
勇一郎 吉武
越智 健太郎
井上 重徳
加藤 修治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013549018A priority Critical patent/JP5941064B2/en
Priority to PCT/JP2011/078994 priority patent/WO2013088546A1/en
Publication of WO2013088546A1 publication Critical patent/WO2013088546A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations

Definitions

  • the present invention relates to a capacitor device and an electric device (a power conversion panel, a power conversion unit, and a power conversion unit) that store the capacitor device, and more particularly to a capacitor device that enables high-density mounting and an electric device that stores the capacitor device.
  • capacitors are applied to rapidly supply electrical energy to the electrical circuit.
  • Capacitors are used in a wide variety of electrical equipment such as inverters, circuit breakers, transformers, and high-voltage power supplies. There are various types of capacitors depending on the internal structure. In addition, the specifications of capacitors differ depending on the voltage class and application.
  • a smoothing capacitor is arranged inside the inverter panel or inside the unit cell.
  • the smoothing capacitor an aluminum electrolytic capacitor or a film capacitor is used according to the voltage class.
  • a snubber capacitor may be disposed to reduce the jumping voltage.
  • the above-mentioned smoothing capacitor occupies a large volume ratio in the inverter.
  • the capacitor volume is proportional to the square of the electric field applied to the dielectric between the electrodes.
  • a film capacitor is mainly used because of its high insulating property, but its relative dielectric constant is 2 to 10.
  • the volume ratio is inevitably increased.
  • the capacitor size becomes a major obstacle to downsizing the inverter.
  • ceramic capacitors have a very high dielectric constant, and are used for personal computers and portable terminal devices with low voltage.
  • ceramic materials and capacitor structures for inverters in the high voltage region have been developed, and there is a tendency to reduce the inverter volume.
  • Patent Document 1 a ceramic capacitor is used as the capacitor of the power converter.
  • the ceramic capacitor is protected by a protective device such as a fuse.
  • Ceramic capacitors are limited in size per capacitor from the point of manufacturing process. Considering the DC bias voltage, the capacity of one capacitor when the rated voltage is applied is considered to be about 10 ⁇ F. Since the capacitor applied to the high-voltage inverter has a large capacity and exceeds 1 mF, when a ceramic capacitor is applied, it is necessary to connect in large quantities in parallel.
  • the high-density mounting in this case is a mounting technology including a fuse that performs a capacitor protection function.
  • an object of the present invention is to provide a capacitor device capable of integrating ceramic capacitors at a high density in a capacitor that requires a large capacity, and an electric device that houses the capacitor device. Furthermore, in this high-density mounting, high-density mounting including a protection function is realized.
  • a cube-shaped capacitor having external electrodes on a pair of opposed surfaces is arranged in a vertical and horizontal manner with the opposing surfaces aligned to form a capacitor unit, and the opposing surfaces of a plurality of capacitor units This is achieved by arranging the capacitor electrode so as to connect the common electrode adjacent to one of the shared electrodes to one external terminal.
  • the conventional smoothing capacitor can be miniaturized by the three-dimensional paralleling of ceramic capacitors, and the electrical equipment can be miniaturized.
  • Fig. 2 shows a cross-sectional view of an inverter unit as a typical example of electrical equipment.
  • the structure inside the unit will be described with reference to FIG.
  • Inside the inverter unit 30 are an IGBT 1 that is a semiconductor switching element, a cooling fin 2 that is mounted on the IGBT 1 and dissipates heat generated by the IGBT 1, and an air filter 4 that removes dust and the like from the air sucked into the unit 30.
  • parts such as the bus bar 5 and the capacitor 3 are accommodated.
  • the bus bar 5 electrically connects the positive electrode and the negative electrode of the IGBT 1 and the capacitor 3.
  • the electric device is constituted by a casing as an outer frame, main body devices (IGBT 1, cooling fins 2, air filter 4), and a capacitor device (bus bar 5, capacitor 3).
  • the capacitor 3 used here needs to have a predetermined capacity with a limited volume.
  • the IGBT 1 and the cooling fin 2 occupy the space A on the right half, so it is necessary to arrange the capacitor 3 using the space B on the left half effectively.
  • the inverter unit 30 which is a casing is a cube
  • the space B permitted for mounting the capacitor 3 is also often a cube.
  • the capacity of the capacitor mountable space B varies depending on the capacity of the inverter unit 30. Accordingly, in the present invention, when the capacitor 3 is formed into a cube having a shape matching the capacitor mounting space B, the small-capacity unit capacitor 31 is formed in a cube, and this is three-dimensionally arranged in the vertical, horizontal, and height directions. Stack up to form a capacitor group.
  • the unit capacitor 31 is a ceramic capacitor.
  • FIG. 3 shows an example of the appearance of the unit capacitor 31 configured in a cubic shape.
  • the first and second external electrodes 32 and 33 are arranged to face each other.
  • a plurality of first and second internal electrodes 34 and 35 extend from the first and second external electrodes 32 and 33 respectively in the lateral direction.
  • Each of the first and second external electrodes 32 and 33 and the first and second internal electrodes 34 and 35 has a plate shape, for example, and a cubic portion other than the electrodes is filled with a high dielectric material 36. ing.
  • the first and second external electrodes 32 and 33 are not disposed in the entire left and right regions, but are disposed in a partial region.
  • the hatched lines indicate the first and second external electrodes 32 and 33, and other portions on the left and right surfaces are made of an insulating high dielectric material 36.
  • the internal electrodes 34 and 35 extending in the lateral direction, only one of them is taken out as shown as 35, and the side a in contact with the external electrodes 32 and 33 is a narrow region, and the internal region b
  • the shape is such that a large area can be secured.
  • FIG. 4 functionally shows the positional relationship between the first and second external electrodes 32 and 33 and the first and second internal electrodes 34 and 35 by removing the high dielectric material 36 of the cubic unit capacitor 31. It is a figure. The reason why it is functionally explained is that the unit capacitor 31 is actually stacked to manufacture the unit capacitor 31, and therefore does not actually exist in the form of FIG.
  • first and second external electrodes 32 and 33 are arranged to face each other on a part of the left and right surfaces of the unit capacitor 31, and for example, three each from each of the external electrodes 32 and 33.
  • the plate-like internal electrodes 34 and 35 extend in the lateral direction.
  • Each of the three plate-like internal electrodes 34 and 35 are opposed to each other so as to be sandwiched alternately.
  • the capacitor function is obtained by arranging the layers 35a, 34a, 35b, 34b, 35c, and 34c from the top.
  • a capacitor obtained by adding the above-described characteristic configuration to the known capacitor 31 is used as a unit capacitor, and stacked in the vertical, horizontal, and height directions.
  • FIG. 1 shows an example in which a ceramic capacitor group is used as a specific structural example of the capacitor 3 mounted on the inverter unit 30.
  • the single ceramic capacitor 31 is electrically connected in parallel in the vertical, horizontal, and height directions.
  • the capacitor 3U in FIG. 1 includes four unit capacitors 31 in the direction of FIG. 3 arranged in the X direction and stacked in four stages in the height direction Z, and the capacitor units (31A, 31B). , 31C, 31D), and capacitor units (31A, 31B, 31C, 31D) are assembled in four rows in the Y direction.
  • the right side surface of the capacitor unit 31A is, for example, the second external electrode 32
  • the left side surface that is hidden in the drawing is, for example, the first external electrode 33.
  • This stacked arrangement is performed in the same way for the other capacitor units 31B, 31C, and 31D.
  • the right side surface is the first external electrode 33 and the left side surface is the second external electrode 32. It arrange
  • a shared electrode 37 is disposed between the capacitor units 31A, 31B, 31C, and 31D.
  • the shared electrodes 37AB and 37CD are the first shared electrodes 37 that are connected to the first external power supply of two adjacent sets of capacitor units
  • the shared electrodes 37BC are the two sets of adjacent capacitor units.
  • the right side surface of the finally assembled capacitor 3 has the same potential as the second shared electrode
  • the left side surface of the finally assembled capacitor 3 has the same potential as the first shared electrode. .
  • FIG. 5 is a diagram showing the connection relationship between the structure of the shared electrode and the capacitor unit.
  • the correspondence relationship of 37BC as the shared electrode and 31B as the capacitor unit will be described as an example.
  • the shared electrode 37BC is in contact with the capacitor unit 31A on the back surface, so that the back surface has the same structure as the front surface.
  • the capacitor unit 31B will be described.
  • 16 unit capacitors 31 are stacked vertically and horizontally.
  • external electrodes are arranged on the left and right surfaces of the unit capacitor 31, but the external electrodes are provided not in the entire area of the left and right surfaces but in a partial region.
  • the external electrode 33 appears on the visible side.
  • the four unit capacitor rows (31BZ1) in the height direction of the capacitor unit 31B the external electrodes 3 are arranged so as to come to the same position in the height direction (left side in the height direction in the drawing). This relationship is also maintained for four unit capacitor rows (for example, 31BZ2) in other height directions.
