JP2001189233A - Layered capacitor - Google Patents
Layered capacitorInfo
- Publication number
- JP2001189233A JP2001189233A JP37302199A JP37302199A JP2001189233A JP 2001189233 A JP2001189233 A JP 2001189233A JP 37302199 A JP37302199 A JP 37302199A JP 37302199 A JP37302199 A JP 37302199A JP 2001189233 A JP2001189233 A JP 2001189233A
- Authority
- JP
- Japan
- Prior art keywords
- multilayer
- ceramic capacitor
- multilayer ceramic
- metal terminal
- external electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 76
- 229910052751 metal Inorganic materials 0.000 claims abstract description 61
- 239000002184 metal Substances 0.000 claims abstract description 61
- 239000003985 ceramic capacitor Substances 0.000 claims abstract description 60
- 229910000679 solder Inorganic materials 0.000 claims abstract description 38
- 239000004065 semiconductor Substances 0.000 claims 1
- 230000035939 shock Effects 0.000 abstract description 21
- 230000000052 comparative effect Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 229910017060 Fe Cr Inorganic materials 0.000 description 5
- 229910002544 Fe-Cr Inorganic materials 0.000 description 5
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 5
- 230000008646 thermal stress Effects 0.000 description 5
- 229910001369 Brass Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000010951 brass Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3421—Leaded components
- H05K3/3426—Leaded components characterised by the leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/38—Multiple capacitors, i.e. structural combinations of fixed capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
- H01F27/292—Surface mounted devices
- H01F2027/295—Surface mounted devices with flexible terminals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は積層コンデンサに
関し、特に、複数の積層セラミックコンデンサ素子およ
び金属端子を有し、たとえばDC−DCコンバータなど
の電源回路の平滑用のタンタル電解コンデンサなどの置
き換えに用いられる高容量の積層コンデンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer capacitor, and more particularly to a multilayer capacitor having a plurality of multilayer ceramic capacitor elements and metal terminals. High-capacitance multilayer capacitor.
【0002】[0002]
【従来の技術】金属端子付きの積層コンデンサは、耐た
わみ強度の確保や熱応力を緩和して耐熱衝撃性を向上す
るために用いられる。そのような積層コンデンサでは、
一般に、金属端子で積層セラミックコンデンサ素子を基
板から浮かすことが行われる。さらに、実開平1−11
2032号に開示されているように、金属端子を折り曲
げることが行われる。これらの技術を用いると、アルミ
ニウム基板などの熱膨張の大きい基板と積層セラミック
コンデンサ素子との熱膨張の差を緩和することもでき
る。このような積層コンデンサにおいて、複数の積層セ
ラミックコンデンサ素子を有するものを形成する場合に
は、複数の積層セラミックコンデンサ素子の外部電極が
部分的に導電性樹脂やはんだペーストで接続される。2. Description of the Related Art A multilayer capacitor with a metal terminal is used for securing deflection resistance and relaxing thermal stress to improve thermal shock resistance. In such multilayer capacitors,
Generally, a multilayer ceramic capacitor element is floated from a substrate by a metal terminal. Furthermore, the actual Kaihei 1-11
Bending of the metal terminal is performed as disclosed in US Pat. When these techniques are used, the difference in thermal expansion between a multilayer ceramic capacitor element and a substrate having large thermal expansion such as an aluminum substrate can also be reduced. When forming such a multilayer capacitor having a plurality of multilayer ceramic capacitor elements, external electrodes of the plurality of multilayer ceramic capacitor elements are partially connected by a conductive resin or solder paste.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、複数の
積層セラミックコンデンサ素子の外部電極を導電性樹脂
やはんだペーストで部分的に接続した積層コンデンサで
は、その接続部分に熱応力が集中し、その接続部分や積
層セラミックコンデンサ素子にひびが発生して、静電容
量が低下してしまう場合がある。However, in a multilayer capacitor in which the external electrodes of a plurality of multilayer ceramic capacitor elements are partially connected by a conductive resin or solder paste, thermal stress concentrates on the connection portions, and the connection portions are not connected. Also, cracks may occur in the multilayer ceramic capacitor element and the capacitance may decrease.
【0004】それゆえに、この発明の主たる目的は、熱
衝撃に対する信頼性のよい積層コンデンサを提供するこ
とである。[0004] Therefore, a main object of the present invention is to provide a multilayer capacitor having high reliability against thermal shock.
【0005】[0005]
【課題を解決するための手段】この発明にかかる積層コ
ンデンサは、両端に外部電極が形成される複数の積層セ
ラミックコンデンサ素子と、複数の積層セラミックコン
デンサ素子の外部電極の全表面に形成されるはんだ層
と、複数の積層セラミックコンデンサ素子の外部電極に
電気的に接続される金属端子とを含み、複数の積層セラ
ミックコンデンサ素子は、積み重ねられた状態ではんだ
層によって接合され、複数の積層セラミックコンデンサ
素子の外部電極は、はんだ層によって電気的に接続され
る、積層コンデンサである。この発明にかかる積層コン
デンサでは、金属端子は、複数の積層セラミックコンデ
ンサ素子の少なくとも1つにはんだ層によって直接接続
される。この場合、金属端子は、複数の積層セラミック
コンデンサ素子の少なくとも他の1つに直接接合されな
くてもよい。また、この発明にかかる積層コンデンサで
は、金属端子は、中間部と、中間部の一端に中間部に間
隔を隔てて対向するように形成され先端部と、中間部の
他端に形成される末端部とを含み、先端部は、中間部お
よび末端部に対してばね性を有し、積層セラミックコン
デンサ素子の外部電極にはんだ層で接続されてもよい。
この場合、金属端子の内面には、はんだがつきにくい皮
膜が形成されてもよい。さらに、この発明にかかる積層
コンデンサでは、金属端子にリアクタンス成分を調整す
るための切欠部が形成されてもよい。SUMMARY OF THE INVENTION A multilayer capacitor according to the present invention has a plurality of multilayer ceramic capacitor elements having external electrodes formed at both ends, and a solder formed on the entire surface of the external electrodes of the multilayer ceramic capacitor elements. And a metal terminal electrically connected to an external electrode of the plurality of multilayer ceramic capacitor elements.The plurality of multilayer ceramic capacitor elements are joined by a solder layer in a stacked state, and the plurality of multilayer ceramic capacitor elements are The external electrodes are multilayer capacitors electrically connected by a solder layer. In the multilayer capacitor according to the present invention, the metal terminal is directly connected to at least one of the plurality of multilayer ceramic capacitor elements by a solder layer. In this case, the metal terminal does not have to be directly joined to at least another one of the plurality of multilayer ceramic capacitor elements. Further, in the multilayer capacitor according to the present invention, the metal terminal is formed at the middle portion, at one end of the middle portion, so as to face the middle portion at a distance from the middle portion, and at the end portion formed at the other end of the middle portion. The tip portion has a spring property with respect to the middle portion and the end portion, and may be connected to an external electrode of the multilayer ceramic capacitor element by a solder layer.