  • the shared electrode 37BC is actually composed of four unit shared electrodes (37BC1, 37BC2, 37BC3, 37BC4) in the height direction in a capacitor unit in which 16 unit capacitors 31 are stacked vertically and horizontally.
  • the unit shared electrode 37BC1 is disposed at a position facing the unit capacitor array 31BZ1
  • the unit shared electrode 37BC2 is disposed at a position facing the unit capacitor array 31BZ2. Since all the unit shared electrodes 37BC have the same configuration, the unit shared electrode 37BC1 will be described as an example here.
  • the unit shared electrode 37BC1 is formed by evaporating two rows of electrodes 22 and 23 on the non-deposited film 25 in the height direction. Thereby, the insulation distance between the base material 29 of the unit shared electrode and the electrodes 22 and 23 and between the electrodes 22 and 23 is secured. Among these, the vapor deposition electrode 22 is in contact with the external electrodes 33 of the four unit capacitor rows 31BZ1 in the height direction of the capacitor unit 31B and is connected. The other vapor deposition electrode 23 comes into contact with a portion of the insulating high dielectric material 36 in the height direction of the capacitor unit 31B, and there is no electrical connection between them.
  • narrow conductive portions 24 are provided between the vapor deposition electrodes 22 and 23 in two rows in the height direction. Further, one or more conducting portions 24 are provided per unit capacitor, preferably the same number.
  • This conduction part 24 fulfills the function of a fuse provided between the vapor deposition electrodes 22, 23, and fulfills the function of fusing with the overcurrent of the unit capacitor 31 to protect the capacitor.
  • the vapor deposition electrodes 22 and 23 in two rows in the height direction are extended to the upper end of the unit shared electrode 37BC1, but the other is not extended to the upper end.
  • Adjacent unit sharing electrodes are vapor deposition electrodes having the same length.
  • the vapor deposition electrodes extending to the upper end are in contact between the unit shared electrode 37BC1 and the adjacent 37BC2
  • the vapor deposition electrodes not extending to the upper end are in contact between the unit shared electrode 37BC2 and the adjacent 37BC3.
  • the vapor deposition electrodes extending to the upper end of the unit shared electrode 37BC1 can be externally connected together with the vapor deposition electrode extending to the upper end on this back surface to constitute an external connection terminal.
  • the common electrode 37AB and the common electrode 37CD are commonly connected to form a first external connection terminal
  • the common electrode 37BC is a second external connection terminal, whereby the capacitor 3 of FIG.
  • the shared electrodes 37 are connected by the bus bar 5, and the external connection is made by the bus bar 5 with the IGBT.
  • capacitors are stacked in the height direction (z direction), the external electrodes of adjacent capacitors are the same, and the potential is the same, so there is no need to secure an insulating space between the capacitors. .
  • the insulation distance increases as the voltage increases. Therefore, it is very effective to eliminate the insulation distance.
  • the insulation distance can be eliminated by making the polarities of the external electrodes of adjacent capacitors adjacent in the horizontal direction (y direction) the same.
  • the shared electrode 37 is provided between the horizontal capacitors. There is also an example in which the shared electrode 37 is not used as shown in Example 4 described later.
  • the external electrodes are assumed to be partial on the surfaces of the external electrodes 32 and 33 that are in contact with the shared electrode 37.
  • the external electrodes 32 and 33 are mainly provided on the entire outer surface of the ceramic dielectric 36.
  • the metal of the external electrodes 32 and 33 of the ceramic capacitor unit 31 silver, copper, aluminum, nickel, and alloys thereof can be considered, but any metal can be used as long as it is a conductive metal. no problem.
  • an electrode forming method a method such as paste, vapor deposition, sputtering, or plating is applied.
  • the external electrodes 32 and 33 are mainly formed of copper paste.
  • silver, copper, aluminum, nickel and alloys thereof may be used for the internal electrode of the ceramic capacitor, but any metal can be used as long as it is a conductive metal.
  • a nickel alloy is mainly used.
  • the characteristics required for the material applied to the high dielectric material 36 filled between the electrodes of the single capacitor 31 are a relative dielectric constant of 500 or more after firing and a distance between electrodes of 0.05 to 0.5 mm. .
  • BaTiO3 series, ZeO-added SiC, SrTiO3 series, ZeO-added SiC, and the like are conceivable.
  • metal is partially applied to the surface of a non-metallic substance.
  • a non-metallic material an epoxy resin, a film, a ceramic, or the like is applied.
  • the surface metal is composed of zinc, silver, copper, aluminum, nickel, and alloys thereof using means such as paste, vapor deposition, sputtering, and plating.
  • a metal is deposited on the film.
  • the material of the film polypropylene, polyethylene, polyethylene terephthalate, polyvinylidene fluoride, polyvinylidene chloride, polyethyl ether ketone, polyether imide, or the like is used, but any film can be used.
  • the vapor deposition metal may be an alloy of zinc and aluminum, or each may be used alone.
  • the electrode of the shared electrode 37 For the surface electrode of the shared electrode 37, a narrow portion is provided in the electrode. In this embodiment, the electrode is divided into two islands 22 and 23, and a thin electrode 24 is used as a bridge. The partial external electrodes 32 and 33 of the ceramic capacitor 31 described above are brought into contact with this one surface. The other is electrically connected to the electrode to the upper bus bar 5.
  • Narrow part 24 is a fuse.
  • the length of the width with respect to the direction in which the current flows determines the electrical resistance of the fuse portion, that is, the short circuit current.
  • the length of the fuse is determined by the creeping insulation distance necessary for the voltage applied between the electrode on the ceramic capacitor connection side and the electrode on the bus bar side.
  • FIG. 6 shows Example 2.
  • the shared electrode 37 is used to provide a fuse function, but the internal electrodes 34 and 35 are used here.
  • the internal region b of the internal electrode 35 is divided into two to form internal regions b1 and b2.
  • a narrow portion 24 is formed between the internal regions b1 and b2.
  • the internal regions b1 and b2 are divided into a side a that contacts the external electrode and a side that does not contact the external electrode. This division position is appropriately determined according to the capacitor capacity and the like.
  • the narrow portion 24 makes it possible to electrically separate the ceramic capacitors in which an abnormality has occurred, and to prevent the entire ceramic capacitor group having a large number of capacitors connected in parallel from being short-circuited.
  • the fuse function using the shared electrode 37 can be used as it is, or the shared electrode 37 can be prevented from having a fuse function.
  • the two vapor deposition electrodes 22 and 23 may be integrated.
  • FIG. 7 shows Example 3.
  • the ceramic capacitor group 3 is sandwiched between the bus bars 5.
  • the capacitor 3 is applied to the insulating space between the bus bars, which has been a dead space, and the space in the inverter 30 can be used effectively, contributing to the downsizing of the inverter.
  • Fig. 8 shows the structure of a ceramic capacitor group for realizing this structure.
  • electrodes connected to the bus bar 5 are arranged vertically. That is, the shared electrodes 37AB and 37CD are taken out from the upper part of the capacitor unit 3U, but the shared electrode 37BC is taken out from the lower part of the capacitor unit 3U, so that a ceramic capacitor group can be arranged in the space between the bus bars 5. become.
  • Example 3 a capacitive shared electrode 370 in which the shared electrode 37 has a capacity is shown in FIG.
  • the capacitance is secured in the ceramic capacitor portion.
  • the capacitance is secured also in the shared electrode portion in addition to this, so that the capacity can be increased.
  • the electrodes 22 and 23 are formed on one or both surfaces of the surface of the film 25 as in the first embodiment. Capacitance can be obtained by alternately stacking the polarities of the electrodes 22 and 23.
  • electrodes connected to the bus bar connected to the IGBT are provided on the upper and lower portions.
  • a technique such as plating, metallicon, or vapor deposition may be used.
  • the eyes are applied.
  • FIG. 10 shows a structure in which the shared electrode 37 including the protection function is eliminated.
  • the electrode 38 is not provided with the vapor deposition electrodes 22 and 23 in two rows in the height direction in FIG. 6 and the narrow conductive portion 24 therebetween.
  • One side is covered with one vapor deposition electrode.
  • the method of the second embodiment in which the internal electrode is provided may be used.
  • this structure can be adopted if the design tolerance of each ceramic capacitor is large and the structure does not cause failure of each capacitor. In order to increase the design margin of individual ceramic capacitors, the distance between the internal electrodes should be kept large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The objective of the present invention is to provide a capacitor device capable of integrating, with high density, ceramic capacitors on a capacitor requiring large capacity, and to provide an electrical device for housing the capacitor device. The objective is also to achieve a high-density mount that includes a protective function. This purpose is achieved by configuring the capacitor device such that cube-shaped capacitors having external electrodes provided to pairs of mutually facing surfaces are arranged vertically and horizontally to form a capacitor unit so that the mutually facing surfaces are aligned with each other, a plurality of such capacitor units are configured in layers so that shared electrodes are disposed between the facing surfaces, and adjacent shared electrodes that are separated from each other by one shared electrode are connected to one external terminal.

Description

コンデンサ装置及びコンデンサ装置を収納する電気機器Capacitor device and electric device for storing capacitor device
 本発明は、コンデンサ装置及びコンデンサ装置を収納する電気機器(電力変換盤、電力変換ユニットおよび電力変換ユニット)に係り、高密度実装を可能にするコンデンサ装置及びコンデンサ装置を収納する電気機器に関する。 The present invention relates to a capacitor device and an electric device (a power conversion panel, a power conversion unit, and a power conversion unit) that store the capacitor device, and more particularly to a capacitor device that enables high-density mounting and an electric device that stores the capacitor device.
 電気機器においては、その電気回路に急速に電気エネルギーを供給するためにコンデンサが適用される。コンデンサはインバータ、遮断器、変圧器、高圧電源など多種多様な電気機器に適用される。コンデンサにもその内部の構造の違いにより様々な種類が存在する。また、電圧階級、用途に応じてコンデンサの仕様は異なる。 In electrical equipment, capacitors are applied to rapidly supply electrical energy to the electrical circuit. Capacitors are used in a wide variety of electrical equipment such as inverters, circuit breakers, transformers, and high-voltage power supplies. There are various types of capacitors depending on the internal structure. In addition, the specifications of capacitors differ depending on the voltage class and application.
 たとえば、高圧インバータではインバータ盤内部もしくはユニットセル内部に平滑コンデンサが配置されている。平滑コンデンサには、電圧階級に応じてアルミ電解コンデンサやフィルムコンデンサが用いられている。また、その他の用途として跳ね上がり電圧低減用にスナバコンデンサも配置されることがある。 For example, in a high voltage inverter, a smoothing capacitor is arranged inside the inverter panel or inside the unit cell. As the smoothing capacitor, an aluminum electrolytic capacitor or a film capacitor is used according to the voltage class. In addition, as another application, a snubber capacitor may be disposed to reduce the jumping voltage.
 上記、平滑コンデンサはインバータの中でも大きな体積割合を占めている。コンデンサ体積は、電極間の誘電体に印加される電界の2乗に比例する。定格電圧が500Vを超えるようなインバータにおいては、絶縁性の高さからフィルムコンデンサが主に使用されているが、その比誘電率は2~10である。 The above-mentioned smoothing capacitor occupies a large volume ratio in the inverter. The capacitor volume is proportional to the square of the electric field applied to the dielectric between the electrodes. In an inverter whose rated voltage exceeds 500V, a film capacitor is mainly used because of its high insulating property, but its relative dielectric constant is 2 to 10.
 以上より、一般的に電圧が高くなるとその体積割合の増加が不可避であり、電圧が高くなるほどコンデンサ体格がインバータ小型化の大きな阻害要因となる。 As described above, generally, when the voltage is increased, the volume ratio is inevitably increased. As the voltage is increased, the capacitor size becomes a major obstacle to downsizing the inverter.
 一方、セラミックコンデンサは非常に高い比誘電率を有しており、低電圧であるパソコンや携帯端末機器向けに使用されている。そこで、近年、高圧領域のインバータを対象としたセラミック材料およびコンデンサ構造などの開発が進められており、インバータ体積を減らそうとする傾向がみられる。 On the other hand, ceramic capacitors have a very high dielectric constant, and are used for personal computers and portable terminal devices with low voltage. In recent years, ceramic materials and capacitor structures for inverters in the high voltage region have been developed, and there is a tendency to reduce the inverter volume.
 この点に関し、特許文献1においては、電力変換装置のコンデンサとしてセラミックコンデンサを使用している。また、ヒューズなどの保護装置によりセラミックコンデンサを保護している。 In this regard, in Patent Document 1, a ceramic capacitor is used as the capacitor of the power converter. The ceramic capacitor is protected by a protective device such as a fuse.
特開2006-230156号公報JP 2006-230156 A
 以上のように、電力機器にセラミックコンデンサを適用するという試みはあるが、実際の適用に際しては解決すべき課題が多い。 As described above, there are attempts to apply ceramic capacitors to power equipment, but there are many problems to be solved in actual application.
 セラミックコンデンサは製造プロセスの点から1個当たりのコンデンサのサイズには限界がある。DCバイアス電圧を考慮すると定格電圧印加時の1個あたりのコンデンサの容量は10μF程度であると考えられる。高圧インバータに適用されるコンデンサは大容量であり1mFを超えるため、セラミックコンデンサを適用する場合、大量に並列接続する必要がある。 Ceramic capacitors are limited in size per capacitor from the point of manufacturing process. Considering the DC bias voltage, the capacity of one capacitor when the rated voltage is applied is considered to be about 10 μF. Since the capacitor applied to the high-voltage inverter has a large capacity and exceeds 1 mF, when a ceramic capacitor is applied, it is necessary to connect in large quantities in parallel.
 また、セラミックコンデンサは短絡モードで故障するため、大量に実装した時に故障個所を切り離せるような短絡保護機能が必要不可欠となる。上記特許文献の技術では、個々のコンデンサに保護機能が必要であるが、ヒューズ自体の体積が大きい。さらに、セラミックコンデンサ間の絶縁距離が必要となり絶縁空間が生じてしまう。 Also, since ceramic capacitors fail in the short-circuit mode, a short-circuit protection function that can isolate the failure location when mounted in large quantities is indispensable. In the technology of the above-mentioned patent document, a protective function is required for each capacitor, but the volume of the fuse itself is large. In addition, an insulation distance between the ceramic capacitors is required, resulting in an insulation space.
 このことから、大容量コンデンサに複数のセラミックコンデンサを適用する場合に、個々のコンデンサを高密度に実装するための実装技術が必要となる。さらにこの場合の高密度実装は、コンデンサの保護機能を果たすヒューズも含めた実装技術であることが望ましい。 For this reason, when applying a plurality of ceramic capacitors to a large-capacity capacitor, a mounting technique for mounting individual capacitors at a high density is required. Furthermore, it is desirable that the high-density mounting in this case is a mounting technology including a fuse that performs a capacitor protection function.
 以上のことから本発明の目的は、大容量を要するコンデンサにおいてセラミックコンデンサを高密度に集積することができるコンデンサ装置及びコンデンサ装置を収納する電気機器を提供することにある。さらには、この高密度実装の中では保護機能も含めた高密度実装を実現する。 In view of the above, an object of the present invention is to provide a capacitor device capable of integrating ceramic capacitors at a high density in a capacitor that requires a large capacity, and an electric device that houses the capacitor device. Furthermore, in this high-density mounting, high-density mounting including a protection function is realized.
 上記の課題は、対向する1組の面に外部電極を備えた立方体状のコンデンサを前記対抗する面を揃えて縦横に配置してコンデンサユニットを形成し、複数のコンデンサユニットについてその前記対抗する面の間に共有電極を配置して積層して構成され、前記共有電極のうち1つ離れて隣接する共有電極を1つの外部端子に接続するようにコンデンサ装置を構成したことで達成される。 The above-described problem is that a cube-shaped capacitor having external electrodes on a pair of opposed surfaces is arranged in a vertical and horizontal manner with the opposing surfaces aligned to form a capacitor unit, and the opposing surfaces of a plurality of capacitor units This is achieved by arranging the capacitor electrode so as to connect the common electrode adjacent to one of the shared electrodes to one external terminal.
 本発明によると、セラミックコンデンサの3次元並列化により、従来の平滑コンデンサを小型化することが可能となり、電気機器の小型化が可能となる。 According to the present invention, the conventional smoothing capacitor can be miniaturized by the three-dimensional paralleling of ceramic capacitors, and the electrical equipment can be miniaturized.
インバータユニットに搭載するコンデンサの具体的な構造例を示す図。The figure which shows the specific structural example of the capacitor | condenser mounted in an inverter unit. 典型的なインバータユニットの断面図を示す図。The figure which shows sectional drawing of a typical inverter unit. 立方体状に構成された単位コンデンサの外観の一例を示す図。The figure which shows an example of the external appearance of the unit capacitor comprised by the cube shape. 単位コンデンサ内の外部電極と内部電極の配置関係を機能的に示した図。The figure which showed functionally the arrangement relation of the external electrode and internal electrode in a unit capacitor. 共有電極の構造とコンデンサユニットとの接続関係を示す図。The figure which shows the connection relation of the structure of a shared electrode, and a capacitor | condenser unit. 内部電極を利用してヒューズ機能を持たせる構造例を示す図。The figure which shows the structural example which gives a fuse function using an internal electrode. バスバ間にコンデンサ群を挟持する構造を示す図。The figure which shows the structure which clamps a capacitor group between bus bars. 図7を実現する為のコンデンサ構成を示す図。The figure which shows the capacitor | condenser structure for implement | achieving FIG. 共有電極に容量を持たせた容量性共有電極を示す図。The figure which shows the capacitive shared electrode which gave the capacity | capacitance to the shared electrode. 保護機能を含む共有電極を無くした構造について示す図。The figure shown about the structure which lost the shared electrode containing a protective function.
 以下図面を用いて、本発明のコンデンサ装置について説明する。 Hereinafter, the capacitor device of the present invention will be described with reference to the drawings.
 図2は電気機器の典型的な事例として、インバータユニットの断面図を示している。この図でユニット内部の構造について説明する。インバータユニット30の内部には、半導体スイッチング素子であるIGBT1と、IGBT1に装着されIGBT1で発生した熱を放熱させる冷却フィン2と、ユニット30内に吸引される空気から埃などを除去するエアフィルタ4と、バスバ5と、コンデンサ3などの部品を収納している。なお、バスバ5は、IGBT1の正極および負極と、コンデンサ3を電気的に接続している。 Fig. 2 shows a cross-sectional view of an inverter unit as a typical example of electrical equipment. The structure inside the unit will be described with reference to FIG. Inside the inverter unit 30 are an IGBT 1 that is a semiconductor switching element, a cooling fin 2 that is mounted on the IGBT 1 and dissipates heat generated by the IGBT 1, and an air filter 4 that removes dust and the like from the air sucked into the unit 30. In addition, parts such as the bus bar 5 and the capacitor 3 are accommodated. The bus bar 5 electrically connects the positive electrode and the negative electrode of the IGBT 1 and the capacitor 3.