In this case, a film to which solder is not easily attached may be formed on the inner surface of the metal terminal. Further, in the multilayer capacitor according to the present invention, a cutout for adjusting a reactance component may be formed in the metal terminal.
【0006】この発明にかかる積層コンデンサでは、複
数の積層セラミックコンデンサ素子の外部電極の全表面
にはんだ層が形成されているので、はんだ層によって、
熱応力が分散され、積層セラミックコンデンサ素子の接
続部分や積層セラミックコンデンサ素子にひびが発生し
にくくなる。そのため、この発明にかかる積層コンデン
サでは、熱衝撃に対する信頼性がよくなる。In the multilayer capacitor according to the present invention, the solder layer is formed on the entire surface of the external electrodes of the plurality of multilayer ceramic capacitor elements.
The thermal stress is dispersed, and cracks are less likely to occur in the connection portion of the multilayer ceramic capacitor element and the multilayer ceramic capacitor element. Therefore, the multilayer capacitor according to the present invention has improved reliability against thermal shock.
【0007】この発明の上述の目的、その他の目的、特
徴および利点は、図面を参照して行う以下の発明の実施
の形態の詳細な説明から一層明らかとなろう。The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments of the present invention with reference to the accompanying drawings.
【0008】[0008]
【発明の実施の形態】図1はこの発明にかかる第1実施
例の積層コンデンサを示す斜視図である。図1に示す積
層コンデンサ10は、3つの積層セラミックコンデンサ
素子12、12、12を含む。FIG. 1 is a perspective view showing a multilayer capacitor according to a first embodiment of the present invention. The multilayer capacitor 10 shown in FIG. 1 includes three multilayer ceramic capacitor elements 12, 12, 12.
【0009】積層セラミックコンデンサ素子12は、図
2に示すように、積層体14を含む。積層体14は、た
とえばチタン酸バリウム系の誘電体からなる複数の誘電
体層16とたとえばNiなどの電極材料からなる複数の
内部電極18とを含む。複数の誘電体層16と複数の内
部電極18とは、交互に積層される。この場合、1つお
きの内部電極18は、積層体14の一方の端面にまで形
成され、残りの1つおきの内部電極18は、積層体14
の一方の端面に対向する他方の端面にまで形成される。
また、積層体14の一方の端面を含む一端部には、外部
電極として、Cu層20a、Ni層22aおよびSn層
24aがこの順に形成される。この場合、積層体14の
一端部には、Cuペーストを厚さ100μmに塗布し、
150℃で10分乾燥後、800℃で5分保持して焼き
付けることによって、Cu層20aが形成される。ま
た、湿式めっきによって、Ni層22aが厚さ1μm
に、Sn層24aが厚さ5μmに、それぞれ形成され
る。同様に、積層体14の他方の端面を含む他端部に
は、外部電極として、Cu層20b、Ni層22bおよ
びSn層24bがこの順に形成される。The multilayer ceramic capacitor element 12 includes a laminate 14 as shown in FIG. The laminate 14 includes a plurality of dielectric layers 16 made of, for example, a barium titanate-based dielectric and a plurality of internal electrodes 18 made of an electrode material such as Ni. The plurality of dielectric layers 16 and the plurality of internal electrodes 18 are alternately stacked. In this case, every other internal electrode 18 is formed up to one end surface of the stacked body 14, and every other internal electrode 18 is formed on the stacked body 14.
Is formed up to the other end face opposite to one end face.
Further, a Cu layer 20a, a Ni layer 22a, and a Sn layer 24a are formed in this order as external electrodes at one end including one end surface of the stacked body 14. In this case, one end of the laminate 14 is coated with a Cu paste to a thickness of 100 μm,
After drying at 150 ° C. for 10 minutes, baking is performed at 800 ° C. for 5 minutes to form the Cu layer 20a. Also, the Ni layer 22a is 1 μm thick by wet plating.
Then, a Sn layer 24a is formed to a thickness of 5 μm, respectively. Similarly, a Cu layer 20b, a Ni layer 22b, and a Sn layer 24b are formed in this order as external electrodes on the other end portion including the other end surface of the stacked body 14.
【0010】3個の積層セラミックコンデンサ素子1
2、12、12は、図1に示すように、たとえばFe−
Cr製の2つの金属端子30aおよび30bに、フロー
はんだ付けされる。Three multilayer ceramic capacitor elements 1
2, 12, and 12, as shown in FIG.
It is flow soldered to two metal terminals 30a and 30b made of Cr.
【0011】すなわち、一方の金属端子30aは、板状
の中間部32aを含む。中間部32aの上端には、板状
の先端部34aが中間部32aに対向するように形成さ
れる。先端部34aと中間部32aの間には、すき間が
形成されていてもよい。この先端部34aの上下方向に
おける長さは、積層セラミックコンデンサ素子12の高
さより少し長い2.5mmに形成される。また、中間部
32aの下端には、板状の末端部36aが中間部32a
とほほ直角方向にのびて形成される。したがって、先端
部34aは、中間部32aおよび末端部36aに対して
ばね性を有する。さらに、金属端子30aの外面(中間
部32aおよび先端部34aの対向しない面とそれにつ
ながる末端部36aの下面)には、はんだめっきが施さ
れる。また、はんだが付きやすい金属端子材料、たとえ
ば黄銅を用いるときは金属端子30aの内面(中間部3
2aおよび先端部34aとの対向する面とそれにつなが
る末端部36aの上面)には、はんだがつきにくい皮膜
38aが形成される。この皮膜38aは、たとえば酸化
金属、ワックス、樹脂またはシリコンオイルから形成さ
れる。同様に、他方の金属端子30bは、中間部32
b、先端部34bおよび末端部36bを含み、外面には
んだめっきが施され、内面にはんだがつきにくい皮膜3
8bが形成される。That is, one metal terminal 30a includes a plate-shaped intermediate portion 32a. At the upper end of the intermediate portion 32a, a plate-shaped tip portion 34a is formed so as to face the intermediate portion 32a. A gap may be formed between the distal end portion 34a and the intermediate portion 32a. The length in the vertical direction of the tip portion 34 a is formed to be 2.5 mm, which is slightly longer than the height of the multilayer ceramic capacitor element 12. At the lower end of the intermediate portion 32a, a plate-shaped end portion 36a is provided.