 このように電気機器は、外枠としての筺体と、本体機器(IGBT1、冷却フィン2、エアフィルタ4)と、コンデンサ装置(バスバ5、コンデンサ3)で構成されたものということができる。 Thus, it can be said that the electric device is constituted by a casing as an outer frame, main body devices (IGBT 1, cooling fins 2, air filter 4), and a capacitor device (bus bar 5, capacitor 3).
 図2のインバータユニット30では、限られた筺体容積内に複数の部品を収納するため、ここで使用するコンデンサ3も限られた容積で所定の容量を得られるものである必要がある。例えば図2のインバータユニット30では、その右半分の空間AをIGBT1と冷却フィン2が占積するので、左半分の空間Bを有効に利用してコンデンサ3を配置する必要がある。 In the inverter unit 30 in FIG. 2, a plurality of parts are accommodated in a limited housing volume, and therefore the capacitor 3 used here needs to have a predetermined capacity with a limited volume. For example, in the inverter unit 30 of FIG. 2, the IGBT 1 and the cooling fin 2 occupy the space A on the right half, so it is necessary to arrange the capacitor 3 using the space B on the left half effectively.
 通常、筺体であるインバータユニット30は立方体であるので、コンデンサ3の搭載に許可される空間Bも立方体である場合が多い。しかしインバータユニット30の容量により、コンデンサ搭載可能空間Bの容積も異なってくる。そこで本発明では、コンデンサ3をコンデンサ搭載可能空間Bに合致した形状の立方体に構成するにあたり、小容積の単位コンデンサ31を立方体で構成し、これを縦、横、高さ方向に3次元的に積み上げてコンデンサ群を構成する。また、単位コンデンサ31をセラミックコンデンサとする。 Usually, since the inverter unit 30 which is a casing is a cube, the space B permitted for mounting the capacitor 3 is also often a cube. However, the capacity of the capacitor mountable space B varies depending on the capacity of the inverter unit 30. Accordingly, in the present invention, when the capacitor 3 is formed into a cube having a shape matching the capacitor mounting space B, the small-capacity unit capacitor 31 is formed in a cube, and this is three-dimensionally arranged in the vertical, horizontal, and height directions. Stack up to form a capacitor group. The unit capacitor 31 is a ceramic capacitor.
 図3は、立方体状に構成された単位コンデンサ31の外観の一例を示している。単位コンデンサ31を形成する立方体の左右面には、第1と第2の外部電極32、33が対向して配置される。また、第1と第2の外部電極32、33からはそれぞれ複数の第1と第2の内部電極34、35が横方向内部に延伸している。第1と第2の外部電極32、33及び第1と第2の内部電極34、35はいずれも例えば板状とされており、電極以外の立方体状の部分には高誘電材36が充填されている。 FIG. 3 shows an example of the appearance of the unit capacitor 31 configured in a cubic shape. On the left and right surfaces of the cube forming the unit capacitor 31, the first and second external electrodes 32 and 33 are arranged to face each other. A plurality of first and second internal electrodes 34 and 35 extend from the first and second external electrodes 32 and 33 respectively in the lateral direction. Each of the first and second external electrodes 32 and 33 and the first and second internal electrodes 34 and 35 has a plate shape, for example, and a cubic portion other than the electrodes is filled with a high dielectric material 36. ing.
 ここで本発明の特徴的な構成として、第1と第2の外部電極32、33は左右面の全領域に配置されたものではなく、一部領域に配置している。斜線で示すのが第1と第2の外部電極32、33であり、左右面のその他の部分は絶縁性の高誘電材36とされている。また、横方向内部に延伸する内部電極34、35は、その1つのみを取り出して35として図示しているように、外部電極32、33と接する側aが狭小領域とされ、内部領域bでは広い面積を確保できるような形状とされている。 Here, as a characteristic configuration of the present invention, the first and second external electrodes 32 and 33 are not disposed in the entire left and right regions, but are disposed in a partial region. The hatched lines indicate the first and second external electrodes 32 and 33, and other portions on the left and right surfaces are made of an insulating high dielectric material 36. In addition, as for the internal electrodes 34 and 35 extending in the lateral direction, only one of them is taken out as shown as 35, and the side a in contact with the external electrodes 32 and 33 is a narrow region, and the internal region b The shape is such that a large area can be secured.
 図4は、立方体状の単位コンデンサ31の高誘電材36を取り除き、第1と第2の外部電極32、33、及び第1と第2の内部電極34、35の配置関係を機能的に示した図である。機能的にと説明したのは、実際には積み重ねて単位コンデンサ31を製造するので図4の形態としては現実には存在しないことによる。 FIG. 4 functionally shows the positional relationship between the first and second external electrodes 32 and 33 and the first and second internal electrodes 34 and 35 by removing the high dielectric material 36 of the cubic unit capacitor 31. It is a figure. The reason why it is functionally explained is that the unit capacitor 31 is actually stacked to manufacture the unit capacitor 31, and therefore does not actually exist in the form of FIG.
 あくまでも機能的にではあるが、単位コンデンサ31の左右面の一部には、第1と第2の外部電極32、33が対向して配置され、それぞれの外部電極32、33から例えば3個ずつの板状の内部電極34、35が横方向内部に延伸している。なお、3個ずつの板状の内部電極34、35は交互に挟み合う形で対向している。図の例では、上から35a、34a、35b、34b、35c、34cのように積層配置されることで、コンデンサとしての機能を得る。 Although it is only functionally, first and second external electrodes 32 and 33 are arranged to face each other on a part of the left and right surfaces of the unit capacitor 31, and for example, three each from each of the external electrodes 32 and 33. The plate-like internal electrodes 34 and 35 extend in the lateral direction. Each of the three plate-like internal electrodes 34 and 35 are opposed to each other so as to be sandwiched alternately. In the example shown in the figure, the capacitor function is obtained by arranging the layers 35a, 34a, 35b, 34b, 35c, and 34c from the top.
 図3、図4に機能的形状を示すコンデンサ31は、既に文献などでよく知られたものである。本発明では、公知のコンデンサ31に前記の特徴的な構成を加味したコンデンサを単位コンデンサとして用いて、縦、横、高さ方向に積み上げていく。 3 and 4 are already well-known in the literature. In the present invention, a capacitor obtained by adding the above-described characteristic configuration to the known capacitor 31 is used as a unit capacitor, and stacked in the vertical, horizontal, and height directions.
 図1は、インバータユニット30に搭載するコンデンサ3の具体的な構造例として、セラミックコンデンサ群で構成する例を示している。ここでは、単体のセラミックコンデンサ31を縦、横、高さの各方向に電気的に並列に接続している。 FIG. 1 shows an example in which a ceramic capacitor group is used as a specific structural example of the capacitor 3 mounted on the inverter unit 30. Here, the single ceramic capacitor 31 is electrically connected in parallel in the vertical, horizontal, and height directions.
 より具体的に説明すると、図1のコンデンサ3Uは、図3の向きの単位コンデンサ31を、X方向に4台配置し、かつ高さ方向Zにも4段積みしてコンデンサユニット(31A、31B、31C、31D)とし、さらにコンデンサユニット(31A、31B、31C、31D)をY方向にも4列に組んだものである。従って、コンデンサユニット31Aの右側面が例えば第2の外部電極32、図示上隠れている左側面が例えば第1の外部電極33になっている。この積み上げ配置は、他のコンデンサユニット31B、31C、31Dでも同じ考えで行われているが、コンデンサユニット31Bと31Dでは、右側面が第1の外部電極33、左側面が第2の外部電極32となるように配置している。 More specifically, the capacitor 3U in FIG. 1 includes four unit capacitors 31 in the direction of FIG. 3 arranged in the X direction and stacked in four stages in the height direction Z, and the capacitor units (31A, 31B). , 31C, 31D), and capacitor units (31A, 31B, 31C, 31D) are assembled in four rows in the Y direction. Accordingly, the right side surface of the capacitor unit 31A is, for example, the second external electrode 32, and the left side surface that is hidden in the drawing is, for example, the first external electrode 33. This stacked arrangement is performed in the same way for the other capacitor units 31B, 31C, and 31D. However, in the capacitor units 31B and 31D, the right side surface is the first external electrode 33 and the left side surface is the second external electrode 32. It arrange | positions so that it may become.
 また、コンデンサユニット31A、31B、31C、31Dの間には、共有電極37が配置される。この結果、隣接する2組のコンデンサユニットは、共有電極37に同一の外部電極32または33通しを接続することになる。図の例では共有電極37ABと37CDは、隣接する2組のコンデンサユニットの第1の外部電源通しを接続した第1の共有電極37であり、共有電極37BCは、隣接する2組のコンデンサユニットの第2の外部電源通しを接続した第2の共有電極である。なお、最終的に組み上げられたコンデンサ3の右側面を第2の共有電極と同電位とし、最終的に組み上げられたコンデンサ3の左側面を第1の共有電極と同電位にすることは言うまでもない。 Further, a shared electrode 37 is disposed between the capacitor units 31A, 31B, 31C, and 31D. As a result, two sets of adjacent capacitor units connect the same external electrode 32 or 33 through the shared electrode 37. In the illustrated example, the shared electrodes 37AB and 37CD are the first shared electrodes 37 that are connected to the first external power supply of two adjacent sets of capacitor units, and the shared electrodes 37BC are the two sets of adjacent capacitor units. A second shared electrode connected to a second external power source. Needless to say, the right side surface of the finally assembled capacitor 3 has the same potential as the second shared electrode, and the left side surface of the finally assembled capacitor 3 has the same potential as the first shared electrode. .
 図5は、共有電極の構造とコンデンサユニットとの接続関係を示す図である。ここでは、共有電極として37BC、コンデンサユニットとして31Bの対応関係を例に説明する。なお共有電極37BCは、その裏面においてコンデンサユニット31Aに接触するので裏面も表面と同じ構造にされている。 FIG. 5 is a diagram showing the connection relationship between the structure of the shared electrode and the capacitor unit. Here, the correspondence relationship of 37BC as the shared electrode and 31B as the capacitor unit will be described as an example. The shared electrode 37BC is in contact with the capacitor unit 31A on the back surface, so that the back surface has the same structure as the front surface.
 まずコンデンサユニット31Bについて説明する。このユニットでは、縦横に16個の単位コンデンサ31が積み上げられている。また、単位コンデンサ31の左右面には外部電極が配置されているが、左右面の全域ではなく、一部領域に外部電極が設けられている。図示上では見えている側に外部電極33が現れている。かつコンデンサユニット31Bの高さ方向の4個の単位コンデンサ列(31BZ1)についてみると、外部電極3が高さ方向の同じ位置(図示では高さ方向左側)に来るように配置されている。この関係は、他の高さ方向の4個の単位コンデンサ列(例えば31BZ2)についても維持されている。 First, the capacitor unit 31B will be described. In this unit, 16 unit capacitors 31 are stacked vertically and horizontally. Further, external electrodes are arranged on the left and right surfaces of the unit capacitor 31, but the external electrodes are provided not in the entire area of the left and right surfaces but in a partial region. In the drawing, the external electrode 33 appears on the visible side. Further, regarding the four unit capacitor rows (31BZ1) in the height direction of the capacitor unit 31B, the external electrodes 3 are arranged so as to come to the same position in the height direction (left side in the height direction in the drawing). This relationship is also maintained for four unit capacitor rows (for example, 31BZ2) in other height directions.
 これに対し共有電極37BCは、縦横に16個の単位コンデンサ31が積み上げられたコンデンサユニットでは、実際には高さ方向の4個の単位共有電極(37BC1、37BC2、37BC3、37BC4)で構成される。従って単位コンデンサ列31BZ1に対向する位置に単位共有電極37BC1が配置され、単位コンデンサ列31BZ2に対向する位置に単位共有電極37BC2が配置されることになる。単位共有電極37BCは全て同じ構成であるので、ここでは単位共有電極37BC1を例に取り説明することにする。 On the other hand, the shared electrode 37BC is actually composed of four unit shared electrodes (37BC1, 37BC2, 37BC3, 37BC4) in the height direction in a capacitor unit in which 16 unit capacitors 31 are stacked vertically and horizontally. . Accordingly, the unit shared electrode 37BC1 is disposed at a position facing the unit capacitor array 31BZ1, and the unit shared electrode 37BC2 is disposed at a position facing the unit capacitor array 31BZ2. Since all the unit shared electrodes 37BC have the same configuration, the unit shared electrode 37BC1 will be described as an example here.
 単位共有電極37BC1は、非蒸着フィルム25の上に高さ方向に2列の電極22、23を蒸着により形成している。これにより単位共有電極の母材29と電極22、23の間、および電極22、23間の絶縁距離が確保されている。このうち蒸着電極22が、コンデンサユニット31Bの高さ方向の4個の単位コンデンサ列31BZ1の外部電極33と接触し、接続関係とされる。もう1つの蒸着電極23は、コンデンサユニット31Bの高さ方向の絶縁性の高誘電材36の部分と接触することになり、両者間での電気的接続関係は生じない。 The unit shared electrode 37BC1 is formed by evaporating two rows of electrodes 22 and 23 on the non-deposited film 25 in the height direction. Thereby, the insulation distance between the base material 29 of the unit shared electrode and the electrodes 22 and 23 and between the electrodes 22 and 23 is secured. Among these, the vapor deposition electrode 22 is in contact with the external electrodes 33 of the four unit capacitor rows 31BZ1 in the height direction of the capacitor unit 31B and is connected. The other vapor deposition electrode 23 comes into contact with a portion of the insulating high dielectric material 36 in the height direction of the capacitor unit 31B, and there is no electrical connection between them.
 単位共有電極37BC1において、高さ方向2列の蒸着電極22、23の間には各所に狭小な導通部24が設けられる。また導通部24は単位コンデンサ1個あたり1箇所以上設けられ、好ましくは同数とされるのがよい。この導通部24は蒸着電極22、23間に設けられたヒューズ機能を果たすものであり、単位コンデンサ31の過電流で溶断してコンデンサを保護する機能を果たす。 In the unit shared electrode 37BC1, narrow conductive portions 24 are provided between the vapor deposition electrodes 22 and 23 in two rows in the height direction. Further, one or more conducting portions 24 are provided per unit capacitor, preferably the same number. This conduction part 24 fulfills the function of a fuse provided between the vapor deposition electrodes 22, 23, and fulfills the function of fusing with the overcurrent of the unit capacitor 31 to protect the capacitor.
 単位共有電極37BC1において、高さ方向2列の蒸着電極22、23は、その一方は単位共有電極37BC1の上端まで延伸しているが、他方は上端まで延伸していない。かつ隣接する単位共有電極同士は、同じ長さの蒸着電極とされる。例えば、単位共有電極37BC1と隣接する37BC2の間には上端まで延伸する蒸着電極同士が接し、単位共有電極37BC2と隣接する37BC3の間には上端まで延伸しない蒸着電極同士が接するように配置付けされる。 In the unit shared electrode 37BC1, the vapor deposition electrodes 22 and 23 in two rows in the height direction are extended to the upper end of the unit shared electrode 37BC1, but the other is not extended to the upper end. Adjacent unit sharing electrodes are vapor deposition electrodes having the same length. For example, the vapor deposition electrodes extending to the upper end are in contact between the unit shared electrode 37BC1 and the adjacent 37BC2, and the vapor deposition electrodes not extending to the upper end are in contact between the unit shared electrode 37BC2 and the adjacent 37BC3. The
 なお、単位共有電極37BC1の上端まで延伸する蒸着電極同士は、この裏面において上端まで延伸する蒸着電極とともに外部接続されることにより外部接続端子を構成することができる。図1の例では共有電極37ABと共有電極37CDを共通接続して第1の外部接続端子とし、共有電極37BCを第2の外部接続端子とすることで図2のコンデンサ3とすることができる。図2では、バスバ5により共有電極37間を接続し、かつバスバ5によりIGBTとの間を外部接続している。 It should be noted that the vapor deposition electrodes extending to the upper end of the unit shared electrode 37BC1 can be externally connected together with the vapor deposition electrode extending to the upper end on this back surface to constitute an external connection terminal. In the example of FIG. 1, the common electrode 37AB and the common electrode 37CD are commonly connected to form a first external connection terminal, and the common electrode 37BC is a second external connection terminal, whereby the capacitor 3 of FIG. In FIG. 2, the shared electrodes 37 are connected by the bus bar 5, and the external connection is made by the bus bar 5 with the IGBT.
 図1の本発明のコンデンサユニット3Uは、単位コンデンサ31と単位共有電極37とが以上の位置関係となるように組み合わされている。この結果、縦横高さ方向の組み合わせ数を選択することで、筺体内の収納箇所に応じた形状、容積のコンデンサ3を得ることができる。 1 is combined so that the unit capacitor 31 and the unit shared electrode 37 are in the above positional relationship. As a result, by selecting the number of combinations in the vertical and horizontal height directions, it is possible to obtain the capacitor 3 having a shape and volume corresponding to the storage location in the housing.
 このように、図1では、高さ方向(z方向)にコンデンサを積み上げており隣同士のコンデンサの外部電極を同一とし電位を同一とすることで、コンデンサ間の絶縁空間を確保する必要がない。高圧コンデンサでは電圧が高くなるにつれこの絶縁距離が大きくなってしまうので、ここが無くなることは非常に有効である。 As described above, in FIG. 1, capacitors are stacked in the height direction (z direction), the external electrodes of adjacent capacitors are the same, and the potential is the same, so there is no need to secure an insulating space between the capacitors. . In a high-voltage capacitor, the insulation distance increases as the voltage increases. Therefore, it is very effective to eliminate the insulation distance.
 また図1において、横方向(y方向)についても隣接する隣同士のコンデンサの外部電極の極性を同一とすることで絶縁距離を無くすことができる。ここで、本実施例1では横方向のコンデンサ間に共有電極37を設ける。なお後述する実施例4に示すように共有電極37を用いない例もある。 Also in FIG. 1, the insulation distance can be eliminated by making the polarities of the external electrodes of adjacent capacitors adjacent in the horizontal direction (y direction) the same. Here, in the first embodiment, the shared electrode 37 is provided between the horizontal capacitors. There is also an example in which the shared electrode 37 is not used as shown in Example 4 described later.
 なお、図3のセラミックコンデンサ単体31の構造において、共有電極37と接触する外部電極32、33の面において、その外部電極を部分的なものとする。従来のセラミックコンデンサ31ではセラミックス誘電体36の外面全体に外部電極32、33を設けるのが主流である。 In the structure of the ceramic capacitor unit 31 in FIG. 3, the external electrodes are assumed to be partial on the surfaces of the external electrodes 32 and 33 that are in contact with the shared electrode 37. In the conventional ceramic capacitor 31, the external electrodes 32 and 33 are mainly provided on the entire outer surface of the ceramic dielectric 36.
 また、セラミックコンデンサ単体31の外部電極32、33の金属として、銀、銅、アルミ、ニッケルおよびそれらの合金などが考えられるが、導電性のある金属であれば、どのような金属を用いても問題ない。電極の形成方法も、ペースト、蒸着、スパッタ、めっきなどの手法が適用される。本実施例では、主に銅ペーストにより外部電極32、33を形成する。 Further, as the metal of the external electrodes 32 and 33 of the ceramic capacitor unit 31, silver, copper, aluminum, nickel, and alloys thereof can be considered, but any metal can be used as long as it is a conductive metal. no problem. As an electrode forming method, a method such as paste, vapor deposition, sputtering, or plating is applied. In this embodiment, the external electrodes 32 and 33 are mainly formed of copper paste.
 また、セラミックコンデンサの内部電極についても同様に、銀、銅、アルミ、ニッケルおよびそれらの合金などが考えられるが、導電性のある金属であれば、どのような金属を用いても問題ない。本実施例1では、主にニッケル合金を用いる。 Similarly, silver, copper, aluminum, nickel and alloys thereof may be used for the internal electrode of the ceramic capacitor, but any metal can be used as long as it is a conductive metal. In Example 1, a nickel alloy is mainly used.
 さらに、単体コンデンサ31の電極間に充填される高誘電材36に適用する材料に求められる特性としては、焼成後の比誘電率が500以上、電極間距離が0.05~0.5mmである。この要求特性に対し、BaTiO3系、ZeO添加SiC、SrTiO3系、ZeO添加SiCなどが考えられる。 Further, the characteristics required for the material applied to the high dielectric material 36 filled between the electrodes of the single capacitor 31 are a relative dielectric constant of 500 or more after firing and a distance between electrodes of 0.05 to 0.5 mm. . For this required characteristic, BaTiO3 series, ZeO-added SiC, SrTiO3 series, ZeO-added SiC, and the like are conceivable.