And extend in a direction substantially perpendicular thereto. Therefore, the tip portion 34a has a spring property with respect to the intermediate portion 32a and the end portion 36a. Further, the outer surfaces of the metal terminals 30a (the surfaces of the intermediate portion 32a and the distal end portion 34a that do not face each other and the lower surface of the terminal portion 36a connected thereto) are plated with solder. When a metal terminal material to which solder is easily attached, for example, brass, is used, the inner surface of the metal terminal 30a (the intermediate portion 3) is used.
A coating 38a that is hard to adhere to solder is formed on the surface facing the 2a and the tip portion 34a and the upper surface of the terminal portion 36a connected thereto. This film 38a is formed of, for example, metal oxide, wax, resin or silicone oil. Similarly, the other metal terminal 30b is connected to the intermediate portion 32
b, a coating 3 including a tip portion 34b and a terminal portion 36b, the outer surface of which is plated with solder, and the inner surface of which is less likely to be soldered.
8b are formed.
【0012】そして、フローはんだ付けによって、3個
の積層セラミックコンデンサ素子12、12、12の外
部電極(Sn層24aおよび24b)の全表面には、高
温はんだ(Pb:Sn=85、15)からなるはんだ層
26aおよび26bが、それぞれ形成される。これらの
はんだ層26aおよび26bによって、3個の積層セラ
ミックコンデンサ12、12、12は、積み重ねられた
状態で接合されるとともに外部電極が電気的に接続さ
れ、さらに、下方の積層セラミックコンデンサ素子12
の外部電極に金属端子30aおよび30bの先端部34
aおよび34bが接続される。Then, the entire surfaces of the external electrodes (Sn layers 24a and 24b) of the three multilayer ceramic capacitor elements 12, 12, 12 are coated with high-temperature solder (Pb: Sn = 85, 15) by flow soldering. Solder layers 26a and 26b are formed, respectively. By these solder layers 26a and 26b, the three multilayer ceramic capacitors 12, 12, 12 are joined in a stacked state, and the external electrodes are electrically connected.
Of the metal terminals 30a and 30b to the external electrodes
a and 34b are connected.
【0013】図3はこの発明にかかる第2実施例の積層
コンデンサを示す斜視図である。図3に示す積層コンデ
ンサ10では、図1に示す積層コンデンサ10と比べ
て、Fe−Cr製の金属端子30aおよび30bの先端
部34aおよび34bの上下方向における長さが3個分
の積層セラミックコンデンサ素子12の高さにほぼ等し
い7.0mmに形成される。また、その分だけ、金属端
子30aおよび30bの中間部32aおよび32bの上
下方向における長さも長く形成される。また、はんだ層
26aおよび26bによって、3個の積層セラミックコ
ンデンサ素子12、12、12の外部電極に金属端子3
0aおよび30bの先端部34aおよび34bが接続さ
れる。FIG. 3 is a perspective view showing a multilayer capacitor according to a second embodiment of the present invention. In the multilayer capacitor 10 shown in FIG. 3, compared to the multilayer capacitor 10 shown in FIG. 1, the length of the tip portions 34a and 34b of the metal terminals 30a and 30b made of Fe—Cr in the vertical direction is three. It is formed to have a height of 7.0 mm approximately equal to the height of the element 12. In addition, the length in the vertical direction of the intermediate portions 32a and 32b of the metal terminals 30a and 30b is formed longer by that much. Further, the metal terminals 3 are connected to the external electrodes of the three multilayer ceramic capacitor elements 12, 12, 12 by the solder layers 26a and 26b.
The leading ends 34a and 34b of Oa and 30b are connected.
【0014】図4は第1比較例の積層コンデンサを示す
斜視図であり、図5はその要部を示す分解斜視図であ
る。図4に示す積層コンデンサ11は、図1に示す積層
コンデンサ10と比べて、3個の積層セラミックコンデ
ンサ素子12、12、12の外部電極の対向する部分の
みにはんだペースト25aおよび25b(図5参照)が
塗布され、その後にFe−Cr製の金属端子30aおよ
び30bが積層セラミックコンデンサ12に接続され
る。そのため、はんだ層26aおよび26bは、3個の
積層セラミックコンデンサ12、12、12の外部電極
の対向する部分と、外部電極および金属端子の対向する
部分とだけに形成される。FIG. 4 is a perspective view showing a multilayer capacitor of a first comparative example, and FIG. 5 is an exploded perspective view showing a main part thereof. The multilayer capacitor 11 shown in FIG. 4 is different from the multilayer capacitor 10 shown in FIG. 1 only in the portions where the external electrodes of the three multilayer ceramic capacitor elements 12, 12, 12 are opposed to the external electrodes. ) Is applied, and then the metal terminals 30 a and 30 b made of Fe—Cr are connected to the multilayer ceramic capacitor 12. Therefore, the solder layers 26a and 26b are formed only on the opposing portions of the external electrodes of the three multilayer ceramic capacitors 12, 12, and 12 and on the opposing portions of the external electrodes and the metal terminals.
【0015】図6は第2比較例の積層コンデンサを示す
斜視図である。図6に示す積層コンデンサ11は、図3
に示す積層コンデンサ10と比べて、3個の積層セラミ
ックコンデンサ素子12、12、12の外部電極の対向
する部分のみにはんだペーストが塗布され、その後にF
e−Cr製の金属端子30aおよび30bが積層セラミ
ックコンデンサ12に接続される。そのため、はんだ層
26aおよび26bは、3個の積層セラミックコンデン
サ12、12、12の外部電極の対向する部分と、一番
下の積層セラミックコンデンサ素子12の外部電極およ
び金属端子の対向する部分とだけに形成される。FIG. 6 is a perspective view showing a multilayer capacitor according to a second comparative example. The multilayer capacitor 11 shown in FIG.
The solder paste is applied only to the opposing portions of the external electrodes of the three multilayer ceramic capacitor elements 12, 12, 12 as compared with the multilayer capacitor 10 shown in FIG.
Metal terminals 30 a and 30 b made of e-Cr are connected to multilayer ceramic capacitor 12. Therefore, the solder layers 26a and 26b are provided only at the opposing portions of the external electrodes of the three multilayer ceramic capacitors 12, 12, and 12, and at the opposing portions of the external electrodes and metal terminals of the lowermost multilayer ceramic capacitor element 12. Formed.
【0016】そして、実施例1、実施例2、比較例1お
よび比較例2の積層コンデンサをアルミニウム基板に実
装したときの熱衝撃サイクル特性を調べ、その結果を表
1に示した。なお、この場合、熱衝撃サイクル特性は、
−55℃〜125℃の熱変化を1サイクルの熱衝撃とし
て、250サイクルの熱衝撃を印加したときと、500
サイクルの熱衝撃を印加したときとにおいて、静電容量
の変化(減少)が10%以上の不良発生率(不良発生数
/全体数)を調べた。The thermal shock cycle characteristics when the multilayer capacitors of Examples 1, 2 and Comparative Examples 1 and 2 were mounted on an aluminum substrate were examined. The results are shown in Table 1. In this case, the thermal shock cycle characteristics are as follows:
A thermal change of −55 ° C. to 125 ° C. is defined as one cycle of thermal shock.