 図5の共有電極37としては、非金属の物質の表面に部分的に金属を付与している。非金属物質は、エポキシ樹脂、フィルム、セラミックなどを適用する。また表面の金属はペースト、蒸着、スパッタ、めっきなどの手段を用いて亜鉛、銀、銅、アルミ、ニッケルおよびそれらの合金により構成される。 As the shared electrode 37 in FIG. 5, metal is partially applied to the surface of a non-metallic substance. As the nonmetallic material, an epoxy resin, a film, a ceramic, or the like is applied. The surface metal is composed of zinc, silver, copper, aluminum, nickel, and alloys thereof using means such as paste, vapor deposition, sputtering, and plating.
 本実施例では、フィルムに金属を蒸着させる。フィルムの素材は、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリエチルエーテルケトン、ポリエーテルイミドなどを使用するが、フィルムであればいずれでも可能である。蒸着金属は、亜鉛とアルミの合金、もしくはそれぞれを単体で使用しても良い。 In this embodiment, a metal is deposited on the film. As the material of the film, polypropylene, polyethylene, polyethylene terephthalate, polyvinylidene fluoride, polyvinylidene chloride, polyethyl ether ketone, polyether imide, or the like is used, but any film can be used. The vapor deposition metal may be an alloy of zinc and aluminum, or each may be used alone.
 共有電極37の表面電極について、電極に狭小部を設ける。本実施例では、電極を2つの島22、23に分け、細い電極24を橋渡しとしている構造となっている。この片面に、先述したセラミックコンデンサ31の部分的な外部電極32、33を接触させる。もう片方は、上部のバスバ5への電極に電気的に導通させる。 For the surface electrode of the shared electrode 37, a narrow portion is provided in the electrode. In this embodiment, the electrode is divided into two islands 22 and 23, and a thin electrode 24 is used as a bridge. The partial external electrodes 32 and 33 of the ceramic capacitor 31 described above are brought into contact with this one surface. The other is electrically connected to the electrode to the upper bus bar 5.
 電極に狭小部24を設けることにより、セラミックコンデンサ31側に事故や故障が発生し短絡した場合に、そのコンデンサに過電流が流れる。この過電流が狭小部24での高い電気抵抗で発熱し溶断する。 By providing the narrow portion 24 in the electrode, when an accident or failure occurs on the ceramic capacitor 31 side and a short circuit occurs, an overcurrent flows through the capacitor. The overcurrent generates heat due to high electrical resistance in the narrow portion 24 and melts.
 狭小部24は俗に言う、ヒューズである。電流の流れる方向に対して幅の長さがヒューズ部の電気抵抗を決定し、つまりは短絡電流を決定する。ヒューズの長さはセラミックコンデンサ接続側の電極とバスバ側の電極の間に印加される電圧に必要な沿面絶縁距離で決定される。 Narrow part 24 is a fuse. The length of the width with respect to the direction in which the current flows determines the electrical resistance of the fuse portion, that is, the short circuit current. The length of the fuse is determined by the creeping insulation distance necessary for the voltage applied between the electrode on the ceramic capacitor connection side and the electrode on the bus bar side.
 以上により、異常が生じたセラミックコンデンサを個別に電気的に切り離すことが可能となり、コンデンサを多量に並列接続したセラミックコンデンサ群全体を短絡するのを防止することが可能となる。 As described above, it becomes possible to electrically separate the ceramic capacitors in which an abnormality has occurred individually, and it is possible to prevent short-circuiting the entire ceramic capacitor group in which a large number of capacitors are connected in parallel.
 図6に実施例2について示す。実施例1では共有電極37を利用してヒューズ機能を持たせたが、ここでは内部電極34、35を利用する。例えば内部電極35の内部領域bを2つに分割し内部領域b1とb2を作る。そのうえで、内部領域b1とb2の間に狭小部24を形成しておく。内部領域b1とb2の分割は、外部電極に接する側aと、接しない側とされる。この分割位置はコンデンサ容量などに応じて適宜決定される。 FIG. 6 shows Example 2. In the first embodiment, the shared electrode 37 is used to provide a fuse function, but the internal electrodes 34 and 35 are used here. For example, the internal region b of the internal electrode 35 is divided into two to form internal regions b1 and b2. In addition, a narrow portion 24 is formed between the internal regions b1 and b2. The internal regions b1 and b2 are divided into a side a that contacts the external electrode and a side that does not contact the external electrode. This division position is appropriately determined according to the capacitor capacity and the like.
 狭小部24により、異常が生じたセラミックコンデンサを個別に電気的に切り離すことが可能となり、コンデンサを多量に並列接続したセラミックコンデンサ群全体を短絡するのを防止することが可能となる。 The narrow portion 24 makes it possible to electrically separate the ceramic capacitors in which an abnormality has occurred, and to prevent the entire ceramic capacitor group having a large number of capacitors connected in parallel from being short-circuited.
 尚この場合に、共有電極37を利用したヒューズ機能をそのままに生かしておくことも、あるいは共有電極37にヒューズ機能を持たせないようにすることもできる。後者の場合に2つの蒸着電極22、23を一体にすればよい。 In this case, the fuse function using the shared electrode 37 can be used as it is, or the shared electrode 37 can be prevented from having a fuse function. In the latter case, the two vapor deposition electrodes 22 and 23 may be integrated.
 図7に実施例3について示す。本実施例では、バスバ5間にセラミックコンデンサ群3を挟持する構造となっている。本構造により、これまでデッドスペースであったバスバ間の絶縁空間にコンデンサ3を適用することになり、インバータ30内の空間を有効活用することが可能となりインバータの小型化に寄与する。 FIG. 7 shows Example 3. In this embodiment, the ceramic capacitor group 3 is sandwiched between the bus bars 5. With this structure, the capacitor 3 is applied to the insulating space between the bus bars, which has been a dead space, and the space in the inverter 30 can be used effectively, contributing to the downsizing of the inverter.
 本構造を実現するためのセラミックコンデンサ群の構造を図8に示す。同図に示すように、バスバ5に接続する電極を上下に配置してする。つまり、共有電極37AB、37CDは、コンデンサユニット3Uの上部から取り出しているが、共有電極37BCは、コンデンサユニット3Uの下部から取り出すことにより、バスバ5間のスペースにセラミックコンデンサ群を配置することが可能になる。 Fig. 8 shows the structure of a ceramic capacitor group for realizing this structure. As shown in the figure, electrodes connected to the bus bar 5 are arranged vertically. That is, the shared electrodes 37AB and 37CD are taken out from the upper part of the capacitor unit 3U, but the shared electrode 37BC is taken out from the lower part of the capacitor unit 3U, so that a ceramic capacitor group can be arranged in the space between the bus bars 5. become.
 さらに実施例3において、共有電極37に容量を持たせた容量性共有電極370について図9に示す。図1の実施例ではセラミックコンデンサ部分で容量を確保していたが、この実施例ではこれに加えて共有電極部分でも容量を確保するので、大容量とできる。図5の共有電極37の母材29について、フィルム25表面の片面もしくは両面に実施例1と同様に電極22、23を形成する。上記電極22、23の極性を交互に積層することによって、容量を有することが可能となる。 Furthermore, in Example 3, a capacitive shared electrode 370 in which the shared electrode 37 has a capacity is shown in FIG. In the embodiment shown in FIG. 1, the capacitance is secured in the ceramic capacitor portion. In this embodiment, the capacitance is secured also in the shared electrode portion in addition to this, so that the capacity can be increased. For the base material 29 of the shared electrode 37 in FIG. 5, the electrodes 22 and 23 are formed on one or both surfaces of the surface of the film 25 as in the first embodiment. Capacitance can be obtained by alternately stacking the polarities of the electrodes 22 and 23.
 図7において、上下部にIGBTと導通したバスバに接続する電極を施す。電極の施し方として、めっき、メタリコン、蒸着などの手法を用いてもよい。本実施例では、目たちコンを適用する。これにより、上下電極のそれぞれに正極および負極のバスバ5に接続することが可能となる。 In FIG. 7, electrodes connected to the bus bar connected to the IGBT are provided on the upper and lower portions. As a method for applying the electrode, a technique such as plating, metallicon, or vapor deposition may be used. In the present embodiment, the eyes are applied. As a result, it is possible to connect the upper and lower electrodes to the positive and negative bus bars 5, respectively.
 図10に、保護機能を含む共有電極37を無くした構造について示す。この場合の電極38は、図6において高さ方向2列の蒸着電極22、23とその間の狭小な導通部24が設けられていない。一面が1つの蒸着電極で覆われている。保護機能としては内部電極に持たせた実施例2の方式としても良い。 FIG. 10 shows a structure in which the shared electrode 37 including the protection function is eliminated. In this case, the electrode 38 is not provided with the vapor deposition electrodes 22 and 23 in two rows in the height direction in FIG. 6 and the narrow conductive portion 24 therebetween. One side is covered with one vapor deposition electrode. As a protective function, the method of the second embodiment in which the internal electrode is provided may be used.
 あるいは個々のセラミックコンデンサの設計裕度を大きくとり、個々のコンデンサが故障しない構造となっていれば、本構造を採用することが出来る。個々のセラミックコンデンサの設計裕度を大きくとるためには、内部電極間の距離を大きく保てばよい。 Alternatively, this structure can be adopted if the design tolerance of each ceramic capacitor is large and the structure does not cause failure of each capacitor. In order to increase the design margin of individual ceramic capacitors, the distance between the internal electrodes should be kept large.
1:半導体スイッチング素子であるIGBT,2:冷却フィン,3:コンデンサ,4:エアフィルタ4,5:バスバ,22、23:電極,24;狭小部,25:非蒸着フィルム,29:単位共有電極の母材,30:インバータユニット,31:単位コンデンサ,31A、31B、31C、31D:コンデンサユニット,32、33:第1と第2の外部電極,33、34:第1と第2の内部電極,36:高誘電材,37;共有電極,37BC1、37BC2、37BC3、37BC4:単位共有電極,370:容量性共有電極,A:IGBT1と冷却フィン2が占積する空間,B:コンデンサ搭載可能空間,b1、b2:内部領域 DESCRIPTION OF SYMBOLS 1: IGBT which is a semiconductor switching element, 2: Cooling fin, 3: Capacitor, 4: Air filter 4, 5: Bus bar, 22, 23: Electrode, 24; Narrow part, 25: Non-deposition film, 29: Unit shared electrode 30: inverter unit, 31: unit capacitor, 31A, 31B, 31C, 31D: capacitor unit, 32, 33: first and second external electrodes, 33, 34: first and second internal electrodes 36: high dielectric material, 37: shared electrode, 37BC1, 37BC2, 37BC3, 37BC4: unit shared electrode, 370: capacitive shared electrode, A: space occupied by IGBT1 and cooling fin 2, B: space where capacitor can be mounted , B1, b2: inner area