The failure occurrence rate (the number of failure occurrences / the total number of failures) in which the change (decrease) in the capacitance was 10% or more before and after the thermal shock of the cycle was applied was examined.
【0017】[0017]
【表1】 [Table 1]
【0018】表1の結果より、積層セラミックコンデン
サ素子の外部電極の全表面にはんだ層を形成した実施例
1および実施例2では、熱衝撃による不良発生数が0で
あるに対して、積層セラミックコンデンサ素子の外部電
極の表面にはんだ層を部分的に形成した比較例1および
比較例2では、熱衝撃により不良が発生していることが
わかる。これは、積層セラミックコンデンサ素子の外部
電極を部分的にはんだ層で接続した場合、熱衝撃サイク
ル試験を行うと、その接続部分に熱応力が集中し、その
接続部分や積層セラミックコンデンサ素子にひびが発生
して静電容量が落ちてしまうからである。それに対し
て、積層セラミックコンデンサ素子の外部電極の全表面
にはんだ層を形成した場合、はんだ層によって、熱応力
が分散され、積層セラミックコンデンサ素子の接続部分
や積層セラミックコンデンサ素子にひびが発生しにくく
なり、熱衝撃に対する信頼性がよくなるからである。According to the results shown in Table 1, in Examples 1 and 2 in which a solder layer was formed on the entire surface of the external electrode of the multilayer ceramic capacitor element, the number of defects caused by thermal shock was 0, whereas It can be seen that in Comparative Examples 1 and 2 in which a solder layer was partially formed on the surface of the external electrode of the capacitor element, a defect occurred due to thermal shock. This is because, when the external electrodes of the multilayer ceramic capacitor element are partially connected with a solder layer, the thermal stress concentrates on the connection part when the thermal shock cycle test is performed, and the connection part and the multilayer ceramic capacitor element are cracked. This is because the capacitance is reduced due to the occurrence. On the other hand, when a solder layer is formed on the entire surface of the external electrodes of the multilayer ceramic capacitor element, thermal stress is dispersed by the solder layer, and cracks are less likely to occur at the connection portion of the multilayer ceramic capacitor element and the multilayer ceramic capacitor element. This is because the reliability against thermal shock is improved.
【0019】また、上述の実施例1および実施例2のよ
うに、複数の積層セラミックコンデンサ素子の外部電極
の全表面にはんだ層を形成した場合、複数の積層セラミ
ックコンデンサ素子の接合強度が向上するので、接合さ
れる複数の積層セラミックコンデンサ素子の全部の外部
電極に対応して金属端子を形成する必要がない。When solder layers are formed on the entire surfaces of the external electrodes of a plurality of multilayer ceramic capacitor elements as in the first and second embodiments, the bonding strength of the plurality of multilayer ceramic capacitor elements is improved. Therefore, it is not necessary to form metal terminals corresponding to all the external electrodes of the plurality of multilayer ceramic capacitor elements to be joined.
【0020】さらに、上述の実施例1および実施例2の
ように、金属端子の先端部が中間部および末端部に対し
てばね性を有するので、積層セラミックコンデンサ素子
と積層コンデンサを取り付ける基板との熱膨張の差を緩
和することができる。また、金属端子の内面にはんだが
つきにくい皮膜が形成されているので、金属端子の内面
にはんだがついて金属端子のばね性が損なわれるという
こともない。Further, as in the first and second embodiments described above, since the distal end of the metal terminal has a spring property with respect to the intermediate portion and the distal end, the multilayer ceramic capacitor element and the substrate on which the multilayer capacitor is to be mounted are not required. The difference in thermal expansion can be reduced. In addition, since a film to which solder does not easily adhere is formed on the inner surface of the metal terminal, the spring property of the metal terminal is not impaired due to the solder being applied to the inner surface of the metal terminal.
【0021】図7はこの発明にかかる第3実施例の積層
コンデンサを示す斜視図である。図7に示す積層コンデ
ンサ10は、図1に示す積層コンデンサ10と同じ構造
である。FIG. 7 is a perspective view showing a multilayer capacitor according to a third embodiment of the present invention. The multilayer capacitor 10 shown in FIG. 7 has the same structure as the multilayer capacitor 10 shown in FIG.
【0022】図8はこの発明にかかる第4実施例の積層
コンデンサを示す斜視図である。図8に示す積層コンデ
ンサ10では、図7に示す積層コンデンサ10と比べ
て、Fe−Cr製の金属端子30aおよび30bの先端
部34aおよび34bの上下方向における長さが2個分
の積層セラミックコンデンサ素子12の高さにほぼ等し
い5.1mmに形成される。また、その分だけ、金属端
子30aおよび30bの中間部32aおよび32bの上
下方向における長さも長く形成される。FIG. 8 is a perspective view showing a multilayer capacitor according to a fourth embodiment of the present invention. In the multilayer capacitor 10 shown in FIG. 8, compared to the multilayer capacitor 10 shown in FIG. 7, the length of the tips 34a and 34b of the metal terminals 30a and 30b made of Fe--Cr in the vertical direction is two. It is formed to have a height of 5.1 mm which is substantially equal to the height of the element 12. In addition, the length in the vertical direction of the intermediate portions 32a and 32b of the metal terminals 30a and 30b is formed longer by that much.
【0023】図9はこの発明にかかる第5実施例の積層
コンデンサを示す斜視図である。図9に示す積層コンデ
ンサ10は、図3に示す積層コンデンサ10と同じ構造
である。FIG. 9 is a perspective view showing a multilayer capacitor according to a fifth embodiment of the present invention. The multilayer capacitor 10 shown in FIG. 9 has the same structure as the multilayer capacitor 10 shown in FIG.
【0024】図10はこの発明にかかる第6実施例の積
層コンデンサを示す斜視図である。図10に示す積層コ
ンデンサ10では、図9に示す積層コンデンサ10と比
べて、Fe−Cr製の金属端子30aおよび30bの先
端部34aおよび34bの上下方向における長さが3個
分の積層セラミックコンデンサ素子12の高さより長い
10.1mmに形成される。また、その分だけ、金属端
子30aおよび30bの中間部32aおよび32bの上
下方向における長さも長く形成される。FIG. 10 is a perspective view showing a multilayer capacitor according to a sixth embodiment of the present invention. In the multilayer capacitor 10 shown in FIG. 10, compared to the multilayer capacitor 10 shown in FIG. 9, the length of the tip portions 34a and 34b of the metal terminals 30a and 30b made of Fe—Cr in the vertical direction is three. It is formed to be 10.1 mm longer than the height of the element 12. In addition, the length in the vertical direction of the intermediate portions 32a and 32b of the metal terminals 30a and 30b is formed longer by that much.