Claims (9)

  1.  対向する1組の面に外部電極を備えた立方体状のコンデンサを前記対抗する面を揃えて縦横に配置してコンデンサユニットを形成し、複数のコンデンサユニットについてその前記対抗する面の間に共有電極を配置して積層して構成され、前記共有電極のうち1つ離れて隣接する共有電極を1つの外部端子に接続するようにされたコンデンサ装置。 Cubic capacitors having external electrodes on a pair of opposing surfaces are arranged vertically and horizontally with the opposing surfaces aligned to form a capacitor unit, and a plurality of capacitor units are shared between the opposing surfaces. The capacitor device is configured by arranging and laminating one of the shared electrodes, and connecting one adjacent shared electrode to one external terminal.
  2.  請求項1に記載のコンデンサ装置において、
    立方体状のコンデンサは、2つの外部電極にそれぞれ電気的に接続された内部電極が交互に積層されて構成されたセラミックコンデンサであることを特徴とするコンデンサ装置。
    The capacitor device according to claim 1,
    The cubic capacitor is a capacitor device characterized in that it is a ceramic capacitor configured by alternately laminating internal electrodes electrically connected to two external electrodes.
  3.  請求項1または請求項2に記載のコンデンサ装置において、
    前記コンデンサの対向する1組の面の外部電極は当該面の一部に形成され、前記共有電極は複数の前記コンデンサの前記外部電極に接触する第1の電極と、複数の前記コンデンサの前記外部電極に接触しない第2の電極と、第1の電極と第2の電極の間の絶縁部材上に形成され第1の電極と第2の電極を接続する狭小部とを備えていることを特徴とするコンデンサ装置。
    The capacitor device according to claim 1 or 2,
    The external electrodes of the pair of opposing surfaces of the capacitor are formed on a part of the surface, the shared electrode is a first electrode that contacts the external electrodes of the plurality of capacitors, and the external of the capacitors A second electrode that does not contact the electrode; and a narrow portion that is formed on an insulating member between the first electrode and the second electrode and connects the first electrode and the second electrode. Capacitor device.
  4.  請求項2に記載のコンデンサ装置において、
    前記コンデンサの内部電極は、前記外部電極に接続する第1の内部電極部と、前記外部電極に接続しない第2の内部電極部と、第1の内部電極部と第2の内部電極部の間の絶縁部材上に形成され第1の内部電極部と第2の内部電極部を接続する狭小部とを備えていることを特徴とするコンデンサ装置。
    The capacitor device according to claim 2,
    The internal electrode of the capacitor includes a first internal electrode portion connected to the external electrode, a second internal electrode portion not connected to the external electrode, and between the first internal electrode portion and the second internal electrode portion. A capacitor device comprising a first internal electrode portion and a narrow portion connecting the second internal electrode portion formed on the insulating member.
  5.  請求項2に記載のコンデンサ装置において、
    交互に積層された内部電極間の距離は、絶縁を保つに十分な距離が確保されたものとされていることを特徴とするコンデンサ装置。
    The capacitor device according to claim 2,
    A capacitor device characterized in that the distance between the alternately stacked internal electrodes is sufficient to maintain insulation.
  6.  請求項1から請求項5のいずれかに1項に記載のコンデンサ装置において、
    前記共有電極は、フィルム表面の片面もしくは両面に電極を形成し、前記電極の極性を交互に積層することによって、容量を有するものとされていることを特徴とするコンデンサ装置。
    The capacitor device according to any one of claims 1 to 5,
    The shared electrode has a capacitance by forming electrodes on one or both surfaces of a film surface and alternately laminating the polarities of the electrodes.
  7.  外枠としての筺体内に、本体機器と、コンデンサ装置を収納する電気機器において、
    前記コンデンサ装置は、
    対向する1組の面に外部電極を備えた立方体状のコンデンサを前記対抗する面を揃えて縦横に配置してコンデンサユニットを形成し、複数のコンデンサユニットについてその前記対抗する面の間に共有電極を配置して積層して構成され、前記共有電極のうち1つ離れて隣接する共有電極を1つの外部端子に接続するとともに、
    前記外部端子を経由して前記本体機器に接続されている
    ことを特徴とするコンデンサ装置を収納する電気機器。
    In the housing as the outer frame, in the electrical equipment that houses the main unit and the capacitor device,
    The capacitor device is:
    Cubic capacitors having external electrodes on a pair of opposing faces are arranged vertically and horizontally with the opposing faces aligned to form a capacitor unit, and a plurality of capacitor units are shared between the opposing faces. Are arranged by laminating and connecting one shared electrode adjacent to one of the shared electrodes to one external terminal,
    An electrical device that houses a capacitor device, wherein the electrical device is connected to the main device via the external terminal.
  8.  請求項7に記載のコンデンサ装置を収納する電気機器において、
    外部端子は前記本体機器とコンデンサ装置の間に設けられたバスバに接続されている
    ことを特徴とするコンデンサ装置を収納する電気機器。
    In the electric equipment which houses the capacitor device according to claim 7,
    An external device is connected to a bus bar provided between the main device and the capacitor device.
  9.  請求項8に記載のコンデンサ装置を収納する電気機器において、
    前記コンデンサ装置の2つの外部端子の一方は、立方体状のコンデンサ装置の一方の面から取り出され、2つの外部端子の他方は、立方体状のコンデンサ装置の前記一方面に対向する面から取り出され、それぞれがバスバに接続されていることで、コンデンサ装置をバスバで形成する空間領域に収納した
    ことを特徴とするコンデンサ装置を収納する電気機器。
    In the electric equipment which stores the capacitor device according to claim 8,
    One of the two external terminals of the capacitor device is taken out from one surface of the cubic capacitor device, and the other of the two external terminals is taken out from a surface facing the one surface of the cubic capacitor device, An electric device for storing a capacitor device, wherein each capacitor device is stored in a space region formed by the bus bar by being connected to the bus bar.
PCT/JP2011/078994 2011-12-15 2011-12-15 Capacitor device and electrical equipment for housing capacitor device WO2013088546A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013549018A JP5941064B2 (en) 2011-12-15 2011-12-15 Capacitor device and electric device for storing capacitor device
PCT/JP2011/078994 WO2013088546A1 (en) 2011-12-15 2011-12-15 Capacitor device and electrical equipment for housing capacitor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/078994 WO2013088546A1 (en) 2011-12-15 2011-12-15 Capacitor device and electrical equipment for housing capacitor device