【0025】図11は第3比較例の積層コンデンサを示
す斜視図である。図11に示す積層コンデンサ11は、
図7〜図10に示す積層コンデンサ10と比べて、金属
端子30aおよび30bが形成されていない。FIG. 11 is a perspective view showing a multilayer capacitor of a third comparative example. The multilayer capacitor 11 shown in FIG.
Compared with the multilayer capacitor 10 shown in FIGS. 7 to 10, the metal terminals 30a and 30b are not formed.
【0026】そして、実施例3、実施例4、実施例5、
実施例6および比較例3の積層コンデンサのESRおよ
びESLを測定し、それらの積層コンデンサをガラスエ
ポキシ基板に実装したときのたわみを測定し、それらの
積層コンデンサをアルミニウム基板に実装したときの熱
衝撃サイクル特性を調べ、その結果を表2に示した。な
お、ESRは100kHzおよび400kHzにおける
それぞれのESRを測定し、ESLは10MHzにおけ
るESLを測定した。また、熱衝撃サイクル特性は、−
55℃〜125℃の熱変化を1サイクルの熱衝撃とし
て、250サイクルの熱衝撃を印加したときにおける静
電容量の変化(減少)が10%以上の不良発生率(不良
発生数/試験全体数)を調べた。Then, the third embodiment, the fourth embodiment, the fifth embodiment,
The ESR and ESL of the multilayer capacitors of Example 6 and Comparative Example 3 were measured, the deflection when the multilayer capacitors were mounted on a glass epoxy substrate was measured, and the thermal shock when the multilayer capacitors were mounted on an aluminum substrate was measured. The cycle characteristics were examined, and the results are shown in Table 2. In addition, ESR measured each ESR in 100 kHz and 400 kHz, and ESL measured ESL in 10 MHz. The thermal shock cycle characteristic is-
With a thermal change of 55 ° C. to 125 ° C. as one cycle of thermal shock, a change (decrease) in capacitance when applying 250 cycles of thermal shock has a failure occurrence rate of 10% or more (number of failure occurrences / total number of tests) ).
【0027】[0027]
【表2】 [Table 2]
【0028】本例では、表2の結果より、Fe−Cr製
の金属端子を用いた場合、金属端子の先端部の上下方向
における長さを5.1mmにすることにより、ESRお
よびESLの増加を最小限にして、たわみおよび熱衝撃
サイクル特性をも向上させることができることがわか
る。In this example, from the results in Table 2, when a metal terminal made of Fe—Cr is used, the length of the tip of the metal terminal in the vertical direction is set to 5.1 mm, thereby increasing the ESR and ESL. It can be seen that the deflection and the thermal shock cycle characteristics can also be improved by minimizing.
【0029】また、上述の実施例3、実施例4、実施例
5、実施例6および比較例3の積層コンデンサにおいて
金属端子を黄銅で形成した積層コンデンサについて、E
SRおよびESLを測定し、ガラスエポキシ基板に実装
したときのたわみを測定し、アルミニウム基板に実装し
たときの熱衝撃サイクル特性を調べ、その結果を表3に
示した。In the multilayer capacitors of the above-described third, fourth, fifth, sixth and comparative example 3, the metal terminals were formed of brass.
The SR and ESL were measured, the deflection when mounted on a glass epoxy substrate was measured, and the thermal shock cycle characteristics when mounted on an aluminum substrate were examined. The results are shown in Table 3.
【0030】[0030]
【表3】 [Table 3]
【0031】表3の結果より、金属端子を黄銅で形成し
た場合、熱衝撃サイクル特性が少し劣化してしまうが、
ESRをさらに下げることができることがわかる。From the results shown in Table 3, when the metal terminals are formed of brass, the thermal shock cycle characteristics are slightly deteriorated.
It can be seen that the ESR can be further reduced.
【0032】上述のような積層コンデンサでは、金属端
子の長さが長くなるとESRやESLが大きくなり問題
になる場合がある。そのため、金属端子の長さは、でき
る限り短いほうがよい。一方、DC−DCコンバータの
フィードバック制御回路のためには、調整する周波数帯
域でESRが一定であり、数mΩから10mΩ程度であ
ることが最適である。そこで、この発明にかかる積層コ
ンデンサやその製造方法を用いると、金属端子の長さを
小さくすることが可能であり、これらの条件を満たすよ
うに金属端子の長さを調整して制御することができる。
すなわち、この発明によれば、金属端子の大きさを熱衝
撃サイクルやたわみ強度で求められる最低限の金属端子
の長さにすることが可能となり、低ESR化、低ESL
化が可能となる。また、この発明によれば、金属端子の
抵抗値、長さを調整することにより必要とするESRの
積層コンデンサを作ることが可能となる。In the multilayer capacitor as described above, if the length of the metal terminal is long, the ESR and ESL become large, which may cause a problem. Therefore, the length of the metal terminal should be as short as possible. On the other hand, for a feedback control circuit of a DC-DC converter, it is optimal that the ESR is constant in the frequency band to be adjusted and is about several mΩ to about 10 mΩ. Therefore, by using the multilayer capacitor and the method of manufacturing the same according to the present invention, it is possible to reduce the length of the metal terminal, and it is possible to adjust and control the length of the metal terminal so as to satisfy these conditions. it can.
That is, according to the present invention, it is possible to reduce the size of the metal terminal to the minimum length of the metal terminal required by the thermal shock cycle and the bending strength.
Is possible. Further, according to the present invention, it is possible to manufacture a required ESR multilayer capacitor by adjusting the resistance value and length of the metal terminal.
【0033】図12はこの発明にかかる第7実施例の積
層コンデンサを示す斜視図である。図12に示す積層コ
ンデンサ10では、図1に示す積層コンデンサ10と比
べて、特に、金属端子30aおよび30bの中間部32
aおよび32bの幅方向に中央に切欠部40aおよび4
0bが形成される。このように金属端子30aおよび3
0bに切欠部40aおよび40bを形成すると、金属端
子30aおよび30bのリアクタンス成分を調整するこ
とができる。さらに、図12に示すように、金属端子3
0aにおいて、切欠部40aで分割した末端部36aの
一方部分および他方部分をパターン電極P1およびP2
にそれぞれ接続し、金属端子30bにおいて、切欠部4
0bで分割した末端部36bの一方部分および他方部分
をパターン電極P3およびP4にそれぞれ接続して、図
示した矢印に示すように、金属端子30b(30a)の
切欠部40b(40a)で分割した中間部32b(32
a)の一方部分および他方部分に逆向きの電流が流れ、
磁束が相殺されるようにすることによって、低ESL化
が可能となる。なお、これらの切欠部40aおよび40
bは、金属端子30aおよび30bの中間部32aおよ
び32bの幅方向における中央に限らず、金属端子30
aおよび30bの他の部分に形成されても、複数個形成
されてもよい。FIG. 12 is a perspective view showing a multilayer capacitor according to a seventh embodiment of the present invention. In the multilayer capacitor 10 shown in FIG. 12, the intermediate portion 32 of the metal terminals 30a and 30b is particularly different from the multilayer capacitor 10 shown in FIG.
notches 40a and 4c at the center in the width direction of
0b is formed. Thus, the metal terminals 30a and 3
When notches 40a and 40b are formed in 0b, the reactance components of metal terminals 30a and 30b can be adjusted. Further, as shown in FIG.
0a, one end and the other end of the end portion 36a divided by the notch portion 40a are connected to the pattern electrodes P1 and P2.
To the notch 4 in the metal terminal 30b.
One end and the other end of the end portion 36b divided by 0b are connected to the pattern electrodes P3 and P4, respectively, and as shown by the arrow shown in the figure, the middle portion divided by the cutout portion 40b (40a) of the metal terminal 30b (30a). Part 32b (32
A current flows in opposite directions in one part and the other part of a).
ESL can be reduced by canceling the magnetic flux. Note that these notches 40a and 40
b is not limited to the center in the width direction of the intermediate portions 32a and 32b of the metal terminals 30a and 30b.
It may be formed in other parts of the parts a and 30b, or a plurality of parts may be formed.
【0034】なお、上述の各実施例では3個の積層セラ
ミックコンデンサ素子が用いられているが、この発明で
は2個または4個以上の積層セラミックコンデンサ素子
が用いられてもよい。Although three laminated ceramic capacitor elements are used in each of the above embodiments, two or more laminated ceramic capacitor elements may be used in the present invention.
【0035】また、上述の各実施例では積層セラミック
コンデンサ素子の外部電極がCu層、Ni層およびSn
層の3層構造に形成されているが、外部電極ははんだが
つくなら他の構造に形成されてもよい。In each of the above embodiments, the external electrodes of the multilayer ceramic capacitor element are formed of Cu layer, Ni layer and Sn layer.
Although the external electrodes are formed in a three-layer structure, the external electrodes may be formed in other structures as long as solder is attached.
【0036】さらに、この発明では、複数の積層セラミ
ックコンデンサ素子間の強度を向上するために、それら
の間の中央部に接合用の樹脂が入れられてもよい。Further, in the present invention, in order to improve the strength between the plurality of multilayer ceramic capacitor elements, a joining resin may be inserted in a central portion between them.
【0037】また、金属端子の材質は、Fe−Cr,黄
銅に限らず、Ag,Ni,Cu,Fe,Crあるいはこ
れらの合金などで構成してもよい。The material of the metal terminal is not limited to Fe-Cr and brass, but may be made of Ag, Ni, Cu, Fe, Cr or an alloy thereof.
【0038】[0038]
【発明の効果】この発明によれば、熱衝撃に対する信頼
性のよい積層コンデンサが得られる。また、この発明に
よれば、金属端子によるESRやESLの増加を防止す
ることができる。According to the present invention, a multilayer capacitor having high reliability against thermal shock can be obtained. Further, according to the present invention, an increase in ESR and ESL due to the metal terminal can be prevented.
【図1】この発明にかかる第1実施例の積層コンデンサ
を示す斜視図である。FIG. 1 is a perspective view showing a multilayer capacitor according to a first embodiment of the present invention.
【図2】積層セラミックコンデンサ素子の一例を示す図
解図である。FIG. 2 is an illustrative view showing one example of a multilayer ceramic capacitor element;
【図3】この発明にかかる第2実施例の積層コンデンサ
を示す斜視図である。FIG. 3 is a perspective view showing a multilayer capacitor according to a second embodiment of the present invention.
【図4】第1比較例の積層コンデンサを示す斜視図であ
る。FIG. 4 is a perspective view showing a multilayer capacitor of a first comparative example.
【図5】図4に示す積層コンデンサの要部を示す分解斜
視図である。FIG. 5 is an exploded perspective view showing a main part of the multilayer capacitor shown in FIG.
【図6】第2比較例の積層コンデンサを示す斜視図であ
る。FIG. 6 is a perspective view showing a multilayer capacitor of a second comparative example.
【図7】この発明にかかる第3実施例の積層コンデンサ
を示す斜視図である。FIG. 7 is a perspective view showing a multilayer capacitor according to a third embodiment of the present invention.
【図8】この発明にかかる第4実施例の積層コンデンサ
を示す斜視図である。FIG. 8 is a perspective view showing a multilayer capacitor according to a fourth embodiment of the present invention.
【図9】この発明にかかる第5実施例の積層コンデンサ
を示す斜視図である。FIG. 9 is a perspective view showing a multilayer capacitor according to a fifth embodiment of the present invention.
【図10】この発明にかかる第6実施例の積層コンデン
サを示す斜視図である。FIG. 10 is a perspective view showing a multilayer capacitor of a sixth embodiment according to the present invention.
【図11】第3比較例の積層コンデンサを示す斜視図で
ある。FIG. 11 is a perspective view showing a multilayer capacitor of a third comparative example.
【図12】この発明にかかる第7実施例の積層コンデン
サを示す斜視図である。FIG. 12 is a perspective view showing a multilayer capacitor of a seventh embodiment according to the present invention.