Publications (1)

Publication Number Publication Date
WO2013088546A1 true WO2013088546A1 (en) 2013-06-20

Family

ID=48612032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078994 WO2013088546A1 (en) 2011-12-15 2011-12-15 Capacitor device and electrical equipment for housing capacitor device

Country Status (2)

Country Link
JP (1) JP5941064B2 (en)
WO (1) WO2013088546A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041127A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Capacitor module and power conversion device
JP2015138909A (en) * 2014-01-23 2015-07-30 京セラ株式会社 Composite ceramic capacitor, light emitting device and portable terminal
KR20190121201A (en) * 2018-10-10 2019-10-25 삼성전기주식회사 Multilayer ceramic electronic component array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100654A (en) * 1998-09-22 2000-04-07 Tokin Corp Stacked ceramic capacitor
JP2001189233A (en) * 1999-12-28 2001-07-10 Murata Mfg Co Ltd Layered capacitor
WO2007063850A1 (en) * 2005-11-29 2007-06-07 Kyocera Corporation Laminated electronic component and method for manufacturing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230156A (en) * 2005-02-21 2006-08-31 Mitsubishi Electric Corp Power converter
JP2008148530A (en) * 2006-12-13 2008-06-26 Toshiba Corp Inverter apparatus
JP2010040832A (en) * 2008-08-06 2010-02-18 Hitachi Aic Inc Metallized film capacitor
JP2010123585A (en) * 2008-11-17 2010-06-03 Maruwa Co Ltd Block type capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100654A (en) * 1998-09-22 2000-04-07 Tokin Corp Stacked ceramic capacitor
JP2001189233A (en) * 1999-12-28 2001-07-10 Murata Mfg Co Ltd Layered capacitor
WO2007063850A1 (en) * 2005-11-29 2007-06-07 Kyocera Corporation Laminated electronic component and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015041127A1 (en) * 2013-09-20 2015-03-26 株式会社村田製作所 Capacitor module and power conversion device
JP2015138909A (en) * 2014-01-23 2015-07-30 京セラ株式会社 Composite ceramic capacitor, light emitting device and portable terminal
KR20190121201A (en) * 2018-10-10 2019-10-25 삼성전기주식회사 Multilayer ceramic electronic component array
CN111029144A (en) * 2018-10-10 2020-04-17 三星电机株式会社 Multilayer ceramic electronic component array
KR102150550B1 (en) * 2018-10-10 2020-09-01 삼성전기주식회사 Multilayer ceramic electronic component array
US10770236B2 (en) 2018-10-10 2020-09-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component array
CN111029144B (en) * 2018-10-10 2023-02-03 三星电机株式会社 Multilayer ceramic electronic component array

Also Published As

Publication number Publication date
JP5941064B2 (en) 2016-06-29
JPWO2013088546A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
US10679792B2 (en) Film capacitor
JP6547569B2 (en) Electronic parts
JP2004186640A (en) Metallized film capacitor
JP2007242801A (en) Multilayer capacitor and packaging structure thereof
JP5203310B2 (en) Metallized film capacitors
WO2005076298A1 (en) Solid electrolytic capacitor
JP5438752B2 (en) Semiconductor stack and power conversion device using the same
KR101124109B1 (en) Muti-layered ceramic capacitor
JPWO2018198527A1 (en) Capacitor
JP4539715B2 (en) Multilayer capacitor array
JP2002094210A (en) Capacitor mounting structure
JP5870674B2 (en) Multilayer capacitor array
US10748711B2 (en) Capacitor assembly
JP5941064B2 (en) Capacitor device and electric device for storing capacitor device
JPWO2005083729A1 (en) Solid electrolytic capacitor
JP2005108957A (en) Case-mold film capacitor
JP2014135327A (en) Case jacket type capacitor
WO2018014982A1 (en) Power capacitor module with cooling arrangement
JP2014143227A (en) Case-armored capacitor
JP2008130641A (en) Case mold type capacitor
JP4539713B2 (en) Multilayer capacitor array
JP2006093528A (en) Electronic part
KR101444511B1 (en) Muti-layered ceramic capacitor
JP6099253B2 (en) Case exterior type capacitor
KR101701055B1 (en) Capacitor component and board for mounting same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877374

Country of ref document: EP

Kind code of ref document: A1

OSZAR »