10 積層コンデンサ 12 積層セラミックコンデンサ素子 14 積層体 16 誘電体層 18 内部電極 20a、20b Cu層 22a、22b Ni層 24a、24b Sn層 26a、26b はんだ層 28a、28b 切欠部 30a、30b 金属端子 32a、32b 中間部 34a、34b 先端部 36a、36b 末端部 38a、38b 皮膜 40a、40b 切欠部 DESCRIPTION OF SYMBOLS 10 Multilayer capacitor 12 Multilayer ceramic capacitor element 14 Multilayer body 16 Dielectric layer 18 Internal electrode 20a, 20b Cu layer 22a, 22b Ni layer 24a, 24b Sn layer 26a, 26b Solder layer 28a, 28b Notch 30a, 30b Metal terminal 32a, 32b Intermediate part 34a, 34b Tip part 36a, 36b End part 38a, 38b Coating 40a, 40b Notch
───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 康信 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 Fターム(参考) 5E001 AB03 AC09 AE02 AE03 AF01 AF02 AF06 AH05 AH07 AJ03 5E082 AA02 AB03 BB10 BC33 CC05 EE23 FG06 FG26 FG27 GG08 GG11 GG21 GG26 JJ12 JJ21 JJ23 JJ27 LL02 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yasunobu Yoneda 2-26-10 Tenjin, Nagaokakyo-shi, Kyoto F-term in Murata Manufacturing Co., Ltd. (Reference) 5E001 AB03 AC09 AE02 AE03 AF01 AF02 AF06 AH05 AH07 AJ03 5E082 AA02 AB03 BB10 BC33 CC05 EE23 FG06 FG26 FG27 GG08 GG11 GG21 GG26 JJ12 JJ21 JJ23 JJ27 LL02
Claims (6)
セラミックコンデンサ素子、 前記複数の積層セラミックコンデンサ素子の前記外部電
極の全表面に形成されるはんだ層、および前記複数の積
層セラミックコンデンサ素子の前記外部電極に電気的に
接続される金属端子を含み、 前記複数の積層セラミックコンデンサ素子は、積み重ね
られた状態で前記はんだ層によって接合され、 前記複数の積層セラミックコンデンサ素子の前記外部電
極は、前記はんだ層によって電気的に接続される、積層
コンデンサ。A plurality of multilayer ceramic capacitor elements having external electrodes formed at both ends; a solder layer formed on the entire surface of the external electrodes of the plurality of multilayer ceramic capacitor elements; A metal terminal electrically connected to the external electrode, wherein the plurality of multilayer ceramic capacitor elements are joined by the solder layer in a stacked state, and the external electrodes of the plurality of multilayer ceramic capacitor elements are Multilayer capacitors that are electrically connected by solder layers.
ックコンデンサ素子の少なくとも1つに前記はんだ層に
よって直接接続される、請求項1に記載の積層コンデン
サ。2. The multilayer capacitor according to claim 1, wherein the metal terminal is directly connected to at least one of the plurality of multilayer ceramic capacitor elements by the solder layer.
ックコンデンサ素子の少なくとも他の1つに直接接合さ
れない、請求項2に記載の積層コンデンサ。3. The multilayer capacitor according to claim 2, wherein the metal terminal is not directly joined to at least another one of the plurality of multilayer ceramic capacitor elements.
ように形成され先端部、および前記中間部の他端に形成
される末端部を含み、 前記先端部は、前記中間部および前記末端部に対してば
ね性を有し、前記積層セラミックコンデンサ素子の前記
外部電極に前記はんだ層で接続される、請求項1ないし
請求項3のいずれかに記載の積層コンデンサ。4. The metal terminal comprises: a middle portion; a tip portion formed at one end of the middle portion so as to face the middle portion at an interval; and a tip portion formed at the other end of the middle portion. 4. The semiconductor device according to claim 1, wherein the tip portion has a spring property with respect to the intermediate portion and the end portion, and is connected to the external electrode of the multilayer ceramic capacitor element by the solder layer. 5. 12. The multilayer capacitor according to any one of the above.
にくい皮膜が形成される、請求項4に記載の積層コンデ
ンサ。5. The multilayer capacitor according to claim 4, wherein a film to which solder does not easily adhere is formed on an inner surface of the metal terminal.
するための切欠部が形成される、請求項1ないし請求項
5のいずれかに記載の積層コンデンサ。6. The multilayer capacitor according to claim 1, wherein a cutout for adjusting a reactance component is formed in the metal terminal.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37302199A JP2001189233A (en) | 1999-12-28 | 1999-12-28 | Layered capacitor |
CN00133648A CN1308346A (en) | 1999-12-28 | 2000-11-30 | Single-disk capacitor |
TW089125564A TW463191B (en) | 1999-12-28 | 2000-12-01 | Monolithic capacitor |
US09/749,974 US6433992B2 (en) | 1999-12-28 | 2000-12-28 | Monolithic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37302199A JP2001189233A (en) | 1999-12-28 | 1999-12-28 | Layered capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001189233A true JP2001189233A (en) | 2001-07-10 |
Family
ID=18501443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37302199A Pending JP2001189233A (en) | 1999-12-28 | 1999-12-28 | Layered capacitor |
Country Status (4)
Country | Link |
---|---|
US (1) | US6433992B2 (en) |
JP (1) | JP2001189233A (en) |
CN (1) | CN1308346A (en) |
TW (1) | TW463191B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010186884A (en) * | 2009-02-12 | 2010-08-26 | Tdk Corp | Multilayered capacitor and method of manufacturing multilayered capacitor |
WO2013088546A1 (en) * | 2011-12-15 | 2013-06-20 | 株式会社日立製作所 | Capacitor device and electrical equipment for housing capacitor device |
CN104979097A (en) * | 2014-04-14 | 2015-10-14 | 三星电机株式会社 | Multilayer ceramic capacitor and plate for mounting the same |
JP2018067906A (en) * | 2016-10-19 | 2018-04-26 | 株式会社リコー | Atomic oscillator and manufacturing method thereof |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7463474B2 (en) * | 2002-04-15 | 2008-12-09 | Avx Corporation | System and method of plating ball grid array and isolation features for electronic components |
US7152291B2 (en) | 2002-04-15 | 2006-12-26 | Avx Corporation | Method for forming plated terminations |
US7576968B2 (en) * | 2002-04-15 | 2009-08-18 | Avx Corporation | Plated terminations and method of forming using electrolytic plating |
KR100908985B1 (en) * | 2005-05-23 | 2009-07-22 | 가부시키가이샤 무라타 세이사쿠쇼 | Ceramic Electronic Components and Manufacturing Method Thereof |
US20080291602A1 (en) * | 2007-05-24 | 2008-11-27 | Daniel Devoe | Stacked multilayer capacitor |
US8289675B2 (en) * | 2007-05-24 | 2012-10-16 | Daniel Devoe | Stacked multilayer capacitor |
US7633739B2 (en) * | 2007-05-24 | 2009-12-15 | Daniel Devoe | Stacked multilayer capacitor |
US7843085B2 (en) * | 2007-10-15 | 2010-11-30 | Ampt, Llc | Systems for highly efficient solar power |
WO2009055474A1 (en) * | 2007-10-23 | 2009-04-30 | And, Llc | High reliability power systems and solar power converters |
WO2010042124A1 (en) * | 2008-10-10 | 2010-04-15 | Ampt, Llc | Novel solar power circuits and powering methods |
JP4862900B2 (en) * | 2009-01-28 | 2012-01-25 | Tdk株式会社 | Multilayer capacitor and multilayer capacitor manufacturing method |
SG175717A1 (en) | 2009-04-17 | 2011-12-29 | Ampt Llc | Methods and apparatus for adaptive operation of solar power systems |
WO2011049985A1 (en) | 2009-10-19 | 2011-04-28 | Ampt, Llc | Novel solar panel string converter topology |
DE102009059873A1 (en) | 2009-12-21 | 2011-06-22 | Epcos Ag, 81669 | Varactor and method of making a varactor |
JP5637170B2 (en) * | 2012-04-19 | 2014-12-10 | 株式会社村田製作所 | Multilayer ceramic electronic component and its mounting structure |
JP5700721B2 (en) * | 2012-08-30 | 2015-04-15 | 太陽誘電株式会社 | Electronic components with terminal board |
KR101792280B1 (en) * | 2012-12-10 | 2017-11-01 | 삼성전기주식회사 | Stack type multi-layered ceramic electronic component, stack type multi-layered ceramic electronic component module and method of manufacturing the same |
US9397497B2 (en) | 2013-03-15 | 2016-07-19 | Ampt, Llc | High efficiency interleaved solar power supply system |
CN103680951B (en) * | 2013-12-13 | 2016-09-28 | 大连天壹电子有限公司 | The outer electrode manufacture method of dry type multilayer ceramic capacitor |
KR102037264B1 (en) * | 2014-12-15 | 2019-10-29 | 삼성전기주식회사 | Device for embedded substrate, method of manufacturing the same and printed circuit board with embedded device |
KR102183424B1 (en) * | 2015-07-06 | 2020-11-26 | 삼성전기주식회사 | stacked electronic component and and circuit board for mounting the same |
JP2017098445A (en) * | 2015-11-26 | 2017-06-01 | 太陽誘電株式会社 | Ceramic electronic component and method of manufacturing ceramic electronic component |
JP6780394B2 (en) * | 2016-09-12 | 2020-11-04 | Tdk株式会社 | Electronic components |
JP6878851B2 (en) * | 2016-11-22 | 2021-06-02 | Tdk株式会社 | Ceramic electronic components |
US10381158B2 (en) | 2016-11-22 | 2019-08-13 | Tdk Corporation | Electronic device |
CN108091488B (en) * | 2016-11-22 | 2020-12-29 | Tdk株式会社 | Electronic component |
JP6862789B2 (en) * | 2016-11-22 | 2021-04-21 | Tdk株式会社 | Ceramic electronic components |
JP7039955B2 (en) | 2017-11-21 | 2022-03-23 | Tdk株式会社 | Electronic components |
US10178770B1 (en) * | 2017-12-22 | 2019-01-08 | Kemet Electronics Corporation | Higher density multi-component and serial packages |
KR102211743B1 (en) * | 2018-08-29 | 2021-02-03 | 삼성전기주식회사 | Electronic component |
KR102150550B1 (en) * | 2018-10-10 | 2020-09-01 | 삼성전기주식회사 | Multilayer ceramic electronic component array |
US12148575B2 (en) | 2019-04-25 | 2024-11-19 | KYOCERA AVX Components Corporation | Integrated component including a capacitor and discrete varistor |
US11621129B2 (en) * | 2019-04-25 | 2023-04-04 | KYOCERA AVX Components Corporation | Low inductance component |
KR20220033178A (en) * | 2020-09-09 | 2022-03-16 | 삼성전기주식회사 | Electronic component and board having the same mounted thereon |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01112032A (en) | 1987-10-24 | 1989-04-28 | Nippon Denso Co Ltd | Clutch mechanism |
GB9814317D0 (en) * | 1997-07-23 | 1998-09-02 | Murata Manufacturing Co | Ceramic electronic part and method for producing the same |
EP0929087B1 (en) * | 1998-01-07 | 2007-05-09 | TDK Corporation | Ceramic capacitor |
JPH11340079A (en) * | 1998-05-29 | 1999-12-10 | Murata Mfg Co Ltd | Ceramic electronic part and its mounting structure |
JP3758408B2 (en) * | 1998-06-24 | 2006-03-22 | 株式会社村田製作所 | Ceramic electronic components |
JP2000235932A (en) * | 1999-02-16 | 2000-08-29 | Murata Mfg Co Ltd | Ceramic electronic component |
-
1999
- 1999-12-28 JP JP37302199A patent/JP2001189233A/en active Pending
-
2000
- 2000-11-30 CN CN00133648A patent/CN1308346A/en active Pending
- 2000-12-01 TW TW089125564A patent/TW463191B/en not_active IP Right Cessation
- 2000-12-28 US US09/749,974 patent/US6433992B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010186884A (en) * | 2009-02-12 | 2010-08-26 | Tdk Corp | Multilayered capacitor and method of manufacturing multilayered capacitor |
WO2013088546A1 (en) * | 2011-12-15 | 2013-06-20 | 株式会社日立製作所 | Capacitor device and electrical equipment for housing capacitor device |
CN104979097A (en) * | 2014-04-14 | 2015-10-14 | 三星电机株式会社 | Multilayer ceramic capacitor and plate for mounting the same |
JP2018067906A (en) * | 2016-10-19 | 2018-04-26 | 株式会社リコー | Atomic oscillator and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
US6433992B2 (en) | 2002-08-13 |
US20010007522A1 (en) | 2001-07-12 |
TW463191B (en) | 2001-11-11 |
CN1308346A (en) | 2001-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001189233A (en) | Layered capacitor | |
US6518632B1 (en) | Ceramic electronic part | |
JP3376970B2 (en) | Ceramic electronic components | |
US7605683B2 (en) | Monolithic electronic component | |
US8405954B2 (en) | Monolithic ceramic electronic component and mounting structure thereof | |
JP3883528B2 (en) | Electronic components | |
JP4187184B2 (en) | Electronic components | |
CN114496567B (en) | Electronic components | |
JP2001085262A (en) | Ceramic electronic component | |
JP6939762B2 (en) | Multilayer ceramic electronic components and their mounting structure | |
JPH1174147A (en) | Ceramic capacitor | |
JP3760770B2 (en) | Multilayer ceramic electronic component and manufacturing method thereof | |
US10115523B2 (en) | Ceramic electronic component and mounting structure of the same | |
JP4736225B2 (en) | Capacitor | |
JP4083971B2 (en) | Multilayer ceramic electronic component and manufacturing method thereof | |
JP2002057063A (en) | Multilayer ceramic electronic component | |
JPH04188810A (en) | Composite ceramic capacitor | |
US11398351B2 (en) | Multilayer ceramic capacitor, mount structure of multilayer ceramic capacitor, and series of electronic components | |
US11276528B2 (en) | Electronic component | |
JPH1140454A (en) | Ceramic electronic parts | |
JP2002057064A (en) | Multilayer ceramic electronic component | |
JPWO2017002495A1 (en) | Chip-type ceramic electronic components | |
JP2002164257A (en) | Laminated ceramic electronic component | |
JP2002043170A (en) | Laminated ceramic capacitor module | |
JP2002043166A (en) | Electronic component |